四川省绵阳市高中2018届第一次诊断考试(数学文)(含答案)

合集下载

四川省绵阳市2018-2019学年高一上学期期末质量测试数学试题(解析版)

四川省绵阳市2018-2019学年高一上学期期末质量测试数学试题(解析版)

高中2018级第一学期期末教学质量测试数学一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果全集,,则()A. B. C. D.【答案】C【解析】【分析】首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.2.下列图象是函数图象的是()A. B.C. D.【答案】D【解析】【分析】由题意结合函数的定义确定所给图象是否是函数图象即可.【详解】由函数的定义可知,函数的每一个自变量对应唯一的函数值,选项A,B中,当时,一个自变量对应两个函数值,不合题意,选项C中,当时,一个自变量对应两个函数值,不合题意,只有选项D符合题意.本题选择D选项.【点睛】本题主要考查函数的定义及其应用,属于基础题.3.下列函数是奇函数,且在区间上是增函数的是()A. B.C. D.【答案】B【解析】【分析】逐一考查所给函数的单调性和奇偶性即可.【详解】逐一考查所给函数的性质:A.,函数为奇函数,在区间上不具有单调性,不合题意;B.,函数为奇函数,在区间上是增函数,符合题意;C.,函数为非奇非偶函数,在区间上是增函数,不合题意;D.,函数为奇函数,在区间上不具有单调性,不合题意;本题选择B选项.【点睛】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.4.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是()A. B. 1 C. 2 D.【答案】C【解析】【分析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.5.如果角的终边在第二象限,则下列结论正确的是()A. B. C. D.【答案】B【解析】【分析】由题意结合三角函数的性质确定所给结论是否正确即可.【详解】角的终边在第二象限,则,AC错误;,B正确;当时,,,D错误.本题选择B选项.【点睛】本题主要考查三角函数的符号,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.6.设角的终边经过点,那么()A. B. C. D.【答案】D【解析】【分析】由题意首先求得的值,然后利用诱导公式求解的值即可.【详解】由三角函数的定义可知:,则.本题选择D选项.【点睛】本题主要考查由点的坐标确定三角函数值的方法,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.7.已知函数对任意实数都满足,若,则()A. -1B. 0C. 1D. 2【答案】A【解析】【分析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.8.函数的零点个数是()A. 0B. 1C. 2D. 3【答案】C【解析】【分析】将原问题转化为函数交点个数的问题即可确定函数的零点个数.【详解】函数的零点个数即函数与函数交点的个数,绘制函数图象如图所示,观察可得交点个数为2,则函数的零点个数是 2.本题选择C选项.【点睛】本题主要考查函数零点的定义,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.9.已知,则的值是()A. 1B. 3C.D.【答案】D【解析】【分析】由题意结合对数的运算法则确定的值即可.【详解】由题意可得:,则.【点睛】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.10.若函数(,且)在上的最大值为4,且函数在上是减函数,则实数的取值范围为()A. B. C. D.【答案】A【解析】【分析】由题意首先确定实数a的值,然后确定实数的取值范围即可.【详解】当时,函数单调递增,据此可知:,满足题意;当时,函数单调递减,据此可知:,不合题意;故,函数单调递增,若函数在上是减函数,则,据此可得.本题选择A选项.【点睛】本题主要考查函数的单调性,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.11.已知函数,若,且当时,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】首先确定函数的解析式,然后确定的取值范围即可.【详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.【点睛】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.12.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是()A. B. C. D.【答案】C【解析】【分析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.二、填空题(将答案填在答题纸上)13.___.【答案】【解析】=,故答案为:.=tan(180°+60°)=tan60°tan240°14.设函数即_____.【答案】-1【解析】【分析】结合函数的解析式求解函数值即可.【详解】由题意可得:,则.【点睛】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.15.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___.【答案】【解析】【分析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.16.已知函数,实数,满足,且,若在上的最大值为2,则____.【答案】4【解析】【分析】由题意结合函数的解析式分别求得a,b的值,然后求解的值即可.【详解】绘制函数的图像如图所示,由题意结合函数图像可知可知,则,据此可知函数在区间上的最大值为,解得,且,解得:,故.【点睛】本题主要考查函数图像的应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.已知函数的定义域为.(1)求;(2)设集合,若,求实数的取值范围.【答案】(1)A(2)【解析】【分析】(1)由函数的解析式分别令真数为正数,被开方数非负确定集合A即可;(2)分类讨论和两种情况确定实数的取值范围即可.【详解】(1)由,解得,由,解得,∴.(2)当时,函数在上单调递增.∵,∴,即.于是.要使,则满足,解得.∴.当时,函数在上单调递减.∵,∴,即.于是要使,则满足,解得与矛盾.∴.综上,实数的取值范围为.【点睛】本题主要考查函数定义域的求解,集合之间的关系与运算等知识,意在考查学生的转化能力和计算求解能力.18.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足.设甲合作社的投入为(单位:万元).两个合作社的总收益为(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)试问如何安排甲、乙两个合作的投入,才能使总收益最大?【答案】(1)88.5万元(2)答案见解析.【解析】【分析】(1)结合所给的关系式求解甲合作社的投入为25万元时,求两个合作社的总收益即可;(2)首先确定函数的定义域,然后结合分段函数的解析式分类讨论确定最大收益的安排方法即可.【详解】(1)当甲合作社投入为25万元时,乙合作社投入为47万元,此时两个合作社的总收益为:(万元).(2)甲合作社的投入为万元,则乙合作社的投入为万元,当,则,.令,得.则总收益为,显然当时,,即此时甲投入16万元,乙投入56万元时,总收益最大,最大收益为89万元.当时,则.,显然在上单调递减,∴.即此时甲、乙总收益小于87万元.对.∴该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【点睛】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.19.已知函数,将函数的图象向左平移个单位,再向上平移2个单位,得到函数的图象.(1)求函数的解析式;(2)求函数在上的最大值和最小值.【答案】(1) (2)见解析【解析】【分析】(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数的解析式确定函数的最大值即可.【详解】(1).由题意得,化简得.(2)∵,可得,∴.当时,函数有最大值1;当时,函数有最小值.【点睛】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.20.已知函数.(1)若在上是减函数,求的取值范围;(2)设,,若函数有且只有一个零点,求实数的取值范围.【答案】(1) (2)【解析】【分析】(1)由题意结合函数单调性的定义得到关于a的表达式,结合指数函数的性质确定的取值范围即可;(2)利用换元法将原问题转化为二次方程根的分布问题,然后求解实数的取值范围即可.【详解】(1)由题设,若在上是减函数,则任取,,且,都有,即成立.∵.又在上是增函数,且,∴由,得,即,且.∴只须,解.由,,且,知,∴,即,∴.所以在上是减函数,实数的取值范围是.(2)由题知方程有且只有一个实数根,令,则关于的方程有且只有一个正根.若,则,不符合题意,舍去;若,则方程两根异号或有两个相等的正根.方程两根异号等价于解得;方程有两个相等的正根等价于解得;综上所述,实数的取值范围为.【点睛】本题主要考查函数的单调性,二次方程根的分布等知识,意在考查学生的转化能力和计算求解能力.。

四川省绵阳市高中2018级第一次诊断性考试理科数学(含答案)

四川省绵阳市高中2018级第一次诊断性考试理科数学(含答案)

1秘密★启用前【考试时间: 2020年11月1日15: 00— 17: 00】四川省绵阳市高中2018级第一次诊断性考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题 答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后, 将答题卡交回。

一 、 选择题:本大题共12小题, 每小题5分,共60分。

在每小题给出的四个选项中, 只有一项是符合题目要求的。

1. 已知A = {x |0< x <2}, B = {x |x (l −x )≥0}, 则A B =A.∅B.(−∞,1]C. [l, 2)D.(0,1]2. 下列函数中,既是奇函数又是增函数的是A.y =tan xB.y =ln xC.y =x 3D.y =x 23. 若log a b > 1, 其中a >0且a ≠1, b >1, 则A.0<a <l<bB.1<a <bC.1<b <aD.1<b <a 24. 函数ππ()sin()24f x x =+的图象的一条对称轴是A.x =−3B. x =0C.x=π2D. x=32−5. 函数2()ln ||f x x x x=+的大致图象是6. 已知命题p : 在△ABC 中,若cos A =cos B , 则A =B ;命题q : 向量a 与向量b相等的充要条件2是|a |=| b |且a //b .下列四个命题是真命题的是 A.p ∧(⌝q )B. (⌝p ) ∧(⌝q )C.(⌝p )∧qD. p ∧q7.若曲线y =(0, −1)处的切线与曲线y =ln x 在点 P 处的切线垂直,则点 P 的坐标为A.(e,1)B.(1,0)C. (2, ln2)D. 1(,ln 2)2−8. 已知菱形ABCD 的对角线 相交于点O , 点E 为AO 的中 点, 若AB =2, ∠BAD =60°,则AB DE ⋅= A.−2B. 12−C. 72−D. 129. 若a <b < 0, 则下列不等式中成立的是A. 11a b a<− B. 11a b b a+>+C.11b b a a −<−D. (1)(1)a b a b −>−10. 某城市要在广场中央的圆形地面设计 一块浮雕,彰显城市积极向上的活力.某公司设计方案如图, 等腰△PMN 的顶点P 在半径为20m 的大⊙O 上, 点M , N 在半径为10m 的小⊙O 上, 圆心O 与点P 都在弦MN 的同侧. 设弦MN 与对应劣弧所围成的弓形面积为S , △OPM 与△OPN 的面积之和为S 1,∠MON =2α, 当S 1−S 的值最大时,该设计方案最美, 则此时cos α= A. 12C.11. 数列{a n }满足21121n n n a a a ++=−,2411,59a a ==,数列{b n }的前n 项和为S n ,若b n =a n a n +1,则使不等式427n S >成立的n 的最小值为 A. 11B. 12C. 13D. 1412. 若1823,23a b +==,则以下 结论正确的有 ①b −a <1 ②112a b+> ③34ab > ④22b a > A.1个B.2个C.3个D.4个二、填空题:本大题共4小题, 每小题5分, 共20分.313. 已知向量a =(l, 0), b =(l, 1), 且a +λb 与a 垂直,则实数λ= .14. 若实数x ,y 满足0,,22,x x y x y ≥⎧⎪≤⎨⎪+≥⎩则z =2x +y 的最大值为 .15. 已知sin x +cos y =14, 则sin x −sin 2y 的最大值为 .16. 若函数f (x )=(x 2 +ax +2a )e x 在区间(−2, 1)上恰有一个极值点,则实数a 的取值范围为 .三、解答题:共70分。

推荐-四川省绵阳市高中2018级第一次诊断性考试数学(文史类) 精品

推荐-四川省绵阳市高中2018级第一次诊断性考试数学(文史类) 精品

保密★启用前【考试时间:2018年11月1日下午3:00—5;00】四川省绵阳市高中2018级第一次诊断性考试数学(文史类)本试卷分试题卷和答题卷两部分。

第1卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

全卷共150分。

第1卷答案涂在答题卡上,第Ⅱ卷答案写在答题卷上。

第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用4B 或5B 铅笔填写在答题卡上。

2.每小题选出答案后,用4B 或5B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答萎,不能答在试卷上。

3.参考公式:如果事件A 、B 互斥,那么 P (A +B )=P (A )+P (B ); 如果事件A 、B 相互独立,那么 P (A·B )=P (A )· P (B );如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率:Pn (k )=C kn·Pk·(1-P )n -k正棱锥、圆锥的侧面积公式:S 锥侧=12Cl 球的体积公式V =43πR3其中R 表示球 的半径对数换底公式:log log log mNaN mO0<a ,m ≠ 1,N > 0一、选择题:本大题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上。

1.右图中阴影部分表示的集合是A .P QB .P Q C .(PQ )D .(PQ )2.用反证法证明命题:若P 则q ,其第一步是反设命题的结论不成立,这个正确的反设是A .若P 则非qB .若非P 则qC .非PD .非q3.已知数列{a n }的通项公式为2245n a n n =-+ 则{a n }的最大项是A .a 1B .a 2C .a 3D .a 44.右图是一个样本容量为50的样本频率分布直方图,据此估计数据落在[15.5,24.5]的概率约为A .36%B .46%C .56%D .66%5.设{a n }是递增等差数列,前三项的和是12,前三项的积为48,则它的首项是A .1B .2C .4D .66.设a> 0,a ≠ 1,若y = a x 的反函数的图象经过点1()24-,则a=A .16B .2CD .47.若函数f (x )的图象经过点 A 、(1,12) B 、(1,0), C 、(2,-1),则不能作为函数f (x )的解析式的是A .12()log f x x =B .227()333f x x x =-+C .22,1()1,1x x f x x x -≤⎧=⎨->⎩D .2()sin[(1)]3f x x π=-8.已知定义在R 上的奇函数f (x) 满足 f (x+2) = - f (x),则f (6) 的值为A .2B .1C .0D .-1 9.函数3log 3xy =的图象大致是10.对数函数log a y x =和log b y x =的图象如图所示,则a 、b 的取值范围是A .1a b >>B .1b a >>C .10a b >>>D .10b a >>>11.“a =(1,2)”是方程 “ x 2y + y -2ax = 0 的曲线关于原点对称”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件12.函数(1)xy a a =>及其反函数的图象与函数(1/)y x =的图象交于A 、B 两点,若AB =,则实数a 的值等于(精确到0.1 ,参考数据 lg2.414 ≈ 0.3827 lg 8.392 ≈ 0.9293 lg 8.41 ≈ 0.9247 )A .3.8B .4.8C .8.4D .9.2第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡相应位置上。

四川省绵阳市级高三数学第一次诊断性考试试题 理

四川省绵阳市级高三数学第一次诊断性考试试题 理

秘密★启用前【考试时间:2020年11月1日15: 00—17: 00】绵阳市高中2018级第一次诊断性考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.己知^={x|0<x<2}, B={x|x(l-x)^0},则=6.己知命题在ZUBC中,若cos^=cosB,贝ij A=B;命题向量a与向量ft相等的充要条件是I a I =丨6 I且allb.下列四个命题是真命题的是A. p A(—iq)B. (—>p)八(一>q)C. (-ip)D. p/\q7.若曲线y = ->/7+T在点(0, -1)处的切线与曲线y = \nx在点P处的切线垂直,则点P 的坐标为A. (e,1)B. (1, 0)C. (2, ln2)D.(去,-ln2)8.己知菱形ABCD的对角线相交于点0,点五为的中点,若AB=2, ZBAD=60°,9.若a<ZK0,则下列不等式中成立的是A 1 1A. --------- >—a-b aB. a + — >b + —b ac.a a-\ D. (l-a)a>(l-Z>)hA. 0B. (-oo,l]C. [1, 2)D. (0, 1]2.下列函数中,既是奇函数又是增函数的是A. y=tanxB.尸lnxC. y=x3D. y=x23.若log fl> 1,其中a>0且a关1,b>l,则A. Q<a<KbB. l<a<bC. l<b<aD. l<b<a24.函数/(x) = sin(^x + ^)的图象的一条对称轴是7T 3A. x=~3B. x=0C. x=—D. x=—2 2 10.某城市要在广场中央的圆形地面设计一块浮雕,彰显城市积极向上的活力.某公司设计方案如图,等腰八_的顶点P 在半径为20m的大OO上,点M,#在半径为10m的小0(9 上,圆心(9与点P都在弦胃的同侧.设弦胃与对应劣弧所围成的弓形面积为51,zxa™■与△cvw的面积之和为及,ZMON= 2a,当Si-S的值最大时,该设计方案最美,则此时cosa=11.数列{a M}满足~~~ = ~- — ~,a2=与,a4=^,数列{bn}的前n项和为S…,若b…= a n a n+x,a n+2 a n+\ a n 5 712 1 - 2 D.A4则使不等式S n> —成立的n的最小值为A. 11B. 12C. 13D. 1412.若2fl+1=3, 2b=-,3则以下结论正确的有① Z>~a<l;②丄+丄>2;3③ ab> — \④ b2>2aa b4A. 1个B. 2个C. 3个D. 4个理科数学试题第2页(共4页)理科数学试题第1页(共4页)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a=(l,0), Z>=(1,1),且与a垂直,则实数又=.x 多0,14.若实数%,少满足、则z=2x+y的最大值为.x + 2^2y,15.已知sinx+cos尸1,则sinx-sin2^的最大值为.416.若函数/(x) = (jc2+ax + 2a)e x在区间(_2,1)上恰有一个极值点,则实数a的取值范围为二.三、解答题:共70分。

2021届绵阳一诊 文数(含答案)

2021届绵阳一诊 文数(含答案)

绵阳市高中2018级第一次诊断性考试文科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.DCDAA ADBBC CD二、填空题:本大题共4小题,每小题5分,共20分.13.-1 14.6 15.916 16.3(0]4,−三、解答题:本大题共6小题,共70分.17.解:(1)设等差数列{}n a 的公差为d .∵ 31232315S a a a a =++==,得25a =.又217a a a ⋅=,得222()5a d a a d −⋅=+, ………………………………………3分 即5(5)55d d −=+,解得d =2.∴ 2(2)22+1n a a n n =+−⨯=. ………………………………………………6分(2)由题意得2122(21)24(21)n a n n n n b a n n +=+=++=⨯++, ……………8分 12(321)2(444)2n n n n T ++=++++ 28(41)23n n n −=++. ………………………………………………………12分 18.解:(1)π()sin()6f x x x =⋅+1cos )2x x x =+23sin cos x x x =31cos2sin 222x x +=π)6x =+. ………………………………………………4分由πππ2π22π262k x k −++≤≤(k ∈Z ), 可得ππππ36k x k −+≤≤(k ∈Z ), 即当x ∈ππ[ππ]36,k k −+(k ∈Z )时,函数()f x 单调递增, 同理可得当x ∈π2π[ππ]63,k k ++(k ∈Z )时,函数()f x 单调递减, 又π[0]2,x ∈, ∴ 函数)(x f 在π[0]6,上单调递增,)(x f 在ππ[]62,上单调递减. ……………8分(2)由题意得πππ())])463g x x x −+=−. ∵ π02≤≤x ,∴ ππ2π2333≤≤x −−,∴ π)[1]3x −∈,∴ 3()[2g x ∈−. …………………………………………………………12分 19.解:(1)在△ABC 中,由正弦定理得πsin sin sin cos()6C A A C =−, ∵ 0πA << ∴sin 0A ≠,∴ π1sin cos()sin 62C C C C =−=+,即sin C C ,得tan C =∵0πC <<,∴ π3C =. ……………………………………………………………………6分(2)由题意得sin B ==. 在△ABC 中, 由正弦定理得sin 8sin AB B AC C⋅==. …………………………8分π1sin sin()sin 32A B B B =+=+=,∴ AB 边上的高sin h AC A =⋅=. ………………………………………12分20.解:(1)当x =0时,f (x )=0;当x >0时,f (x )=-f (-x )=22()11[1]1x x x x −++−+=−−; 综上,所述22110()00110,,,,,.x x x f x x x x x ⎧+−>⎪⎪⎪==⎨⎪+⎪+<⎪⎩…………………………………………5分(2)不等式f (x 2)+2af (x )≥-1恒成立, 等价于221112(1)1≥x a x x x +−++−−, 整理得211()22(1)0≥x a x x x +−++−,令 t =1x x+, 即222(1)0≥t a t −+−恒成立, …………………………………………………8分 ∵ x >0,于是t ≥2,∴ t -1≥0,于是2a ≥221(1)211t t t t −=−−+−−−, 令m =t -1≥1,1()2g m m m=−++, …………………………………………10分 显然()g m 在区间[1),+∞上单调递减, ∴ max ()(1)2g m g ==.∴ 2a ≥2,即a ≥1. …………………………………………………………12分21.解:(1))32(323)(2a x x ax x x f −=−='. 当0=a 时,2()30≥f x x '=,函数)(x f 在)(∞+−∞,上单调递增. …………2分 当0>a 时,由()0f x '>,得0<x 或32a x >. 由0)(<'x f ,得320a x <<. ∴函数)(x f 在(0),−∞和2()3,a +∞上单调递增,在2(0)3,a 上单调递减. 当0<a 时,同理可得函数)(x f 在2()3,a −∞和(0),+∞上单调递增, 在2(0)3,a 上单调递减. ………………………………………………………6分(2)由(1)可知,函数)(x f 的两个极值为a f 4)0(=和324()4327a f a a =−+, 由方程m x f =)(有三个不等实根等价于3044427,a a a m a >⎧⎪⎨−+<<⎪⎩或⎪⎩⎪⎨⎧+−<<<.4274403a a m a a ,…………………………………8分 令m a a a g −+−=4274)(3. 由方程m x f =)(有三个不相等实根时,)3()32()6(∞+−−∞∈,,, a . 则在)6(−−∞,上0)(>a g ,且在)3()32(∞+,, 上0)(<a g 均恒成立,∴(6)80≥g m −=−,且(3)80≤g m =−,∴8=m . ………………………………………………………………………10分 此时0]42)2()[2(84)(223=+−−+−=−+−=−a x a x x a ax x m x f .因为方程m x f =)(有三个不相等实根,∴042)2(2=+−−+a x a x 有两个异于2的不等实根,∴22(2)4(24)022(2)240,,a a a a ⎧∆=−−−+>⎪⎨+−−+≠⎪⎩解得)3()32()6(∞+−−∞∈,,,a . 综上,所述8=m . ……………………………………………………………12分22.解:(1)设点()A ρθ,为圆上任一点,则OA ρ=,π6AOM θ∠=−, 在Rt △AOM中,π)6ρθ=−.∴ 圆C的极坐标方程为π)6ρθ=−,(π3−≤θ≤2π3).…………………5分 (2)圆C 左上半圆弧OM 的三等分点对应的极角分别1π3θ=,2π2θ=. 代入圆C 的极坐标方程中, ∴ 圆C 左上半圆弧OM 的三等分点分别为1π(6)3,P ,2π)2,P .………10分23.解:(1)由已知条件可得,34213()4222142,≥,,,,≤.xf x x xx⎧⎪⎪⎪=−−<<⎨⎪⎪−−⎪⎩……………………3分作出函数图象如右图.……………………………5分(2)由(1)的图象可得,实数m满足532122m−<−<(或172122m−<+<),解得35 44m−<<,∴实数m的取值范围为35()44,−.…………………………………………10分。

四川省绵阳市高三数学一诊模拟试题 文(无答案)

四川省绵阳市高三数学一诊模拟试题 文(无答案)

四川省绵阳市2018届高三数学一诊模拟试题 文(无答案)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在题卷上无效。

3.考试结束后,将答题卡交回。

一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( )A.{}2-B.{}1,0,1- .C.{}2,1--D.{}0,1 2.若3tan 4α=,则2cos 2sin 2αα+= ( ) A.6425 B. 4825 C. 1 D.16253.已知命题p :“x ∈R 时,都有2104x x -+<”;命题q :“存在x ∈R ,使sin cos x x +成立”.则下列判断正确的是( )A .p ∨q 为假命题B .p ∧q 为真命题C .⌝p ∧q 为真命题D .⌝p ∨⌝q 是假命题4.已知平面向量a 与b 的夹角等于56π,如果4,3a b ==,那么2a b -=( )A B .9 C .10 D .915.设函数311log (2),1()3,1x x x f x x -+-<⎧=⎨≥⎩,求3(7)(log 12)f f -+=( )A .8B .15C .7D .166.已知函数()f x 是偶函数,当0x >时,()()21ln f x x x =-,则曲线()y f x =在点()()1,1f --处切线的斜率为( )A .-2B .-1C .1D .2 7.不等式组⎩⎪⎨⎪⎧ x ≥0,x +3y ≥4,3x +y ≤4的最大值为则y x z -=等于( )A .-4B .34-C .0D .34 8.已知函数()f x 的图象是由函数()cos g x x =的图象经过如下变换得到:先将()g x 的图象向右平移3π个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数()f x 的图象的一条对称轴方程为( )A .712x π=B .512x π=C .3x π=D .6x π= 9.若等比数列{}n a 的公比1≠q ,且453,,a a a 成等差数列,则6453a a a a ++的值为( ) A -2 B 21- C 21 D 210.如图所示,在四边形ABCD 中,31=,E 为BC 的中点, 且y x +=,则=-y x 23( ) A.21 B.23 C.2 D.1 11.已知函数,若存在实数a ,当2x <时,()f x ax b ≤+恒成立, 则实数b 的取值范围是( )A .[)1,+∞B .[)2,+∞ C .[)3,+∞ D .[)4,+∞ 12. 已知函数1()l o g (0,1)21a x f x a a x=+>≠-,正项等比数列满足31009=a 且13n a <<.则)(log )(log )(log 201732313a f a f a f +⋅⋅⋅++等于 ( )1008.A 211008.B 211009.C 1009.D 二、填空题:本题共4小题,每小题5分,共20分。

推荐-四川省绵阳市高中2018级第一次诊断性考试数学(理) 精品

推荐-四川省绵阳市高中2018级第一次诊断性考试数学(理) 精品

绵阳市高中2018级第一次诊断性考试数学(理工类)时间:120分钟 总分:150分一、选择题:本小题12小题,每小题5分,共60分. 1. 设集合{2,1,0,1,2},{|12},()S S T x R x S T =--=∈+≤=则ðA .∅B .{2}C .{1,2}D .{0,1,2}2.已知i 是虚数单位,则20071()1i i-+= A .1 B .1- C .i D .i -3.下列函数中,反函数是其自身的函数为A .2()(0)f x x x =>B .()ln f x x = ()x R ∈C .()xf x e = ()x R ∈ D .1()f x x=()x R ∈ 4.设p :0m ≤, q :关于x 的方程20x x m +-=有实数根,则p ⌝是q 的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.右图是正态分布(0,1)N 的正态曲线,现有:①1()2m Φ-,②()m Φ-,③1[()()]2m m Φ-Φ-,这三个式子能表示图中阴影部分面积的是A .①②B .②③C .①③D . ①②③ 6.用数学归纳法证明等式:422*123()2n n n n N +++++-∈,则从n k =到1n k =+时左边应添加的项为A .21k + B .2(1)k +C . 42(1)(1)2k k +++ D . 2222(1)(2)(3)(1)k k k k ++++++++7.等差数列{}n a 的前项和为n S ,若81126a a =+,则9S = A .54 B .45 C .36 D .278.若函数282()1012x x f x x ⎧-⎪-⎪⎪=⎨⎪⎪-⎪⎩ (2)(2)(2)x x x <=>,则2lim ()x f x →-的值是A .不存在B .12C .10D .549.如果我们定义一种运算:g g h h ⎧⊗=⎨⎩(),(),g h g h ≥<已知函数()21x f x =⊗,那么函数(1)f x -的大致图象是10.已知等比数列{}n a 的前项和2155n n S t -=⋅-,则实数t 的值为 A .4 B .5 C .45D .1511.把数列依次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…则第50个括号内各数之和为 A .98 B .197 C .390 D .39212.已知函数32()g x ax bx cx d =+++ (0)a ≠的导函数为()f x ,0a b c ++=,且(0)(1)0f f >,设12,x x 是方程()0f x =的两根,则12||x x -的取值范围为 A.23⎫⎪⎭⎣ B .14,39⎡⎫⎪⎢⎣⎭ C.13⎡⎢⎣⎭ D 11,93⎡⎫⎪⎢⎣⎭ 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.已知复数z 与2(2)8z i --都是纯虚数,则z = .14.我市某电器公司,生产G 、E 、F 三种不同型号的电器产品,这三种电器产品数量之比依次为5:2:3,现用分层抽样方法抽出一个容量为n 的样本,若样本中型产品有24件,则n = .15.函数()|1||1|f x x x =+--的值域是 .16.已知二次函数2()(1)(21)1n f x n n x n x =+-++*()n N ∈,当n 取1,2,3,…,n ,…时,()n f x 的图象是一系列的抛物线.设()i f x ,(1i =,2,…,n ,…)的图象与轴的交点为i A 、i B ,||i i A B 为其在x 轴上截得线段的长度,则112233lim(||||||||)n n A B A B A B A B ++++= .三、解答题:本大题6个小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知集合{|||}E x x x m =-≥,10{|1}6F x R x =∈>+. (1)若3m =,求E F ;(2)若E F R =,求实数m 的取值范围.18.(本小题满分12分)已知{}n a 是等差数列,公差0d ≠,1a 、3a 、13a 且成等比数列,n S 是{}n a 的前n 项和. (1)求证:1S 、3S 、9S 成等比数列; (2)设nn nna b S =,请问是否存在正整数m ,使得n m >当时, 1.99n b >恒成立?若存在,求出m 的最小值;若不存在,请说明理由. 19.(本小题满分12分)某科技公司遇到一个技术难题,紧急成立甲、乙两个攻关小组,按要求各自单独进行为期一个月的技术攻关,同时决定对攻关期满就攻克技术难题的小组给予奖励.已知此技术难题在攻关期满时被甲小组攻克的概率为23,被乙小组攻克的概率为34. (1)设ξ为攻关期满时获奖的攻关小组数,求ξ的分布列及E ξ;(2)设η为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数7()2xf x η=-在定义域内单调递减”为事件C ,求事件C 的概率.20.(本小题满分12分)已知函数4()12x f x a a=-+ (01)a a >≠且是定义在(,)-∞+∞上的奇函数.(1)求a 的值;(2)求函数()f x 的值域;(3)当(0,1]x ∈时,()22x tf x ≥-恒成立,求实数t 的取值范围.21.(本小题满分12分)函数2()ax f x axe =,其中0a R a ∈≠且,e 为自然对数的底数.(1)判断函数()f x 的单调性;(2)当0a <时,求[1,1]x ∈-时函数()f x 的最大值.22.(本小题满分12分)函数()y f x =是定义在R 上的偶函数,且(1)(1)f x f x -+=--,当[2,1]x ∈--时,2()(2)(2)()f x t x t x t R =+-+∈记函数()f x 的图象在处的切线为l ,1()12f =.(1)求()f x 在[0,1]上的解析式;(2)求切线l 的方程;(3)点列11(,2)B b ,22(,3)B b ,…,(,1)n n B b n +在l 上,11(,0)A x ,22,(,0)A x ,…,(,0)n n A x 依次为x 轴上的点,如图,当*n N ∈,点n A 、n B 、1n A +,构成以1n n A A +为底边的等腰三角形,若1(01)x a a =<<,且数列{}n x 是等差数列,求a 的值和数列{}n x 的通项公式.2018届绵阳一诊理科参考答案BCDAC DABBB DA2i 80 [2,2]- 117.{|62}x x -<≤- 03m <≤ 18.(2)100m = 19.(1)151170*********E ξ=⨯+⨯+⨯= (2)71220.(1)2a = (2)()(1,1)f x ∈- (3)0t ≥ 21.(1)22()(12)ax f x ae ax '=+当0a >时,()f x 在R 上是增函数;当0a <时,()f x 在(,-∞和)+∞上是增函数;在(上是减函数(2)综上所述:当12a <-时,()f x 在[1,1]-上最大值为2e;当102a -≤<时,()f x 在[1,1]-上最大值为a ae -22.(1)3()44f x x x =-+ ([0,1])x ∈(2):1l y x =+ (3)12n x n =-。

高三数学试题-四川省绵阳市高中2018届高三第一次诊断性考试数学文试题 最新

高三数学试题-四川省绵阳市高中2018届高三第一次诊断性考试数学文试题 最新

四川省绵阳市高中2018届高三第一次诊断性考试数学文试题本试卷分为试题卷和答题卷两部分,其中试题卷由第I 卷(选择题)和第Ⅱ卷(非选择题) 组成,共4页;答题卷共4页.全卷满分150分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.参考公式:如果事件A 、B 互斥,那么P (A + B )= P (A )+ P (B ); 如果事件A 、B 相互独立,那么P (A ·B )= P (A )·P (B );如果事件A 在一次试验中发生的概率为P ,那么在n 次独立重复试验中恰好发生k 次的概率:k n k k n n P P C k P --⋅⋅=)1()(.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合M ={x ∈Z|-2<x <1},N ={-1,0,1},则集合M 与N 的关系是A .M ∈NB .M ⊆NC .M ⊇ND .M =N2.)(x f '是函数f (x )=x 3-x +1的导数,则)1()1(f f '的值是 A .0B .1C .2D .33.下列函数中,与函数11-=x y 有相同定义域的是A .1-=x yB .11-=x y C .()1ln -=x y D .1-=x e y 4.数列{a n }中,a n =2n -12,S n 是其前n 项和,则当S n 取最小值时,n =A .5或6B .6或7C .11或12D .12或13 5.如果命题“p 且q ”与“非p ”都是假命题,则A .命题p 不一定是真命题B .命题q 不一定是假命题C .命题q 一定是真命题D .命题q 一定是假命题 6.函数f (x )=x 4-x 2+1在点x=1处的切线方程为A .y =x +1B .y =x -1C .y =2x +1D .y =2x -17.集合A ={-1,1},集合B ={-2,2},从A 到B 的映射f 满足f (1)+f (-1)=0,则此映射表示的函数是A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 8.函数y =lg|x -1|的图象大致为xyO 1 2 x yO 1 2 x yO 1 xyO -1 -2 2A .B .C .D .9.函数⎩⎨⎧<+≥=-,,,,)0()1()0(2)(1x x f x x f x 则)2(-f 的值为A .21B .1C .2D .0 10.已知{a n }是公比q >1的等比数列,a 1和a 7是方程2x 2-7x +4=0的两根,则log 2a 3-log 2a 4+log 2a 5=A .2B .2C .21D .011.已知2b 是1-a 和1+a 的等比中项,则a +4b 的取值范围是A .(-∞,45)B .⎥⎦⎤ ⎝⎛∞-45,C .(-1,45)D .⎥⎦⎤ ⎝⎛-451,12.已知定义在R 上的偶函数f (x )的图象关于直线x =1对称,且当0≤x ≤1时,f (x )=x 2,若直线y =x +a与曲线y =f (x )恰有三个交点,则a 的取值范围为 A .)041(,- B .)2412(k k ,-(k ∈Z ) C .)021(,-D .)21(k k ,-(k ∈Z )第Ⅱ卷 (非选择题 共90分)注意事项:答第Ⅱ卷前,考生务必将自己的姓名、准考证号用钢笔或圆珠笔(蓝、黑色)写在答题卷密封线内相应的位置.答案写在答题卷上,不能答在试题卷上. 二、填空题:本大题共4小题,每小题4分,共16分. 13.在等差数列{a n }中,如果a n =a n +2,那么公差d = .14.为庆祝祖国母亲60华诞,教育局举行“我的祖国”歌咏比赛,某中学师生踊跃报名参加.据统计,报名的学生和教师的人数之比为5∶1,学校决定按分层抽样的方法从报名的师生中抽取60人组队参加比赛,已知教师甲被抽到的概率为101,则报名的学生人数是 . 15.写出“函数f (x )=x 2+2ax +1(a ∈R)在区间(1,+∞)上是增函数”成立的一个..充分不必要条件:_________. 16.已知二次函数f (x )=x 2-mx +m (x ∈R )同时满足:(1)不等式f (x )≤0的解集有且只有一个元素;(2)在定义域内存在0<x 1<x 2,使得不等式f (x 1)>f (x 2)成立.设数列{a n }的前n 项和S n =f (n ),nn a mb -=1.我们把所有满足b i ·b i +1<0的正整数i 的个数叫做数列{b n }的异号数.给出下列五个命题:① m =0; ② m =4;③ 数列{a n }的通项公式为a n =2n -5;④ 数列{b n }的异号数为2; ⑤ 数列{b n }的异号数为3.其中正确命题的序号为 .(写出所有正确命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)已知函数()23log 1)(2-=x x f 的定义域为集合A ,不等式x-21≥1的解集为B .(1)求(R A )∩B ;(2)记A ∪B =C ,若集合M ={x ∈R||x -a |<4}满足M ∩C =∅,求实数a 的取值范围.18.(本题满分12分)有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A ,B 两个班各被随机抽取5名学生接受问卷调查,A 班5名学生得分为:5、8、9、9、9;B 班5名学生得分为:6,7,8,9,10. (1)请你估计A ,B 两个班中哪个班的问卷得分要稳定一些;(2)如果把B 班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.19.(本题满分12分)已知等差数列{a n }的前n 项和为S n ,且S 10=120,S 20=440.(1)求数列{a n }的通项公式; (2)记数列{nS 1}的前n 项和为T n ,求T n . 20.(本题满分12分)已知函数f (x )=a x +2-1(a >0,且a ≠1)的反函数为)(1x f -.(1)求)(1x f -;(2)若)(1x f -在[0,1]上的最大值比最小值大2,求a 的值; (3)设函数1log )(-=x a x g a,求不等式g (x )≤)(1x f -对任意的⎥⎦⎤⎢⎣⎡∈2131,a 恒成立的x 的取值范围.21.(本题满分12分)已知x 1,x 2是函数x a x b x a x f 22323(-+=)(a >0)的两个极值点. (1)若a =1时,x 1=21,求此时f (x )的单调递增区间; (2)若x 1,x 2满足|x 1-x 2|=2,请将b 表示为a 的函数g (a ),并求实数b 的取值范围.22.(本题满分14分)已知数列{a n }共有2k 项(k ∈N*,k ≥2),首项a 1=2.设{a n }的前n 项的和为S n ,且a n +1=(a -1)S n +2(n =1,2,3,…,2k -1),其中常数a >1.(1)求证{a n }是等比数列,并求{a n }的通项公式; (2)若数列{b n }满足)(log 1212n n a a a nb =(n =1,2,3,…,2k ),求{b n }的通项公式; (3)令a =1222-k ,对(2)中的{b n }满足不等式231-b +232-b +…+2312--k b +232-k b ≤4,求k 的值.绵阳市高中2018届高三第一次诊断性考试数学(文)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BCCAD DABAC DB二、填空题:本大题共4小题,每小题4分,共16分.13.0 14.500 15.a =-1(答案不唯一)16.②⑤三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:由⎩⎨⎧≠->-123023x x ,解得32>x 且x ≠1,即A ={x |32>x 且x ≠1},由x-21≥1解得1≤x <2,即B ={x |1≤x <2}. ………………………………4分 (1)于是R A ={x |x ≤32或x =1},所以(R A )∩B ={1}. ……………………7分(2)∵ A ∪B ={x |32>x },即C ={x |32>x }.由|x -a |<4得a -4<x <a +4,即M ={x |a -4<x <a +4}. ∵ M ∩C =∅,∴ a +4≤32,解得a ≤310-.…………………………………………………12分18.解:(1)∵ A 班的5名学生的平均得分为(5+9+9+9+9)÷5=8,方差4.2])89()89()89()88()58[(512222221=-+-+-+-+-=S ;B 班的5名学生的平均得分为(6+7+8+9+10)÷5=8,方差2])108()98()88()78()68[(512222222=-+-+-+-+-=S .∴ S 12>S 22,∴ B 班的预防知识的问卷得分要稳定一些.…………………………………8分(2)共有1025=C 种抽取样本的方法,其中样本6和7,6和8,8和10,9和10的平均数满足条件,故所求的概率为52104=.………………………………………………………12分 19.解:(1)设{a n }的公差为d ,由题设有⎪⎪⎩⎪⎪⎨⎧=⨯⨯+=⨯⨯+.440219202012029101011d a d a ,解得a 1=3,d =2.……………………………………5分 a n =a 1+(n -1)d =3+(n -1)×2=2n +1,即{a n }的通项公式为a n =2n +1. ………………………………………………6分(2)由)2(2)123(+=++=n n n n S n ,得)2(11+=n n S n , ……………………8分 ∴ T n )2(1531421311+++⨯+⨯+⨯=n n )21151314121311(21+-++-+-+-=n n)2111211(21+-+-+=n n , =)2(21)1(2143+-+-n n . …………………………………………………12分20.解:(1)令y =f (x )=a x +2-1,于是y +1=a x +2,∴ x +2=log a (y +1),即x =log a (y +1)-2,∴ )(1x f -=log a (x +1)-2(x >-1).………………………………………………3分 (2)当0<a <1时,)(1x f -max =log a (0+1)-2=-2,)(1x f -min =log a (1+1)-2=log a 2-2,∴ -2-(2log a -2)=2,解得22=a 或22-=a (舍). 当a >1时,)(1x f -max =log a 2-2,)(1x f -min =-2,∴ 2)2()22(log =---a ,解得2=a 或2-=a (舍).∴ 综上所述,22=a 或2=a .……………………………………………7分 (3)由已知有log a 1-x a≤log a (x +1)-2,即1log -x a a ≤21log a x a +对任意的]2131[,∈a 恒成立.∵ ]2131[,∈a ,∴ 21ax +≤1-x a .①由21ax +>0且1-x a >0知x +1>0且x -1>0,即x >1,于是①式可变形为x 2-1≤a 3,即等价于不等式x 2≤a 3+1对任意的]2131[,∈a 恒成立.∵ u =a 3+1在]2131[,∈a 上是增函数,∴ 2728≤a 3+1≤89,于是x 2≤2728,解得9212-≤x ≤9212. 结合x >1得1<x ≤9212. ∴ 满足条件的x 的取值范围为⎥⎥⎦⎤⎝⎛92121,.…………………………………12分 21.解:(1)∵ a =1时,x x b x x f -+=23231(), ∴ 1)(2-+='x b x x f .由题知21是方程012=-+x b x 的根,代入解得23=b , 于是123)(2-+='x x x f .由0)(>'x f 即01232>-+x x ,可解得x <-2,或x >21,∴ f (x )的单调递增区间是(-∞,-2),(21,+∞).…………………………4分(2)∵ 22)(a x b ax x f -+=',∴ 由题知x 1,x 2是方程ax 2+b x -a 2=0的两个根. ∴ abx x -=+21,x 1x 2=-a , ∴ |x 1-x 2|=244)(221221=+=-+a abx x x x . 整理得b =4a 2-4a 3.……………………………………………………………8分 ∵ b ≥0, ∴ 0<a ≤1.则b 关于a 的函数g (a )=4a 2-4a 3(0<a ≤1). 于是)32(4128)(2a a a a a g -=-=',∴ 当)320(,∈a 时,0)(>'a g ;当⎥⎦⎤⎝⎛∈132,a 时,.0)(<'a g∴ g(a )在)320(,上是增函数,在⎥⎦⎤⎝⎛132,上是减函数.∴ 2716)32()(max ==g a g ,0)1()(min ==g a g , ∴ 0≤b ≤2716. ………………………………………………………………12分 22.解:(1)n =1时2)1(12+-=S a a 2)1(1+-=a a a 2=,∴a aa a ==2212(常数). n ≥2时,由已知a n +1=(a -1)S n +2有a n =(a -1)S n -1+2, 两式相减得a n +1-a n =(a -1)a n ,整理得a n +1=a ·a n ,即a a ann =+1(常数)即对n =1,2,3,…,2k -1均有a a a nn =+1(常数) 故{a n }是以a 1=2,a 为公比的等比数列.∴ a n =2a n -1.……………………………………………………………………5分 (2))]2()2()2[(log 1)(log 11102212-⋅⋅⋅==n n n a a a n a a a n b )2(log 112102-++++⋅=n n a n]2[log 12)1(2-⋅=n n n a na n 2log 211-+=.……………………………………………………9分(3)由已知1222-=k a ,得12112log 2111222--+=-+=-k n n b k n , 由02112123121123>---=---+=-k n k n b n 知21+>k n ,∴ 当n =1,2,…,k 时n n b b -=-23|23|,当n =k +1,k +2,…,2k 时23|23|-=-n n b b ,∴ |23||23||23||23|21221-+-++-+--k k b b b b23232323232322121-++-+-+-++-+-=++k k k k b b b b b b =]122)12([]122)10([+-+++--++-k k k k k k k k k =122-k k , ∴ 原不等式变为122-k k ≤4,解得324-≤k ≤324+,∵ k ∈N*,且k ≥2,∴ k =2,3,4,5,6,7.……………………………………………………14分绵阳市高中2018届高三第一次诊断性考试数学(第Ⅱ卷) 答题卷(文史类)题号 二 三 第Ⅱ卷总 分总分人总分 复查人 17 18 19 20 21 22 分数得 分 评卷人 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13. . 14. . 15. .16. .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 得 分 评卷人 17.(本题满分12分)得分评卷人18.(本题满分12分)得分评卷人19.(本题满分12分)得分评卷人20.(本题满分12分)得分评卷人21.(本题满分12分)得分评卷人22.(本题满分14分)。

四川省绵阳2018届高三最新考前适应性考试数学(文)试题-含答案

四川省绵阳2018届高三最新考前适应性考试数学(文)试题-含答案

四川省绵阳2018届高三最新考前适应性考试数学(文)试题第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中。

只有一项是符合题目要求的。

1.设集合223{|1}44x y A x =+=,2{|}B y y x ==,则A B =( )A .[2,2]-B .[0,2]C .[0,4]D .[0,8]2.设复数321i z i =-(i 为虚数单位),则z 的虚部为( )A.iB.i -C.1-D.13.AQI 是表示空气质量的指数,AQI 指数值越小,表明空气质量越好,当AQI 指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI 指数值的统计数据,图中点A 表示4月1日的AQI 指数值为201,则下列叙述不正确的是( )A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日C.这12天的AQI 指数值的中位数是90D.从4日到9日,空气质量越来越好4.已知()()1,21,2,2a m b m =-=--,若向量//a b ,则实数m =( )A.45B.52C.0或52D.0或455.抛物线24y x =的准线方程是( )A.1x =B.1x =-C.116y =D.116y =-6.在数列{}n a 中,若*112(,2)n n n a a a n n -+=+∈≥N ,则下列不等式中成立的是( )A .2243a a a ≤B .2243a a a <;C .2243a a a ≥D .2243a a a >7.圆心在曲线()111y x x =>-+上,与直线10x y ++=相切,且面积最小的圆的方程为( )A .()2212x y +-= B .()2212x y ++=C .()2212x y -+=D .()2212x y ++=8.给出10个数1,2,6,15,31,…,其规律是:第一个数是1,第二个数比第一个数大1,第三个数比第二个数大4,第四个数比第三个数大9,第五个数比第四个数大16,…,以此类推。

四川省绵阳市2017-2018学年高三第一次诊断性考试文数试题 Word版含解析

四川省绵阳市2017-2018学年高三第一次诊断性考试文数试题 Word版含解析

四川省绵阳市2017-2018学年高三第一次诊断性考试文数试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}32|{<<-=x x A ,}05|{2<-∈=x x Z x B ,则=B A ( ) A .}2,1{ B .}3,2{ C .}3,2,1{ D .}4,3,2{ 【答案】A考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.已知命题p :01,2>+-∈∀x x R x ,则p ⌝为( )A .01,2>+-∉∀x x R x B .01,0200≤+-∉∃x x R x C .01,2≤+-∈∀x x R x D .01,0200≤+-∈∃x x R x 【答案】D 【解析】试题分析:p ⌝为01,0200≤+-∈∃x x R x ,选D.考点:命题的否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p(x)”是真命题,需要对集合M 中的每个元素x ,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p(x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p(x 0)成立即可,否则就是假命题.3.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第九日所织尺数为( )A .8B .9C .10D .11 【答案】B考点:等差数列4.若实数y x ,满足⎪⎩⎪⎨⎧≥≤+≥-010y y x y x ,则y x z +=2的最大值为( )A .0B .1C .2D .23 【答案】C 【解析】试题分析:可行域为一个三角形ABC 及其内部,其中11(0,0),(1,0),(,)22A B C ,所以直线y x z +=2过点B 时取最大值2,选C.考点:线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.5.设命题p :22<x ,命题q :12<x ,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 【解析】试题分析:命题p :221x x <⇒<,命题q :2111x x <⇒-<<,所以p 是q 成立的必要不充分条件,选B. 考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.6.要得到函数)(2cos 32sin )(R x x x x f ∈+=的图象,可将x y 2sin 2=的图象向左平移( ) A .6π个单位 B .3π个单位 C .4π个单位 D .12π个单位【答案】A考点:三角函数图像变换【思路点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数y =Asin(ωx +φ),x∈R 是奇函数⇔φ=k π(k∈Z);函数y =Asin(ωx +φ),x∈R 是偶函数⇔φ=k π+π2(k∈Z);函数y =Acos(ωx +φ),x∈R 是奇函数⇔φ=k π+π2(k∈Z);函数y =Acos(ωx +φ),x∈R 是偶函数⇔φ=k π(k∈Z). 7.三次函数1223)(23++-=x x ax x f 的图象在点))1(,1(f 处的切线与x 轴平行,则)(x f 在区间)3,1(上的最小值是( ) A .38 B .611 C .311 D .35【答案】D 【解析】试题分析:2()332f x ax x '=-+,所以1(1)3103k f a a '==-=⇒=,所以2()32012f x x x x x '=-+=⇒==或,因此,)(x f 在区间(1,2)上单调减,)(x f 在区间(2,3)上单调增,所以最小值是135(2)84221=323f =⨯-⨯+⨯+,选D. 考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.8.2016年国庆节期间,绵阳市某大型商场举行“购物送券”活动.一名顾客计划到该商场购物,他有三张商场的优惠券,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券A :若商品标价超过100元,则付款时减免标价的10%; 优惠券B :若商品标价超过200元,则付款时减免标价的30元; 优惠券C :若商品标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠券C ,并希望比使用优惠券A 或B 减免的钱款都多,则他购买的商品的标价应高于( )A .300元B .400元C .500元D .600元 【答案】B考点:不等式应用9.已知αθθsin 2cos sin =+,βθ2sin 22sin =,则( ) A .αβcos 2cos = B .αβ22cos 2cos = C .αβ2cos 22cos = D .02cos 22cos =+αβ 【答案】C 【解析】试题分析:2sin cos 2sin 1sin 24sin θθαθα+=⇒+=,所以2212sin 4sin ,11cos22(1cos2),cos22cos2βαβαβα+=+-=-=,选C.考点:三角恒等变换【思路点睛】 三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等10.已知定义在),0[+∞上的函数)(x f 满足)(2)1(x f x f =+,当)1,0[∈x 时,x x x f +-=2)(,设)(x f 在),1[n n -上的最大值为)(*N n a n ∈,则=4a ( )A .2B .1C .161D .321【答案】A考点:函数性质【思路点睛】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值的大小转化自变量大小关系11.在ABC ∆中,81cos =A ,4=AB ,2=AC ,则A ∠的角平分线D A 的长为( ) A .22 B .32 C .2 D .1 【答案】C 【解析】试题分析:由余弦定理得222142242188BC =+-⨯⨯⨯=,再由角平分线定理得422BD DC DC ==,最后根据余弦定理得2AD ==,选C.考点:余弦定理12.若函数144)(234+-++=x ax x x x f 的图象恒在x 轴上方,则实数a 的取值范围是( )A .)(2,+∞B .)(1,+∞C .),213(+∞-D .),212(+∞- 【答案】A 【解析】试题分析:4324410x x ax x ++-+>恒成立,当0x =时,a R ∈,当0x ≠时,432222244141(4)(t 42)(2)2x x x a x x t t x x x +-+>-=-+-+=-++=-++ ,其中1t x R x=-∈,因为2(2)22t -++≤,从而2a >,因此实数a 的取值范围是)(2,+∞,选A.考点:不等式恒成立【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法. 二、填空题(每题4分,满分20分,将答案填在答题纸上)13.若向量)0,1(=,)1,2(=,)1,(x =满足条件-3与垂直,则=x . 【答案】1考点:向量垂直【方法点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a ·b =|a ||b |cos θ;二是坐标公式a ·b =x 1x 2+y 1y 2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.14.在公差不为0的等差数列}{n a 中,831=+a a ,且4a 为2a 和9a 的等比中项,则=5a .【答案】13 【解析】试题分析:22242911111(3)()(8)3,03a a a a d a d a d d a d d d a =⇒+=++⇒=≠⇒=,而1318228a a a d +=⇒+=,所以151,3,14313.a d a ===+⨯=考点:等差数列 15.函数41)(2+-+=b x a x x f (b a ,是正实数)只有一个零点,则ab 的最大值为 . 【答案】161考点:基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.16.)(x f 是定义在R 上的偶函数,且0≥x 时,3)(x x f =.若对任意的]32,12[+-∈t t x ,不等式)(8)3(x f t x f ≥-恒成立,则实数t 的取值范围是 .【答案】3-≤t 或1≥t 或0t = 【解析】试题分析:由题意得0x <时,3()()f x f x x =-=-,即3()||f x x =,因此33(3)8()|3|8|||3|2||f x t f x x t x x t x -≥⇒-≥⇒-≥,当0t =时,x R ∈,满足条件;当0t >时,5t x t x ≥≤-或,要满足条件,需2123150t t t t t t ⎧-≥+≤-⎪⇒≥⎨⎪>⎩或;当0t <时,5tx x t ≥-≤或,要满足条件,需2123350t t t tt t ⎧-≥-+≤⎪⇒≤-⎨⎪<⎩或;综上实数t 的取值范围是3-≤t 或1≥t 或0t =考点:不等式恒成立【思路点睛】求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的图象(部分)如图所示.(1)求函数)(x f 的解析式; (2)求函数)(x f 在区间]21,21[-上的最大值与最小值.【答案】(1))6sin(2)(ππ+=x x f (2)最大值是2,最小值是3-.试题解析:(1)由图得:2=A . 由213165424=-==ωπT ,解得πω=.………………3分 由2)3sin(2)31(=+=ϕπf ,可得223ππϕπ+=+k ,解得62ππϕ+=k ,又2πϕ<,可得6πϕ=,∴)6sin(2)(ππ+=x x f .………………………………6分(2) ∵]2121[,-∈x ,∴]323[6ππππ,-∈+x ,∴3-≤)6sin(2ππ+x ≤2,即)(x f 的最大值是2,最小值是3-.………12分考点:求三角函数解析式,三角函数性质【方法点睛】已知函数sin()(A 0,0)y A x B ωϕω=++>>的图象求解析式(1)max min maxmin,22y y y y A B -+==. (2)由函数的周期T 求2,.T πωω=(3)利用“五点法”中相对应的特殊点求ϕ.18.设数列}{n a 的前n 项和为n S ,已知)(12*N n a S n n ∈-=, (1)求数列}{n a 的通项公式; (2)若12log +=n n a b ,求数列}1{1+n n b b 的前n 项和n T . 【答案】(1)12-=n n a (2)1n n +试题解析:(1)令111121a a S n =-==,,解得11=a .……………………………2分 由12-=n n a S ,有1211-=--n n a S ,两式相减得122--=n n n a a a ,化简得12-=n n a a (n ≥2), ∴ 数列}{n a 是以首项为1,公比为2 的等比数列,∴ 数列}{n a 的通项公式12-=n n a .……………………………………………6分 (2) n a b n n n ===+2log log 212, ∴111)1(111+-=+=+n n n n b b n n , ∴1111)111()4131()3121()211(+=+-=+-++-+-+-=n nn n n T n .……12分考点:由和项求通项,裂项相消求和【方法点睛】将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(n -1)(n +1)(n ≥2)或1n (n +2).19.已知ABC ∆的面积为S ,且S AC AB =⋅. (1)求A 2tan 的值; (2)若53cos =C ,且2||=-AB AC ,求ABC ∆的面积S . 【答案】(1)43-(2)85【解析】试题分析:(1)先根据向量数量积及三角形面积公式得1cos sin 2bc A bc A =,即tanA=2,再根据二倍角正切公式得22tan 4tan 21tan 3A A A ==--(2)由向量减法得2AC AB BC a -===,这样结合(1)就已知两角一边,利用正弦定理可求另一边,最后根据面积公式求三角形面积 试题解析:(1) 由已知AB AC S ⋅=有1cos sin 2bc A bc A =,可得tanA=2, …………2分 ∴22tan 4tan 21tan 3A A A ==--.……………………………………………………4分考点:向量数量积及三角形面积公式,二倍角公式【思路点睛】三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.20.已知函数x x x x f cos sin )(+=.(1)若k x f >)(对任意的),0(π∈x 恒成立,求实数k 的取值范围;(2)判断在)(x f 区间)3,2(上的零点个数,并证明你的结论.(参考数据:4.12≈,4.26≈)【答案】(1)1-<k (2)有且只有1个零点(2)判定函数零点个数从两个方面,一是函数单调性,二是函数零点存在定理,先求函数导数()cos f x x x '=,确定函数在(2,3)上是减函数,即函数在(2,3)上至多一个零点.再研究区间端点函数值的符号:02sin )42sin(22sin 2cos 2sin 2cos 2sin 2)2(>++=++=+=πf ,03cos 3sin 3)3(<+=f ,由零点存在性定理,得函数在(2,3)上至少一个零点,综上可得函数在(2,3)上有且仅有一个零点试题解析:(1)x x x x x x x f cos sin cos sin )(=-+=', ∴0)()20(>'∈x f x ,,π,0)()2(<'∈x f x ,,ππ,即)(x f 在)20(π,递增,在)2(ππ,递减,故{})()0(min )(min πf f x f ,=.又1cos )(1)0(-===ππf f ,,(2)x x x x x x x f cos sin cos sin )(=-+=',∴)32(,∈x 时,0cos )(<='x x x f , ∴函数)(x f 在(2,3)上是减函数.………8分 又02sin )42sin(22sin 2cos 2sin 2cos 2sin 2)2(>++=++=+=πf ,……10分∵75.04263)43sin(312sin 31211sin33sin 3≈-⨯=-==<ππππ, 95.0426)43cos(12cos 1211cos 3cos ≈+-=--=-=<ππππ,∴03cos 3sin 3)3(<+=f ,由零点存在性定理,)(x f 在区间(2,3)上有且只有1个零点.…………12分 考点:函数零点,利用导数研究不等式恒成立【方法点睛】利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.21.已知函数1ln )(2-+=x x x f ,e e x g x -=)(. (1)讨论)(x f 的单调性;(2)若对于任意的),1(+∞∈x ,)()(x f x mg >恒成立,求实数m 的取值范围. 【答案】(1)增函数(2)3m e≥试题解析:(1) 因为函数)(x f 的定义域为)0(∞+,,又xx x x x f 1221)(2+=+=', ∵x>0,2x2+1>0,∴0)(>'x f ,)(x f 在定义域)0(∞+,上是增函数. ………………………3分 (2)01ln )()()(2>+---⇔>x x e e m x f x mg x , 令=)(x h 1ln )(2+---x x e e m x ,则=')(x h x xme x 21--,令=')1(h 0,即03=-me ,可解得m=e 3.①当m ≤0时,显然=')(x h 021<--x xme x ,此时)(x h 在)1(∞+,上单调递减, ∴)(x h <h(1)= 0,不满足条件. ……………………………………………6分②当em 30<<时,令x x q x me x p x 2)(1)(=-=,.显然x me x p x 1)(-=在)1[∞+,上单调递增,∴2131)1()(min =-⨯<-==e e me p x p . 由x x q 2)(=在)1[∞+,单调递增,于是2)(min =x q .∴min min )()(x q x p <.于是函数xme x p x 1)(-=的图象与函数x x q 2)(=的图象只可能有两种情况: 若)(x p 的图象恒在)(x q 的图象的下方,此时)()(x q x p <,即0)(<'x h ,故)(x h 在)1(∞+,单调递减,又0)1(=h ,故0)(<x h ,不满足条件. 若)(x p 的图象与)(x q 的图象在x>1某点处的相交,设第一个交点横坐标为x0, 当)1(0x x ,∈时,)()(x q x p <,即0)(<'x h ,故)(x h 在)1(0x ,单调递减,又0)1(=h ,故当)1(0x x ,∈时,0)(<x h .∴)(x h 不可能恒大于0,不满足条件.……9分考点:利用导数求函数单调区间,利用导数求参数取值范围 【方法点睛】利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为θθρcos 4sin2=.(1)求曲线C 的直角坐标方程;(2)若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 511521(t 为参数),设点)1,1(P ,直线l 与曲线C 相交于B A ,两点,求||||PB PA +的值.【答案】(1)24y x =(2)试题解析:(1)由曲线C 的原极坐标方程可得θρθρcos 4sin 22=,化成直角方程为24y x =.………………………………………………………4分 (2)联立直线线l 的参数方程与曲线C 方程可得)521(4)511(2t t +=+,整理得015562=--t t , ……………………………………………………7分 ∵01521<-=⋅t t ,于是点P 在AB 之间,∴1544)(2122121=-+=-=+t t t t t t PB PA .……………………………10分 考点:极坐标方程化为直角坐标方程,直线参数方程几何意义 23.(本小题满分10分)选修4-5:不等式选讲 已知函数)(|1||1|)(R a a x x x f ∈+--+=. (1)若1=a ,求不等式0)(≥x f 的解集;(2)若方程()f x x =有三个实数根,求实数a 的取值范围.【答案】(1))21[∞+-,(2)11a -<< 【解析】试题分析:(1)根据绝对值定义,将不等式转化为三个不等式组,最后求它们解集的并集得原不等式解集(2)将方程转化为对应函数11+--+=x x x a ,再根据绝对值定义将其转化为分段函数21111121x x a x x x x x x x +<-⎧⎪=+--+=--≤≤⎨⎪->⎩,,,,,,最后结合分段函数图像确定实数a 的取值范围.试题解析:(1)∵1=a 时,111)(+--+=x x x f , ∴当x ≤-1时,1)(-=x f ,不可能非负.当-1<x<1时,12)(+=x x f ,由)(x f ≥0可解得x ≥21-,于是21-≤x<1. 当x ≥1时,3)(=x f >0恒成立.∴不等式)(x f ≥0的解集)21[∞+-,.………………………………………5分考点:绝对值定义【名师点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

2018级绵阳一诊文科综合试卷及答案

2018级绵阳一诊文科综合试卷及答案

绵阳市高中2018级第一次诊断性考试文科综合(地理)参考答案及评分标准一、 选择题(44分)1 ---- 5: CDABD 6 -------- 11: BACBCA二、 非选择题(56分)36.(24 分)1(4分)干旱缺水、风沙(沙尘暴)、霜冻低温、土壤盐碱化。

()2(6分)保护城市免受风沙的侵袭。

当地主导风向是西北风和东南风, 危()害城市的风沙沙源地(塔克拉玛干沙漠)位于城市的东(南)部。

()3(8分)降低了气温的日较差和年较差;增加了空气湿度;减少大风和 大风日数;减少了沙尘暴天气。

()4(6 分)赞同。

由各种经济林组成的林带依然属于混交林,能达到防风固沙、保持水 土等生态要求;能增加当地居民的经济收入。

不赞同。

混交林内树种的减少,将导致其生态功能的降低或失衡;栽种经济 林,耗费的水资源会更多。

37.(22 分)1(8分)地处亚热带季风气候区,夏季多暴雨;径流汇集快、径流量大, 夹()带的泥土容易将岩溶地貌(落水洞、漏斗等)泄水通道阻塞(或下渗慢,排水 不畅),形成内涝;喀斯特地貌土层浅薄,多裂隙,地表水易渗漏,地下河发育, 导致地表水资源缺乏,形成干旱。

2(4分)(在耕地附近、村庄庭院、荒坡、道路两旁等)建设人工集流 ()系统,修建防渗蓄水池,建引水渠工程等。

.()3(10分)初期,碳酸盐岩在风化、(雨水)地表水冲刷下产生很多裂隙; 中期,地表水汇集,沿裂隙对岩石的溶蚀、冲刷、搬运作用增强,裂隙拓宽加深, 洼地加深变大,地下裂隙形成地下河;后期,地表水的下渗和地下水的溶蚀作用 使地下河不断扩张,河流顶部变薄,同时洼地沉积和崩塌物逐渐堆积,在重力作 用下,地下河顶部的薄弱区发生坍塌,形成体积和深度更大的洼地。

43.(10 分)现状:拥有种类众多的旅游资源,具有较高的美学、历史文化和科研价值; 缺5A 级景区,知名度不高(宣传不到位);近年来旅游业发展迅猛。

(6分) 作用:将促进当地旅游与相关产业融合发展,推动经济发展;促进当地旅游 业朝高质量的健康旅游、生态旅游、文化旅游、智慧旅游发展;增加知名度。

绵阳市2018年高三一诊模拟考试文科数学试题含答案

绵阳市2018年高三一诊模拟考试文科数学试题含答案

绵阳市2018年高三一诊模拟考试数学(文史类)命题人:陈山 审题人:王振、李小兰、李雪本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷2至4页.考生作答时,须在答题卡上作答,在本试卷、草稿纸上作答无效.满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题,共60分)一、单选题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.设集合 , ,则 等于( ) A . B . C . D . 2.已知命题 : , ,则 :( ) A . , B . , C . , D . ,3.已知平面向量 , , 且 , 则 ( ) A . . . .4.已知函数 ,那么 的值( ).A .B .C .D .5.已知 =, )4tan(πβ-=,那么为( )A .B .C .D .6.下列函数中周期为π且为偶函数的是( ) A.)22sin(π-=x y B.)22cos(π-=x yC.)2sin(π+=x y D.)2cos(π+=x y7.已知 , 为非零实数,且 ,则下列不等式一定成立的是( ) A . B .C .D .8.设 ,则“2-x ≥0”是“ ≤1”的( ) A . 充分而不必要条件 B . 必要而不充分条件 C . 充要条件 D . 既不充分也不必要条件 9.将函数()sin 26f x x π⎛⎫=-⎪⎝⎭的图像向左平移3π个单位后,得到函数()g x 的图像,则函数()g x 图像的一条对称轴方程可以是( ) A . 4x π=-B . 2x π=C . 6x π=-D . 3x π=10.已知,,,则( )A .B .C .D . 11.函数 的零点个数为( ) A.0 B.1 C.2 D.312.设函数 ,其中 ,若存在唯一负整数 ,使得 ,则实数 的取值范围( )A .B .C .D .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分).13.若实数y x ,满足不等式组,则y x +的最小值等于____________.14.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第4节的容积为_____升.15.如图,在ABC ∆中,2AB =,3AC =,D 是边BC 的中点,则AD BC ⋅=__________。

四川省绵阳市2020届高三第一次诊断性考试数学文试题含Word版含解析

四川省绵阳市2020届高三第一次诊断性考试数学文试题含Word版含解析

四川省绵阳市2018届高三第一次诊断性考试数学试题(文史类)1. 设集合,,则()A. B. C. D.【答案】D【解析】因为,,所以,故选D.2. 若,且,则下列不等式成立的是()A. B. C. D.【答案】C【解析】假设则,所以,这与已知矛盾.故假设错误,应有,所以选C.3. .已知向量,,若,则的值是()A. B. 0 C. 1 D. 2【答案】A【解析】因为,所以,解得,故选A.4. 若,则()A. B. 3 C. D.【答案】D【解析】因为,解得,所以,故选D.5. 某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A. 13B. 14C. 15D. 16【答案】C【解析】设该职工的月实际用水为x立方米,所缴水费为y元,由题意得,即。

根据题意得该职工这个月的实际用水量超过10立方米,所以,解得。

选C。

6. 已知命题,使得;命题,若,则.下列命题为真命题的是()A. B. C. D.【答案】B【解析】因为恒成立,所以命题为假命题,由得或,即或,所以是假命题,故是真命题,选B.7. 函数满足,且当时,.若函数的图象与函数(,且)的图象有且仅有4个交点,则的取值集合为()A. B. C. D.【答案】C【解析】因为函数满足,所以函数的周期为又在一个周期内,函数解析式为,所以可作出函数图象,在同一坐标系内作函数的图象,要使两个函数图象有且仅有四个交点,只需,所以,故选C.8. 已知函数图象的最高点与相邻最低点的距离是,若将的图象向右平移个单位得到的图象,则函数图象的一条对称轴方程是()A. B. C. D.【答案】B【解析】因为,所以,即,所以,因此,向右平移后得,,所以代入选项检验,当时,取最大值,所以是一条对称轴,故选B.9. 在中,“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】当时,,所以,成立;当时,如取时,成立,此时,所以不成立;综上知“”是“”的”的充分不必要条件,选A.10. 已知,给出以下结论:①;②;③.则其中正确的结论个数是()A. 3个B. 2个C. 1个D. 0个【答案】B【解析】对①,由指数函数的性质知,再由幂函数性质知,所以;对②取,显然,故不正确;对③根据对数函数的性质和图象知,故正确. 故选B.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.11. 已知是函数的零点,是函数的零点,且满足,则实数的最小值是()A. B. C. D.【答案】A点睛:解题的关键是得到后,得到,然后将问题转化成方程在上有解的问题处理.在解题的过程中分离参数的方法,转化为求函数在闭区间的最值问题处理,求最值时可用导数或基本不等式处理,具体求解中要注意合理的变形.12. 已知,且满足,如果存在两条互相垂直的直线与函数的图象都相切,则的取值范围是()A. B. C. D.【答案】B【解析】因为,故可设,∵∴ ,根据题意.存在,使得,只需,即,∴ ,∴.∴∴.故选B.点睛:本题主要考查了三角函数和导数的有关知识,难度较大,属于难题.求解时要做到灵活转化,一是根据条件设出,进而得到,并确定导数的值域;二是将存在两条互相垂直的切线转化为存在存在,使得,故得到只需,求得后再转化为三角函数的最值问题处理.13. 已知变量满足约束条件,则的最小值是__________.【答案】3【解析】解:由变量x,y满足约束条件表示的平面区域,可知当直线过点(1,1)时,目标函数最小,且为514. 已知偶函数在上单调递减,且,若,则的取值范围是__________.【答案】【解析】根据函数的单调性及奇偶性可知,当或时,,故或时,,解得,故填.15. 在中,,,,且是边的两个三等分点,则__________.【答案】【解析】如图,,.∴。

2018年四川省绵阳市高考数学一诊试卷(文科)附答案解析

2018年四川省绵阳市高考数学一诊试卷(文科)附答案解析

2018年四川省绵阳市高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|(x﹣4)(x+1)<0},B={2,3,4},则A∩B=()A.(2,4) B.{2,4}C.{3}D.{2,3}2.(5分)若x>y,且x+y=2,则下列不等式成立的是()A.x2<y2B.C.x2>1 D.y2<13.(5分)已知向量,,若,则x的值是()A.﹣1 B.0 C.1 D.24.(5分)若,则tan2α=()A.﹣3 B.3 C.D.5.(5分)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A.13 B.14 C.15 D.166.(5分)已知命题p:∃x0∈R,使得e x0≤0:命题q:a,b∈R,若|a﹣1|=|b ﹣2|,则a﹣b=﹣1,下列命题为真命题的是()A.p B.¬q C.p∨q D.p∧q7.(5分)函数f(x)满足f(x+2)=f(x),且当﹣1≤x≤1时,f(x)=|x|.若函数y=f(x)的图象与函数g(x)=log a x(a>0,且a≠1)的图象有且仅有4个交点,则a的取值集合为()A.(4,5) B.(4,6) C.{5}D.{6}8.(5分)已知函数f(x)=sinϖx+cosϖx(ϖ>0)图象的最高点与相邻最低点的距离是,若将y=f(x)的图象向右平移个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是()A.x=0 B.C.D.9.(5分)在△ABC中,“C=”是“sinA=cosB”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.(5分)已知0<a<b<1,给出以下结论:①;②;③.则其中正确的结论个数是()A.3个 B.2个 C.1个 D.0个11.(5分)已知x1是函数f(x)=x+1﹣ln(x+2)的零点,x2是函数g(x)=x2﹣2ax+4a+4的零点,且满足|x1﹣x2|≤1,则实数a的最小值是()A.2﹣2B.1﹣2C.﹣2 D.﹣112.(5分)已知a,b,c∈R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则a+c的取值范围是()A.[﹣2,2]B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知变量x,y满足约束条件,则z=2x+y的最小值是.14.(5分)已知偶函数f(x)在[0,+∞)上单调递增,且f(2)=1,若f(2x+1)<1,则x的取值范围是.15.(5分)在△ABC中,AB=2,AC=4,,且M,N是边BC的两个三等分点,则=.16.(5分)已知数列{a n}的首项a1=m,且a n+1+a n=2n+1,如果{a n}是单调递增数列,则实数m的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)若函数f(x)=Asin(ωx+φ)的部分图象如图所示.(1)求函数f(x)的解析式;(2)设,且,求sin2α的值.18.(12分)设公差大于0的等差数列{a n}的前n项和为S n,已知S3=15,且a1,a4,a13成等比数列,记数列的前n项和为T n.(Ⅰ)求T n;(Ⅱ)若对于任意的n∈N*,tT n<a n+11恒成立,求实数t的取值范围.19.(12分)在△ABC中,,D是边BC上一点,且,BD=2.(1)求∠ADC的大小;(2)若,求△ABC的面积.20.(12分)已知函数f(x)=x3+x2﹣x+a(a∈R).(1)求f(x)在区间[﹣1,2]上的最值;(2)若过点P(1,4)可作曲线y=f(x)的3条切线,求实数a的取值范围.21.(12分)函数f(x)=﹣lnx+2+(a﹣1)x﹣2(a∈R).(1)求f(x)的单调区间;(2)若a>0,求证:f(x)≥﹣.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程是(α为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)设,,若l1,l2与曲线C分别交于异于原点的A,B 两点,求△AOB的面积..[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|+|2x+3|.(1)解不等式f(x)≥6;(2)记f(x)的最小值是m,正实数a,b满足2ab+a+2b=m,求a+2b的最小值.2018年四川省绵阳市高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x∈Z|(x﹣4)(x+1)<0},B={2,3,4},则A∩B=()A.(2,4) B.{2,4}C.{3}D.{2,3}【解答】解:集合A={x∈Z|(x﹣4)(x+1)<0}={x∈Z|﹣1<x<4}={0,1,2,3},B={2,3,4},则A∩B={2,3},故选:D2.(5分)若x>y,且x+y=2,则下列不等式成立的是()A.x2<y2B.C.x2>1 D.y2<1【解答】解:∵x>y,且x+y=2,∴x>2﹣x,∴x>1,故x2>1正确,故选:C3.(5分)已知向量,,若,则x的值是()A.﹣1 B.0 C.1 D.2【解答】解:根据题意,向量,,若,则有2x=(x﹣1),解可得x=﹣1,故选:A.4.(5分)若,则tan2α=()A.﹣3 B.3 C.D.【解答】解:∵=,可求tanα=﹣3,∴tan2α===.故选:D.5.(5分)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为()立方米.A.13 B.14 C.15 D.16【解答】解:设该职工这个月实际用水为x立方米,∵每位职工每月用水不超过10立方米的,按每立方米3元水费收费,∴用水不超过10立方米的缴水费不超过30元,∵该职工这个月缴水费55元,∴该职工这个月实际用水超过10立方米,超过部分的水费=(x﹣10)×5,∴由题意可列出一元一次方程式:30+(x﹣10)×5=55,解得:x=15,故选:C.6.(5分)已知命题p:∃x0∈R,使得e x0≤0:命题q:a,b∈R,若|a﹣1|=|b ﹣2|,则a﹣b=﹣1,下列命题为真命题的是()A.p B.¬q C.p∨q D.p∧q【解答】解:由指数函数的值域为(0,+∞)可得:命题p:∃x0∈R,使得e x0≤0为假命题,若|a﹣1|=|b﹣2|,则a﹣1=b﹣2或a﹣1=﹣b+2即a﹣b=﹣1,或a+b=3,故命题q为假命题,故¬q为真命题;p∨q,p∧q为假命题,故选:B7.(5分)函数f(x)满足f(x+2)=f(x),且当﹣1≤x≤1时,f(x)=|x|.若函数y=f(x)的图象与函数g(x)=log a x(a>0,且a≠1)的图象有且仅有4个交点,则a的取值集合为()A.(4,5) B.(4,6) C.{5}D.{6}【解答】解:因为f(x+2)=f(x),所以f(x)的周期为2,在x∈[﹣1,1]时,f(x)=|x|.画出函数f(x)与g(x)=log a x的图象如下图所示;若函数y=f(x)的图象与函数g(x)=log a x(a>0,且a≠1)的图象有且仅有4个交点,则函数g(x)=log a x的图象过(5,1)点,即a=5,故选:C8.(5分)已知函数f(x)=sinϖx+cosϖx(ϖ>0)图象的最高点与相邻最低点的距离是,若将y=f(x)的图象向右平移个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是()A.x=0 B.C.D.【解答】解:∵函数f(x)=sinϖx+cosϖx=2sin(ωx+)(ϖ>0)图象的最高点与相邻最低点的距离是,∴设函数f(x)的周期为T,则()2+[2﹣(﹣2)]2=()2,解得:T=2,∴T=2=,解得:ω=π,∴f(x)=2sin(πx+),∴y=g(x)=f(x﹣)=2sin[π(x﹣)+]=2sin(πx+),∵令πx+=kπ+,k∈Z,解得:x=k+,k∈Z,∴当k=0时,函数y=g(x)图象的一条对称轴方程是:x=.故选:C.9.(5分)在△ABC中,“C=”是“sinA=cosB”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:“C=”⇔“A+B=”⇔“A=﹣B”⇒sinA=cosB,反之sinA=cosB,A+B=,或A=+B,“C=”不一定成立,∴A+B=是sinA=cosB成立的充分不必要条件,故选:A.10.(5分)已知0<a<b<1,给出以下结论:①;②;③.则其中正确的结论个数是()A.3个 B.2个 C.1个 D.0个【解答】解:∵0<a<b<1,故y=为减函数,y=x a在(0,+∞)上为增函数,故,即①正确;y=b x为减函数,y=在(0,+∞)上为增函数,,即②错误;y=log a x与在(0,+∞)上均为减函数,故,.即③正确;故选:B11.(5分)已知x1是函数f(x)=x+1﹣ln(x+2)的零点,x2是函数g(x)=x2﹣2ax+4a+4的零点,且满足|x1﹣x2|≤1,则实数a的最小值是()A.2﹣2B.1﹣2C.﹣2 D.﹣1【解答】解:∵f′(x)=1﹣=,∴当﹣2<x<﹣1时,f′(x)<0,当x>﹣1时,f′(x)>0,∴当x=﹣1时,f(x)取得最小值f(﹣1)=0,∴f(x)只有唯一一个零点x=﹣1,即x1=﹣1,∵|x1﹣x2|≤1,∴﹣2≤x2≤0,∴g(x)在[﹣2,0]上有零点,(1)若△=4a2﹣4(4a+4)=0,即a=2±2,此时g(x)的零点为x=a,显然当a=2﹣2符合题意;(2)若△=4a2﹣4(4a+4)>0,即a<2﹣2或a>2+2,①若g(x)在[﹣2,0]上只有一个零点,则g(﹣2)g(0)≤0,∴a=﹣1,②若g(x)在[﹣2,0]上有两个零点,则,解得﹣1≤a<2﹣2.综上,a的最小值为﹣1.故选:D.12.(5分)已知a,b,c∈R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则a+c的取值范围是()A.[﹣2,2]B.C.D.【解答】解:∵函数f(x)=ax+bcosx+csinx,b2+c2=1,∴f′(x)=a+ccosx﹣bsinx=a﹣sin(x﹣φ),其中tanφ=,则f′(x)∈[a﹣1,a+1],若存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则存在k1,k2∈[a﹣1,a+1],使k1k2=﹣1,由(a﹣1)(a+1)=a2﹣1≥﹣1得:a=0,则a+c=c=sin(φ+θ),其中tanθ=,故a+c∈[﹣,],故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知变量x,y满足约束条件,则z=2x+y的最小值是3.【解答】解:作出约束条件对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.由,解得A(1,1),代入目标函数z=2x+y得z=2×1+1=3.即目标函数z=2x+y的最小值为3.故答案为:3.14.(5分)已知偶函数f(x)在[0,+∞)上单调递增,且f(2)=1,若f(2x+1)<1,则x的取值范围是(﹣,).【解答】解:根据题意,f(x)为偶函数,则(2x+1)=f(|2x+1|),又由f(x)在[0,+∞)上单调递增,且f(2)=1,则f(2x+1)<1⇒f(|2x+1|)<f(2)⇒|2x+1|<2,解可得﹣<x<;则x的取值范围是(﹣,);故答案为:(﹣,).15.(5分)在△ABC中,AB=2,AC=4,,且M,N是边BC的两个三等分点,则=.【解答】解:根据题意,如图△ABC中,AB=2,AC=4,,且M,N是边BC的两个三等分点,有=+=+=+(﹣)=+,=+=+=+(﹣)=+,则=(+)•(+)=2+2+•=;即=;故答案为:.16.(5分)已知数列{a n}的首项a1=m,且a n+1+a n=2n+1,如果{a n}是单调递增数列,则实数m的取值范围是(,).【解答】解:根据题意,数列{a n}中,a n+1+a n=2n+1,对其变形可得[a n+1﹣(n+1)]+(a n﹣n)=0,即a n+1﹣(n+1)=﹣(a n﹣n),又由a1=m,则a1﹣1=m﹣1,当m=1时,a n﹣n=0,则a n=n,符合题意,当m≠1时,数列{a n﹣n}是以m﹣1为首项,公比为﹣1的等比数列,则a n﹣n=(m﹣1)×(﹣1)n,即a n=(m﹣1)×(﹣1)n+n,则a n﹣1=(m﹣1)×(﹣1)n﹣1+n﹣1,当n为偶数时,a n﹣a n﹣1=2(m﹣1)+1,①当n为奇数时,a n﹣a n﹣1=﹣2(m﹣1)+1,②如果{a n}是单调递增数列,则有,解可得<m<,即m的取值范围是(,)∪(1,);故答案为:(,).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)若函数f(x)=Asin(ωx+φ)的部分图象如图所示.(1)求函数f(x)的解析式;(2)设,且,求sin2α的值.【解答】解:(1)由图得,A=2.…(1分),解得T=π,于是由T=,得ω=2.…(3分)∵,即,∴,k∈Z,即,k∈Z,又,所以,即.…(6分)(2)由已知,即,因为,所以,∴.…(8分)∴===.…(12分)18.(12分)设公差大于0的等差数列{a n}的前n项和为S n,已知S3=15,且a1,a4,a13成等比数列,记数列的前n项和为T n.(Ⅰ)求T n;(Ⅱ)若对于任意的n∈N*,tT n<a n+11恒成立,求实数t的取值范围.【解答】解:(Ⅰ)设{a n}的公差为d(d>0),由S3=15有3a1+=15,化简得a1+d=5,①…(2分)又∵a1,a4,a13成等比数列,∴a42=a1a13,即(a1+3d)2=a1(a1+12d),化简得3d=2a1,②…(4分)联立①②解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1.…(5分)∴,∴.…(7分)(Ⅱ)∵tT n<a n+11,即,∴,…(9分)又≥6,当且仅当n=3时,等号成立,∴≥162,…(11分)∴t<162.…(12分)19.(12分)在△ABC中,,D是边BC上一点,且,BD=2.(1)求∠ADC的大小;(2)若,求△ABC的面积.【解答】解:(1)△ABD中,由正弦定理,得,∴,∴.(2)由(1)知,∠BAD=∠BDA=,故AB=BD=2.在△ACD中,由余弦定理:AC2=AD2+CD2﹣2AD•CD•cos∠ADC,即,整理得CD2+6CD﹣40=0,解得CD=﹣10(舍去),CD=4,∴BC=BD+CD=4+2=6.=.∴S△ABC20.(12分)已知函数f(x)=x3+x2﹣x+a(a∈R).(1)求f(x)在区间[﹣1,2]上的最值;(2)若过点P(1,4)可作曲线y=f(x)的3条切线,求实数a的取值范围.【解答】解:(1)f'(x)=3x2+2x﹣1=(3x﹣1)(x+1),…(1分)由f'(x)>0解得或x<﹣1;由f'(x)<0解得,又x∈[﹣1,2],于是f(x)在上单调递减,在上单调递增.…(3分)∵,∴f(x)最大值是10+a,最小值是.…(5分)(2)设切点Q(x,x3+x2﹣x+a),P(1,4),则,整理得2x3﹣2x2﹣2x+5﹣a=0,…(7分)由题知此方程应有3个解.令μ(x)=2x3﹣2x2﹣2x+5﹣a,∴μ'(x)=6x2﹣4x﹣2=2(3x+1)(x﹣1),由μ'(x)>0解得x>1或,由μ'(x)<0解得,即函数μ(x)在,(1,+∞)上单调递增,在上单调递减.…(10分)要使得μ(x)=0有3个根,则,且μ(1)<0,解得,即a的取值范围为.…(12分)21.(12分)函数f(x)=﹣lnx+2+(a﹣1)x﹣2(a∈R).(1)求f(x)的单调区间;(2)若a>0,求证:f(x)≥﹣.【解答】解:(1).…(1分)①当a≤0时,f'(x)<0,则f(x)在(0,+∞)上单调递减;…(3分)②当a>0时,由f'(x)>0解得,由f'(x)<0解得.即f(x)在上单调递减;f(x)在上单调递增;综上,a≤0时,f(x)的单调递减区间是(0,+∞);a>0时,f(x)的单调递减区间是,f(x)的单调递增区间是.…(5分)(2)由(1)知f(x)在上单调递减;f(x)在上单调递增,则.…(6分)要证f(x)≥,即证≥,即lna+≥0,即证lna≥.…(8分)构造函数,则,由μ'(a)>0解得a>1,由μ'(a)<0解得0<a<1,即μ(a)在(0,1)上单调递减;μ(a)在(1,+∞)上单调递增;∴,即≥0成立.从而f(x)≥成立.…(12分)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程是(α为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)设,,若l1,l2与曲线C分别交于异于原点的A,B 两点,求△AOB的面积.【解答】解:(1)∵曲线C的参数方程是(α为参数),∴将C的参数方程化为普通方程为(x﹣3)2+(y﹣4)2=25,即x2+y2﹣6x﹣8y=0.…(2分)∴C的极坐标方程为ρ=6cosθ+8sinθ.…(4分)(2)把代入ρ=6cosθ+8sinθ,得,∴.…(6分)把代入ρ=6cosθ+8sinθ,得,∴.…(8分)∴S△===.…AOB(10分).[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|+|2x+3|.(1)解不等式f(x)≥6;(2)记f(x)的最小值是m,正实数a,b满足2ab+a+2b=m,求a+2b的最小值.【解答】解:(1)当x≤时,f(x)=﹣2﹣4x,由f(x)≥6解得x≤﹣2,综合得x≤﹣2,…(2分)当时,f(x)=4,显然f(x)≥6不成立,…(3分)当x≥时,f(x)=4x+2,由f(x)≥6,解得x≥1,综合得x≥1,…(4分)所以f(x)≥6的解集是(﹣∞,﹣2]∪[1,+∞).…(5分)(2)f(x)=|2x﹣1|+|2x+3|≥|(2x﹣1)﹣(2x+3)|=4,即f(x)的最小值m=4.…(7分)∵a•2b≤,…(8分)由2ab+a+2b=4可得4﹣(a+2b)≤,解得a+2b≥,∴a+2b的最小值为.…(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绵阳市高2015级第一次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分. DCADC BCBAB AB二、填空题:本大题共4小题,每小题5分,共20分.13.314.)21()23(∞+--∞,, 15.32016.(21,23)三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ)由图得,2=A . …………………………………………………1分43125343πππ=+=T ,解得π=T , 于是由T =πωπ=2,得2=ω.…………………………………………………3分∵ 2)32sin(2)3(=+=ϕππf ,即1)32sin(=+ϕπ, ∴2232ππϕπ+=+k ,k ∈Z ,即62ππϕ-=k ,k ∈Z , 又)22(ππϕ,-∈,所以6πϕ-=,即)62sin(2)(π-=x x f . …………………6分(Ⅱ) 由已知56)62sin(2=-πα,即53)62sin(=-πα,因为)30(πα,∈,所以)26(62πππα,-∈-,∴ 54)62(sin 1)62cos(2=--=-παπα. …………………………………8分∴]6)62sin[(2sin ππαα+-=6sin )62cos(6cos )62sin(ππαππα-+-==21542353⨯+⨯10334+=. ………………………………………………………12分 18.解:(Ⅰ)设{a n }的公差为d (d >0),由S 3=15有3a 1+d 223⨯=15,化简得a 1+d =5,① ………………………2分又∵ a 1,a 4,a 13成等比数列,∴ a 42=a 1a 13,即(a 1+3d )2=a 1(a 1+12d ),化简3d =2a 1,② ………………4分 联立①②解得a 1=3,d =2,∴ a n =3+2(n -1)=2n +1. ……………………………………………………5分∴)321121(21)32)(12(111+-+=++=+n n n n a a n n ,∴ )32(3)32131(21)]321121()7151()5131[(21+=+-=+-+++-+-=n n n n n T n . ……………………………………………………7分(Ⅱ) ∵ n n a tT <+11,即122)32(3+<+n n tn, ∴ 90)9(12)36304(3)32)(122(32++=++=++<nn n n n n n n t ,………………9分 又n n 9+≥6 ,当且仅当n =3时,等号成立,∴ 90)9(12++nn ≥162, ……………………………………………………11分∴ 162<t .……………………………………………………………………12分19.解:(Ⅰ)△ABD 中,由正弦定理BADBDB AD ∠=∠sin sin , 得21sin sin =∠⨯=∠AD B BD BAD , …………………………………………4分∴ 66326πππππ=--=∠=∠ADB BAD ,,∴ 656πππ=-=∠ADC . ……………………………………………………6分(Ⅱ)由(Ⅰ)知,∠BAD =∠BDA =6π,故AB =BD =2. 在△ACD 中,由余弦定理:ADC CD AD CD AD AC ∠⋅⋅-+=cos 2222,即)23(32212522-⋅⋅⨯-+=CD CD , ……………………………………8分 整理得CD 2+6CD -40=0,解得CD =-10(舍去),CD =4,………………10分 ∴ BC =BD +CD =4+2=6.∴ S △ABC =33236221sin 21=⨯⨯⨯=∠⨯⨯⨯B BC AB . ……………………12分 20.解:(Ⅰ))1)(13(123)(2+-=-+='x x x x x f , ……………………………1分由0)(>'x f 解得31>x 或1-<x ;由0)(<'x f 解得311<<-x ,又]21[,-∈x ,于是)(x f 在]311[,-上单调递减,在]231[,上单调递增.…………………………………………………………………3分∵ a f a f a f +-=+=+=-275)31(10)2(1)1(,,,∴ )(x f 最大值是10+a ,最小值是a +-275.………………………………5分 (Ⅱ) 设切点)41()(23,,,P a x x x x Q +-+,则14123)(232--+-+=-+='=x a x x x x x x f k PQ,整理得0522223=-+--a x x x , ……………………………………………7分 由题知此方程应有3个解. 令a x x x x -+--=5222)(23μ, ∴ )1)(13(2246)(2-+=--='x x x x x μ,由0)(>'x μ解得1>x 或31-<x ,由0)(<'x μ解得131<<-x , 即函数)(x μ在)31(--∞,,)1(∞+,上单调递增,在)131(,-上单调递减.……………………………………………………………………10分要使得0)(=x μ有3个根,则0)31(>-μ,且0)1(<μ,解得271453<<a ,即a 的取值范围为)271453(,. ………………………………………………12分21.解:(Ⅰ)xx ax x x a ax a ax x x f )1)(1(1)1()1(1)(2+-=--+=-++-='. …1分① 当a ≤0时,0)(<'x f ,则)(x f 在)0(∞+,上单调递减;………………3分② 当0>a 时,由0)(>'x f 解得ax 1>,由0)(<'x f 解得a x 10<<.即)(x f 在)10(a ,上单调递减;)(x f 在)1(∞+,a上单调递增;综上,a ≤0时,)(x f 的单调递减区间是)0(∞+,;0>a 时,)(x f 的单调递减区间是)10(a ,,)(x f 的单调递增区间是)1(∞+,a. ……………………5分 (Ⅱ) 由(Ⅰ)知)(x f 在)10(a ,上单调递减;)(x f 在)1(∞+,a上单调递增,则121ln )1()(min --==a a a f x f . …………………………………………6分要证)(x f ≥a 23-,即证121ln --a a ≥a 23-,即a ln +11-a ≥0, 即证a ln ≥a11-.………………………………………………………………8分构造函数11ln )(-+=aa a μ,则22111)(a a a a a -=-='μ,由0)(>'a μ解得1>a ,由0)(<'a μ解得10<<a ,即)(a μ在)10(,上单调递减;)(a μ在)1(∞+,上单调递增; ∴ 01111ln )1()(min =-+==μμa ,即11ln -+aa ≥0成立. 从而)(x f ≥a23-成立.………………………………………………………12分22.解:(Ⅰ)将C 的参数方程化为普通方程为(x -3)2+(y -4)2=25,即x 2+y 2-6x -8y =0. ……………………………………………………………2分 ∴ C 的极坐标方程为θθρsin 8cos 6+=. …………………………………4分(Ⅱ)把6πθ=代入θθρsin 8cos 6+=,得3341+=ρ,∴ )6334(π,+A . ……………………………………………………………6分把3πθ=代入θθρsin 8cos 6+=,得3432+=ρ,∴ )3343(π,+B . ……………………………………………………………8分∴ S △AO B AOB ∠=sin 2121ρρ )63sin()343)(334(21ππ-++= 432512+=. ……………………………………………………10分23.解:(Ⅰ)当x ≤23-时,f (x )=-2-4x ,由f (x )≥6解得x ≤-2,综合得x ≤-2,………………………………………2分当2123<<-x 时,f (x )=4,显然f (x )≥6不成立,……………………………3分当x ≥21时,f (x )=4x +2,由f (x )≥6解得x ≥1,综合得x ≥1,……………4分所以f (x )≥6的解集是)1[]2(∞+--∞,,.…………………………………5分 (Ⅱ))(x f =|2x -1|+|2x +3|≥4)32()12(=+--x x ,即)(x f 的最小值m =4. ………………………………………………………7分∵ b a 2⋅≤2)22(b a +, …………………………………………………………8分 由224ab a b ++=可得)2(4b a +-≤2)22(b a +,解得b a 2+≥252-,∴ b a 2+的最小值为252-.………………………………………………10分。

相关文档
最新文档