复数(含答案)
复数练习题附答案
复数练习题附答案复数是数学中的一个基本概念,它拓展了实数的概念,允许我们处理像-1的平方根这样的数。
复数可以表示为a + bi的形式,其中a和b是实数,i是虚数单位,满足i^2 = -1。
下面是一些复数的练习题,以及它们的答案。
练习题1:计算以下复数的加法:\[ (3 + 4i) + (1 - 2i) \]答案1:首先分别将实部和虚部相加:\[ 3 + 1 = 4 \]\[ 4i - 2i = 2i \]所以,结果是 \( 4 + 2i \)。
练习题2:计算以下复数的乘法:\[ (2 + 3i) \times (1 - 4i) \]答案2:使用分配律:\[ 2 \times 1 + 2 \times (-4i) + 3i \times 1 + 3i \times (-4i) \]\[ = 2 - 8i + 3i - 12i^2 \]由于 \( i^2 = -1 \),所以:\[ = 2 - 5i + 12 \]结果是 \( 14 - 5i \)。
练习题3:求复数 \( z = 3 - 2i \) 的共轭复数。
答案3:共轭复数是将虚部的符号改变得到的数,所以:\[ \bar{z} = 3 + 2i \]练习题4:求复数 \( z = 2 + i \) 的模(magnitude)。
答案4:复数的模定义为:\[ |z| = \sqrt{a^2 + b^2} \]其中 \( a \) 和 \( b \) 分别是复数的实部和虚部。
所以:\[ |2 + i| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5} \] 练习题5:求复数 \( z = 1 + i \) 的逆。
答案5:复数的逆通过公式 \( \frac{1}{z} =\frac{\bar{z}}{|z|^2} \) 计算。
首先求模:\[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \]然后求共轭复数:\[ \bar{z} = 1 - i \]最后求逆:\[ \frac{1}{1 + i} = \frac{1 - i}{2} \]因为 \( |1 + i|^2 = 2 \)。
复数经典试题(含答案)百度文库
由,
知在复平面内对应的点位于第一象限,
故选:A.
【点睛】
本题主要考查了复数除法的运算以及复数的几何意义,属于基础题
解析:A
【分析】
对复数 进行分母实数化,根据复数的几何意义可得结果.
【详解】
由 ,
知在复平面内对应的点 位于第一象限,
故选:A.
【点睛】
本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.
6.D
【分析】
先求出,再求出,直接得复数在复平面内对应的点
【详解】
因为,所以,在复平面内对应点,位于第四象限.
故选:D
解析:D
【分析】
先求出 ,再求出 ,直接得复数 在复平面内对应的点
【详解】
因为 ,所以 , 在复平面内对应点 ,位于第四象限.
故选:D
7.A
【分析】
对复数进行分母实数化,根据复数的几何意义可得结果.
30.设复数z满足 ,i为虚数单位,则下列命题正确的是( )
A. B.复数z在复平面内对应的点在第四象限
C.z的共轭复数为 D.复数z在复平面内对应的点在直线 上
【参考答案】***试卷处理标记,请不要删除
一、复数选择题
1.D
【分析】
由复数的运算法则计算即可.
【详解】
解:,
.
故选:D.
解析:D
【分析】
解析:A
【分析】
根据虚数不能比较大小可得 ,再解一元二次不等式可得结果.
【详解】
因为 , ,所以 , ,
所以 或 .
故选:A
【点睛】
关键点点睛:根据虚数不能比较大小得 是解题关键,属于基础题.
5.B
【分析】
复数的计算答案
-专题十四 数系的扩充与复数的引入第四十讲 复数的计算答案部分 2019 年1.C 解析:由 z = -3+ 2i ,知 z = -3 - 2i ,在复平面对应的点为 (- 3, - 2) ,在第三象限.故选 C.3. 解析: z = 1 = 1 - i , z =1 + 1 = 21 + i 24 4 25- i 5 - i52 + 12 26 4.解析 由题意,可知 = = = = 13 .1+ i 1+ i 12 + 12 2 5.解析 由 z (1 + i) = 2i ,得z = 2i = 2i(1- i) = 1 + i .故选 D . 1 + i 2 6 . 解法一:因为 z 在复平面内对应的点为(x , y ), 所以 z = x + y i ,所以 z - i = x +( y - 1)i ,所以 z -i = 所以 x 2 +( y - 1)2= 1 .故选 C .x 2+ (y -1)2=1| ,解法二:由 z -i =1,得 z = 1 + i 或z = 1-i ,所以复数 z 在复平面上对应的点为(1,1)和 (-1,1) ,满足条件的方程只有 C . 故选C . 7.C 解析:由z = -3+ 2i ,知 z = -3 - 2i ,在复平面对应的点为 (- 3, - 2) ,在第三象限.故选 C.8.解析 因为(a + 2i)(1 + i) = (a - 2) + (a + 2)i 的实部为 0,所以 a - 2 = 0 ,即 a = 2 .2010-2018 年1.D 【解析】1 =1+ i= 1+ i = 1 + 1 i ,其共轭复数为 1 - 1 i ,对应的点为1 - i (1 - i)(1 + i)2 2 2 2 2( 1 , 1) ,故选 D . 22z 11- i (1- i)22.C 【解析】因为 = + 2i= 1+ i (1+ i)(1 - i)+ 2i = -i + 2i = i ,所以| z |= 1 ,故选 C .3.D 【解析】1 + 2i = (1 + 2i)(1 + 2i) = - 3 + 4 1 - 2i (1 - 2i)(1 + 2i) 5 5i ,故选 D .4.D 【解析】(1+ i)(2 - i) = 2 - i + 2i - i 2= 3 + i .故选 D .22(1+ i) 25.B 【解析】因为1- i = (1- i)(1+ i) =1 + i ,所以复数 1 - i的共轭复数为1 - i .故选 B .6.B 【解析】设z = a + b i ( a ,b ∈ R ),则 1=z 1(a + b i) = a -b i a 2 + b 2∈ R ,得b = 0 ,所以 z ∈ R ,p 正确; z 2 = (a + b i)2 = a 2 - b 2+ 2ab i ∈ R ,则 ab = 0 ,即 a = 0 或 b = 0 ,不能确定 z ∈ R , p 2 不正确;若 z ∈ R ,则 b = 0 ,此 时 z = a - b i = a ∈ R , p 4 正确.选 B . 7.D 【解析】3 + i = (3 + i)(1- i)= 2 - i ,选 D . 1+ i (1+ i)(1- i)8.C 【解析】由(1+ i)z = 2i ,得 z =2i1 +i= 1 + i ,所以| z |= 12 + 12 = 2 .选 C . 9.A 【解析】由 z = a + 3i , z ⋅ z = 4 得a 2 + 3 = 4 ,所以a = ±1 ,故选 A. ⎧a +1 < 010.B 【解析】z = (1- i)(a + i) = (a +1) + (1- a )i ,因为对应的点在第二象限,∴ ⎨- > ,解得a < -1 ,故选B.11.B 【解析】设 z = a + bi (a , b ∈ R ) ,则 z = a - bi ,故 2z + z = 2(a + bi ) + a - bi = 3a + bi = 3 - 2i , 所以 a = 1, b = -2 ,所以 z = 1 - 2i ,故选 B . 12.B 【解析】因为(1 + i )x = x + xi = 1 + yi ,所以 x = y = 1 ,⎩1 a 0∴ | x + yi |=|1 + i |= 12 + 22 =2 ,选 B .13.A 【解析】由已知可得复数 z 在复平面内对应的点的坐标为 (m + 3, m - 1) ,所以m + 3 > 0 , m -1 < 0 ,解得∴ -3 < m <1 ,故选 A . 14.C 【解析】4i=4i= i ,故选 C .zz -1 (1 + 2i )(1 - 2i ) -1i i 1 ( 1) 2i - =- - 215.A 【解析】由题意知1 + z = i - zi , z = i + 1 = (i + 1)(i - 1) = i ,所以| z |= 1 .16.A 【解析】∵ z = 2 + 3i ,所以 z = 2 -3i .2i 17.B 【解析】由题意 2i (1+ i ) = -2 + 2i = -1+ i ,其对应的点坐标为 (-1,1) , 1- i (1- i )(1+ i ) 2位于第二象限,故选 B .18.A 【解析】z = (1- i )i = -i 2+ i = 1+ i , z = 1- i . 19.C 【解析】i 3- 2 = -i - 2i= -i + 2i = i .i i 220.A 【解析】i 607 = i 4⨯151 ⋅ i 3= -i ,选 B .21.D 【解析】由题意得, z = (1 - i ) 2 1 + i = 1+ i= -1 - i ,故选 D .22.B 【解析】 z = 1 + i = 1 + 1i ,∴| z |= 1 2 + 1 2 = 2 .1+ i(1 +i ) 3 2 21- i + 3i - 3 -2 + 2i( ) ( ) 2 2 223.D 【解析】 (1 -i ) 2= -2i= -2i = -1- i .24.A 【解析】 z 2 = -2+ i ,∴ z 1 z 2 = (2 + i )(-2 + i ) = -5 . 1 + 3i 25.B 【解析】1- i= -1+ 2i .26.D 【解析】由已知得 a = 2, b = 1,∴ (a + bi ) 2= (2 + i ) 2= 3 + 4i .27.D 【解析】由 (3 + 4i )z = 25 得 z =25 3 + 4i = 25(3- 4i ) = (3 - 4 i ) ,选 D .2528.C 【解析】 z + i ⋅ z = 1+ i+ i ⋅ (1- i ) = -(i - 1) + (i + 1) = 2i i29.C 【解析】∵ z = (3 - 2i )i =2 + 3i ,∴ z = 2 - 3i .7 +i(7 +i )(3 -4i ) 25 - 25i30.A 【解析】= = =1-i .3 + 4i (3 + 4i )(3 - 4i )2531.B 【解析】实部为-2,虚部为 1 的复数为-2 +1,所对应的点位于复平面的第二象限,选B .32.D 【解析】由题知 z = | 4 + 3i | 3 -4i =42 + 32 (3 + 4i ) (3 - 4i )(3 + 4i ) = 3 + 4 i 5 5,故 z 的虚部为 45 ,故选 D .⎩2 i2i (1 +i )-2 +2 i 33.A 【解析】 z ==== -1 + i .1 -i(1 -i )(1 + i )234.D 【解析】( z - 3)(2 - i ) = 5 ,得 z = 3+52 - i= 5+ i , z = 5- i . 35.A 【解析】设 z = a + bi ,则 z = a - bi ,由 z ⋅ zi + 2 = 2z 得,(a + bi )(a - bi )i + 2 = (a 2 + b 2 )i + 2 = 2a + 2bi⎧a 2 + b 2 = 2b ⎧a =1z i ⇒ ⎨ ⎩2 = 2 a⇒ ⎨b = 1 ⇒ = 1 + ,所以选 A .36.C 【解析】 z = 2 + 4ii= 4 - 2i 对应的点的坐标是(4,-2) ,故选 C .37.C 【解析】由M ⋂ N = {4}知, zi = 4 ,所以 z = -4i .38.D 【解析】 z = 2i1 + i= 1 + i , ∴ z = 1 - i . 39.A 【解析】i (2 - i ) = 1+ 2i ,选 A .40.B 【解析】设 A ( x , y ) 表示复数 z = x + yi ,则z 的共轭复数 zB (x ,- y ) .= x - yi 对应的点位41.B 【解析】由已知 z = -1 - i = - 1 - 1 i ,所以| Z |= 2. (-1 + i )(-1 - i ) 2 2 2 42.D 【解析】∵ z =-3 + i= -1+ i ,∴ z 的共轭复数为- 1- i ,故选 D . 2 + i43.A 【解析】由 10i3 + i = 10i (3 - i ) (3 + i )(3 - i )= 1+ 3i 对应复平面内的点为 A .44.D 【解析】依题意: 5 - 6i = (5 - 6i )i= -6 - 5i ,故选 D . i i 22-i(2-i )2 3-4i 3 4 45.A 【解析】 = = = - i ,故选 A .2+i (2+i )(2-i ) 5 5 546.A 【解析】由 z = i (i + 1)= -1+ i ,及共轭复数定义得 z = -1- i . 47.B 【解析】7 - i = (7 - i )(3 - i ) = 21 - 7i - 3i -1 = 2 - i .3 + i (3+ i )(3- i ) 1048.D 【解析】3 + i = (3 + i )(1 + i ) = 2 + 4i = 1+ 2i .1- i (1- i )(1+ i ) 249.A 【解析】因为z = 1+ i ,∴ z =1 -i ,∴ z 2 + z 2=0.50.A 【解析】 z = 11 + 7i 2 - i= (11 + 7i )(2 + i ) = 5 22 - 7 + (14 + 11)i5 = 3 + 5i .答案选 A .另解:设 z = a + bi (a , b ∈ R ) ,则(a + bi )(2 - i ) = 2a + b + (2b -a )i = 11 + 7i 根据复数相等可知 2a + b = 11,2b -a = 7,解得a = 3,b = 5,于是 z = 3 + 5i . 51.B 【解析】“ ab = 0 ”则 a = 0 或 b = 0 ,“复数a + b为纯虚数”则 a = 0 且 b ≠ 0 ,则i“ ab = 0 ”是“复数 a + b为纯虚数”的必要不充分条件,故选 B .i52.D 【解析】 z = 2 -i 2 +i = 3 - 45 5 i 在复平面内对应的点所在象限为第四象限. 53.A 【解析】设1+ ai=bi ( b ∈ R ) ,则1+ai =bi (2 - i ) = b + 2bi ,所以 b = 1, a = 2 .2 - i故选 A .2 + i 54.C 【解析】1 - 2i=(2 + i )(1+ 2i )= i , 共轭复数为 C .5 55.D 【解析】因(a + i )i = -1+ ai = b + i ,根据复数相等的条件可知 a = 1, b = -1.56.B 【解析】 z =2 1+ i = 2(1 -i ) (1+ i )(1- i )= 1- i .57.A 【解析】∵ i 2= -1,∴ 1 + 1 + 1 + 1 = 1 - 1 + 1 - 1 = 0 .i i 3 i 5 i 7 i i i i58.B 【解析】∵i 2 = -1 , -1∈ S ,∴i 2∈ S .59.A 【解析】 (1+ z ) ⋅ z = (2 + i )(1- i) = 3 - i .60.A 【解析】 z =3 + i 3 +1 = = 3 -i ,∴ z = 3 +i , z ⋅ z =| z |2 = 1 .(1- 3i )2-2 - 2 3i-4 -4 4 ii ( 3 - 3i ) 3i + 3 1 361.B 【解析】= 3 + 3i3 + 9 = = + i . 124 12 62. 4 - i 【解析】6 + 7i = (6 + 7i)(1- 2i) = 20 - 5i = 4 -i .1 + 2i (1 + 2i)(1 - 2i) 5⎝ ⎭ 1- 7i (1- 7i)(1- i) -6 - 8i63.5【解析】由题意z = = = = -3 - 4i ,1 +i (1 +i)(1 -i) 2所以 | z |=| -3 - 4i |= 32+ 42= 5 . 64.2【解析】复数 z =1+ 2i = (1+ 2i)(-i) = 2 - i 的实部是 2.i65.5,2【解析】∵ (a + b i)2= a 2- b 2+ 2ab i = 3 + 4i ,∴ a 2- b 2= 3, ab = 2 ,又(a 2+ b 2 )2= (a 2- b 2 )2+ 4a 2b 2= 9 +16 = 25 ,∴ a 2+ b 2= 5, ab = 2 .a - i ( a -i )(2 -i ) (2a -1) -( a +2)i 2a -1 a +2 66. -2 【解析】 2 + i = = = - (2 + i )(2 - i ) 5 5 5i 为实数, 则 a + 2= 0 , a = -2 . 567. 10 【解析】| z |=|1+ i || 1+ 2i |=2 ⨯ 5 =10 .68. -1【解析】 (1+ i )(a + i ) = (a - 1) + (a + 1)i ,由已知得 a +1 = 0 ,解得 a = -1. 69.2【解析】(1 + i )(1 - bi ) = 1 + b + (1- b )i = a ,所以 b =1, a = 2, a= 2 .b70. -2 【解析】(1 - 2i )(a + i ) = a + 2 + (1 - 2a )i 是纯度数,所以 a + 2 = 0 ,即 a = -2 .71.3 【解析】由 a + bi = 3 得 a 2+ b 2= 3 ,即 a 2+ b 2= 3,所以 (a + bi )(a - bi ) = a 2 + b 2= 3 .72.21【解析】 z = (5 + 2i )2= 21 + 20i , z 的实部为 21.-1 - i73.【解析】 1- i = 1- i = (1- i ) i = -1- i .2(1 + i ) 2⎛ 1 +i ⎫ 22i(1 + i )2-2 2 74. - 1【解析】 1 -i ⎪ = (1 - i )2= -1 .75. - 3【解析】3 + i= -3 - i .实部为 -3 .i25i (1- 2i )2276. 5 【解析】 z =(1 + 2i )(1 -2i )= 2+ i ,所以| z |= 2 +1 = 5 .77.1 + 2i 【解析】由题意⎧a -1 = 0,即⎧a =1,所以a + bi=1+ 2i .⎨a +1 =b⎩⎨b = 2⎩78.3【解析】因为3+bi1-i=a +bi ,所以3+b i =(a +b i )(1-i)=a +b+(b -a)i .又因为a, b 都为实数,故由复数的相等的充要条件得⎧a +b = 3,⎨⎩解得b -a =b ,⎧a =0,⎨⎩ b = 3,所以a +b = 3.79.1【解析】z =-3 + 2i-1 =1 +3i ,∴z 的实部是1.i。
高中数学第七章复数经典大题例题(带答案)
高中数学第七章复数经典大题例题单选题1、已知z =2+i ,则z−i 1+i =( )A .1−2iB .2+2iC .2iD .−2i答案:D分析:根据共轭复数的定义及复数的除法法则即可求解.由z =2+i ,得z =2−i ,所以z−i 1+i =2−i−i 1+i =2(1−i )×(1−i )(1+i )×(1−i )=2×(1−2i+i 2)2=−2i .故选:D.2、设(−1+2i)x =y −1−6i ,x,y ∈R ,则|x −yi|=( )A .6B .5C .4D .3答案:B分析:根据复数实部等于实部,虚部等于虚部可得{x =−3y =4,进而求模长即可. 因为(−1+2i )x =y −1−6i ,所以{2x =−6−x =y −1,解得{x =−3y =4, 所以|x −yi |=|−3−4i|=√(−3)2+(−4)2=5.故选:B.3、已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z =z .则其中正确命题的个数为A .0个B .1个C .2个D .3个答案:C解析:运用复数的模、共轭复数、虚数等知识对命题进行判断.对于①中复数z 1和z 2的模相等,例如z 1=1+i ,z 2=√2i ,则z 1和z 2是共轭复数是错误的;对于②z 1和z 2都是复数,若z 1+z 2是虚数,则其实部互为相反数,则z 1不是z 2的共轭复数,所以②是正确的;对于③复数z 是实数,令z =a ,则z =a 所以z =z ,反之当z =z 时,亦有复数z 是实数,故复数z 是实数的充要条件是z =z 是正确的.综上正确命题的个数是2个.故选C小提示:本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.4、在复平面内,复数z =1+i 1−i +1−i 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:由复数的运算求出z ,则可得其对应的点的坐标,从而得出结论.z =(1+i)2(1−i)(1+i)+1−i 2=2i 2+1−i 2=12+12i , 则z 在复平面内对应的点为(12,12),在第一象限,故选:A .5、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,(a,b ∈R ),分别计算|z 12|、|z 1|2即可判断选项D ,进而可得正确选项.对于选项A :取z 1=2+i ,z 2=2−i ,z 12=(2+i )2=3+2i ,z 22=(2−i )2=3−2i ,满足z 12+z 22=6>0,但z 12与z 22是两个复数,不能比较大小,故选项A 不正确;对于选项B :取z 1=2+i ,z 2=2−i ,|z 1−z 2|=|2i |=2,而√(z 1+z 2)2−4z 1⋅z 2=√42−4(2+i )(2−i )=√16−20无意义,故选项B 不正确;对于选项C :取,z 2=i ,则z 12+z 22=0,但是z 1≠0,z 2≠0,故选项C 不正确;对于选项D :设z 1=a +bi ,(a,b ∈R ),则z 12=(a +bi )2=a 2−b 2+2abi11z =11z =|z 12|=√(a 2−b 2)2+4a 2b 2=√(a 2+b 2)2=a 2+b 2,z 1=a −bi ,|z 1|=√a 2+b 2,所以|z 1|2=a 2+b 2,所以|z 12|=|z 1|2,故选项D 正确.故选:D.6、已知i 为虚数单位,则i +i 2+i 3+⋅⋅⋅+i 2021=( )A .iB .−iC .1D .-1答案:A分析:根据虚数的运算性质,得到i 4n +i 4n+1+i 4n+2+i 4n+3=0,得到i +i 2+i 3+⋅⋅⋅+i 2021=i 2021,即可求解.根据虚数的性质知i 4n +i 4n+1+i 4n+2+i 4n+3=1+i −1−i =0,所以i +i 2+i 3+⋅⋅⋅+i 2021=505×0+i 2021=i .故选:A.7、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D8、已知关于x 的方程(x 2+mx )+2x i =-2-2i (m ∈R )有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC.-3-iD.-3+i答案:B分析:根据复数相等得出m,n的值,进而得出复数z. 由题意知(n2+mn)+2n i=-2-2i,即{n 2+mn+2=02n+2=0,解得{m=3,n=−1,∴z=3−i故选:B多选题9、已知复数z=21+i,则正确的是()A.z的实部为﹣1B.z在复平面内对应的点位于第四象限C.z的虚部为﹣iD.z的共轭复数为1+i答案:BD分析:根据复数代数形式的乘除运算化简,结合复数的实部和虚部的概念、共轭复数的概念求解即可.因为z=21+i =2(1−i)(1+i)(1−i)=1−i,所以z的实部为1,虚部为-1,在复平面内对应的点为(1,-1),在第四象限,共轭复数为z=1+i,故AC错误,BD正确.故选:BD10、复数z=1−i,则()A.z在复平面内对应的点的坐标为(1,−1)B.z在复平面内对应的点的坐标为(1,1)C.|z|=2D.|z|=√2答案:AD分析:利用复数的几何意义,求出复数对应的点坐标为(1,−1),即可得答案;z=1−i在复平面内对应的点的坐标为(1,−1),|z|=√2.故选:AD.11、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.12、已知复数z1=−2+i(i为虚数单位),复数z2满足|z2−1+2i|=2,z2在复平面内对应的点为,则()A.复数z1在复平面内对应的点位于第二象限B.1z1=−25−15iC.(x+1)2+(y−2)2=4D.|z2−z1|的最大值为3√2+2答案:ABD分析:利用复数的几何意义可判断A选项;利用复数的除法运算可判断B选项;利用复数的模长公式可判断C选项;利用复数模长的三角不等式可判断D选项.对于A选项,复数z1在复平面内对应的点的坐标为(−2,1),该点位于第二象限,A对;对于B选项,1z1=1−2+i=−2−i(−2+i)(−2−i)=−25−15i,B对;对于C选项,由题意可得z2−1+2i=(x−1)+(y+2)i,因为|z2−1+2i|=2,则(x−1)2+(y+2)2=4,C错;对于D选项,z1−1+2i=−3+3i,则|z1−1+2i|=√(−3)2+32=3√2,所以,|z2−z1|=|(z2−1+2i)−(z1−1+2i)|≤|z2−1+2i|+|z1−1+2i|=2+3√2,D对.(), M x y故选:ABD.13、若复数z 满足:z (z +2i )=8+6i ,则( )A .z 的实部为3B .z 的虚部为1C .zz =√10D .z 在复平面上对应的点位于第一象限答案:ABD分析:根据待定系数法,将z =a +bi (a,b ∈R )代入条件即可求解a =3,b =1,进而即可根据选项逐一求解. 设z =a +bi (a,b ∈R ),因为z (z +2i )=8+6i ,所以zz +2iz =8+6i ,所以(a 2+b 2−2b )+2ai =8+6i ,所以a 2+b 2−2b =8,2a =6,所以a =3,b =1,所以z =3+i ,所以z 的实部为3,虚部为1,故A ,B 正确;zz =|z |2=10,故C 不正确;z 在复平面上对应的点(3,1)位于第一象限,故D 正确.故选:ABD .填空题14、i 2 021=________.答案:i分析:利用周期性求得所求表达式的值.i 2021=i 505×4+1=i 1=i所以答案是:i15、设复数z ,满足|z 1|=1,|z 2|=2,z 1+z 2=√3−i ,则|z 1−z 2|=____________.答案:√6解析:根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出|z 1−z 2|的值.设z 1,z 2在复平面中对应的向量为OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ ,z 1+z 2对应的向量为OZ 3⃗⃗⃗⃗⃗⃗⃗ ,如下图所示:因为z 1+z 2=√3−i ,所以|z 1+z 2|=√3+1=2,所以cos∠OZ 1Z 3=12+22−221×2×2=14, 又因为∠OZ 1Z 3+∠Z 1OZ 2=180°,所以cos∠Z 1OZ 2=−cos∠OZ 1Z 3=−14,所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2=OZ 12+OZ 22−2OZ 1⋅OZ 2⋅cos∠Z 1OZ 2=1+4+1=6, 所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,又|z 1−z 2|=|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,所以答案是:√6.小提示:名师点评复数的几何意义:(1)复数z =a +bi (a,b ∈R )一一对应↔复平面内的点Z (a,b )(a,b ∈R ); (2)复数z =a +bi (a,b ∈R ) 一一对应↔平面向量OZ ⃗⃗⃗⃗⃗ . 16、在复平面内,复数z 对应的点的坐标是(3,−5).则(1−i)z =___________.答案:−2−8i ##−8i −2分析:根据给定条件求出复数,再利用复数的乘法运算计算作答.在复平面内,复数z 对应的点的坐标是(3,−5),则z =3−5i ,所以(1−i)z =(1−i)(3−5i)=−2−8i .所以答案是:−2−8i解答题17、已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i (其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值;(2)若z 1=z 2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m <0,解得m >1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m −4i|,解得m =3.综上可得:m =−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。
高考数学复数习题及答案
高考数学复数习题及答案决战高考高考复试卷含答案一、选择题1.(2017·山东) 复数3-i等于( )。
A。
1+2i B。
1-2i C。
2+i D。
2-i答案:C解析:(3-i)(3-i)(1+i) = 4+2i = 2+i。
故选C。
2.(2017·宁夏、海南) 复数(2-3i)/(2+3i) = ( )。
A。
-2i B。
2 C。
-1/2 D。
2i答案:D解析:(2-3i)/(2+3i) = [(2-3i)(2-3i*)]/(2^2+3^2) = 13i/13 = i。
故选D。
3.(2017·陕西) 已知z是纯虚数,|z|=1是实数,那么z等于( )。
A。
2i B。
i C。
-i D。
-2i答案:D解析:由题意得z=ai(a∈R且a≠0)。
则|z|=|ai|=a=1.故a=1,z=-i。
故选D。
4.(2017·武汉市高三年级2月调研考试) 若f(x)=x^3-x^2+x-1,则f(i)=( )。
A。
2i B。
-i+2 C。
-2i D。
-2答案:B解析:f(i) = i^3-i^2+i-1 = -i+1+i-1 = -2.故选B。
5.(2017·北京朝阳4月) 复数z=i/(2-i)在复平面内对应的点位于( )。
A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限答案:D解析:z=i/(2-i) = (2+i)/(5-2i)。
由此可知,z对应的点位于第四象限。
故选D。
6.(2017·北京东城3月) 若将复数(2+ib)/(1+i)表示为a+bi(a,b∈R,i是虚数单位)的形式,则a的值为( )。
A。
-2 B。
-1 C。
2 D。
1答案:A解析:(2+ib)/(1+i) = [(2+ib)(1-i)]/2 = 1-b+i(2-b)/2.由此可知,a=-2.故选A。
7.(2017·北京西城4月) 设i是虚数单位,复数z=tan45°-i·sin60°,则z^2等于( )。
复数练习题(有答案)
复数练习题(有答案)1.复数选择题1.若复数 $z=1+i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1-i$。
答案:C2.若复数 $z=1-i$,则 $z$ 的共轭复数为()解析:$z$ 的共轭复数为 $\bar{z}=1+i$。
答案:D3.在复平面内,复数 $z=3+4i$ 对应的点的坐标为()解析:$z$ 对应的点的坐标为 $(3,4)$。
答案:A4.已知复数 $z=\frac{1}{1+i}$,则 $z$ 的共轭复数为()解析:$\bar{z}=\frac{1}{1-i}=\frac{1+i}{2}$。
答案:B5.已知复数 $z=\frac{3-2i}{5}$,则 $z$ 的虚部是()解析:$z$ 的虚部为$\operatorname{Im}(z)=\frac{-2}{5}$。
答案:C6.已知复数 $z$ 满足 $z(1+i)=1-i$,则复数 $z$ 对应的点在直线 $y=-\frac{1}{2}x$ 上。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=\frac{-1}{2}+\frac{1}{2}i$,对应的点在直线 $y=-\frac{1}{2}x$ 上。
答案:A7.已知复数 $z$ 满足 $z^2=2i$,则 $z\cdot\bar{z}$ 的值为$4$。
解析:$z\cdot\bar{z}=|z|^2=2$,$z^2\cdot\bar{z}^2=(2i)(-2i)=-4$,因此 $z\cdot\bar{z}=\sqrt{-4}=2i$,$|z\cdot\bar{z}|=2$,所以 $z\cdot\bar{z}=4$。
答案:B8.已知复数 $z$ 满足 $z(1-i)=2i$,则在复平面内 $z$ 对应的点位于第二象限。
解析:将 $z$ 的实部和虚部表示出来,得到 $z=-\frac{2}{2i}-i=-1-i$,对应的点在第二象限。
答案:B9.满足 $i^3\cdot z=1-3i$ 的复数 $z$ 的共轭复数是 $3+i$。
高考数学《复数》真题练习含答案
高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。
复数经典试题(含答案) 百度文库
一、复数选择题1.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i + 2.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4B .()4,3-C .43,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭ 3.已知复数1=-i z i ,其中i 为虚数单位,则||z =( )A .12B .2CD .24.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( )A .2B .1C .0D .1- 5.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i +6.))5511--+=( )A .1B .-1C .2D .-2 7.设()2211z i i =+++,则||z =( )A B .1 C .2 D 8.设复数2i 1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9.已知复数202111i z i-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i10.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( )A .68i +B .68i -C .68i --D .68i -+11.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .812.已知i 是虚数单位,设复数22i a bi i-+=+,其中,a b ∈R ,则+a b 的值为( )A .75 B .75- C .15 D .15- 13.已知i 是虚数单位,设11i z i ,则复数2z +对应的点位于复平面( ) A .第一象限 B .第二象限C .第三象限D .第四象限 14.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限 15.若复数11i z i ,i 是虚数单位,则z =( ) A .0 B .12 C .1 D .2 二、多选题16.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1- 17.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-18.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 19.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z = 20.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数 B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 21.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点22.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )A .第一象限B .第二象限C .第三象限D .第四象限23.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12-24.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =25.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω>26.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限27.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数B .若32a bi i -=+,则3,2a b ==C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z -28.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于129.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】2 1i =+2(1)(1)(1)ii i-=+-2(1)12ii-=-.故选:C2.D【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可. 【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D解析:D【分析】运用复数除法的运算法则化简复数534ii-的表示,最后选出答案即可.【详解】因为55(34)15204334(34)(34)2555i i i iii i i⋅+-===-+--+,所以在复平面内,复数534ii-(i为虚数单位)对应的点的坐标为43,55⎛⎫-⎪⎝⎭.故选:D3.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.由于,则.故选:B解析:B【分析】 先利用复数的除法运算将1=-i z i 化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||z === 故选:B4.D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】,它为纯虚数,则,解得.故选:D .解析:D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-. 故选:D .5.D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .6.D【分析】先求和的平方,再求4次方,最后求5次方,即可得结果.【详解】∵,,∴,,∴,,∴,故选:D.解析:D【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果. 【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--,)()51711+=--+=-,∴))55121-+=--, 故选:D.7.D【分析】利用复数的乘除法运算法则将化简,然后求解.【详解】因为,所以,则.故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D【分析】利用复数的乘除法运算法则将z 化简,然后求解||z .【详解】 因为()()()()2221211211211111i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z =故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.8.D【分析】先求出,再求出,直接得复数在复平面内对应的点【详解】因为,所以,在复平面内对应点,位于第四象限.故选:D解析:D【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点【详解】 因为211i z i i ==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限. 故选:D9.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C. 10.D【分析】设,根据复数对应的向量与共线,得到,再结合求解.【详解】设,则复数对应的向量,因为向量与共线,所以,又,所以,解得或,因为复数对应的点在第三象限,所以,所以,,解析:D【分析】设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到43a b =,再结合10z =求解.【详解】设(,)z a bi a R b R =+∈∈,则复数z 对应的向量(),OZ a b =,因为向量OZ 与(3,4)a =共线,所以43a b =, 又10z =,所以22100+=a b ,解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩, 因为复数z 对应的点在第三象限,所以68a b =-⎧⎨=-⎩, 所以68z i =--,68z i =-+,故选:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】,故 则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+= 故选:D12.D【分析】先化简,求出的值即得解.【详解】,所以.故选:D解析:D【分析】 先化简345i a bi -+=,求出,a b 的值即得解. 【详解】 22(2)342(2)(2)5i i i a bi i i i ---+===++-, 所以341,,555a b a b ==-∴+=-. 故选:D 13.A【分析】由复数的除法求出,然后得出,由复数的几何意义得结果.【详解】由已知,,对应点为,在第一象限,故选:A.解析:A由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果.【详解】 由已知(1)(1)(1)(1)i i z i i i --==-+-, 222z i i +=-+=+,对应点为(2,1),在第一象限,故选:A.14.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.15.C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.二、多选题16.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.17.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.18.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 19.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.20.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.21.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.22.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.23.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.24.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题25.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确,虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.26.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;2211112222122222ω----====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.27.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确; 当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.28.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确;对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
复数知识点总结和例题
复数知识点总结和例题一、名词的复数形式1. 一般情况下,名词构成复数的规则是在单数形式后面加上-s,如book-books,cat-cats,dog-dogs等。
2. 以-s, -ss, -sh, -ch, -x结尾的名词,复数形式应在词尾加-es,如bus-buses,class-classes,box-boxes等。
3. 以辅音字母+y结尾的名词,复数形式应将y变为i再加上-es,如baby-babies,city-cities等。
4. 以-f或-fe结尾的名词,复数形式应将f变为v再加上-es,如leaf-leaves,knife-knives 等。
5. 一些名词的复数形式是不规则变化的,需要独立记忆,如child-children,man-men,woman-women等。
二、不可数名词不可数名词是指不能用于单复数变化的名词,它们通常表示一种概念、物质或抽象事物,如water, milk, money, information等。
不可数名词没有复数形式,不能与不定冠词a/an连用,通常用于表示数量的量词或用作可数名词的量词修饰。
例题一:1. The teacher gave us some useful _______ for the exam. (information)A. informationsB. informC. informationD. informs答案:C. information2. There are too many ______ in the river. (fish)A. fishsB. fishC. fishesD. fishies答案:B. fish3. He bought two new ______ at the bookstore yesterday. (novel)A. novellsB. novlesC. novelD. novels答案:D. novels4. There is some ______ on the table, could you please pass me the ______? (butter)A. buttersB. butterC. buttersD. butteries答案:B. butter5. Please give me some more ______ for my cup of ______. (milk)A. milksB. milkC. milkieD. milkies答案:B. milk三、名词的数量表达1. 在表示数量的名词或代词前,应使用相应的量词来修饰,如a few, a little, some, many, much, a lot of, plenty of等。
复数练习题(有答案)
复数练习题(有答案)1.复数选择题1.若复数 $z=\frac{1}{1-i}$,则 $z$ 的共轭复数为()。
A。
$\frac{1+i}{2}$ B。
$\frac{1-i}{2}$ C。
$\frac{-1+i}{2}$ D。
$\frac{-1-i}{2}$2.已知复数 $z=\frac{11+22i}{1-i(m-m^2i)}$ 为纯虚数,则实数 $m=$()。
A。
$1$ B。
$-1$ C。
$i$ D。
$-i$3.若复数 $z=(2+i)i$(其中 $i$ 为虚数单位),则复数$z$ 的模为()。
A。
$5$4.复数 $z=\frac{3i}{5-2i}$ 的虚部是()。
A。
$\frac{15}{29}$ B。
$\frac{3}{29}$ C。
$-\frac{3}{29}$ D。
$-\frac{15}{29}$5.已知 $2i+1=z\cdot5\left(5-\frac{1}{z}\right)$,则$z=$()。
A。
$1$ B。
$3$ C。
$2$ D。
$-2$6.复数 $z$ 满足 $i\cdot z=1-2i$,$z$ 是 $z$ 的共轭复数,则 $z\cdot z=$()。
A。
$5$ B。
$-5$ C。
$5i$ D。
$-5i$7.已知 $i$ 是虚数单位,则复数 $\frac{4i}{1+i}$ 在复平面内对应的点在()。
A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限8.已知 $i$ 为虚数单位,若复数 $z=5+3i$,则$\frac{z}{i}=$()。
A。
$-3+5i$ B。
$5-3i$ C。
$-5+3i$ D。
$3+5i$9.若复数 $z=\frac{a+i}{1-i}$,$a\in R$,为纯虚数,则$z+a=$()。
A。
$1+2i$ B。
$2i-1$ C。
$2+2i$ D。
$-2i+1$10.已知复数 $z$ 满足 $\frac{z}{2+i}=2-i$,则复数 $z$ 在复平面内对应的点在()。
复数试题及答案高中数学
复数试题及答案高中数学一、选择题1. 复数z = 3 + 4i的模是()A. 5B. √5C. √(3² + 4²)D. 42. 已知z₁ = 2 - i,z₂ = 1 + 3i,求z₁z₂的值是()A. 5 - iB. 5 + iC. 2 + 5iD. 2 - 5i3. 复数z = 1/(1 - i)的共轭复数是()A. -1 - iB. -1 + iC. 1 - iD. 1 + i二、填空题4. 复数3 - 4i的实部是______,虚部是______。
5. 若复数z满足|z| = 5,且z的实部为3,则z的虚部可以是______。
三、解答题6. 求复数z = 2 + 3i的共轭复数,并计算|z|。
7. 已知复数z₁ = 2 + i,z₂ = 1 - 2i,求z₁ + z₂,z₁ - z₂,z₁z₂。
8. 证明:对于任意复数z,都有|z|² = z * z的共轭复数。
答案一、选择题1. C. √(3² + 4²) = 52. A. 5 - i ((2 - i)(1 + 3i) = 2 + 6i - i - 3 = 5 - i)3. D. 1 + i (1/(1 - i) = (1 + i)/2)二、填空题4. 3,-45. ±4 (因为|z|² = 3² + 虚部²,所以虚部² = 25 - 9 = 16,虚部= ±4)三、解答题6. z的共轭复数是2 - 3i,|z| = √(2² + 3²) = √13。
7. z₁ + z₂ = (2 + i) + (1 - 2i) = 3 - iz₁ - z₂ = (2 + i) - (1 - 2i) = 1 + 3iz₁z₂ = (2 + i)(1 - 2i) = 2 - 4i + i - 2i² = 4 - i8. 证明:设z = a + bi,其中a和b是实数,i是虚数单位。
复数的概念及四则运算(含答案详解)
复数的概念及四则运算[基础巩固]1.复数(1+i)2(2+3i)=( )A .6-4iB .-6-4iC .6+4iD .-6+4i解析 (1+i)2(2+3i)=2i(2+3i)=-6+4i.答案 D2.复数(1+2i )23-4i=( ) A .-1B .1C .-iD .i解析 (1+2i )23-4i =-3+4i 3-4i=-1. 答案 A3.(多选题)(2021·东莞高一期末)已知复数z (z ≠0),z -是z 的共轭复数,则下列结论正确的是( )A .若z =z -,则z ∈RB .若|z |=1,则z ·z -=1C .若z z -∈R ,则z ∈RD .若z 2+z 2=0,则z =0 解析 设z =a +b i(a ,b ∈R ),代入计算,根据复数的定义判断,也可举反例说明. 设z =a +b i(a ,b ∈R ),若z =z -,即a +b i =a -b i ,所以b =-b =0,z =a ∈R ,A 正确;若|z |=1,则a 2+b 2=1,所以z ·z -=(a +b i)(a -b i)=a 2+b 2=1,B 正确;若z =2i ,则z z -=2i -2i =-1∈R ,C 错误; 若z =1+i ,则z 2+z 2=(1+i)2+(1-i)2=2i -2i =0,D 错误.故选A ,B. 答案 AB4.设复数z =1+2i ,则z 2-2z =________.解析 ∵z =1+2i ,∴z 2-2z =z (z -2)=(1+2i)(1+2i -2)=(1+2i)(-1+2i)=-3.答案 -35.已知2-3i z=-i ,则复数z =________. 解析 因为2-3i z=-i , 所以z =2-3i -i=(2-3i)i =3+2i. 答案 3+2i6.计算(1)(-1+i )(2+i )i 3;(2)(1+2i )2+3(1-i )2+i; (3)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i. 解析 (1)(-1+i )(2+i )i 3=-3+i -i=-1-3i. (2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i 2+i =i (2-i )5=15+25i. (3)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i =⎣⎡⎦⎤(1+i )226+i (3-2i )3-2i=i 6+i =-1+i.[能力提升]7.(2022·全国乙卷)已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2解析 由题设,z =1-2i ,z =1+2i ,所以a +b +1+(2a -2)i =0,故a =1,b =-2,选择A .答案 A8.(多选题)已知z =a +b i(a ,b ∈R )为复数,z -是z 的共轭复数,则下列命题一定正确的是( )A .z ·z -=|z |2B .若1z∈R ,则z ∈R C .若z 2为纯虚数,则a =b ≠0D .若|z -i|=1,则|z |的最大值为2解析 根据共轭复数的定义、复数的运算、复数的定义和复数模的三角不等式计算求解后判断各选项.对于A ,z ·z -=(a +b i)(a -b i)=a 2+b 2=|z |2,所以A 正确;对于B ,1z =1a +b i =a -b i (a +b i )(a -b i )=a a 2+b 2-b a 2+b 2i , 因为1z∈R ,所以b =0,从而z ∈R ,所以B 正确; 对于C ,z 2=(a +b i)2=()a 2-b 2+2ab i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-b 2=0,2ab ≠0,即a =±b ≠0,所以C 错误;对于D ,由复数模的三角不等式可得|z |=|(z -i)+i|≤|z -i|+|i|=2,所以D 正确.故选A ,B ,D.答案 ABD9.写出一个虚数z ,使z 2的实部为0,则z =________.解析 设复数z =a +b i ,()b ≠0,则z 2=a 2-b 2+2ab i ,使z 2的实部为0,得a =±b ,即可得解.设复数z =a +b i ,()b ≠0,则z 2=a 2-b 2+2ab i ,因为z 2的实部为0,所以a 2-b 2=0,即a =±b ,所以答案可为1-i 或1+i.答案 1-i 或1+i(答案不唯一,凡符合a +a i 或a -a i(a ∈R 且a ≠0)形式的均正确)10.已知复数z =1+i ,求实数a ,b ,使az +2b z -=(a +2z )2.解析 因为z =1+i ,所以az +2b z =(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i.因为a ,b 都是实数,所以由az +2b z =(a +2z )2,得⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2),解得a =-2或a =-4,对应得b =-1或b =2,所以所求实数为a =-2,b =-1或a =-4,b =2.[探索创新]11.复数z =(1+i )3(a +b i )1-i且|z |=4,z 对应的点在第一象限,若复数0,z ,z -对应的点是正三角形的三个顶点,求实数a ,b 的值.解析 z =(1+i )2·(1+i )1-i(a +b i) =2i·i(a +b i)=-2a -2b i.由|z |=4,得a 2+b 2=4,①∵复数0,z ,z 对应的点构成正三角形, ∴|z -z |=|z |.把z =-2a -2b i 代入化简得|b |=1.②又∵z 对应的点在第一象限,∴a <0,b <0.由①②得⎩⎨⎧ a =-3,b =-1.故所求值为a =-3,b =-1.。
复数的四则运算(含答案解析)
复数的四则运算1.复数z=的虚部为()A.-1B.-3C.1D.22.已知m为实数,i为虚数单位,若m+(m2-4)i>0,则=()A.iB.1C.-iD.-13.已知a∈R,i为虚数单位,若(1-i)(a+i)为纯虚数,则a的值为()A.2B.1C.-2D.-14.已知(a,b∈R),其中i为虚数单位,则a+b=()A.0B.1C.-1D.25.计算=()A.-1B.iC.-iD.16.已知i是虚数单位,,则|z|=()A. B.2 C. D.47.复数z满足z (2-i)=2+i(i为虚数单位),则在复平面内对应的点所在象限为() A.第一象限B.第二象限 C.第三象限 D.第四象限8.若a=i+i2+…+i2013(i是虚数单位),则的值为()A.iB.1-iC.-1+iD.-1-i9.设i是虚数单位,如果复数的实部与虚部是互为相反数,那么实数a的值为()A. B. C.3 D.-310.复数z满足(z+2i)i=1+i,则z=()A.1+3iB.1-3iC.-1+3iD.-1-3i11.已知复数z的实部为a(a<0),虚部为1,模长为2,是z的共轭复数,则的值为()A. B.--i C.-+i D.-12.设x,m均为复数,若x2=m,则称复数x是复数m 的平方根,那么复数3-4i(i是虚数单位)的平方根为() A.2-i或-2+i B.2+i或-2-iC.2-i或2+iD.-2-i或-2+i13.设i为虚数单位,则()2014等于()A.21007iB.-21007iC.22014D.-2201414.已知复数z1=1+i,|z2|=3,z1z2是正实数,则复数z2= ______ .15.复数z =,i是虚数单位,则z2015= ______ .复数的四则运算答案和解析1. B 解:∵z==,∴复数z=的虚部为-3.2. A 解:∵m+(m 2-4)i >0,∴,解得:m=2.则=.3. D 解:∵(1-i)(a+i)=1+a+(1-a )i为纯虚数,∴,解得:a =-1.4. B解:∵=,∴,解得,则a+b=1.5. B解:=.6. C 解:由,得,即|z |=.7. D解:∵z(2-i)=2+i,∴z (2-i )(2+i)=(2+i)(2+i),∴z=(3+4i),则=-i 在复平面内对应的点(,-)所在象限为第四象限.8. D解:因为i+i2+i3+i4=0,所以a=i+i 2+…+i2013=i.===-=-=-1-i.9. C解:==,∵复数的实部与虚部是互为相反数,∴,即a=3.10. B解:由(z+2i)i=1+i,得,∴z=1-3i.11.D解:∵复数z的实部为a(a<0),虚部为1,则复数z=a+i.又模长为2,∴,解得a=.∴z=,.则==.12. A解:设z=x+yi,则(x+yi)2=3-4i,即x2-y2+2xyi=3-4i,∴,解得:或.∴复数3-4i的平方根为2-i或-2+i.13. A解:∵()2=-2i ,∴()2014=(-2i )1007=(-2)1007•i1007=21007i.14. 解:设复数z2=a+bi(a ,b∈R),z1z2=,∵|z2|=3,z1z2是正实数,∴,解得:.则复数z2=.故答案为:z2=.15. 解:∵z==(1+i),∴z2=(1+2i+i2)=i,z3=z2•z=i•(1+i)=(-1+i),z4=(z2)2=-1,z5=z 4•z=-(1+i ),z6=z4•z2=-i,z7=z3•z4=(1-i),z8=z2•z6=1,z9=z•z8=(1+i),∴z t=z8k+t(k、t∈N*),∵2015=251×8+7,∴z2015=z7=(1-i),故答案为:(1-i).。
复数专题(有答案) 百度文库
一、复数选择题1.设复数1i z i=+,则z 的虚部是( ) A .12 B .12i C .12- D .12i - 2.已知复数1=-i z i ,其中i 为虚数单位,则||z =( )A .12B .2CD .2 3.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46- 4.已知复数()2m m m i z i --=为纯虚数,则实数m =( ) A .-1 B .0 C .1 D .0或15.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( )A .1B .0C .-1D .1+i6.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15- D .15i - 7.设()2211z i i =+++,则||z =( )A B .1 C .2 D8.已知复数512z i =+,则z =( )A .1BCD .5 9.已知复数()211i z i-=+,则z =( ) A .1i -- B .1i -+C .1i +D .1i - 10.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i -11.复数z 满足22z z i +=,则z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 12.复数2i i-的实部与虚部之和为( ) A .35 B .15- C .15D .35 13.122i i-=+( ) A .1 B .-1 C .iD .-i 14.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限15.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12- C .13 D .1二、多选题16.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-17.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 18.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+ B .11i i-+ C .11i i +- D .()21i - 20.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i = C .z 的共轭复数为1i + D .z 的虚部为1- 21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12-22.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =23.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限24.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 25.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限27.以下命题正确的是( ) A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 28.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z29.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .2.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】由于,则.故选:B解析:B【分析】先利用复数的除法运算将1=-i z i 化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.C【分析】应用复数相乘的运算法则计算即可.【详解】解:所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解:()()()32351223469i i i i +=-++=-+所以()323i +的虚部为9.故选:C. 4.C【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可【详解】解析:因为为纯虚数,所以,解得,故选:C.解析:C【分析】结合复数除法运算化简复数z ,再由纯虚数定义求解即可【详解】解析:因为()()22m m m iz m m mi i --==--为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =,故选:C.5.C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知=,故选C解析:C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知i e π=cos sin 101i ππ+=-+=-,故选C6.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部.【详解】因为,所以其虚部是.故选:A.解析:A【分析】 先由复数的除法运算化简复数23i i-+,再由复数的概念,即可得出其虚部. 【详解】 因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.7.D【分析】利用复数的乘除法运算法则将化简,然后求解.【详解】因为,所以,则.故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D利用复数的乘除法运算法则将z 化简,然后求解||z .【详解】 因为()()()()2221211211211111i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z =故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.8.C【分析】根据模的运算可得选项.【详解】.故选:C.解析:C【分析】根据模的运算可得选项.【详解】512z i ====+ 故选:C.9.B【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.【详解】由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-, 所以z i ,则z 的虚部为1.故选:A11.B【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数,由得,所以,解得,因为时,不能满足,舍去;故,所以,其对应的解析:B【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数(),z x yi x R y R =+∈∈, 由22z z i +=得222x yi i +=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得31x y ⎧=±⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x =,舍去;故31x y ⎧=-⎪⎨⎪=⎩,所以3z i =-+,其对应的点⎛⎫ ⎪ ⎪⎝⎭位于第二象限, 故选:B.12.C【分析】利用复数代数形式的乘除运算化简得答案.【详解】,的实部与虚部之和为.故选:C【点睛】易错点睛:复数的虚部是,不是.解析:C【分析】利用复数代数形式的乘除运算化简得答案.【详解】()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555-+=. 故选:C 【点睛】易错点睛:复数z a bi =+的虚部是b ,不是bi .13.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D14.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.15.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B二、多选题16.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确;故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确; 因为,所以,所以D 正确解析:ACD 【分析】 分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122z z z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 20.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误; 当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.23.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.24.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围25.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 27.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 28.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
复数练习题(有答案)
复数练习题(有答案)一、单选题1.复数20222i 1iz =+(其中i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( )A .一B .二C .三D .四3.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i +B .24i -C .33i +D .24i +4.已知a R ∈,“实系数一元二次方程2904x ax ++=的两根都是虚数”是“存在复数z 同时满足2z =且1z a +=”的( )条件. A .充分非必要 B .必要非充分 C .充分必要 D .既非充分又非必要 5.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 6.复数3i(43i )-在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.下列命题:①若i 0a b +=,则0a b ;②i 22i 2x y x y +=+⇔==;③若y R ∈,且()()211i 0y y ---=,则1y =.其中正确命题的个数为( )A .0个B .1个C .2个D .3个8.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)-B .(0,1)C .(,0)-∞D .(1,)-+∞9.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i --B .2i -+C .2i -D .2i +11.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3πB .23π C .34π D .56π12.已知复数z 满足(1i)32i +=+z ,则z 的虚部为( ) A .12 B .1i 2-C .12-D .1i 213.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( ) A .-2B .-1C .1D .214.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ). A .()3,1- B .()1,3- C .()1,+∞ D .(),3-∞ 15.复数z 满足:23i 3=+-z z ,则z =( )A.5B C .10D 16.已知复数z 满足()43i 5i z +=,则z =( )A .1B C .15D .517.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件18.设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A .1i -B .1i +C .2i +D .2i -19.已知复数324i 1iz +=-,则z =( )AB C .D .20.在复平面中,复数z 对应的点的坐标为(1,2),则复数iz 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题21.设复数z 满足()1i 22i z +=-(i 为虚数单位),则z =______.22.若复数31i 2iz a -=-为实数,则实数a 的值为_______.23.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________.24.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.25.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 26.若复数z 满足i 3i=iz -+,则z =________. 27.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 28.设i是虚数单位,且12w =-,则21w w ++=______. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________. 30.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 31.设i 为虚数单位,则复数2(1i)1i+-=____.32.若i 为虚数单位,复数z 满足42ii 12iz --=+,则z =___________. 33.已知复数z 为纯虚数且满足1-3z =|z |+3i ,则z =________34.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值为________.35.已知23iz-=-i ,则复数z =________. 36.设复数()21(1)i m m -++为纯虚数,则实数m 的值为________.37.i 是虚数单位,则1i1i+-的值为__________. 38.若复数22(9)(23)i z m m m =-++-是纯虚数,其中m ∈R ,则|z |=________. 39.计算:112i2i-=+___________. 40.若复数(1i)+(2+3i)z =-(i 为虚数单位),则z =__________. 三、解答题 41.定义运算ab ad bc c d=-,如果()()32i 3i 1x y x y x y++++=-,求实数x ,y 的值.42.设复数z =log 2(m 2-3m -3)+ilog 2(m -2)(m ∈R ),对应的向量为OZ .(1)若OZ 的终点Z 在虚轴上,求实数m 的值及|OZ |; (2)若OZ 的终点Z 在第二象限内,求m 的取值范围. 43.根据要求完成下列问题:(1)已知复数1z 在复平面内对应的点在第四象限,1||1z =,且111z z +=,求1z ;(2)已知复数225(15i)3(2i)12im z m =-+-+-为纯虚数,求实数m 的值. 44.在复数集C 内方程610x -=有六个根分别为123456ωωωωωω,,,,, (1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A ,B ,C ,D ,E ,F ;求多边形ABCDEF 的面积 .45.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ; (2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.【参考答案】一、单选题 1.B 2.B 3.A 4.D 5.C 6.B 7.B 8.A 9.A 10.B 11.C 12.A 13.A 14.A 15.D 16.A 17.A 18.A19.B 20.B 二、填空题 21.2 22.2- 23.24.四 25.四 262728.02930.31.1i -+ 32.1 33.i 34.8335.3+2i 36.1 37.1 38.1239.43i -##3i 4-+ 40三、解答题41.1x =-,2y = 【解析】 【分析】根据题意得到()()()3i 32i x y x x y y +++=++,列出方程组求解即可. 【详解】 由定义运算ab ad bc c d=-,得32i 32i 1x y x y y y+=++-,所以()()()3i 32i x y x x y y +++=++因为x ,y 为实数,所以有323x y x yx y +=+⎧⎨+=⎩,解得1x =-,2y =.42.(1)m =4,|1OZ =(2)4m ⎫∈⎪⎪⎝⎭. 【解析】 【分析】(1)显然是复数z 的实部为0,即可求解; (2)z 的实部为负数,虚部为正数即可. (1)因为OZ 的终点z 在虚轴上,所以复数z 的实部为0, 则有log 2(m 2-3m -3)=0,所以m 2-3m -3=1, 所以m =4或m =-1; 因为20m -> ,所以m =4, 此时z =i ,()0,1OZ =,1OZ = ; (2)因为OZ 的终点Z 在第二象限内,则有()()2222log 330log 2033020m m m m m m ⎧--<⎪⎪->⎨-->⎪⎪->⎩4m << ,所以4m ⎫∈⎪⎪⎝⎭43.(1)112z = (2)2m =- 【解析】 【分析】(1)设1i z a b =+,由题设可得关于,a b 的方程组,求出其解后可得1z . (2)根据复数的四则运算可求2z ,根据其为纯虚数可求实数m 的值. (1)设1i z a b =+(a b R ∈、),由题意得22121a b a ⎧+=⎨=⎩,解得12a =,b =∵复数1z在复平面内对应的点在第四象限,∴b =112z =;(2)()()()()2222515i 32i 6253i 12im z m m m m m =-+-+=--+---,依题意得260m m --=,解得3m =或2m =-, 又∵22530m m --≠,∴3m ≠且12m ≠-, ∴2m =-.44.(1)12345611111,1,2222ωωωωωω==-=-=-=+=-【解析】 【分析】(1)原式可因式分解为22(1)(1)(1)(1)0x x x x x x -+++-+=,令21=0x x ++,设i,,x a b a b R =+∈可求解出21=0x x ++的两个虚根,同理可求解21=0x x -+的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可 (1)由题意,610x -=22(1)(1)(1)(1)0x x x x x x ∴-+++-+=当21=0x x ++时,设i,,x a b a b R =+∈故222(i)i 1=+1(2)i=0a b a b a b a ab b ++++-+++, 所以22+1=2=0a b a ab b -++解得:1,2a b =-=12x =- 当21=0x x -+时,设i,,x c d c d R =+∈ 故222(i)i 1=1(2)i=0c d c d c d c cd d +--+--++- 所以221=2=0c d c cd d --+-解得:1,2c d ==,即12x =±故:12345611111,1,2222ωωωωωω==-=-+=--=+=- (2)六个根对应的点分别为A ,B ,C ,D ,E ,F ,其中1111(1,0),(1,0),((,((,2222A B C D E F --- 在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1 故233361S ==45.(1)2;(2)21i 3z =-;(3)25m -<<. 【解析】 【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解. 【详解】(1)()()()()242i 42i 12i 4(1i)10i2i 12i 12i 12i 12i 5z +++--=====---+, ∴22022z =+(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+, 化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+, 根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得()2256,215m m m m ++--Z ,因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<,故而当25-<<时,复数Z对应的点在第四象限.m。
高中数学《复数》基础知识及经典练习题(含答案解析)
高中数学《复数》基础知识及经典练习题(含答案解析)一、基础知识:复数题目通常在高考中有所涉及,题目不难,通常是复数的四则运算1、复数z 的代数形式为(),z a bi a b R =+∈,其中a 称为z 的实部,b 称为z 的虚部(而不是bi ),2、几类特殊的复数:(1)纯虚数:0,0a b =≠ 例如:5i ,i 等(2)实数: 0b =3、复数的运算:设()12,,,,z a bi z c di a b c d R =+=+∈(1)21i =−(2)()()12z z a c b d i ±=+++(3)()()()()212z z a bi c di ac adi bci bdi ac bd ad bc i ⋅=+⋅+=+++=−++ 注:乘法运算可以把i 理解为字母,进行分配率的运算。
只是结果一方面要化成标准形式,另一方面要计算21i =−(4)()()()()()()1222a bi c di ac bd bc ad i z a bi z c di c di c di c d +−++−+===++−+ 注:除法不要死记公式而要理解方法:由于复数的标准形式是(),z a bi a b R =+∈,所以不允许分母带有i ,那么利用平方差公式及21i =的特点分子分母同时乘以2z 的共轭复数即可。
4、共轭复数:z a bi =−, 对于z 而言,实部相同,虚部相反5、复数的模:z = 2z z z =⋅ (22z z ≠) 6、两个复数相等:实部虚部对应相等7、复平面:我们知道实数与数轴上的点一一对应,推广到复数,每一个复数(),a bi a b R +∈都与平面直角坐标系上的点(),a b 一一对应,将这个平面称为复平面。
横坐标代表复数的实部,横轴称为实轴,纵轴称为虚轴。
8、处理复数要注意的几点:(1)在处理复数问题时,一定要先把复数化简为标准形式,即(),z a bi a b R =+∈(2)在实数集的一些多项式公式及展开在复数中也同样适用。
复数练习题含答案
复数练习题含答案一、单选题1.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)-B .(0,1)C .(,0)-∞D .(1,)-+∞2.已知复数z 满足()2i 32i +=+z 则||z =( )AB C D3.复数(2i 的虚部为( )A .2B .C .2-D .04.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i +B .24i -C .33i +D .24i +5.已知a R ∈,“实系数一元二次方程2904x ax ++=的两根都是虚数”是“存在复数z 同时满足2z =且1z a +=”的( )条件. A .充分非必要 B .必要非充分 C .充分必要D .既非充分又非必要 6.若0a <,则a 的三角形式为( ) A .()cos0isin0a + B .()cos isin a ππ+ C .()cos isin a ππ-+D .()cos isin a ππ--7.已知 i 是虚数单位,复数412⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.设||(12i)34i z -=+,则z 的共轭复数对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 10.2243i 4i a a a a --=+,则实数a 的值为( )A .1B .1或4-C .4-D .0或4-11.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.3i3i-+=+( ) A .43i 55+B .43i 55-+C .43i 55D .43i 55--13.复数20222i 1iz =+(其中i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 14.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )A B .5 C D .2 15.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( )A .-2B .-1C .1D .216.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ). A .()3,1- B .()1,3- C .()1,+∞ D .(),3-∞17.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限18.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件19.复数z 在复平面内对应点的坐标为(-2,4),则1z +=( )A.3B .4C D 20.已知复数z 满足()1i 1z +=,则z 的虚部为( ) A .12- B .1i 2-C .12D .1i 2二、填空题21.设复数z 满足()1i 22i z +=-(i 为虚数单位),则z =______. 22.已知复数z 满足211iz -=+,则z 的最小值为___________;23.已知复数ππsin i cos 33z =+,则z =________.24.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 25.设m ∈R ,复数z =(2+i )m 2-3(1+i )m -2(1-i ),若z 为非零实数,则m =________.26.若()1i 1i z +=-,则z =_______ 27.设12z i =-,则z =___________ .28.设i 是虚数单位,且12w =-,则21w w ++=______. 29.若复数31i 2iz a -=-为实数,则实数a 的值为_______.30.若复数()2i m m m -+为纯虚数,则实数m 的值为________.31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______.32.若复数1z ,2z 满足112i z =-,234i z =+(i 是虚数单位),则12z z ⋅的虚部为___________.33.已知复数z 满足1z =,则22z i +-的最大值为______.34.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________.35.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.36.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 37.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.38.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 39.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________.40.已知复数z =,则复数z 的虚部为__________. 三、解答题41.已知z 是虚数,求证:4z z+是实数的充要条件是2z =.42.已知O 为坐标原点,向量12,OZ OZ 分别对应复数12z z ,,且12i z +和12iz-均为实数,211iz z =+,(z 为z 的共轭复数).(1)求复数1z 和2z ;(2)求以12,OZ OZ 为邻边的平行四边形的面积. 43.设z 是虚数,且1z zω=+满足12ω-<<. (1)求||z 的值及z 的实部的取值范围; (2)设11zu z-=+,求证:u 为纯虚数; (3)求2u ω-的最小值.44.若复数()()()22223i z m m m m m R =+-+--∈的共轭复数z 对应的点在第一象限,求实数m 的集合.45.设C z ∈,则满足条件34z <<的点Z 的集合是什么图形?【参考答案】一、单选题 1.A 2.A 3.C 4.A 5.D 6.C 7.C 8.D 9.A 10.C 11.C 12.B 13.B 14.A 15.A 16.A 17.D 18.A19.C 20.A 二、填空题 21.2221##1-23.124 25.1 26.i2728.0 29.2- 30.1 31.i - 32.-2 33.134.1##1+35.[]4,636.-1+2i##2i -1 37.[)2,+∞ 38.2 39.2i -+40.三、解答题41.证明见解析 【解析】 【分析】设()i ,,0z x y x y R y =+∈≠,由复数运算化简得2222444i xyz x y z x y x y⎛⎫⎛⎫+=++- ⎪ ⎪++⎝⎭⎝⎭;当2z =时,可得42z x R z +=∈,证得充分性;当4z z+是实数时,可得224x y +=,必要性得证;由此可得结论.【详解】设()i ,,0z x y x y R y =+∈≠, 则2222224444i 44i i i i x y x y z x y x y x y zx y x y x y x y ⎛⎫⎛⎫-+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭. 当2z =时,224x y +=,则2240y y x y -=+,2242xx x R x y +=∈+, 42z x R z ∴+=∈,即4z z+是实数,充分性成立; 当4z z+是实数时,2240yy x y-=+,又0y ≠,224x y ∴+=,即2z =,必要性成立;4z z∴+是实数的充要条件是2z =.42.(1)142i z =-,2z =(2)12 【解析】 【分析】(1)设()1i ,z a b a b =+∈R ,根据复数代数形式的加法、除法运算法则化简12i z + 、12iz -,再根据复数的类型求出参数a 、b ,即可求出1z ,再化简2z ,从而求出其模;(2)首先根据复数的几何意义求出1Z 、2Z 的坐标,即可求出12OZ Z S ,从而求出平行四边形的面积; (1)解:设()1i ,z a b a b =+∈R ,则由()12i 2i z a b +=++为实数,20b ∴+=b 20∴+=,2b ∴=-.则由()()()()1i 2i i 22i 2i 2i 2i 2i 55a b z a b a b a b +++-+===+---+为实数,可得205a b+=, 4a ∴=,所以142i z =-,211142i 42i i 4i i iz z =+=++=+-=+,所以2z =(2)解:因为142i z =- ,24i z =+,所以()14,2Z -、()24,1Z ,所以1214362OZ Z S =⨯⨯=, 所以以1OZ ,2OZ 为邻边的平行四边形的面积12212OZ Z S S==.43.(1)||1z =,112⎛⎫- ⎪⎝⎭,(2)证明见解析 (3)1 【解析】 【分析】(1)根据复数的除法可得ω,根据其为实数可得221a b +=,从而z 的实部的取值范围;(2)根据复数的除法可得i 1bu a =-+,从而可证u 为纯虚数; (3)根据基本不等式可求最小值. (1)设i z a b =+,a b R ∈、,0b ≠, 则22221i i i a b a b a b a b a b a b ω⎛⎫⎛⎫=++=++- ⎪ ⎪+++⎝⎭⎝⎭, ∵12ω-<<,∴ω是实数,又0b ≠,∴221a b +=,即||1z =,∴2a ω=,122a ω-<=<,112a -<<,∴z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,; (2)()222211i 12i i 11i 11z a b a b b b u z a b a a b ------====-++++++, ∵1,12a ⎛⎫∈- ⎪⎝⎭,0b ≠,∴u 为纯虚数;(3)()()22212122212131111b a u a a a a a a a a ω-⎡⎤-=+=-=-+=++-⎢⎥+++⎣⎦+,∵112a ⎛⎫∈- ⎪⎝⎭,,∴10a +>,故223431u ω-≥⨯=-=, 当111a a +=+,即0a =时,2u ω-取得最小值1. 44.312m m ⎧⎫<<⎨⎬⎩⎭【解析】 【分析】由共轭复数定义可得z ,根据对应点的象限可以构造不等式组求得结果. 【详解】由题意得:()()22223i z m m m m =+----,z 对应的点在第一象限,()2220230m m m m ⎧+->⎪∴⎨--->⎪⎩,解得:312m <<,∴实数m 的取值集合为312m m ⎧⎫<<⎨⎬⎩⎭. 45.是圆229x y +=与圆2216x y +=之间的圆环(不包括边界) 【解析】 【分析】根据复数模的几何意义得出结论. 【详解】设()i ,R z x y x y =+∈22223,9z x y x y =+=+=,表示圆心在原点,半径为3的圆,22224,16z x y x y =+=+=,表示圆心在原点,半径为4的圆,所以满足条件34z <<的点Z 的集合是圆229x y +=与圆2216x y +=之间的圆环(不包括边界),如图所示.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备考中段试之二《复数》1.若复数z 满足i z i +=-3)21(,则复数z 的虚部为( ) A .37-B .i 37-C .57D .i 572.复数Z=1-i 的虚部是( )(A).i (B) -i (C) -1 (D)1 3.在复平面内,复数52iz i=-的对应点位于( ) A.第一象限 B.第二象限 C.第三象限角 D.第四象限 4.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为( ) A .1- B .0 C .1 D .1-或1 5.已知复数34,z i z =+表示复数z 的共轭复数,则zi=( )A .5 C .66.已知复数a+bi=i(1-i)(其中a,b ∈R,i 是虚数单位),则a+b 的值为( ) (A)-2 (B)-1 (C)0 (D)2 7.复数1i +的共轭复数是( )A .1i +B .1i -C .1i -+D . 1i -- 8.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .D 9.设i 是虚数单位.若复数a -103i-(a ∈R)是纯虚数,则a 的值为( ). A .-3 B .-1 C .1 D .3 10.复数21ii-+在复平面上的对应点在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.当213m <<时,复数()()32m i i +-+在复平面内对应的点位于:( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 12.已知a 是实数,i1ia +-是纯虚数,则a 等于( )A.1B.1-13.复数21ii+(i 是虚数单位)的虚部为( ) A .1- B .i C .1 D .214.在复平面内,复数ii4332-+-(i 是虚数单位)所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限15.在复平面内,若z =m 2(1+i)-m (4+i)-6i 所对应的点在第二象限,则实数m 的取值范围是 ( ).A .(0,3)B .(-∞,-2)C .(-2,0)D .(3,4)16.设a ∈R ,且(a +i)2i 为正实数,则a 等于 ( ). A .2 B .1 C .0 D .-117.复数z =1+cos α+isin α(π<α<2π)的模为 ( ). A .2cos 2αB .-2cos 2αC .2sin2αD .-2sin2α18.设a ,b 为实数,若复数12ia bi++=1+i ,则 ( ). A .a =32,b =12 B .a =3,b =1 C .a =12,b =32D .a =1,b =319.复数z =22ii-+在复平面内对应的点所在象限是 ( ).A .第一象限B .第二象限C .第三象限D .第四象限 20.当23<m <1时,复数z =(3m -2)+(m -1)i 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 21.设a 是实数,且112a i i +++是实数,则a 等于 ( ) A.12 B .1 C.32D .2 22.下列命题中,假命题是 ( ) A .两个复数可以比较大小 B .两个实数可以比较大小 C .两个虚数不可以比较大小 D .虚数和实数不可以比较大小23.以2i +2i 2的实部为虚部的新复数是( )A .2-2iB .2+iC 24.在复平面内,复数2ii+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限25.复数321i i -(i 为虚数单位)的虚部是( )A .15iB .15 C .15i - D .15- 26.若i 为虚数单位,图中复平面内点Z 表示复数z,则表示复数的点是( )(A)E(B)F(C)G (D)H27.在复平面内,复数(1)z i i =+对应的点位于( )A .第一象限B .第二象限C .第三象限 D.第四象限 28.若复数z 满足i iz 42+=,则在复平面内z 对应的点的坐标是( ) (A )2(,)4 (B )2(,)4- (C )4(-,)2- (D )4(,)2-29.设i 为虚数单位,复数z 1=1+i ,z 2=2i -1,则复数z 1·z 2在复平面上对应的点在( ).A .第一象限B .第二象限C .第三象限D .第四象限 30.复数21ii+的实部为( ). A .2 B .-2 C .1 D .-131.复数iiz +=1的共轭复数是( ) A .i 2121+ B .i 2121- C .i 2121+- D .i 2121--32.设复数z 的共轭复数z 满足(1+i )z =2,其中i 为虚数单位,则z 等于( ) A.i +1 B.i -1 C.i 22+ D.i 22-33.201452i i=-( ) A.2i -+ B.2i -- C.12i -- D. 12i -+34.已知i 为虚数单位,则i1i+=( )A .1i 2-B .1i 2+C .1i 2-- D.1i 2-+35.复数1012ii-=( ) A .-4+ 2i B .4- 2i C .2- 4i D .2+4i36.已知定义在复数集C 上的函数)(x f 满足⎩⎨⎧∉-∈+=R x x i R x xx f )1(1)(,则()1f i +等于( )A .2-B .0 C.2 D .2i + 37.已知复数z 满足3(12)12i z i +=+,则z =( ) A .3455i + B .3455i -+ C .3455i -- D .3455i - 38.复数z 满足(1i)2i Z +=,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 39.在复平面内,复数6+5i ,-2+3i对应的向量分别是和,若复数z与+的积为实数,且|z|=,则z=A.1-2iB.-1+2iC.1-2i,-1+2iD.1+2i,1-2i 40.已知复数z =,则|z|=( ).A. B.C.1D.241.复数11ii i-++等于 A .-i B .1 C .-l D .042.已知复数z 满足z(1+i)=1(其中i 为虚数单位),则z 的共轭复数z 是( )(A)1122i + (B) 1122i - (C) 1122i -+ (D) 1122i -- 43.若复数143-++iia (a 为实数,i 为虚数单位)是纯虚数,则=a ( ) A.7 B.-7 C.34 D.34-44.已知复数12312z bi z i =-=-,,若12z z 是实数,则实数b 的值为 ( ) A .0 B .32-C .6D .6-45.i 是虚数单位,若i i z )1(+=,则z 等于( )A .2B .2C .1D .2246.已知a R ∈,若12aii+-为实数,则a =( ) A .2 B .-2 C .12- D .1247.已知a R ∈,若12aii+-为实数,则a =( )A .2B .-2C .12-D .1248.在复平面内,复数1ii-+对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 49.若复数z 满足2iz =,其中i 为虚数单位,则z 的虚部为( ) A.2- B.2 C.2i - D.2i 50.i 是虚数单位,复数k iz i-=在复平面内对应的点在第三象限,则实数k 的范围是( )A .0k ≥B .0k >C .0k ≤D .0k < 51.已知i 是虚数单位,复数z 满足:2)1()21(i z i +=-,则z 的值是( )A .i 5254+-B. i 5352+-C. i 5254- D. i 5352-52. 已知i 是虚数单位,复数z 满足:2)1()21(i z i +=-,则z 的值是 ( )A .i 5254+-B. i 5352+-C. i 5254-D.i 5352- 53.在复平面内,复数(2)i i -对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限54.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( ) A .()2,4 B .()2,4- C .()4,2- D .()4,255.复数52i -的共扼复数是( ) A.2i + B.2i -+ C.2i - D.2i --56.若(12)1ai i bi +=-,其中a ,b ∈R ,则|a +b i|=( ).A .12+i B .54 57.若(12)1ai i bi +=-,其中,a b R ∈,则||a bi +=( ).A.12+5458.若(1)(2)a bi i i +=+-(i 是虚数单位,,a b 是实数),则a b +的值是( ) (A )2 (B )3 (C )4 (D )5 59.已知i 是虚数单位,则31ii+-=( ) A.12i - B.2i - C.2i + D.12i +60.复数1z i =+,则1zz -+对应的点所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限参考答案1.C 【解析】试题分析:依题意可得3171255i z i i +==+-.所以复数z 的虚部为57.故选C. 考点:1.复数的运算.2.复数的代数形式.2.B 【解析】试题分析:由复数虚部定义:复数i b a +()R R ∈∈b a ,的虚部为b ,得i 1-=z 的虚部为1-,故选B .考点:虚数的概念 3.B 【解析】试题分析:根据复数除法(分子分母同时乘以分母的共轭复数)得5(2)12(2)(2)i i z i i i +==-+-+,则z 所对应点的坐标为(-1,2),在第二象限,故选B 考点:复数 复数除法 4.A 【解析】试题分析:由题意可得21010x x ⎧-=⎨-≠⎩,解得1x =-.考点:复数的定义. 5.B . 【解析】试题分析:()2343434,43,5i i z i zz i i i i i i--=-∴===--∴=,故选B .考点:1.共轭复数的概念;2.复数模长的计算.6.D【解析】a+bi=i(1-i)=1+i, ∴a=1,b=1,∴a+b=2. 7.B 【解析】试题分析:复数1i +的共轭复数是1i -. 考点:复数与共轭复数的关系. 8.B【解析】因为x +yi 的共轭复数是x -yi ,故选B. 9.D 【解析】a -103i-=a -(3+i)=(a -3)-i ,由a ∈R ,且a -103i-为纯虚数知a =3. 10.D 【解析】21i i -+=(2)(1)3131(1)(1)222i i i i i i --=-=-+-,对应点为1322⎛⎫ ⎪⎝⎭,-,位于第四象限. 11.D 【解析】试题分析:()()()()32321m i i m m i +-+=-+-,所以此复数在复平面内对应的点为()32,1m m --。