全等三角形的性质和判定定理的复习

合集下载

期末总复习二全等三角形的判定与性质

期末总复习二全等三角形的判定与性质

【分析】 (1)欲证 BF=EC,只需要证明 BC=EF,由△ABC≌△DEF 即 得到;(2)由△ABC≌△DEF 得到∠ACB=∠DFE,从而得到∠ACF=∠ DFC,即可得 AC∥DF.
命题高频点 2 全等三角形的判定 【例 2】在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE=90°. (1)当点 D 在 AC 上时,如图①,线段 BD、CE 有怎样的数量关系和位置关 系?直接写出你猜想的结论; (2)将图①中的△ADE 绕点 A 顺时针旋转一个锐角,到如图②所示的位置, 请问(1)的数量关系和位置关系是否还成立,请说明理由.
解:(1)BD=CE,BD⊥CE.理由如下:∵∠BAC=∠DAE=90°.在△ABD 与
AB=AC △ACE 中,∠BAC=∠DAE=90° ,∴△ABD≌△ACE(SAS).∴BD=
AD=AE
CE,∠ABD=∠ACE,∵∠ACE+∠AEC=90°,∴∠ABD+∠AEC=90°, ∴BD⊥CE;
(2)BD、CE 的数量和位置关系不变.为说明理由,应延长 BD 交 AC 于点 G, 交 CE 于点 F.∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠ DAC,即∠BAD=∠CAE.∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS).∴ BD=CE,∠ABD=∠ACE.∵∠AGB=∠FGC,∴∠ABD+∠AGB=∠ACE +∠FGC=90°,∴∠CFG=90°,即 BD⊥CE.
,解得xy==185 ,此
时 AC=17,CD=5,AD=8,5+8<17,∴不符合题意,∴AD=13cm,BC
=10cm.
10.如图,∠AOB=90°,OM 平分∠AOB,直角三角板的 顶点 P 在射线 OM 上移动,两直角边分别与 OA、OB 相交 于点 C、D,问 PC 与 PD 相等吗?试说明理由.

全等三角形的性质与判定复习

全等三角形的性质与判定复习

全等三角形的性质与判定章节复习导学案初备课: 唐立钢 审核:向云娥 授课教师 班级 授课日期 学习目标(1)熟练掌握全等三角形的性质与判定定理;(2)会用全等三角形的性质与判定定理解决实际问题;(3)通过复习,领悟数形结合思想、构建全等三角形在解决几何问题中的重要作用。

教学重点、难点重点:对性质与判定定理的理解和运用;难点:会找出图中的隐含条件,会作辅助线,分析已知和未知,找到解决问题的切入口。

教学过程一、自主学习与合作探究1.已知ED ⊥AB ,EF ⊥BC ,BD = EF ,问BM = ME 吗?并说明理由。

2.已知∠1 =∠2,BC = AD ,问△ABC ≌ △BAD 吗?为什么?3.已知如图,Rt △ABC 中,∠ACB =90度,D 是AB 的中点,若AB =10,则CD = , 若∠B=30度,则AC= 。

4.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 二、交流展示自学成果 三、应用迁移5.已知BE ∥DF ,AD ∥BC ,AE = CF ,问△AFD ≌ △CEB 吗?为什么?AC M E F BDBA DFE CA6.如图, ∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线,为什么?7.已知CE ⊥AB ,DF ⊥AB ,CE = DF ,AE = BF ,问△CEB ≌ △DFA 吗?说明理由。

四、巩固测评8.已知:如图 , AE , FC 都垂直于BD , 垂足为E 、F , AD = BC , BE = DF .求证:OA = OC.9.已知,AC ⊥CE ,AC = CE , ∠ABC =∠DEC = 900,问BD = AB + ED 吗?10. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .五、反思与小结AC D EFABCDE。

全等三角形的判定与性质的复习

全等三角形的判定与性质的复习

你得到的一对全等三角形 为△ ≌△ 。
证明:
二.一个三角形经过 翻折 、
平移 、
旋转 三种基本运动
后,前后两个三角形是全等的。
二、综合应用
1.如图,点E在AB上,∠1=∠2,
∠3=∠4,那么CB等于DB吗?
为什么?
A
C
) 3 )1 )2
E
4 (
B
D
AB//DE 2.如图,已知AB=DE,BC=EF ,AF=CD, 求证:△ABC≌△DEF。
E
D
O
A
(2)如图2,ΔOAB固定不动,保持 ΔOCD的形状和大小不变,将ΔOCD 绕着点O旋转 (ΔOAB和ΔOCD不能 重叠)。求∠AEB的大小.
C B E O A
D
常见解答题图形
一.知识点回顾:
(1)全等三角形: 能够完全重合的两个三角形 (2)判定三角形全等的方法:
SAS ASA AAS SSS HL
证明分别属于两个三角形的线段相等或者 (3)全等三角形的性质: 角相等的问题,通常通过证明这两个三角 全等三角形的对应边相等,对应角相等 形全等来解决 。
练习1.如图,△AOD≌△COB,其中
B
C
D
6.如图,DC⊥CA,EA⊥CA, 且∠DBE=90º , BD =B E. 试猜想线段CD、AE、CA之间的 数量关系,并说明理由.
D E
C
B
A
因铺设电线的需要, 要在池塘两侧A、B处 各埋设一根电线杆 (米尺.怎样测出A、B 两杆之间的距离呢?
证明三角形全等
4、关注公共线段、公共角、对顶角等
隐含条件
如图2,ΔOAB与ΔOCD是等边三角 形。 求证:△OAC≌△OBD

全等三角形的判定(总复习)

全等三角形的判定(总复习)

图(1) B D
C
学习提示:公共边,公共角, 对顶角这些都是隐含的边,角相等的条件!
9
二.添条件判全等
B
4、如图,已知AD平分∠BAC, A D 要使△ABD≌△ACD, • 根据“SAS”需要添加条件 ; C AB=AC ∠BDA=∠CDA • 根据“ASA”需要添加条件 ; • 根据“AAS”需要添加条件 ; ∠B=∠C
全等三角形共有6组元素(3组对应边、3组对应角)
三角形的6组元素(3组对应边、3组对应角) 中,要使两个三角形全等,到底需 要满足哪些条件?
要使两个三角形全等, 应至少有 3 组元素对应相等。
边边边 (SSS) 两边一角 6选 3
两边和它的夹角(SAS)
两角一边
角角角×
两边和它一边的对角 × 两角和夹边(ASA)
性质:角的平分线上的点到角的两边的距离相等.
用数学语言表示为: ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
例、已知:BD⊥AM于点D,CE⊥AN于点 E,BD,CE交点F,CF=BF,求证:点F在∠A的平 分线上. M
D C F A E B N
练一练 1、如图,为了促进当地旅游发展,某地要在 三条公路围成的一块平地上修建一个度假村.要 使这个度假村到三条公路的距离相等,应在何处 修建 ? 2、直线表示三条相互交叉的公路 ,现要建一个货
解: 连接AC
在△ABC和△ADC中, AB=AD(已知) BC=DC(已知) AC=AC(公共边)
∴△ADC≌△ABC(SSS)
∴ ∠ABC=∠ADC (全等三角形的对应角相等)
14
实际运用
9. 测量如图河的宽度,某人在河的对岸找到一参照物 树木A,视线 AB与河岸垂直,然后该人沿河岸 步行10步(每步约0.75M)到O处,进行标记, 再向前步行10步到D处,最后背对河岸向前步行20 步,此时树木A,标记O,恰好在同一视线上,则 河的宽度为 米。 15

三角形全等的判定定理(复习课)

三角形全等的判定定理(复习课)

三角形全等的判定定理(复习课)教学目标全面复习全等三角形及有关性质,掌握三角形全等的判定的四个方法。

能综合运用各种判定方法来证明线段和角相等。

掌握常规的作辅助线的方法。

教学重点综合运用各种判定方法来证明线段和角相等.教学难点常规的作辅助线的方法。

教学方法观察、比较、合作、交流、探索.教学过程一、基础知识复习1、三角形三边关系定理;三角形的内角和以及三角形的外角和的性质。

2、全等三角形的性质;全等三角形对应元素的寻找方法;3、全等三角形的判定(四种方法)。

注意有边边角和角角角是不能用的。

二、讲解新课1、三角形全等的判定定理,实质上只需要三个条件,注意至少有一个条件是边,就能判定两个三角形全等;2、判定两个三角形全等在几何证时中常常不是结论,而通常是通过证明两个三角形全等,证明两条线段相等或两个角相等,这恰是判定两个三角形全等的目的所在课前练习:1、下列说法中,不正确的是()(A)有两角和其中一角的对边对应相等的两个三角形全等(B)面积相等的两个直角三角形全等(C)有一边相等的两个等边三角形全等(D)有两边和其中一边上的中线对应相等的两个三角形全等。

2、如图,在∆ABC中,AB=AC,D、E、F依次是各边的中点,AD、BE、CF相交于G,那么图中的全等三角形共有()(A)5对(B)6对(C)7对(D)8对3、已知:如图,∆ABC中,∠C=90︒,,AC=BC,AD平分∠CAB交BC于D,DE⊥AB 于E,且AB=6CM,则∆DEB的周长为()(A)4 (B)6 (C)10 (D)以上全不对三、巩固与提高1、例题解析例1 已知:如图,在∆ABC中,AD⊥BC于D,BE⊥AC 于E,AD与BE相交于H ,且BH=AC ,求∠HCD 的度数。

AB C D EH例 2、已知:如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,且∠B+∠D=180︒,求证:AE=AD+BD例3、如图,在∆ABC 中∠ACB=90︒,∠BAC=30︒,AD 、CE 分别为∆ABC 的角平分线,AD 、CE 交于点F ,求证:EF=DF A B DCE 1 22、课堂小结3、布置作业 P84 第6题课后反思:。

全等三角形的性质和判定复习

全等三角形的性质和判定复习
2、如图,已知AB=AD,
D A C


B
3、如图,AB=AC,要说明⊿ADC≌
⊿AEB,
需添加的条件不能是( D ) A. ∠B= ∠C B. AD=AE C. ∠ADC= ∠AEB D. CD=BE

A D E
B
C
Leabharlann 例1 已知:如图,点A、B、C、D在同一条直线 上,AE⊥AD,DF⊥AD,AE=DF,AB=DC 求证:⊿ACE≌ ⊿DBF E 证明: ∵AB=DC



A

1 3 2
Q ② P
1 A 3 2
Q
P B
C
B C

巩固练习
1、如图,已知AE=CF,∠A=
∠ C,要使 ⊿ADF≌⊿CBE,还需添加一个条件 ( AD=CB或∠D= ∠B )(只需填一个)。
或∠AFD= ∠CEB

A F B
D E C
2、如图,在⊿ABC与⊿DEF中,
作业布置
已知:如图,BD是
ABCD的对角线, AE⊥BD,CF⊥BD,垂足分别为E、F. A D 求证:AE=CF
F E B C

∴AB+BC=DC+BC 即AC=DB
∵AE⊥AD,DF⊥AD ∴∠EAC=∠FDB=90° 又∵AE=DF
C A B D F
⊿ACE≌⊿DBF(SAS)
例1 已知:如图,点A、B、C、D在同一条直线 上,AE⊥AD,DF⊥AD,AE=DF,AB=DC 求证:⊿ACE≌ ⊿DBF


∠C=∠F=90°,下列条件不能判定 Rt⊿ABC≌ Rt⊿DEF的是( C ) A. AB=DE, ∠A=∠D B. AB=DE, BC=EF C.∠A=∠D, ∠B=∠E D.AC=DF, BC=EF

全等三角形的性质与判定复习课

全等三角形的性质与判定复习课

6.如图,AB⊥CD于B,CF交AB于E,
CE=AD,BE=BD,求证:CF⊥AD.
证明:∵AB⊥CD,
∴∠ABC=∠ABD=90°,
在 Rt△BEC 和 Rt△BDA 中, ∴∠C=∠A,
CE=AD,
∵∠A+∠D=90°,
BE=BD, ∴Rt△BEC≌Rt△BDA(HL),
∴∠C+∠D=90°, ∴∠CFD=180°-90° =90°,
∴AD⊥BC.
考点二 全等三角形的判定
3 已知,∠ABC=∠DCB,∠ACB= ∠DBC,
求证:△ABC≌△DCB.
【分析】运用“两角和它们的夹边对应相等两个三角形
全等”进行判定.
A
证明: 在△ABC和△DCB中,
∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知),B
∴△ABC≌△DCB(ASA ).
全等三角形的性质与判定
一、全等三角形的性质性质:
全等三角形的对应边相等,对应角相等. 应用格式:
如图:∵△ABC≌△DEF, B ∴AB=DE,BC=EF,AC=DF
全(等三角形的对应边相等 ), ∠A=∠D,∠B=∠E,∠C=∠F (全等三角形的对应角相等 )E .
A C
D
F
二、三角形全等的判定方法
证明:∵BE⊥AC,CD⊥AB,∴∠AEB=∠ADC=90°,在
∠AEB=∠ADC,
△ABE 和 △ACD 中 , ∠A=∠A,
∴ △ ABE ≌ △
AB=AC,
ACD(AAS),∴AD=AE,∠B=∠C,∴AB-AD=AC-AE,
即 BD = CE , 在 △BDO 和 △CEO 中 ,
∠BOD=∠COE(对顶角相等),

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

最新人教版八年级上册数学第十二章全等三角形第8课时 《全等三角形》单元复习

最新人教版八年级上册数学第十二章全等三角形第8课时 《全等三角形》单元复习
返回
数学
15.【例7】如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF. (1)求证:点D为EF的中点; (2)求证:AD⊥BC.
返回
数学
证明:(1)如图,过点D作DH⊥AB于H, ∵AD平分∠BAC,DE⊥AC,DH⊥AB,∴DE=DH, ∵BF∥AC,DE⊥AC, ∴BF⊥DF, ∵BC平分∠ABF,DH⊥AB,DF⊥BF, ∴DH=DF,∴DE=DF,∴点D为EF的中点.
答案图
返回
数学
(2)∵BF∥AC,∴∠C=∠DBF,且∠CDE=∠BDF,DE=DF, ∴△DCE≌△DBF(AAS),∴CD=BD, ∵BC平分∠ABF,∴∠ABD=∠DBF,∴∠C=∠ABD, ∵AD平分∠BAC,∴∠CAD=∠DAB, 又AD=AD,∴△DCA≌△DBA, ∴∠CDA=∠BDA, ∵∠CDA+∠BDA=180°, ∴∠CDA=∠BDA=90°,∴AD⊥BC.
第十二章 全等三角形
第8课时 《全等三角形》单元复习
数学
目录
01 知识要点 02 对点训练 03 精典范例 04 变式练习
数学
知识要点
知识点一:全等三角形的性质 (1)性质1:全等三角形的对应边 相等 . 性质2:全等三角形的对应角 相等 . 说明:①全等三角形的对应边上的高、中线以及对应角的平分 线 相等 . ②全等三角形的周长相等、面积相等. ③平移、翻折、旋转前后的图形 全等 .
返回
数学
证明: (1)∵DE⊥A B,DF ⊥A C,
∴△BDE,△CDF 是直角三角形.
在 Rt△BDE 和 Rt△CDF 中, = , =
∴R t △ B DE≌R t △ CDF(H L ),∴DE =DF .

全等三角形 知识点总结

全等三角形 知识点总结

全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。

全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。

全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。

本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。

一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。

用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。

全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。

也就是说,在全等三角形中,三个对应角是相等的。

2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。

也就是说,在全等三角形中,三个对应边是相等的。

3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。

二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。

1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。

也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。

判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。

2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。

也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。

判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。

3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。

也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。

全等三角形的复习定义、性质与判定

全等三角形的复习定义、性质与判定

全等三角形的复习:定义、性质及判定条件1. 证明三角形全等的思路⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSS HL AAS SAS ASA AAS ASA AAS找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边2. 隐含条件判定两个三角形全等,寻找条件时,应该注意图形中的隐含条件,常见的有:(1)公共边或公共角相等;(2)对顶角相等;(3)等边加(或减)等边,其和(或其差)仍相等;(4)等角加(或减)等角,其和(或差)仍相等;(5)同角或等角的余角(或补角)相等;(6)有中线或角平分线的定义得出线段或角相等;(7)由垂直定义得出直角相等。

(8)自然规律如:“太阳光线可以看成是平行的”,“光的反射角等于入射角”3、三角形全等的证明中包含两个要素:边和角。

缺个角的条件:1、公共角2、对顶角3、两全等三角形的对应角相等4、等腰三角形5、同角或等角的补角(余角)6、等角加(减)等角7、平行线 8、等于同一角的两个角相等缺条边的条件:5、角平分线性质 4、等量差 3、等量和 2、中点 1、公共边判定直角三角形全等的特殊方法——斜边,直角边定理 在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”10、等于同一线段的两线段相等 9、两全等三角形的对应边相等8、线段垂直平分线上的点 7、等面积法 6、等腰三角形。

全等三角形的性质与判定方法复习

全等三角形的性质与判定方法复习

B ACD EFA F C E DB 全等三角形的性质与判定方法复习一、知识梳理:1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:(S.A.S.)、(A.S.A.)、(A.A.S.)、(S.S.S.),对于两个直角三角形全等的判定方法,除上述方法外,还有H.L.法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.二、典型例题:例1、如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形 . 及时练习:1.下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等2.已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE , ∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.3.已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ;⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).A B C D O F EA F E CB D B (E ) OC F 图③ F A B CDEF A B (E ) C D D A 图② 图① 例2、已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .及时练习:1.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( )A .2B .3C .4D .52.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE=4cm ,CE =2cm ,则BD =__________.3.已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .例3、如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.AE第1题图A BC D EB C D O 第2题图 A C E F B DB F AC E N MP D D A C B F E 1.如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P处.若∠CDE =48°,则∠APD 等于( )A .42°B .48°C .52°D .58°2.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF3.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上.⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.例4、已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQE FB A B PDE C第1题图 AC D G 第2题图 21 A BC P Q E F DA BC D F E 1.如图,已知AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点,求证:AF ⊥CD .2.如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( ) A .2a b m + B .2a b m - C .bm D .am3.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE的面积为__________.三、课堂练习:1.已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°2.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40°3.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )A EC B A 75° C45° B NM第2题图 第3题图 D4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. CB=CDB.∠BAC=∠DACC. ∠BCA=∠DCAD.∠B=∠D=90°5.有两块不同大小的等腰直角三角板△ABC和△BDE,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A、B、D不在一条直线上时,下面的结论不正确的是()A. △ABE≌△CBDB. ∠ABE=∠CBDC. ∠ABC=∠EBD=45°D. AC∥BE6.如图,△ABC和共顶点A,AB=AE,∠1=∠2,∠B=∠E. BC交AD于M,DE交AC于N,小华说:“一定有△ABC≌△AED.”小明说:“△ABM≌△AEN.”那么()A. 小华、小明都对B. 小华、小明都不对C. 小华对、小明不对D.小华不对、小明对7.如图,已知AC=EC, BC=CD,AB=ED,如果∠BCA=119°,∠ACD=98°,那么∠ECA的度数是___________.8.如图,△ABC≌△ADE,BC延长线交DE于F,∠B=25°,∠ACB=105°,∠DAC=10°,则∠DFB的度数为_______.9.如图,在Rt△ABC中,∠C=90°, DE⊥AB于D, BC=BD. AC=3,那么AE+DE=______10.如图,BA⊥AC, CD∥AB. BC=DE,且BC⊥DE,若AB=2, CD=6,则AE=_____.11.如图, AB=CD, AB∥CD. BC=12cm,同时有P、Q两只蚂蚁从点C出发,沿CB方向爬行,P的速度是0.1cm/s, Q的速度是0.2cm/s. 求爬行时间t为多少时,△APB≌△QDC.12.如图, △ABC中,∠BCA=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.⑴求证:AE=CD;⑵若AC=12cm, 求BD的长.FC B A E D四、巩固提高:1.在△ABC 中,,AB=AC , 在AB 边上取点D ,在AC 延长线上了取点E ,使CE=BD ,连接DE 交BC 于点F ,求证DF=EF .2.如图∠ACB=90°,AC=BC,BE ⊥CE,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm,求BE 的长.3.如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C , ∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.4. 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.。

全等三角形知识点总结复习

全等三角形知识点总结复习

全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

.2.基本性质:理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;通关精选1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC=() A.3 B.4 C.7 D.8,第1题图)2.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB 等于()A.120°B.125°C.130°D.135°,第2题图)3.如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是() A.SAS B.ASA C.AAS D.SSS,第3题图)4.(2015·六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD,第4题图)5.如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是()A.AB=ED B.AC=EF C.AC∥EF D.BF=DC,第5题图)常考例题精选1.(2015·绥化中考)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.2.(2015·临沂中考)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.3.(2015·武汉中考)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.6.(2015·昆明中考)已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.7.(2015·大理中考)如图,点B在AE上,点D在AC上,AB=AD,请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.8.(2015·随州中考)如图,点F,B,E,C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.9.(2015·河源中考)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD 的中点,连接OE.(1)求证:△AOB≌△DOC.(2)求∠AEO的度数.7.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F 在AC上,BE=FC,求证:BD=DF.如图,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.。

人教版八年级数学下上册第12章 全等三角形的性质与判定复习

人教版八年级数学下上册第12章   全等三角形的性质与判定复习

第一节全等三角形的性质与判定知识结构导图高频核心考点1.全等三角形的有关概念全等图形:能够完全重合的两个图形叫做全等图形。

注:平移、对称、旋转前后的图形全等。

全等三角形:能够完全重合的两个三角形叫做全等三角形。

相关概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2.表示方法:△ABC和△DEF全等,记作△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:书写全等三角形时要求对应顶点必须写在对应位置。

3.全等三角形的一般规律⑴全等三角形对应角所对的边是对应边,两组对应角所夹的边是对应边;⑵全等三角形对应边所对的角是对应角,两组对应边所夹的角是对应角;⑶两个全等三角形中的一对最长边(最大角)是对应边(对应角),一对最短边(最小角)是对应边(对应角);⑷两个全等三角形有公共边时,公共边是对应边;⑸两个全等三角形有公共角时,公共角是对应角;⑹两个全等三角形有对顶角时,对顶角是对应角。

4.全等三角形的性质特别提醒:1.由全等三角形的性质可得到全等三角形的面积和周长相等,但周长和面积相等的三角形不一定全等。

2.全等三角形的性质是证明线段或角相等的重要方法,在运用这个性质时,关键是结合图形或根据全等三角形的记法灵活地找到对应边或对应角,要牢牢抓住“对应”二字。

5.全等三角形的判定(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形判定的书写格式:在△XXX和△XXX中_______________________________________∴△XXX≌△XXX(判定定理)在寻找证明两个三角形全等的条件时,应注意图形中的隐含条件:①公共边或公共角相等;②对顶角相等。

数学中考总复习(一轮复习)第17讲全等三角形

数学中考总复习(一轮复习)第17讲全等三角形

第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。

(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。

2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。

微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。

二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。

2•判定:角的内部到角的两边的距离相等的点在 ____________ 。

3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。

2•角的平分线的性质定理和判定定理互为逆定理。

注意分清题设和结论。

高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。

(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。

中考数学专项复习命题点8 全等三角形的性质与判定(必考)

中考数学专项复习命题点8 全等三角形的性质与判定(必考)

证明: ∵ = ,∴ ∠ = ∠ ,
∵ ∠ = ∠ ,
∴ ∠ + ∠ = ∠ + ∠ ,
∴ ∠ = ∠ ,
∴ = .
又 ∵ = , ∠ = ∠ ,
∴△ ≌△ , ∴ ∠ = ∠ .
是平行四边形, // .
求证: = .
证明: ∵ 四边形 是平行四边形,
∴ = , // ,
∴ ∠ = ∠ .
∵ // , ∴ ∠ = ∠ ,
∴△ ≌△ ,
∴ = .
第8题图
9.(创新考法)[2023陕西]如图,在 △ 中, ∠ = 50∘ , ∠ = 20∘ .
河南数学
第四章 三角形
命题点8 全等三角形的性质与判定(必考)
数学
A 基础达标练
考向1 全等三角形的性质
1.如图,若 △ ≌△ ,则下列结论中一定成立
的是(
)
A. =
B. ∠ = ∠

C. =
D. ∠ = ∠
第1题图
2.[2023成都]如图,已知 △ ≌△ ,点 , ,
第11题图
B 强化提升练
12.(多解法)[2023丽水]如图,在四边形 中,
// , ∠ = 45∘ ,以 为腰作等腰直角三角形
,顶点 恰好落在 边上,若 = 1 .则 的长
是(
A.

)
2
B.
2
2
C. 2
第12题图
D. 1
【解析】 解法1:如解图①,过点 作 ⊥ 交 延长线于 ,过点
∵ // , ∴ ∠ = ∠ = ∠ = ∘ , ∴ = = ,

中考数学一轮复习专题解析—全等三角形判定与性质定理

中考数学一轮复习专题解析—全等三角形判定与性质定理

中考数学一轮复习专题解析—全等三角形判定与性质定理复习目标1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;考点梳理一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.特别提醒:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).例1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP△AQ.【答案】证明:(1)△BD、CE分别是△ABC的边AC和AB上的高,△△1+△CAE=90°,△2+△CAE=90°.△△1=△2,△在△AQC和△PAB中,△△AQC△△PAB.△ AP=AQ.(2)△ AP=AQ,△QAC=△P,△△PAD+△P=90°,△△PAD+△QAC=90°,即△PAQ=90°.△AP△AQ.二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例2.如图,已知AD为△ABC的中线,且△1=△2,△3=△4,求证:BE+CF>EF.【答案】证明:延长ED至M,使DM=DE,连接CM,MF,在△BDE和△CDM中,△△BDE△△CDM(SAS).△BE=CM.又△△1=△2,△3=△4 ,△1+△2+△3+△4=180°,△△3+△2=90°,即△EDF=90°,△△FDM=△EDF =90°.在△EDF和△MDF中△△EDF△△MDF(SAS),△EF=MF (全等三角形对应边相等),△在△CMF中,CF+CM>MF(三角形两边之和大于第三边),△BE+CF>EF.三、常见的几种辅助线添加△遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;△遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;△遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;△过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;△截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.例3.如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,△ D为BC中点,△ BD=DC,在△ADC和△HDB中,△ △ADC△△HDB(SAS),△ AC=BH, △H=△HAC,△ EA=EF,△ △HAE=△AFE,又△ △BFH=△AFE,△ BH=BF,△ BF=AC.综合训练1.(2022·长沙市雅礼实验中学九年级月考)如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SSA C.ASA D.SAS【答案】C【分析】根据全等三角形的判定方法解答即可.【详解】解:画一个三角形A′B′C′,使△A′=△A,A′B′=AB,△B′=△B,符合全等三角形的判定定理ASA,故选:C.2.(2022·全国九年级专题练习)如图G是△ABC的重心,直线过A点与BC平行.若直线CG分别与AB、交于D、E两点,直线BG与AC交于F点,则△AED 的面积:四边形ADGF的面积=()A.1:2B.2:1C.2:3D.3:2【答案】D【分析】根据重心的概念得出D,F分别是三角形边的中点.若设△ABC的面积是2,则△BCD的面积和△BCF的面积都是1.又因为BG:GF=CG:GD,可求得△CGF 的面积.则四边形ADGF的面积也可求出.根据ASA可以证明△ADE△△BDC,则△ADE的面积是1.则△AED的面积:四边形ADGF的面积可求.【详解】解:设三角形ABC的面积是2,△三角形BCD的面积和三角形BCF的面积都是1,△BG:GF=CG:GD=2,△三角形CGF的面积是13,△四边形ADGF的面积是2−1−13=23,△//l BC,△EAD CBD∠=∠,△,=∠=∠,BD AD ADE BDC△△ADE△△BDC(ASA)△△ADE的面积是1△△AED的面积:四边形ADGF的面积=1:2=3:2.3故选:D.3.(2022·重庆实验外国语学校九年级月考)如图,在正方形ABCD中,210AB=﹐E,F分别为BC,CD的中点,连接AE、BF,AE交BF于点G,将BCF△沿BF△的面积是()翻折得到BPF△,延长FP交BA延长线于点Q,连接QG,则QGFA.25B.25C.20D.15 2【答案】D【分析】由已知可求QF=QB,在Rt△BPQ中,由勾股定理求得QB,可求出S△BQF=25,再证明△ABE△△BCF(SAS),△BGE△△BCF,由此得BF,GE,BG,过点G作GN△AB交AB于N,可证明△ANG△△ABE,再由GA=AE-GE,可求得GN,根据S△QGF=S△BQF-S△BQG即可求解.【详解】解:将BCF△,△沿BF翻折得到BPF∴PF =FC ,△PFB =△CFB ,四边形ABCD 是正方形∴△FPB =90°,CD △AB ,,90AB BC ABE BCF =∠=∠=︒△△CFB =△ABF , △△ABF =△PFB , △QF =QB ,△PF =FC =12CD 12AB =PB =AB 在Rt △BPQ 中,222QB BP PQ =+,△222(QB QB =+,△QB△S△BQF =1252=,△AB =BC ,BE =CF ,△ABE =△BCF =90°, △△ABE △△BCF (SAS ), △△AEB =△BFC , 又△△EBG =△CBF , △△BGE △△BCF ,GE BG BECF BC BF∴==, △CF,BC △BF△GEBG , 过点G 作GN △AB 交AB 于N ,△△GAN=△EAB,△ANG=△ABE=90°,△△ANG△△ABE,△GN GABE EA=△GA=AE-GE =42△GN=4105△S△BQG=12×QB×GN=1510410225⨯⨯=10,△S△QGF=S△BQF-S△BQG=25-10=15,故选:D.4.(2022·四川省宜宾市第二中学校九年级一模)如图,以ABC的三边为边分别作等边ACD△、ABE△、BCF△,则下列结论正确的是()A.EBF DFC≌B.四边形ADFE为矩形C.四边形ADFE为菱形D .当AB AC =,120BAC ∠=︒时,四边形ADFE 是正方形【答案】A【分析】利用SAS 得到△EBF 与△DFC 全等,利用全等三角形对应边相等得到EF =AC ,再由△ADC 为等边三角形得到三边相等,等量代换得到EF =AD ,AE =DF ,利用对边相等的四边形为平行四边形得到AEFD 为平行四边形,若AB =AC ,△BAC =120°,只能得到AEFD 为菱形,不能为正方形,即可得到正确的选项.【详解】解:△△ABE 、△BCF 为等边三角形,△AB =BE =AE ,BC =CF =FB ,△ABE =△CBF =60°,△△ABE −△ABF =△FBC −△ABF ,即△CBA =△FBE ,在△ABC 和△EBF 中,AB EB CBA FBE BC BF =⎧⎪∠=∠⎨⎪=⎩, △△ABC △△EBF (SAS ),△EF =AC ,又△△ADC 为等边三角形,△CD =AD =AC ,△EF =AD =DC ,同理可得△ABC △△DFC ,△DF =AB =AE =DF ,△四边形AEFD 是平行四边形,故B 、C 选项错误;△△FEA =△ADF ,△△FEA +△AEB =△ADF +△ADC ,即△FEB =△CDF ,在△FEB 和△CDF 中,EF DC FEB CDF EB FD =⎧⎪∠=∠⎨⎪=⎩. △△FEB △△CDF (SAS ),故选项A 正确;若AB =AC ,△BAC =120°,则有AE =AD ,△EAD =120°,此时AEFD 为菱形,选项D 错误故选A .5.(2022·重庆实验外国语学校九年级开学考试)如图在四边形ABEC 中,BEC ∠和BAC ∠都是直角,且AB AC =.现将BEC ∆沿BC 翻折,点E 的对应点为E ',BE '与AC 边相交于D 点,恰好BE '是ABC ∠的角平分线,若1CE =,则BD 的长为( )A .1.5B 2C .2D 3【答案】C【分析】 如图,延长CE '和BA 相交于点F ,根据翻折的性质可以证明△BE′C △△BE′F ,可得CF =2,再证明△FCA △△DBA ,可得BD =CF =2.【详解】解:如图,延长CE '和BA 相交于点F ,由翻折可知:90BE C E ∠'=∠=︒,1CE CE '==,BE '是ABC ∠的角平分线,CBE FBE ∴∠'=∠',BE BE '=',∴()BE C BE F ASA '≅',1E F CE ∴'='=,2CF ∴=,90FCA F ∠+∠=︒,90DBA F ∠+∠=︒,FCA DBA ∴∠=∠,90FAC DAB ∠=∠=︒,AB AC =,()FCA DBA ASA ∴≅,2BD CF ∴==.故选:C .6.(2022·长沙市开福区青竹湖湘一外国语学校九年级三模)如图,在Rt ABC 中,90A ∠=︒,利用尺规在BA ,BC 上分别截取BD ,BE ,使BD BE =;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在ABC ∠内交于点F ;作射线BF 交AC于点H.若2HA=,P为BC上一动点,则HP的最小值是()A.12B.2C.1D.无法确定【答案】B【分析】根据作图过程可得BH平分△ABC,当HP△BC时,HP最小,根据角平分线的性质即可得HP的最小值.【详解】解:根据作图过程可知:BH平分△ABC,当HP△BC时,HP最小,△HP=HA=2.故选:B.7.(2022·长沙市雅礼实验中学九年级月考)如图,在Rt ABC中,90C∠=︒,以点A为圆心,适当的长度为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于12MN的长度为半径画弧,两弧交于点O,作射线AO交BC于点D,若54B∠=︒,则CDA∠=______度.【答案】72°利用三角形内角和180°,解得36CAB ∠=︒,由角平分线性质解得18CAD ∠=︒的度数,最后根据三角形外角性质解题即可.【详解】解:90,54C B ∠=︒∠=︒905436CAB ∴∠=︒-︒=︒ AD 平分CAB ∠ 1182CAD DAB CAB ∴∠=∠=∠=︒ 185472CDA DAB B ∴∠=∠+∠=︒+︒=︒故答案为:72.8.(2022·广东深圳市南山外国语学校九年级二模)如图,在平面直角坐标系中,矩形OABC 中,3OA =,6OC =,将ABC 沿对角线AC 翻折,使点B 落在B '处,AB '与y 轴交于点D ,则点D 的坐标为______.【答案】9(0,)4-【分析】设OD m =,则6CD m =-,由题意可以求证AOD CB D '△≌△,从而得到6AD CD m ==-,再根据勾股定理即可求解.解:由题意可知:3OA BC B C '===,6OC AB ==,90B B AOD '∠=∠=∠=︒ 设OD m =,则6CD m =-,又△B DC ADO '∠=∠△()AOD CB D AAS '△≌△△6AD CD m ==-在Rt AOD △中,222AD AO OD =+,即222(6)3m m -=+ 解得:94m =△点D 的坐标为9(0,)4-故答案为9(0,)4-9.(2022·广东实验中学九年级三模)已知,ABC DCB ∠=∠,ACB DBC ∠=∠,求证:ABC DCB △≌△.【答案】证明见解析【分析】由条件△ABC =△DCB ,△ACB =△DBC ,根据ASA 证明△ABC △△DCB 即可.【详解】证明:在△ABC 和△DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABC △△DCB (ASA );10.(2022·厦门市湖滨中学)如图,在△ABE 和△CDF 中,点C 、E 、F 、B 在同一直线上,BF =CE ,若AB △CD ,△A =△D .求证:AB =CD .【答案】见解析【分析】根据平行线的性质可得△B =△C ,根据已知条件可得BE =CD ,结合已知条件△A =△D ,即可证明△ABE △△DCF ,进而即可得证AB =CD .【详解】解:△AB △CD ,△△B =△C .△BF =CE ,△BF +EF =CE +EF ,即BE =CF .△△A =△D ,△B =△C ,BE =CF△△ABE △△DCF (AAS ).△AB =CD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的性质和判定定理的复习
全等三角形这一章主要学习全等三角形的性质及各种三角形全等的判定方法,同时学习如何利用全等三角形进行证明.学习利用三角形全等推导出角平分线的性质及判定.全等三角形是研究图形的重要工具,是几何学习中最基础的知识,为今后学习四边形、圆等内容打下基础.下面我们主要讨论一下全等三角形的性质和判定定理的复习。

首先,我们要明白这两节课的重点是全等三角形的性质及各种判定三角形全等的方法,难点是根据不同的条件合理选用三角形全等的判定方法,特别是对于“SSA ”不能判定三角形全等的认识。

这里我们列出重要知识点和基本的解题思路。

1.全等三角形性质:全等三角形的对应边相等;对应角相等。

2.全等三角形的判定方法:
三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS ”).
两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS ”). 两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS ”). 斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).
3.证明三角形全等的基本思路:
(1)已知两边:⎪⎩
⎪⎨⎧)或若有直角(找夹角)找第三边(SAS HL SAS SSS )(
(2)已知一边一角⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧)已知是直角,找一边()找一角(已知一边与对角)找这个边的对角()
找这个角的另一边()找这边的另一邻角(已知一边与邻角HL AAS AAS SAS ASA (3)已知两角⎩⎨⎧)找夹边外任一边()
找夹边(AAS ASA
三角形的全等的判定要根据题目的具体情况确定采用S A S ,A S A ,AA S ,SSS ,H L 中的哪个定理,而且这几个判定方法往往要结合其性质综合解题.下面我们举几个具体的例子来说明全等三角形的性质和判定定理的应用。

例1 如图11-113所示,BD ,CE 分别是△AB C 的边AC 和AB 上的高,
点P 在BD 的延线上,BP =AC ,点Q 在CE 上,C Q =AB .
(1)求证AP =A Q ;
(2)求证AP ⊥A Q .
分析 (1)欲证AP =A Q ,只需证对应的两个三角形全等,即证△ABP
≌△Q CA 即可.(2)在(1)的基础上证明∠PA Q =90°.
证明:(1)∵BD ,CE 分别是△ABC 的边AC ,AB 上的高,
∴∠ADB =∠AEC =90°.
在Rt △AEC 和Rt △ADB 中,
∠ABP =90°-∠BAD ,∠ACE =90°一∠DAB ,
∴∠ABP =∠ACE .
在△ABP 和△Q CA 中,
BP =CA (已知), ∠ABP =∠ACE (已证),
AB =Q C (已知),
∴△ABP ≌△Q CA (S A S ).
∴AP =A Q (全等三角形的对应边相等).
(2)∵△ABP ≌△Q CA ,
∴∠P =∠CA Q (全等三角形的对应角相等).
又∵∠P +∠PAD =90°,
∴∠CA Q +∠PAD =90°,
即∠Q AP =90°,∴AP ⊥A Q .
例2 若两个锐角三角形的两边和其中一边上的高分别对应相等.试判断这两个三角形
的第三边所对的角之间的关系,并说明理由.
分析 运用全等三角形的判定和性质,探讨两角之间的关系,题中没给图形,需自己根
据题意画出符合题意的图形,结合图形写出已知、结论.
已知:如图11-114所示,在△ABC 和△A ′B ′C ′中,AB =A ′B ′,BC =B ′C ′,
AD ,A ′D ′分别是BC ,B ′C ′上的高,且AD =A ′D ′.
判断∠B 和∠B ′的关系.
解:∠B =∠B ′.理由如下:
∵AD ,A ′D ′分别是BC ,B ′C ′边上的高,
∴∠ADB =∠A ′D ′B ′=90°.
在Rt △ADB 和Rt △A ′D ′B ′中,,,
AB A B AD AD ''=⎧⎨=⎩ ∴Rt △ADB ≌Rt △A ′D ′B ′( H L ).
∴∠B =∠B ′(全等三角形的对应角相等).
规律·方法 边、角、中线、角平分线、高是三角形的基本元素,从以上
诸元素中选取三个条件组合,可以得到关于三角形全等判定的若干命题.
例3 如图11-115所示,已知四边形纸片ABCD 中,AD ∥BC ,将∠ABC ,
∠DAB 分别对折,如果两条折痕恰好相交于DC 上一点E ,点C ,D 都落在AB 边
上的F 处,你能获得哪些结论?
分析 对折前后重合的部分是全等的,从线段关系、角的关系、面积关系等
不同方面进行探索,以获得更多的结论,这是一道开放性试题.
解:①AD=AF,ED=EF=EC,BC=BF.
②AD十BC=AB,DE+EC=2EF.
③∠1=∠2,∠3=∠4,∠D=∠AFE,∠C=∠EFB,∠DEA=∠FEA,
∠CEB=∠FEB.
④∠AEB=90°或EA⊥EB.
⑤S△DAE=S△EAF,S△ECB=S△EFB.
【解题策略】本题融操作、观察、猜想、推理于一体,需要具有一定的综合能力.推理论证既是说明道理,也是探索、发现的途径.善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键.需要注意的是,通常面临以下情况时,我们才考虑构造全等三角形:(1)给出的图形中没有全等三角形,而证明结论需要全等三角形.(2)从题设条件中无法证明图形中的三角形全等,证明需要另行构造全等三角形.
全等三角形的知识在实际问题中的应用是常见的一种类型题,解题的是键是将实际问题抽象成几何问题来解决,一般难度不大.
例4 如图11-116所示,太阳光线AC与A′C′是平行的,同一时刻两根高度相同的木杆在太阳光照射下的影子一样长吗?说说你的理由.
分析本题欲确定影子一样长,实际就是证明BC与B′C′相等,
而要证明两条线段相等,常常证明它们所在的两个三角形全等.
解:影子一样长.理由如下:
因为AB⊥BC,A′B⊥B′C′,
所以∠ABC=∠A′B′C′=90°.
因为AC∥A′C′,所以∠ACB=∠A′C′B′.
在△ABC和△A′B′C′中,
∠ABC=∠A′B′C′,
∠ACB=∠A′C′B′,
AB=A′B′,
所以△ABC≌△A′B′C′(AAS),
所以BC=B′C′(全等三角形的对应边相等).。

相关文档
最新文档