大林算法课程设计报告
达林算法实验报告
![达林算法实验报告](https://img.taocdn.com/s3/m/6426b0526d85ec3a87c24028915f804d2b168727.png)
一、实验目的1. 理解达林算法的基本原理和设计过程。
2. 掌握如何利用达林算法解决具有纯滞后特性的控制系统问题。
3. 分析达林算法在不同纯滞后时间下的控制效果,并验证理论分析的正确性。
二、实验原理在工业生产中,许多过程对象含有纯滞后特性,这会对自动控制系统的稳定性、动态性能和适应性产生不利影响。
当纯滞后时间与对象的惯性时间常数之比超过0.5时,常规的PID控制往往难以获得良好的控制性能。
达林算法(大林算法)是一种针对具有纯滞后特性的控制系统提出的特殊控制方法,可以有效解决这一问题。
达林算法的基本思想是:在控制器的设计中,采用一个相当于连续一阶惯性环节的传递函数来代替最少拍多项式,如果对象有纯滞后,则传递函数应包含有同样的纯滞后环节。
通过调整达林算法中的参数,可以实现对具有纯滞后特性的控制系统的有效控制。
三、实验仪器1. MATLAB 6.5软件一套2. 个人PC机一台四、实验步骤1. 建模与仿真(1)根据实验要求,构建具有纯滞后特性的被控对象模型。
(2)在MATLAB中编写代码,实现达林算法的控制器设计。
(3)设置不同的纯滞后时间,进行仿真实验。
2. 参数调整与优化(1)根据仿真结果,分析达林算法在不同纯滞后时间下的控制效果。
(2)调整达林算法中的参数,优化控制效果。
(3)记录参数调整过程及结果。
3. 结果分析与讨论(1)对比分析不同纯滞后时间下,达林算法的控制效果。
(2)分析参数调整对控制效果的影响。
(3)总结达林算法在解决具有纯滞后特性的控制系统问题中的应用。
五、实验结果与分析1. 仿真结果通过仿真实验,得到了不同纯滞后时间下,达林算法的控制效果。
结果表明,随着纯滞后时间的增加,系统的稳定性逐渐降低,动态性能变差,超调和持续振荡现象加剧。
2. 参数调整在实验过程中,对达林算法中的参数进行了调整。
通过调整参数,可以改善控制效果,降低超调,缩短调节时间,提高系统的稳定性。
3. 结果讨论实验结果表明,达林算法在解决具有纯滞后特性的控制系统问题中具有较好的应用效果。
算法课设实验报告(3篇)
![算法课设实验报告(3篇)](https://img.taocdn.com/s3/m/8df65772cd7931b765ce0508763231126edb77a3.png)
第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
大林算法实验报告
![大林算法实验报告](https://img.taocdn.com/s3/m/45099e0103d8ce2f00662381.png)
实验4 大林算法工业设计和调试实验目的:1.认识和理解大林控制算法控制大时延系统的机理和效果。
2掌握实际控制系统的大林控制算法的设计、实现和调试方法及技术。
实验内容:1.测试系统开环阶跃响应求得被控对象的近似传递函数。
2.对被控对象近似传递函数进行等效离散化。
3.基于被控对象等效离散化模型设计大林控制算法,编写出实现程序,将其嵌入到实验软件中。
4.将设计的大林算法投入运行,并经过调试获得预期控制性能。
5.记下大林控制算法的控制效果。
实验原理及说明:大林算法是针对工业生产过程中含有纯滞后的被控对象所研究的控制算法,即在调节时间允许的情况下,要求系统没有超调量或只有在允许范围中的很小的超调量。
大林算法的设计目标是设计一个数字调节器,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节的串联,并期望整个闭环系统的纯滞后时间和被控对象的滞后时间相同,并且,纯滞后时间与采样周期是整数倍关系。
实验中采样周期为1秒,k=0.15,t=22秒,t1=55秒。
.大林算法中涉及的被调对象的参数:对象是一阶惯性滞后环节,<1>对象的放大倍数Kp:Kp=△PV/△OP 阶跃比,这是开环的静态参数,与PID的放大倍数K不是一回事;<2>对象的时间常数T:干扰阶跃引起PV变化,从变化起到稳定值约2/3处的时间值,不包括滞后时间;<3>滞后时间T2:干扰阶跃开始到PV开始变化这一段滞后时间,包括:纯滞后时间及容量过渡滞后时间;2. 整个系统的闭环传递函数相当于是一阶惯性环节, 这是大林算法的期望环节:<1> 输入R(t)是回路的设定值SP;输出Y(t)是回路的PV值;<2> 此一阶惯性环节的放大倍数为1,即稳定时PV=SP; 最终偏差接近零;<3>此期望环节的纯滞后时间应等于被调节对象的纯滞后时间;<4>此期望环节的闭环时间常数:这是待定的期望参数,为不引起回路的小幅振荡,这个时间值应选用大于等于被调对象的时间常数,3. 这些参数如果不精确,将引起大林算法的不稳定性,导致调节质量变坏;。
算法设计 课程设计报告
![算法设计 课程设计报告](https://img.taocdn.com/s3/m/2fe6847bda38376bae1fae38.png)
《算法设计与分析》1什么是算法?算法的特征有哪些?根据我自己的理解,算法是解决问题的方法步骤。
比如在解决高数问题的时候,可以分步骤进行解答,在编程的过程算法可以得到最好的体现。
算法是一系列解决问题的清晰指令,因为我最近在考研复习,对于会的题目还有进行多次的巩固,但是一步步的写很浪费时间,所以我只是写出关键指令,比如化简通分,洛必达法则,上下同阶。
这样可以提高效率。
算法的指令也是同样的。
能够对一定规范的输入,在有限时间内获得所要求的输出。
一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
2若给定某一算法,一般如何对其分析与评价?一个算法的复杂性的高低体现在运行该算法所需要的计算机资源的多少上面,所需的资源越多,我们就说该算法的复杂性越高;反之,所需的资源越低,则该算法的复杂性越低。
计算机的资源,最重要的是时间和空间(存储器)资源。
算法的复杂性有时间复杂性和空间复杂性之分。
1.时间复杂性:例1:设一程序段如下(为讨论方便,每行前加一行号)(1) for i:=1 to n do(2) for j:=1 to n do(3) x:=x+1......试问在程序运行中各步执行的次数各为多少?解答:行号次数(频度)(1) n+1(2) n*(n+1)(3) n*n可见,这段程序总的执行次数是:f(n)=2n2+2n+1。
在这里,n可以表示问题的规模,当n趋向无穷大时,如果f(n)的值很小,则算法优。
作为初学者,我们可以用f(n)的数量级O来粗略地判断算法的时间复杂性,如上例中的时间复杂性可粗略地表示为T(n)=O(n2)。
2.空间复杂性:例2:将一一维数组的数据(n个)逆序存放到原数组中,下面是实现该问题的两种算法:算法1:for i:=1 to n dob[i]:=a[n-i+1];for i:=1 to n doa[i]:=b[i];算法2:for i:=1 to n div 2 dobegint:=a[i];a[i]:=a[n-i-1];a[n-i-1]:=tend;算法1的时间复杂度为2n,空间复杂度为2n算法2的时间复杂度为3*n/2,空间复杂度为n+1显然算法2比算法1优,这两种算法的空间复杂度可粗略地表示为S(n)=O(n)3、从下面算法策略中自选一组,结合某具体问题的求解来介绍算法思想,并加以总结、比较:递归与分治、动态规划与贪心法、回溯法与分支限界法动态规划算法类似于分治法,基本思想也是将待求解问题分解成若干个子问题。
大林算法实验报告
![大林算法实验报告](https://img.taocdn.com/s3/m/14c2fa49854769eae009581b6bd97f192279bf06.png)
大林算法实验报告一、引言大林算法,即算数编码(Arithmetic Coding),是一种用于数据压缩的算法,它能够将较长的数据序列转化为一个较小的编码,从而实现数据的压缩和传输。
本实验旨在通过实现大林算法,深入理解其原理和应用。
二、实验方法1.实验环境:2.实验步骤:(1)读取待编码的数据序列;(2)统计每个符号(字母)在序列中出现的频率,并计算频率区间;(3)将频率区间转化为编码区间;(4)根据编码区间确定每个符号的编码;(5)将编码后的数据序列写入文件。
三、实验结果与分析1.数据压缩效果:在本次实验中,我们使用一个英文文本文件作为待编码的数据序列进行测试。
原始的数据序列大小为500KB,经过大林编码压缩后的文件大小为200KB。
可以看出,通过大林算法进行数据压缩,能够有效地减小文件的大小,实现数据的高效传输。
2.编码效率:大林算法通过统计符号在序列中出现的频率,并将频率区间转化为编码区间,从而实现对序列的编码。
由于频率区间的计算过程中需要对整个序列进行遍历,因此在处理较大的数据序列时,算法的时间复杂度较高。
在本次实验中,我们测试了不同大小的数据序列,发现大林算法的编码效率随数据序列大小的增加而下降。
3.解码效果:解码是大林算法的反向操作,将编码后的数据序列转化为原始的数据序列。
在本次实验中,我们将编码后的数据序列进行解码,并与原始的数据序列进行对比,结果显示解码效果非常好,几乎没有数据丢失。
四、实验总结通过本次实验,我们深入了解了大林算法的原理和应用。
大林算法是一种高效的数据压缩算法,能够将较长的数据序列转化为一个较小的编码,实现数据的高效传输。
然而,大林算法的时间复杂度较高,在处理较大的数据序列时,需要耗费较长的时间。
在实际应用中,需要根据具体的需求选择适合的压缩算法。
以上为大林算法实验报告。
大林算法实验报告【范本模板】
![大林算法实验报告【范本模板】](https://img.taocdn.com/s3/m/af73f5a133687e21ae45a927.png)
大林算法实验报告 一、实验目的1、掌握大林控制算法的基本概念和实现方法;2、进一步熟悉MATLAB 的使用方法;3、掌握在MA TLAB 下大林算法控制器的调试方法;4、观察振铃现象,并且尝试消除振铃现象二、实验原理1.大林算法的原理及推导大林算法是IBM 公司的大林(Dahlin)在1968年提出了一种针对工业生产过程中含有纯滞后对象的控制算法。
其目标就是使整个闭环系统的传递函数 相当于一个带有纯滞后的一阶惯性环节。
该算法具有良好的控制效果。
大林控制算法的设计目标是使整个闭环系统所期望的传递函数φ(s ) 相当于一个延迟环节和一个惯性环节相串联,即:整个闭环系统的纯滞后时间和被控对象G 0(s )的纯滞后时间τ相同。
闭环系统的时间常数为T τ ,纯滞后时间τ与采样周期T 有整数倍关系, τ=NT 。
其控制器形式的推导的思路是用近似方法得到系统的闭环脉冲传递函数,然后再由被控系统的脉冲传递函数,反推系统控制器的脉冲传递函数。
由大林控制算法的设计目标,可知整个闭环系统的脉冲传递函数应 当是零阶保持器与理想的φ(s )串联之后的Z 变换,即φ(z )如下:对于被控对象为带有纯滞后的一阶惯性环节即:其与零阶保持器相串联的的脉冲传递函数为:1()1ss eT s ττφ-=+1/1()1(1)()=()11T s ττT/T s NT T -Y z e ee z z Z z R z s T s ezττφ------⎡⎤--==⋅=⋅⎢⎥+-⎣⎦011()11s NTs Ke KeG s T s T sτ--==++11/1/1111()11T T Ts sN T T eKe eG z Z Kz s T s ezτ-------⎡⎤--=⋅=⎢⎥+-⎣⎦于是相应的控制器形式为:11111(1)(1)()(1)1(1)T T T T T T T T N e e z D z K e e z e z τττ-----------=⎡⎤----⎣⎦2.振铃现象及其消除按大林算法设计的控制器可能会出现一种振铃现象,即数字控制器的输出以二分之一的采样频率大幅度衰减振荡,会造成执行机构的磨损. 在有交互作用的多参数控制系统中,振铃现象还有可能影响到系统的稳 定性。
大林控制算法实验报告
![大林控制算法实验报告](https://img.taocdn.com/s3/m/013b6c7a59fb770bf78a6529647d27284b733785.png)
一、实验目的1. 理解大林控制算法的基本原理及其设计过程。
2. 掌握大林控制算法在计算机控制系统中的应用。
3. 通过实验验证大林控制算法在解决纯滞后系统控制问题上的有效性。
二、实验原理大林控制算法(Dahlin Control Algorithm)是一种针对具有纯滞后特性的控制对象而设计的新型控制算法。
该算法的核心思想是将期望的闭环响应设计成一阶惯性加纯延迟形式,然后通过反向设计得到满足这种闭环响应的控制器。
对于具有纯滞后特性的被控对象,其传递函数可以表示为:\[ G(s) = \frac{K}{T_s s + 1} \cdot e^{-\frac{s}{T}} \]其中,\( K \) 为系统增益,\( T_s \) 为采样周期,\( T \) 为纯滞后时间。
大林控制算法要求选择闭环传递函数 \( W(s) \) 时,采用相当于连续一阶惯性环节的 \( W(s) \) 来代替最少拍多项式。
如果对象有纯滞后,则 \( W(s) \) 应包含有同样的纯滞后环节。
带有纯滞后的控制系统闭环传递函数为:\[ W(s) = \frac{K}{T_s s + 1} \cdot e^{-\frac{s}{T}} \]根据大林控制算法,可以设计出满足期望闭环响应的数字控制器 \( D(z) \):\[ D(z) = \frac{K_1 e^{-\frac{1}{T}}}{(1 - e^{-\frac{1}{T_1}}) (1 - e^{-\frac{1}{T_2}})} \cdot \frac{1}{[1 - e^{-\frac{1}{T_1}} (1 - e^{-\frac{1}{T_2}})] (1 - e^{-\frac{1}{T} z^{-1}})} \]其中,\( K_1 \)、\( T_1 \) 和 \( T_2 \) 为大林算法的参数。
三、实验仪器1. MATLAB 6.5软件一套2. 个人PC机一台四、实验步骤1. 启动MATLAB软件,创建一个新的脚本文件。
计控实验3 大林算法
![计控实验3 大林算法](https://img.taocdn.com/s3/m/d94d72771711cc7931b7166c.png)
2. 接收模块库(Sinks) 接收模块是用来接收模 块信号的。 主要有:
Scope(示波器) Display(数字显示) XY Graph(信号关系图) To File(数据保存) To Workspace(写成矩阵) Stop Simulation(终止) Out(输出)
3. 连续系统模块库 (Continuous) 连续系统模块是构成连续 系统的环节 。 主要有: Integrator(积分) Derivative(微分) State-Space(状态方程) Transfer Fcn(传递函数) Zero-Pole(零极点) Transport Delay(延时)
1、启动MATLAB
下载软件或用光盘进行MATLAB的安装。
点击 图标 ,启动MATLAB,出现操作窗口:
操作界面分为以下几部分: (1)菜单 (2)工具栏 (3)工作空间窗口
(4)命令窗口 (5)历史命令窗口 (6)开始按钮
菜单 工具栏
工作空 间窗口
命令 窗口
历史 命令 窗口 开始按钮
2、进入Simulink 在命令窗口输入 “Simulink”,或 单击工具栏中 的 图标,打开 Simulink模块库浏 览器。 图中左边为模块 库和工具栏,右边 是子模块库
实验三:大林算法
一、实验目的:
1、对应纯滞后的被控对象,应采用大林算法。 (1)大林算法的设计准则:对于一阶或二阶滞后系 统,设计数字控制器D(z),使整个闭环系统的滞后与 被控对象的滞后相同,消除滞后环节对系统稳定性的 s Ke 影响。 G( s ) 1 T 1s 一阶滞后系统可表示为: e s Gc (s) 1 THS 闭环系统的传递函数:
式中T1为被控对象的时间常数,τ为纯滞后时间,一般取采 样周期T的整数τ =NT。TH为惯性时间常数。
大林算法控制实验报告
![大林算法控制实验报告](https://img.taocdn.com/s3/m/a6f4fd87cf2f0066f5335a8102d276a201296007.png)
一、实验目的1. 理解大林算法的基本原理和设计过程。
2. 掌握大林算法在计算机控制系统中的应用。
3. 分析大林算法对控制系统性能的影响。
二、实验仪器1. PC计算机一台2. MATLAB 6.5软件一套3. EL-AT-III型计算机控制系统实验箱一台三、实验原理大林算法是一种针对具有纯滞后特性的控制系统而设计的控制算法。
该算法通过将期望的闭环响应设计成一阶惯性加纯延迟,然后根据这种闭环响应设计控制器,从而实现对具有纯滞后特性的系统的控制。
四、实验内容1. 实验被控对象的构成:(1)惯性环节的仿真电路及传递函数。
(2)纯延时环节的构成与传递函数。
(3)被控对象的开环传递函数。
2. 大林算法的闭环传递函数:闭环传递函数为:\[ G(s) = \frac{K}{T_{s}^{N} \left( \frac{s}{T} + 1 \right)} \]其中,\( K \)为增益,\( T \)为时间常数,\( N \)为纯滞后时间。
3. 大林算法的数字控制器:数字控制器为:\[ D(z) = \frac{(1 - e^{-\frac{1}{T}})(1 - e^{-\frac{1}{T_{1}}z^{-1}})}{K \left(1 - e^{-\frac{1}{T_{1}}}z^{-1}\right) \left[1 - e^{-\frac{1}{T}}z^{-1} - (1 - e^{-\frac{1}{T}})z^{-N}\right]} \]其中,\( K \)为增益,\( T \)为时间常数,\( T_{1} \)为时间常数,\( N \)为纯滞后时间。
五、实验步骤1. 启动计算机,打开MATLAB软件。
2. 编写程序,搭建被控对象模型。
3. 根据被控对象模型,设计大林算法控制器。
4. 对大林算法控制器进行仿真,观察控制效果。
5. 分析大林算法对控制系统性能的影响。
六、实验结果与分析1. 仿真结果:(1)大林算法控制器的阶跃响应。
实验二 大林算法实验报告
![实验二 大林算法实验报告](https://img.taocdn.com/s3/m/474794fbf61fb7360b4c658a.png)
实验二 大林算法实验1. 实验目的(1)理解大林算法的基本原理。
(2)掌握大林算法的设计过程。
2. 实验仪器(1) MATLAB 6.5软件 一套(2) 个人PC 机 一台3. 实验原理在许多控制系统中,特别是过程控制系统中,由于物料能量的传递或能量物质的转换,使系统小的被控制量往往具有纯滞后特性,由自动控制理论可知,滞后特性的存在对自动控制系统是极其不利的,它使系统中控制决策的适应性降低甚至失效,造成控制系统的稳定性下降或者根本不能稳定。
在工业生产中,大多数过程对象含有较大的纯滞后特性。
被控对象的纯滞后时间τ使系统的稳定性降低,动态性能变坏,易引起超调和持续振荡。
对象的纯滞后特性给控制器的设计带来困难。
一般地,当对象的纯滞后时间τ与对象的惯性时间常数m T 之比超过0.5时,采用常规的PID 控制很难获得良好的控制性能。
因此,具有纯滞后特性的对象属于比较难以控制的一类对象,对其控制需采用特殊处理方法,即用大林算法可解决此问题。
大林算法要求在选择闭环Z 传递函数W(Z)时,采用相当于连续一阶惯性环节的W(Z)来代替最少拍多项式,如果对象有纯滞后,则W(Z)应包含有同样的纯滞后环节(闭环控制系统的纯滞后时间等于被控对象的纯滞后时间)。
带有纯滞后的控制系统如图1所示: ZOH D(Z)r (t)e (t)u (k)y (t)G 0(S)G(Z)e (k)E(Z)U(Z)Y(Z)图1 带有纯滞后的控制系统被控对象传递函数为:s e S S G 76.0014.01)(-+= 目标传递函数为:s T s e s W s5.0,115.0)(76.0=+=- 大林算法所设计的控制器为:)(1)(1)()(z G z W z W z D -=, 其中)]([)()],([)(s W Z z W s G Z z G ==对于大林算法控制器D(Z),计算机输入为E (Z ),输出为U (Z ),有:33221133221101)()()(------++++++==Z P Z P ZP Z K Z K Z K K Z E Z U Z D将D (Z )式写成差分方程,则有:3322113221103---------+++=K K K K K K K K U P U P U P E K E K E K E K U 。
课程设计 数字PID算法的设计 大林控制算法
![课程设计 数字PID算法的设计 大林控制算法](https://img.taocdn.com/s3/m/f11a164aad02de80d4d8406e.png)
计算机控制技术课程设计课程名称计算机控制技术学院自动化学院专业班级学号姓名一、题目和要求已知计算机控制系统结构图如图1所示,其中r(t)是系统的参考输入,e(t)是系统偏差,u(t)是系统的控制量,G0(s)是系统被控对象的传递函数,D(z)是待设计控制器的脉冲传递函数。
图1 计算机控制系统结构图现假设系统采样周期T=0.5s,系统被控对象的传递函数为:2()(2)sG s es s -=+请针对上述被控对象,完成如下任务:(一)、试分别采用不同的数字控制算法设计数字控制器D(z),使得输出跟踪不同的参考输入;在设计任务中要求采用如下四种数字控制算法:数字PID 控制算法、最少拍有纹波控制算法、最少拍无纹波控制算法和大林控制算法;设计每种算法时需要跟踪两种典型的参考输入,即:单位阶跃输入和单位速度输入;(二)、针对每一种情况,编写计算机程序或者使用仿真软件作出相应的e(k),u(k)和y(k)的曲线,通过改变不同算法的控制参数观察控制效果的变化分析相应算法控制算法对系统控制性能的影响;(三)、比较分析各种不同控制算法间的控制效果差异;(四)、撰写心得和体会。
二、数字PID控制算法1、单位阶跃输入(1)、搭建sumilink(2)、双击PID控制器(3)、点击TUNE,让系统自动调整参数(4)、调整得到满意参数(5)、编程模拟s=tf('s');Gs=200/(s*(s+40));Ts=0.01;Gz=c2d(Gs,Ts,'zoh'); [num,den]=tfdata(Gz,'v'); step=1000;Kp=0.4411;Ki=0.0019;Kd=0.4694;e=zeros(1,step);y=zeros(1,step);time=zeros(1,step);r=zeros(1,step);delta_u=zeros(1,step);u=zeros(1,step);for k=1:step r(k)=1;time(k)=k*Ts;endfor k=3:stepy(k)=y(k-1);e(k)=r(k)-y(k);delta_u(k)=Kp*(e(k)-e(k-1))+Ki*e (k)+Kd*(e(k)-2*e(k-1)+e(k-2)); u(k)=delta_u(k)+u(k-1);y(k)=-den(2)*y(k-1)-den(3)*y(k-2)+num(2)*u(k-1)+num(3)*u(k-2); endplot(time,r,time,y)仿真图如下示:y(k)u(k)e(k) 2、单位速度输入方法同单位阶跃输入仿真图:y(k)u(k)e(k) 编程模拟:s=tf('s');Gs=200/(s*(s+40));Ts=0.01;Gz=c2d(Gs,Ts,'zoh'); [num,den]=tfdata(Gz,'v'); step=1000;Kp=0.9539;Ki=0.0016;Kd=0.3689;e=zeros(1,step);y=zeros(1,step);time=zeros(1,step);r=zeros(1,step);delta_u=zeros(1,step);u=zeros(1,step);for k=1:step r(k)=k;time(k)=k*Ts;endfor k=3:stepy(k)=y(k-1);e(k)=r(k)-y(k);delta_u(k)=Kp*(e(k)-e(k-1))+Ki*e (k)+Kd*(e(k)-2*e(k-1)+e(k-2)); u(k)=delta_u(k)+u(k-1);y(k)=-den(2)*y(k-1)-den(3)*y(k-2)+num(2)*u(k-1)+num(3)*u(k-2); endplot(time,r,time,y)三、最少拍有纹波控制算法广义传递函数:12()(2)Tsse G s e s s s ---=+ Z 变换:112110.184(10.717)()(1)(10.368)z z G z z z z -----+=--1、单位阶跃输入d=2 u=0 v=1 j=1 q=1 m=u+d=2 n=v-j+q=11121112()(1)(1)e z z f z f z ϕ---=-++123111211121(1)()f z f f z f z---=+-+--2121()z z f zϕ--=对比可得:f 11=1 f 12=1 f 21=1 故控制器的脉冲传递函数D (z )为:111211()0.184(10.717)(1)(1)(10.368)z D z z z z z z ------=+++--32320.3680.1840.3160.3160.132z z z z z -=+++仿真图如下图示。
大林算法控制系统设计
![大林算法控制系统设计](https://img.taocdn.com/s3/m/d5b62abc524de518964b7dcf.png)
大林算法控制系统设计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT扬州大学能源与动力工程学院课程设计报告题目:大林算法控制系统设计课程:计算机控制技术课程设计专业:电气工程及其自动化班级:姓名:学号:第一部分任务书《计算机控制技术》课程设计任务书一、课题名称大林算法控制系统设计二、课程设计目的课程设计是课程教学中的一项重要内容,是达到教学目标的重要环节,是综合性较强的实践教学环节,它对帮助学生全面牢固地掌握课堂教学内容、培养学生的实践和实际动手能力、提高学生全面素质具有很重要的意义。
《计算机控制技术》是一门理论性、实用性和实践性都很强的课程,课程设计环节应占有更加重要的地位。
计算机控制技术的课程设计是一个综合运用知识的过程,它需要控制理论、程序设计、硬件电路设计等方面的知识融合。
通过课程设计,加深对学生控制算法设计的认识,学会控制算法的实际应用,使学生从整体上了解计算机控制系统的实际组成,掌握计算机控制系统的整体设计方法和设计步骤,编程调试,为从事计算机控制系统的理论设计和系统的调试工作打下基础。
三、课程设计内容设计以89C51单片机和ADC、DAC等电路、由运放电路实现的被控对象构成的计算机单闭环反馈控制系统。
1. 硬件电路设计:89C51最小系统加上模入电路(用ADC0809等)和模出电路(用TLC7528和运放等);由运放实现的被控对象。
2. 控制算法:大林控制算法。
3. 软件设计:主程序、中断程序、A/D转换程序、滤波程序、大林算法控制程序、D/A输出程序等。
四、课程设计要求1. 模入电路能接受双极性电压输入(-5V~+5V ),模出电路能输出双极性电压(-5V~+5V )。
2. 模入电路用两个通道分别采集被控对象的输出和给定信号。
3. 每个同学选择不同的被控对象:4. 对象的纯延迟环节s e τ-用软件通过数组单元移位实现。
5. 定时中断间隔选取50ms ,采样周期T 要求既是采样中断间隔的整数倍,又满足(0.21)T τ=-。
大林算法控制系统设计完整版
![大林算法控制系统设计完整版](https://img.taocdn.com/s3/m/88c12993ccbff121dc36831a.png)
大林算法控制系统设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】扬州大学能源与动力工程学院课程设计报告题目:大林算法控制系统设计课程:计算机控制技术课程设计专业:电气工程及其自动化班级:姓名:学号:第一部分任务书《计算机控制技术》课程设计任务书一、课题名称大林算法控制系统设计二、课程设计目的课程设计是课程教学中的一项重要内容,是达到教学目标的重要环节,是综合性较强的实践教学环节,它对帮助学生全面牢固地掌握课堂教学内容、培养学生的实践和实际动手能力、提高学生全面素质具有很重要的意义。
《计算机控制技术》是一门理论性、实用性和实践性都很强的课程,课程设计环节应占有更加重要的地位。
计算机控制技术的课程设计是一个综合运用知识的过程,它需要控制理论、程序设计、硬件电路设计等方面的知识融合。
通过课程设计,加深对学生控制算法设计的认识,学会控制算法的实际应用,使学生从整体上了解计算机控制系统的实际组成,掌握计算机控制系统的整体设计方法和设计步骤,编程调试,为从事计算机控制系统的理论设计和系统的调试工作打下基础。
三、课程设计内容设计以89C51单片机和ADC、DAC等电路、由运放电路实现的被控对象构成的计算机单闭环反馈控制系统。
1. 硬件电路设计:89C51最小系统加上模入电路(用ADC0809等)和模出电路(用TLC7528和运放等);由运放实现的被控对象。
2. 控制算法:大林控制算法。
3. 软件设计:主程序、中断程序、A/D转换程序、滤波程序、大林算法控制程序、D/A输出程序等。
四、课程设计要求1. 模入电路能接受双极性电压输入(-5V~+5V),模出电路能输出双极性电压(-5V~+5V)。
2. 模入电路用两个通道分别采集被控对象的输出和给定信号。
3. 每个同学选择不同的被控对象:4. 对象的纯延迟环节seτ-用软件通过数组单元移位实现。
5. 定时中断间隔选取50ms,采样周期T要求既是采样中断间隔的整数倍,又满足(0.21)Tτ=-。
基于大林算法的电加热炉温度控制系统设计_毕业设计论文
![基于大林算法的电加热炉温度控制系统设计_毕业设计论文](https://img.taocdn.com/s3/m/cb822508a2161479171128d3.png)
合肥学院自动化专业计算机控制技术课程设计报告Hefei University基于大林算法的电加热炉温度控制系统设计课程名称计算机控制技术课程设计班级10级自动化1班日期2013/06/202010级自动化专业《计算机控制技术》课程设计任务书任务分工:针对本次设计课题,我们明确了各自的分工,顾胜池主要负责软件程序的编写、连接和调试,黄安福主要负责各个模块硬件的仿真和调试和部分模块程序的编写,柴文峰负责报告的整理。
摘要电加热炉在化工、冶金等行业应用广泛,因此温度控制在工业生产和科学研究中具有重要意义。
其控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。
采用单片机进行炉温控制,具有电路设计简单、精度高、控制效果好等优点,对提高生产效率、促进科技进步等方面具有重要的现实意义。
常规的温度控制方法以设定温度为临界点,超出设定允许范围即进行温度调控:低于设定值就加热,反之就停止或降温。
这种方法实现简单、成本低,但控制效果不理想,控制温度精度不高、容易引起震荡,达到稳定点的时间也长,因此,只能用在精度要求不高的场合。
电加热炉是典型的工业过程控制对象,在我国应用广泛。
电加热炉的温度控制具有升温单向性,大惯性,大滞后,时变性等特点。
其升温、保温是依靠电阻丝加热,降温则是依靠环境自然冷却。
当其温度一旦超调就无法用控制手段使其降温,因而很难用数学方法建立精确的模型和确定参数,应用传统的控制理论和方法难以达到理想的控制效果。
本设计采用大林算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节相串联来实现温度的较为精确的控制。
关键词:单片机;A/D、D/A;达林算法;传感器;炉温控制目录一、绪论 (1)1.1系统设计背景 (1)1.2技术综述 (1)二、系统总体设计 (1)2、1系统概述 (1)2、2系统的结构框图 (1)三、硬件设计 (3)3、1微处理器80C51 (3)3、2温度传感器 (3)3、3驱动电路 (5)3、4键盘模块 (5)3、5LED显示模块 (6)四、软件设计 (6)4、1系统软件设计 (6)4、2大林算法的系统设计 (7)4、3程序控制流程图 (8)五、调试运行 (10)六、课程设计总结 (11)参考文献 (13)附录一系统原理图 (14)附录二程序 (14)一、绪论1.1系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金﹑机械﹑食品﹑化工等各类工业生产过程中广泛使用的各种加热炉﹑热处理炉﹑反应炉,对工件的处理均需要对温度进行控制。
大林算法实验报告心得体会
![大林算法实验报告心得体会](https://img.taocdn.com/s3/m/575fa77b2f3f5727a5e9856a561252d380eb20f0.png)
大林算法实验报告心得体会
大林算法作为一种高效的最小生成树算法,在实际应用中具有广泛的应用。
在本次实验中,我通过对大林算法的学习和实际操作,对其有了更深入的了解和体会。
首先,在进行实验时,我深刻体会到了算法时间复杂度对程序执行效率的影响。
相较于普通的Prim算法和Kruskal算法,大林算法在时间复杂度方面有着明显的优势,因此在处理大规模数据时表现更为突出,能够有效地提高算法的执行效率。
其次,我在实验中发现,对于一个图来讲,其最小生成树可能并不唯一。
通过大林算法得到的最小生成树可能与其他算法得到的最小生成树不完全一致,但是它们的最小权值和都是相同的。
这启示我们,在实际应用中,要根据实际需求选择合适的算法,不一定非得选择最小生成树唯一的算法。
最后,我认为在进行算法实验时要注重对算法思想的理解和运用。
仅仅是对代码的简单模仿,往往难以理解算法的本质。
在实验过程中,要多思考,多调试,在对算法原理有更深入了解的情况下才能更好地掌握算法。
总的来说,本次大林算法的实验使我对该算法有了更加深刻的理解,并且让我认识到在实际应用中选择算法要考虑到算法的效率和实际需求,希望今后能够更好地运用所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微型计算机控制技术课程设计报告
班级:自动化901
A
B
C
一、课题名称
大林算法控制系统设计
二、课程设计目的
课程设计是课程教学中的一项重要内容,是达到教学目标的重要环节,是综合性较强的实践教学环节,它对帮助学生全面牢固地掌握课堂教学内容、培养学生的实践和实际动手能力、提高学生全面素质具有很重要的意义。
《计算机控制技术》是一门理论性、实用性和实践性都很强的课程,课程设计环节应占有更加重要的地位。
计算机控制技术的课程设计是一个综合运用知识的过程,它需要控制理论、程序设计、硬件电路设计等方面的知识融合。
通过课程设计,加深对学生控制算法设计的认识,学会控制算法的实际应用,使学生从整体上了解计算机控制系统的实际组成,掌握计算机控制系统的整体设计方法和设计步骤,编程调试,为从事计算机控制系统的理论设计和系统的调试工作打下基础。
三、课程设计内容
已知被控对象的传递函数为:
采样周期为T=0.5s ,用大林算法设计数字控制器D(z),并分析是否会产生振铃现象。
四、课程设计要求 1、用大林算法设计数字控制器D(z) ;
2、在 Simulink 仿真环境画出仿真框图及得出仿真结果,画出数字控制;
3、绘制并分析数字控制器的振铃现象;
4、对振铃现象进行消除;
5、得出仿真结果并进行仿真分析;
6、程序清单及简要说明;
7、成设计说明书(列出参考文献,以及仿真结果及分析)。
五、大林算法控制系统方案设计
在控制系统应用中,纯滞后环节往往是影响系统动态特性的不利因素。
工业过程中如钢铁,热工和化工过程中往往会有纯滞后环节。
对这类系统,控制器如果设计不当,常常会引起系统的超调和持续振荡。
由于纯延迟的存在,使被控量对干扰、控制信号不能即时的反映。
即使调节机构接受控制信号后立即动作,也要经过纯延时间t 后才到达被控量,使得系统产生较大的超调量和较长的调节时间。
当t >=0.5T (T 为对象的时间常数)时,实践证明用PID 控制很难获得良好的控制品质。
对这类具有纯滞后环节系统的控制要求,快速性往往是次要的,通常要求系统稳定,要求系统的超调量要小,而调整时间允许在较多的采样周期内结束。
这样的一种大时间滞后系统采用PID 控制或采用最少拍控制,控制效果往往不好。
本节介绍能满足上述要求的一种直接数字控制器设计方法
——达林(Dahlin)算法
()1s e G s s -=+
达林算法的设计思想:设计一个合适的数字控制器,使整个闭环系统相当于一个延迟环节和一个一阶惯性环节相串联。
并期望整个闭环系统的纯滞后时间与被控对象的纯滞后时间相同。
即系统的闭环传递函数可设为
式中: Tt 为闭环系统的时间常数,实际使用时需要整定;t 为纯滞后时间,与被控对象的相同,并且与采样周期T 有整数倍的关系t =NT (N=1,2,…)。
若t 与采样周期T 不成整数倍的关系,可采用修正的Z 变换法进行处理 一阶被控对象的达林算法
已知被控对象为1
)(1+=-s T Ke s G s
p τ则数字控制器算式为]
)1(1)[1()1)(1()()1(/1//1//11+------------=N T T T T T T T T T T z e z e e K z e e z D τττ 采用达林算法设计具有纯延迟过程的计算机控制系统时,会出现所谓的振铃现象:闭环系统的输出以指数形式较快地趋向于稳态值, 而数字控制器的输出以二分之一的采样频率大
幅度的衰减振荡。
振铃现象会增加执行机构大幅度的摆动,加剧了磨损. 但是对系的输出没有影响。
振铃现象还有可影响到系统的稳定性。
振铃现象与被控对象的特性、闭环时间常数、采样周期、纯滞后时间等因素有关。
下面分析之。
系统的输出Y (z )为:
上式表示了数字控制器的输出与系统输入信号之间的关系。
是分析振铃现象的基础。
对于单位阶跃输入函数R (z )=1/(1-z -1),含有z=1的极点;如果Fu (z )在z 平面的负实轴上有极点,即被控对象Gp (z )含有负实轴上的零点,且与z=-1点相近,则数字控制器的输出序列u (k )中将含有这两种幅值相近的瞬态项,而且这两个瞬态项的符号在不同时刻是不同的。
当两瞬态项符号相同时,数字控制器的控制作用加强;符号相反时,控制作用减弱,从而造成数字控制器的输出序列u (k )的幅值以2T 为周期大幅度波动,这便是振铃现象。
对于带纯滞后环节的一阶惯性环节,极点z 永远大于零,故可以得出如下结论:在纯滞后一阶惯性环节促组成的系统中,数字控制器输出对输入的脉冲传递函数不存在负实轴上面的极点,这种系统不存在振铃现象。
s e s
T s ττ-+=Φ11)()
()()()()(z z G z z R z U u Φ=Φ=∴)
()()(z R z z U u
Φ=故:
振铃消除方法
【方法一】找出数字控制器D(z)中引起振铃现象的因子(即z=-1附近的极点),然后人为地令该因子中的z=1,就可以有效地抑制振铃幅度。
附:
实验截图
【方法二】通过适当的选择采样周期T 和期望的系统时间常数T τ,可以把振铃现象抑制在最低的限度内。
在有的情况下,期望的闭环时间常数T τ作为系统的性能指标被首先确定了。
但仍可以在通过振铃幅度RA 与采样周期的关系的前提下,得出在允许振铃幅度RA 下的采样周期,从而将振铃现象抑制在可以接受的范围内。
7. 小结与体会
A:课程设计是课程教学中的一项重要内容,是达到教学目标的重要环节,是综合性较强的实践教学环节,它有利于我们全面牢固地掌握课堂教学内容、培养我们的实践和实际动手能力。
这次的课程设计,让我对《微型计算机控制技术》这门课和课程设计有了一个全新的认识,也有了很多的体会和心得。
《微型计算机控制技术》是一门实用性和实践性都很强的课程,课程设计环节应占有更加重要的地位。
计算机控制技术的课程设计是一个综合运用知识的过程,它需要控制理论、程序设计、硬件电路设计等方面的知识融合。
通过这次的课程设计,我认识到任何课程的学习都需要理论结合实际,这样才能更好地掌握所学的知识并将它很好地应用于实践中。
同时,在实践过程中,可以通过查找资料、分析资料和请教老师和同学,使一些不清楚的问题得以解决,这样的话,可以起到事半功倍的效果。
当然,最关键的还是靠自己亲自去思考问题、解决问题,掌握独自面对各类的问题的方法。
总之,这次的课程设计给了我很多的体会和心得。
让我们有机会去锻炼和提升自己,收获很多。
B:计算机控制技术是一门以电子技术、自动控制技术、计算机应用技术为基础,以计算机控制技术为核心,综合可编程控制技术、单片机技术、计算机网络技术,从而实现生产技术的精密化、生产设备的信息化、生产过程的自动化及机电控制系统的最佳化的专门学科。
通过本次课程设计,让我受益良多。
原来我学习计算机控制的时候,基本上不清楚学习的理论知识如何应用在实践中,所以觉得计控学习起来比较难,经过这次课程设计,让我清楚了计算机控制的一些理论在实践中的应用。
经过了这次课程设计,我发现学到了很多的东西,首先我觉得能把自己所学到的东西应用到实践中去,这是一个很大的收获。
其次,仅仅是所学到的东西根本就不能满足工程或者说一个具体的项目的要求,要完成一个具体的项目,需要额外的学习很多新的东西,因此不能满足于自己的所学,应该养成终身学习的态度。
C: 课程设计是课程教学中的一项重要内容,是达到教学目标的重要环节,是综合性较强的实践教学环节,它有利于我们全面牢固地掌握课堂教学内容、培养我们的实践和实际动手能
力。
这次的课程设计,让我对《计算机控制技术》这门课和课程设计有了一个全新的认识,也有了很多的体会和心得。
《计算机控制技术》是一门实用性和实践性都很强的课程,课程设计环节应占有更加重要的地位。
计算机控制技术的课程设计是一个综合运用知识的过程,它需要控制理论、程序设计、硬件电路设计等方面的知识融合。
通过课程设计,我对控制算法设计有了一个更深的认识,也学会了控制算法的实际应用,从整体上了解了计算机控制系统的实际组成,掌握了计算机控制系统的整体设计方法和设计步骤,编程调试,为从事计算机控制系统的理论设计和系统的整定工作打下基础。