人教A版高中数学必修5全册同步测控知能训练题集含答案
最新人教A版高中数学必修五综合测试题及答案3套
最新人教A 版高中数学必修五综合测试题及答案3套综合学业质量标准检测(一)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等比数列{a n }中,S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值是( B ) A .14 B .16 C .18D .20[解析] ∵S 4=1,S 8=3,∴a 1·1-q 41-q =1,a 1·1-q 81-q =3,∴1+q 4=3,即q 4=2,∴a 17+a 18+a 19+a 20=a 1q 16(1+q +q 2+q 3)=q 16·a 1(1-q4)1-q=16.2.若1+2+22+…+2n >128,n ∈N *,则n 的最小值( B ) A .6 B .7 C .8D .9[解析] 1+2+22+…+2n =2n +1-1. ∵2n +1-1>128=27,∴n +1>7,n >6. 又∵n ∈N *,∴n =7.3.已知集合A ={x ||x +1|≤2},B ={x |y =lg(x 2-x -2)},则A ∩∁R B =(C ) A .[-3,-1) B .[-3,-1] C .[-1,1]D .(-1,1][解析] 因为A ={x ||x +1|≤2}={x |-3≤x ≤1},B ={x |lg(x 2-x -2)}={x |x 2-x -2>0}={x |x <-1或x >2},所以∁R B ={x |-1≤x ≤2},所以A ∩∁R B ={x |-1≤x ≤1}.4.已知a >b >0,c ≠0,则下列不等式中不恒成立的是( B ) A .ac 2>bc 2 B .a -b c>0C .(a +b )(1a +1b)>4D .a 2+b 2+2>2a +2b[解析] ∵c ≠0,∴c 2>0,又∵a >b ,∴ac 2>bc 2; ∵a >b ,∴a -b >0,又c ≠0, ∴c >0时a -b c >0,c <0时,a -bc <0;∵a >b >0,∴(a +b )(1a +1b )=2+b a +ab>2+∵a >b >0,∴a 2+b 2+2-2a -2b =(a -1)2+(b -1)2>0, 故A ,C ,D 恒成立,B 不恒成立.5.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( C )A .12B .1C .3D .2[解析] 因为b 2+c 2-a 2=2bc cos A =bc ,所以cos A =12,因为A ∈(0,π),所以A =π3,所以△ABC 的面积为12bc sin A =12×4×32=3,故选C .6.已知x ,y ∈R ,且x >y >0,则( C ) A .1x -1y >0B .sin x -sin y >0C .(12)x -(12)y <0D .ln x +ln y >0[解析] 解法1:因为x >y >0,选项A ,取x =1,y =12,则1x -1y =1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sin π-sin π2=-1<0,排除B ;选项D ,取x =2,y=12,则ln x +ln y =ln(x +y )=ln1=0,排除D .故选C . 解法2:因为函数y =⎝⎛⎭⎫12x在R 上单调递减,且x >y >0,所以⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0,故选C .7.已知数列{a n },满足a n +1=11-a n,若a 1=12,则a 2015=( B )A .12B .2C .-1D .1[解析] 易知a 2=2,a 3=-1,a 4=12,a 5=2,∴数列{a n }的周期为3,而2015=671×3+2,∴a 2015=a 2=2.8.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( C )A .22B .4C .32D .6[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,垂足分别为A ,B ,则四边形ABDC 为矩形,又C (2,-2).D (-1,1),所以|AB |=|CD |=(2+1)2+(-2-1)2=3 2.故选C .9.已知数列{a n }的通项公式是a n =1n +n +1(n ∈N *),若a n +a n +1=11-3,则n 的值是( B )A .12B .9C .8D .6[解析] ∵a n =1n +n +1=n +1-n ,∴a n +a n +1=n +1-n +n +2-n +1 =n +2-n =11-3=11-9, ∴n =9.10.已知△ABC 中,∠A =30°,AB 、BC 分别是3+2、3-2的等差中项与等比中项,则△ABC 的面积等于( D )A .32B .34C .32或3 D .32或34[解析] 依题意得AB =3,BC =1,易判断△ABC 有两解,由正弦定理,得AB sin C =BCsin A ,3sin C =1sin30°,即sin C =32.又0°<C <180°,因此有C =60°或C =120°.当C =60°时,B =90°,△ABC 的面积为12AB ·BC =32;当C =120°时,B =30°,△ABC 的面积为12AB ·BC ·sin B =12×3×1×sin30°=34.综上所述,选D . 11.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( C ) A .52 B .78 C .104D .208[解析] 由等差数列的性质得a 2+a 7+a 12=3a 7=24,∴a 7=8, ∴S 13=13a 7=104,故选C .12.若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于13.( C ) A .2 B .3 C .4D .5[解析] 由已知得,1a +1b =1,a >0,b >0,则a +b =(a +b )(1a +1b )=2+b a +ab ≥2+2b a ·a b=4,当b a =ab,即a =b =2时取等号.[点评] 一个小题涉及到直线的方程与基本不等式,难度又不大,这是高考客观题命题的主要方向.平时就要加强这种小综合交汇训练.二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.等比数列{a n }和等差数列{b n }中,a 5=b 5,2a 5-a 2a 8=0,则b 3+b 7=4. [解析] ∵2a 5-a 2a 8=2a 5-a 25=0,a n ≠0,∴a 5=2, ∴b 3+b 7=2b 5=2a 5=4.14.在△ABC 中,∠A =π3,BC =3,AB =6,则∠C =π4.[解析] 由正弦定理得3sin π3=6sin C ,∴sin C =22,∵AB <BC ,∴C <A ,∴C =π4.15.已知变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0x +3y -3≥0y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围为⎝⎛⎭⎫12,+∞. [解析] 作出可行域如图(包括边界)当直线z =ax +y 经过A 点, 位于直线l 1与x +2y -3=0之间时, z 仅在点A (3,0)处取得最大值, ∴-a <-12,∴a >12.16.已知点(1,t )在直线2x -y +1=0的上方,且不等式x 2+(2t -4)x +4>0恒成立,则t 的取值集合为{t |3<t <4}.[解析] ∵(1,t )在直线2x -y +1=0的上方, ∴t >3,∵不等式x 2+(2t -4)x +4>0恒成立, ∴Δ=(2t -4)2-16<0,∴0<t <4,∴3<t <4.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)和为114的三个数是一个公比不为1的等比数列的连续三项,也是一个等差数列的第1项,第4项,第25项,求这三个数.[解析] 由题意,设这三个数分别是a q ,a ,aq ,且q ≠1,则aq +a +aq =114①令这个等差数列的公差为d ,则a =aq +(4-1)·d .则d =13(a -a q),又有aq =a q +24×13×⎝⎛⎭⎫a -a q ② 由②得(q -1)(q -7)=0,∵q ≠1,∴q =7 代入①得a =14,则所求三数为2,14,98.18.(本题满分12分)(2016·贵阳市第一中学月考)设函数f (x )=12sin2x -cos 2(x +π4).(1)若x ∈(0,π),求f (x )的单调递增区间;(2)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (B2)=0,b =1,求△ABC 面积的最大值.[解析] (1)由题意可知,f (x )=12sin2x -1+cos (2x +π2)2=12sin2x -1-sin2x 2=sin2x -12.由2k π-π2≤2x ≤2k π+π2,k ∈Z ,得k π-π4≤x ≤k π+π4,k ∈Z .又因为x ∈(0,π),所以f (x )的单调递增区间是(0,π4]和[3π4,π).(2)由f (B 2)=sin B -12=0,得sin B =12,由题意知B 为锐角,所以cos B =32. 由余弦定理b 2=a 2+c 2-2ac cos B ,得1+3ac =a 2+c 2≥2ac ,即ac ≤2+3,当且仅当a =c 时等号成立. 因为S △ABC =12ac sin B ≤2+34,所以△ABC 面积的最大值为2+34. 19.(本题满分12分)为了防止洪水泛滥,保障人民生命财产安全,去年冬天,某水利工程队在河边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为10 000 m 2的矩形鱼塘,其四周都留有宽2 m 的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最小.[解析] 设鱼塘的长为 x m ,宽为y m ,则农田长为(x +4)m ,宽为(y +4)m ,设农田面积为S .则xy =10 000,S =(x +4)(y +4)=xy +4(x +y )+16=10 000+16+4(x +y )≥10 016+8xy =10 016+800=10 816.当且仅当x =y =100时取等号. 所以当x =y =100时,S min =10 816 m 2. 此时农田长为104 m ,宽为104 m.20.(本题满分12分)(2015·浙江文,17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .[分析] 等差等比数列的通项公式;数列的递推关系式;数列求和和运算求解能力,推理论证能力.解答本题(1)利用等比数列的通项公式求a n ;利用递推关系求b n .(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.[解析] (1)由a 1=2,a n +1=2a n ,得a n =2n . 当n =1时,b 1=b 2-1,因为b 1=当n ≥2时,1n b n =b n +1-b n由累乘法得:b n =n .①, 又∵b n =1,符合①式,∴b n =n (2)由(1)知,a n b n =n ·2n ,所以T n =2+2·22+3·23+…+n ·2n ,2T n =22+2·23+3·24+…+(n -1)·2n +n ·2n +1,所以T n -2T n =2+22+23+…+2n -n ·2n +1=(1-n )2n +1-2, 所以T n =(n -1)2n +1+2.21.(本题满分12分)(2016·河南高考适应性测试)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知向量m =(cos B,2cos 2C2-1),n =(c ,b -2a ),且m ·n =0.(1)求角C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积. [解析] (1)∵m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0, ∴c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得 sin C cos B +(sin B -2sin A )cos C =0, ∴sin A =2sin A cos C .又∵sin A ≠0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由AD →=DB →,知CD →-CA →=CB →-CD →,所以2CD →=CA →+CB →, 两边平方得4|CD →|2=b 2+a 2+2ba cos C ∴b 2+a 2+ba =28.①又∵c 2=a 2+b 2-2ab cos C ,∴a 2+b 2-ab =12.② 由①②得ab =8,所以S △ABC =12ab sin C =2 3.22.(本题满分14分)已知α、β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a 、b ∈R ,求b -3a -1的最大值和最小值.[解析] ∵⎩⎪⎨⎪⎧α+β=-aαβ=2b ,∴⎩⎪⎨⎪⎧a =-(α+β)b =αβ2,∵0≤α≤1,1≤β≤2, ∴1≤α+β≤3,0≤αβ≤2.∴⎩⎪⎨⎪⎧-3≤a ≤-10≤b ≤1. 建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.取B (-1,0),C (-3,1),则k AB =32,k AC =12,∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12.综合学业质量标准检测(二)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <b <0,则( C ) A .1a <1bB .0<a b <1C .ab >b 2D .b a >a b[解析] ∵a <b <0,∴两边同乘b ,得ab >b 2,故选C . 2.己知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( A )A .A ∩B =∅ B .B ⊆AC .A ∩∁R B =RD .A ⊆B[解析] A ={x |x 2-3x +2<0}={x |1<x <2},B ={x |log 4x >12}={x |x >2},∴A ∩B =∅.故选A .3.(x -2y +1)(x +y -3)<0表示的平面区域为( C )[解析] 将点(0,0)代入不等式中,不等式成立,否定A 、B ,将(0,4)点代入不等式中,不等式成立,否定D ,故选C .4.已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +12n ,则此数列的第三项是( C )A .1B .12C .34D .58[解析] ∵a 1=1,a n +1=12a n +12n ,∴a 2=12a 1+12=1,a 3=12a 2+14=34,∴选C .5.已知A 为△ABC 的一个内角,且sin A +cos A =23,则△ABC 的形状是( B ) A .锐角三角形 B .钝角三角形 C .直角三角形D .不确定[解析] 解法1:∵sin A +cos A =23,∴(sin A +cos A )2=29,∴2sin A ·cos A =-79<0,∴A 为钝角,∴△ABC 的形状为钝角三角形.故选B .解法2:假设0<A ≤π2,则π4<A +π4≤3π4,∴sin(A +π4)≥22>13.∴sin A +cos A =2sin(A +π4)≥1>23.与条件矛盾,∴A >π2.故选B .6.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C )A .3B .932C .332D .33[解析] 依题意得a 2+b 2-c 2-2ab +6=0,∴2ab cos C -2ab +6=0,即ab =6,△ABC 的面积等于12ab sin C =332,故选C .7.在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( B ) A .18 B .99 C .198D .297[解析] 由已知得:a 3+a 9+a 6=27,即3a 6=27,a 6=9. ∴S 11=11(a 1+a 11)2=11×2a 62=11a 6=11×9=99.故选B .8.(2016·湖北七市教科研协作体联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( B )A .9B .92C .4D .52[解析] 圆的标准方程为(x -1)2+(y -2)2=5,直线截圆所得的弦长为 25,等于直径,∴直线ax +by -6=0过圆心,即a +2b -6=0.又a >0,b >0,由基本不等式得a +2b ≥22ab ,即ab ≤92,当且仅当a =3,b =32时等号成立,∴ab 的最大值为92.故选B .9.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35 m ,则此电视塔的高度是( A )A .521mB .10mC .4 90013mD .35m[解析] 作出示意图,设塔高OC 为h m ,在Rt △AOC 中,OA =h tan60°=33h ,OB =h . AB =35,∠AOB =150°,由余弦定理得352=(33h )2+h 2-2×33h ·h cos150°, 解得h =521.故选A .10.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”,若已知数列{a n }的前n 项的“均倒数”为15n ,又b n =a n 5,则1b 1b 2+1b 2b 3+…+1b 10b 11等于( C )A .811B .919C .1021D .1123[解析] 由n a 1+a 2+…+a n =15n 得S n =a 1+a 2+…+a n =5n 2,则S n -1=5(n -1)2(n ≥2),a n =S n -S n -1=10n -5(n ≥2),当n =1时,a 1=5也满足.故a n =10n -5,b n =2n -1,1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),所以原式=12(1b 1-1b 11)=12×(1-121)=1021.故选C .11.已知O 是△ABC 的重心,且满足sin A 3·OA →+sin B 7·OB →+sin C 8·OC →=0,则角B 等于( B )A .30°B .60°C .90°D .120°[解析] 由正弦定理得:a 3OA →+b 7OB →+c 8OC →=0,又由题意得:OA →+OB →+OC →=0,∴a 3=b 7=c8,∴由余弦定理得:cos B =a 2+c 2-b 22ac=⎝⎛⎭⎫37b 2+⎝⎛⎭⎫87b 2-b 22×37b ×87b=12∴B =60°.故选B .12.已知x ,y 满足⎩⎪⎨⎪⎧x ≥2y ≥2,x +y ≤8,则z =x -y 的最大值为( A )A .4B .-4C .0D .2[解析] 作出不等式组表示的可行域如图阴影部分所示,由z =x -y 得y =x -z ,欲求z 的最大值,可将直线l :y =x 向下平移,当直线l 经过A 点时直线在y 轴上的截距-2最小,此时z 取得最大值.易求点A (6,2),则z max =6-2=4.故选A .二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上)13.如图,在△ABC 中,∠B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB 的长为562.[解析] 在△ACD 中,cos ∠ADC =52+32-722×5×3=-12,所以∠ADC =120°,所以∠ADB=60°.在△ABD 中,由正弦定理得AB sin60°=AD sin45°,所以AB =562.14.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为-1≤a ≤0. [解析] 2x 2+2ax -a -1≥0⇔x 2+2ax -a ≥0,∴Δ≤0, ∴-1≤a ≤0.15.已知实数a ,b 满足a >1,b >0且2a +2b -ab -2=0,那么a +2b 的最小值是10. [解析] 因为实数a ,b 满足a >1,b >0且2a +2b -ab -2=0,整理1a -1+2b =1,所以a+2b =(a -1)+2b +1=[(a -1)+2b ]⎣⎡⎦⎤1a -1+2b +1=2(a -1)b +2b a -1+6,所以2(a -1)b +2ba -1+6≥22(a -1)b ×2b a -1+6=10.当且仅当2(a -1)b =2ba -1时取等号. 16.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y ≤2,y ≥0,则z =(x +1)2+(y -1)2的最小值是12.[解析] 如图,可行域为△ABC 及其内部,其中A (-1,0),B (2,0),C (12,32).目标函数表示可行域内的点M 到点P (-1,1)的距离的平方,因此所求最小值为点P (-1,1)到直线AC :x -y +1=0的距离的平方,即(|-1-1+1|2)2=12.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2.(1)求sin2Asin2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.[分析] 考查同角三角函数基本关系式;正弦定理和三角形面积公式.三角恒等变换与运算求解能力.(1)利用两角和与差的正切公式,求出tan A ,再利用同角三角函数基本关系式得到结论; (2)已知A ,B 和a 可利用正弦定理形式的面积公式(两边及夹角)求解.[解析] (1)由tan(π4+A )=2,得tan A =13,所以sin 2A sin 2A +cos 2 A =2sin A cos A 2sin A cos A +cos 2 A =2tan A 2tan A +1=25.(2)由tan A =13,A ∈(0,π)可得,sin A =1010,cos A =31010.由a =3,B =π4及正弦定理知:b =3 5.又sin C =sin(A +B )=sin A cos B +cos A sin B =255,所以S △ABC =12ab sin C =12×3×35×255=9.18.(本题满分12分)已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f (x )x(x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围. [解析] (1)依题意得y =f (x )x =x 2-4x +1x =x +1x -4.因为x >0,所以x +1x≥2.当且仅当x =1x ,即x =1时,等号成立.所以y ≥-2.所以当x =1时,y =f (x )x的最小值为-2.(2)解法1:因为f (x )-a =x 2-2ax -1,所以要使得“任意的x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]上恒成立”.不妨设g (x )=x 2-2ax -1, 则只要g (x )≤0在[0,2]上恒成立.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0所以a 的取值范围是[34,+∞).解法2:∵f (x )≤a 对任意x ∈[0,2]恒成立, ∴x 2-2ax -1≤0对任意x ∈[0,2]恒成立, 当x =0时,显然恒成立,a ∈R ;当x ∈(0,2]时,有a ≥x 2-12x ,令g (x )=x 2-12x ,则g (x )=x 2-12x 在(0,2]上单调递增,∴g (x )max =g (2)=34.∴a ≥34.综上得a 的取值范围是[34,+∞).19.(本题满分12分)设数列{a n }的首项a 1=a ≠14,且a n +1=⎩⎨⎧12a n (n 为偶数)a n+14 (n 为奇数).记b n =a 2n -1-14,n =1,2,3,….(1)求a 2、a 3;(2)判断数列{b n }是否为等比数列,并证明你的结论. [解析] (1)a 2=a 1+14=a +14,a 3=12a 2=12a +18.(2)∵a 4=a 3+14=12a +38,所以a 5=12a 4=14a +316,所以b 1=a 1-14=a -14,b 2=a 3-14=12(a -14),b 3=a 5-14=14(a -14).猜想:{b n }是公比为12的等比数列.证明如下:∵b n +1=a 2n +1-14=12a 2n -14=12(a 2n -1+14)-14=12(a 2n -1-14)=12b n (n ∈N *),∴{b n }是首项为a -14,公比为12的等比数列.20.(本题满分12分)已知关于x 的一元二次不等式kx 2-2x +6k <0(k ≠0).导学号 54742970(1)若不等式的解集是{x |x <-3或x >-2},求k 的值; (2)若不等式的解集是R ,求k 的取值范围. [解析] (1)∵不等式的解集为{x |x <-3或x >-2}, ∴-3,-2是方程kx 2-2x +6k =0的两根,且k <0. ∴⎩⎪⎨⎪⎧(-3)×(-2)=6,(-3)+(-2)=2k ,∴k =-25. (2)∵不等式的解集为R ,∴⎩⎪⎨⎪⎧k <0,Δ=4-4k ·6k <0,即⎩⎪⎨⎪⎧k <0,k >66或k <-66,∴k <-66. 即k 的取值范围是(-∞,-66). 21.(本题满分12分)已知a ,b ,c 分别是△ABC 的角A ,B ,C 所对的边,且c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin2A ,求A 的值.[解析] (1)∵c =2,C =π3,由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab ,∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2;(2)∵sin C +sin(B -A )=2sin2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2,②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6,综上所述,A =π2或A =π6.22.(本题满分14分)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和S n .[解析] (1)设数列{a n }的首项为a 1,公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,S 10=10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2. 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)由(1)可知a n ·2a n =(2n -1)×22n -1,所以S n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,① 4S n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n -1,② ①-②得-3S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1 所以S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+16(1-4n -1)+(6n -3)×22n +19=10+(6n -5)×22n +19.学业质量标准检测(解三角形、数列部分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在锐角三角形ABC 中,已知A =2C ,则ac 的范围是( C )A .(0,2)B .(2,2)C .(2,3)D .(3,2)[解析] a c =sin A sin C =sin2Csin C =2cos C ,又A +B +C =π,A =2C ,∴π6<C <π4,∴2<ac< 3. 2.已知2a =3b =m ,且a ,ab ,b 成等差数列,则m =( C )A .2 C .6[解析] ∵2a =3b =m ,∴a =log 2又∵a ,ab ,b 成等差数列,∴2ab =a +b ⇒2=1a +1b=log m 2+log m 3=log m 6,∴m = 6.3.在△ABC 中,若(a -a cos B )sin B =(b -c cos C )sin A ,则这个三角形是( D ) A .底角不等于45°的等腰三角形 B .锐角不等于45°的直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形[解析] 由正弦定理,得a sin B =b sin A , ∴a sin B cos B =c sin A cos C , sin A sin B cos B =sin C sin A cos C . ∴sin2B =sin2C .∴B =C ,或2B =π-2C ,即B +C =π2.4.等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和S 9等于( B )A .66B .99C .144D .297[解析] 设b i =a i +a i +3+a i +6,则由条件知{b n }为等差数列,且b 1=39,b 3=27,∴公差d =b 3-b 12=-6,∴数列{a n }前9项的和a 1+a 2+…+a 9=b 1+b 2+b 3=3b 2=3(b 1+d )=3×(39-6)=99.5.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( C )A .43B .5C .52D .62[解析] ∵S △ABC =12ac sin B ,∴c =4 2.由余弦定理,得b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理,得2R =bsin B=52(R 为△ABC 外接圆的半径),故选C .6.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( B ) A .172B .192C .10D .12[解析] 由题可知:等差数列{a n }的公差d =1,因为等差数列S n =a 1n +n (n -1)d2,且S 8=4S 4,代入计算可得a 1=12;等差数列的通项公式为a n =a 1+(n -1)d ,则a 10=12+(10-1)×1=192.故本题正确答案为B .7.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则A 的取值范围为( C )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)[解析] 由题意,得cos A =b 2+c 2-a 22bc >0,∴A <π2.又a >b >c ,∴A >B >C .又∵A +B +C =π,∴A >π3,故选C .8.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n ( C )A .4n -1B .4n -1 C .2n -1D .2n -1[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12) =2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 9.根据下边框图,对大于2的整数N ,输出的数列的通项公式是( C )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -1[解析] 由程序框图可知a 1=2,a 2=22,a 3=23, ∴a n =2n .10.已知等比数列{a n }中,a n >0,a 5、a 95为方程x 2-10x +16=0的两根,则a 20·a 50·a 80的值为( B )A .32B .64C .256D .±64[解析] 由条件知a 5+a 95=10,a 5·a 95=16, ∵{a n }是等比数列,∴a 250=16,∵a n >0,∴a 50=4,∴a 20a 50a 80=a 350=64. 11.△ABC 中,A ︰B =1︰2,∠ACB 的平分线CD 把△ABC 的面积分成3︰2两部分,则cos A 等于( C )A .13B .12C .34D .0[解析] ∵CD 为∠ACB 的平分线, ∴点D 到AC 与点D 到BC 的距离相等, ∴△ACD 与△BCD 的高相等. ∵A ︰B =1︰2,∴AC >BC .∵S △ACD ︰S △BCD =3︰2,∴AC BC =32. 由正弦定理,得sin B sin A =32,又∵B =2A ,∴sin2A sin A =32,∴2sin A cos A sin A =32, ∴cos A =34.12.若△ABC 的三边为a ,b ,c ,f (x )=b 2x 2+(b 2+c 2-a 2)x +c 2,则函数f (x )的图象( B ) A .与x 轴相切 B .在x 轴上方 C .在x 轴下方D .与x 轴交于两点[解析] 函数f (x )相应方程的判别式Δ=(b 2+c 2-a 2)2-4b 2c 2 =(2bc cos A )2-4b 2c 2 =4b 2c 2(cos 2A -1).∵0<A <π,∴cos 2A -1<0,∴Δ<0, ∴函数图象与x 轴没交点.故选B .二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上) 13.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.[解析] ∵n ≥2时,a n =a n -1+12,且a 1=1,∴{a n }是以1为首项,12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.14.三角形一边长14,它对的角为60°,另两边之比为8︰5,则此三角形面积为 [解析] 设另两边长为8x 和5x ,则 cos60°=64x 2+25x 2-14280x 2,∴x =2,∴另两边长为16和10,此三角形面积S =12×16×10·sin60°=40 3.15.若数列{a n }满足a 1=2,a n =1-1a n -1,则a 2016=-1. [解析] ∵a 1=2,a n =1-1a n -1,∴a 2=1-1a 1=12,a 3=1-1a 2=-1,a 4=1-1a 3=2,a 5=1-1a 4=12,……∴数列{a n }的值呈周期出现,周期为3. ∴a 2016=a 3=-1.16.已知a ,b ,c 分别为 △ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC[解析] 由a =2,(2+b )(sin A -sin B )=(c -b )sin C 及正弦定理可得,(a +b )(a -b )=(c -b )·c∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°. 在△ABC 中,a 2=b 2+c 2-2bc cos60°=b 2+c 2-bc ≥2bc -bc =bc ,(等号在b =c 时成立),∴bc ≤4.∴S △ABC =12bc sin A ≤12×4×32= 3. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足a cos B +b cos A =2c cos C .(1)求C ;(2)若△ABC 的面积为23,a +b =6,求∠ACB 的角平分线CD 的长度.[解析] (1)已知a cos B +b cos A =2c cos C ,由正弦定理,得sin A cos B +sin B cos A =2sin C cos C ,所以sin(A +B )=2sin C cos C ,即sin C =2sin C cos C .因为0<C <π,所以cos C =12,故C =π3. (2)方法一:由已知,得S =12ab sin C =34ab =23,所以ab =8. 又a +b =6,解得⎩⎪⎨⎪⎧ a =2b =4,或⎩⎪⎨⎪⎧ a =4,b =2. 当⎩⎪⎨⎪⎧a =2b =4时,由余弦定理,得c 2=4+16-2×2×4×12=12, 所以c =2 3.所以b 2=a 2+c 2,△ABC 为直角三角形,∠B =π2. 因为CD 平分∠ACB ,所以∠BCD =π6. 在Rt △BCD 中,CD =2cos π6=433.当⎩⎪⎨⎪⎧ a =4b =2时,同理可得CD =2cos π6=433. 方法二:在△ABC 中,因为CD 平分∠ACB ,所以∠ACD =∠BCD =π6. 因为S △ABC =S △ACD +S △BCD ,所以S △ABC =12b · CD ·sin π6+12a ·CD ·sin π6=12CD ·sin π6·(a +b )=14(a +b )·CD . 因为S △ABC =23,a +b =6,即23=14×6·CD ,解得CD =433. 18.(本题满分12分))在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若m =(cos 2A 2,1),n =(cos 2(B +C ),1),且m ∥n .(1)求角A ;(2)当a =6,且△ABC 的面积S 满足3=a 2+b 2-c 24S时,求边c 的值和△ABC 的面积. [解析] (1)因为m ∥n ,所以cos 2(B +C )-cos 2A 2=cos 2A -cos 2A 2=cos 2A -cos A +12=0, 即2cos 2A -cos A -1=0,(2cos A +1)(coa A -1)=0. 所以cos A =-12或cos A =1(舍去),即A =120°. (2)由3=a 2+b 2-c 24S 及余弦定理,得tan C =33,所以C =30°. 又由正弦定理a sin A =c sin C,得c =2 3. 所以△ABC 的面积S =12ac sin B =3 3. 19.(本题满分12分)(2016·广西自治区质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n. [解析] (1)当n =1时,a 1=32a 1-1,∴a 1=2. ∵S n =32a n -1,① S n -1=32a n -1-1(n ≥2),② ∴①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列,∴a n =2·3n -1.(2)由(1)得b n =2log 3a n 2+1=2n -1, ∴1b 1b 2+1b 2b 3+…+1b n -1b n =11×3+13×5+…+1(2n -3)(2n -1) =12[(1-13)+(13-15)+…+(12n -3-12n -1)]=n -12n -1. 20.(本题满分12分)用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少万元?全部贷款付清后,买这批住房实际支付多少万元?[解析] 购买时付款300万元,则欠款2 000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元),a 2=100+(2 000-100)×0.01=119(万元),a 3=100+(2 000-100×2)×0.01=118(万元),a 4=100+(2 000-100×3)×0.01=117(万元),…a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *).因此{a n }是首项为120,公差为-1的等差数列.故a 10=121-10=111(万元),a 20=121-20=101(万元).20次分期付款的总和为S 20=(a 1+a 20)×202=(120+101)×202=2 210(万元). 实际要付300+2 210=2 510(万元).即分期付款第10个月应付111万元;全部贷款付清后,买这批住房实际支付2 510万元.21.(本题满分12分)在△ABC 中,若a 2+c 2-b 2=ac ,log 4sin A +log 4sin C =-1,S △ABC =3,求三边a ,b ,c 的长及三个内角A ,B ,C 的度数.[解析] 由a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12. ∵0°<B <180°,∴B =60°.∵S △ABC =12ac sin B =12ac ×32=3, ∴ac =4.①由log 4sin A +log 4sinC =-1,得sin A sin C =14. 由正弦定理,得ac 4R 2=14, ∴44R 2=14, ∴R =2(负值舍去).∴b =2R sin B =2×2×32=2 3. 由已知,得a 2+c 2-(23)2=4.②当a >c 时,由①②,得a =6+2,c =6- 2.∴三边的长分别为a =6+2,b =23,c =6- 2.由正弦定理,得sin A =a 2R =6+24=sin105°. ∴A =105°,即C =15°.同理,当a <c 时,a =6-2,b =23,c =6+2,A =15°,B =60°,C =105°.22.(本题满分14分)(2015·石家庄市一模)设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,λ≠-1),且a 1、2a 2、a 3+3为等差数列{b n }的前三项.(1)求数列{a n }、{b n }的通项公式;(2)求数列{a n b n }的前n 项和.[解析] (1)解法1:∵a n +1=λS n +1(n ∈N *),∴a n =λS n -1+1(n ≥2),∴a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0,又a 1=1,a 2=λS 1+1=λ+1,∴数列{a n }为以1为首项,公比为λ+1的等比数列,∴a 3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3,整理得λ2-2λ+1=0,得λ=1∴a n =2n -1,b n =1+3(n -1)=3n -2,解法2:∵a 1=1,a n +1=λS n +1(n ∈N *),∴a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)=λ2+2λ+1,∴4(λ+1)=1+λ2+2λ+1+3,整理得λ2-2λ+1=0,得λ=1∴a n +1=S n +1(n ∈N *),∴a n =S n -1+1(n ≥2)∴a n +1-a n =a n ,即a n +1=2a n (n ≥2), 又a 1=1,a 2=2,∴数列{a n }为以1为首项,公比为2的等比数列, ∴a n =2n -1,b n =1+3(n -1)=3n -2.(2)a n b n =(3n -2)·2n -1,∴T n =1·1+4·21+7·22+…+(3n -2)·2n -1 ① ∴2T n =1·21+4·22+7·23+…+(3n -5)·2n -1+(3n -2)·2n ② ①-②得-T n =1·1+3·21+3·22+…+3·2n -1-(3n -2)·2n=1+3·2·(1-2n -1)1-2-(3n -2)·2n整理得:T n =(3n -5)·2n +5.。
高一数学人教a必修5试题及答案
高一数学人教a必修5试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x + 3,则f(-1)的值为()。
A. -1B. 1C. 5D. -5答案:D2. 已知集合A={1,2,3},B={2,3,4},则A∩B等于()。
A. {1,2}B. {1,3}C. {2,3}D. {4}答案:C3. 函数y=x^2-4x+c的图像与x轴有两个交点,则c的取值范围是()。
A. c>4B. c<4C. c≥4D. c≤4答案:B4. 已知等差数列{a_n}的前三项分别为2,5,8,则其公差d为()。
A. 3B. 2C. 1D. 4答案:A5. 函数y=x^3+2x^2-x-2的导数为()。
A. 3x^2+4x-1B. 3x^2+4x+1C. 3x^2-4x+1D. 3x^2-4x-1答案:A6. 若sinα=3/5,且α为锐角,则cosα的值为()。
A. 4/5B. -4/5C. √7/5D. -√7/5答案:A7. 已知等比数列{a_n}的前三项分别为2,4,8,则其公比q为()。
A. 2B. 1/2C. 1D. 1/4答案:A8. 函数y=x^2-6x+8的最小值为()。
A. 2B. -2C. 8D. -8答案:B9. 若cosα=-√3/2,且α为钝角,则sinα的值为()。
A. 1/2B. -1/2C. √3/2D. -√3/2答案:B10. 函数y=x^3-3x^2+4的极值点为()。
A. 1B. 2C. -1D. 0答案:A二、填空题(每题4分,共20分)1. 若a,b,c是等差数列,且a+b+c=9,则b=______。
答案:32. 已知函数f(x)=x^2-6x+8,其对称轴方程为______。
答案:x=33. 函数y=x^3-3x^2+4的极值点为______。
答案:14. 若sinα=3/5,且α为锐角,则tanα的值为______。
答案:4/35. 已知等比数列{a_n}的前三项分别为2,4,8,则其通项公式为______。
人教A版高中数学必修五第二章2.2等差数列的性质同步检测题
人教A版高中数学必修五第二章2.2等差数列的性质同步检测题一、选择题1.在等差数列{a n}中,若a2=4,a4=2,则a6=()A.-1B.0C.1 D.62.已知等差数列{a n},则使数列{b n}一定为等差数列的是() A.b n=-a n B.b n=a2nC.b n=a n D.b n=1 a n3.在等差数列{a n}中,若a2=1,a6=-1,则a4=() A.-1 B.1C.0 D.-1 24.等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8,则数列{a n}的通项公式是()A.a n=2n-2(n∈N*) B.a n=2n+4(n∈N*)C.a n=-2n+12(n∈N*) D.a n=-2n+10(n∈N*)5.如果数列{a n}是等差数列,则下列式子一定成立的有()A.a1+a8<a4+a5B.a1+a8=a4+a5C.a1+a8>a4+a5D.a1a8=a4a56.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为() A. 3 B.±3C.-33D.- 37.等差数列{a n}中,a5+a6=4,则log2(2a1·2a2·…·2a10)=() A.10 B.20C.40 D.2+log25二、填空题8.等差数列{a n}中,a15=33,a25=66,则a35=________.9.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列 ⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 12.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?16.已知数列{a n}的通项公式为a n=pn2+qn(常数p,q∈R).(1)当p和q满足什么条件时,数列{a n}是等差数列?(2)求证:对任意的实数p和q,数列{a n+1-a n}都是等差数列.人教A 版高中数学必修五第二章2.2等差数列的性质同步检测题解析一、选择题1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质得a 6=2a 4-a 2=2×2-4=0,选B.答案:B2.已知等差数列{a n },则使数列{b n }一定为等差数列的是( )A .b n =-a nB .b n =a 2nC .b n =a nD .b n =1a n解析:∵数列{a n }是等差数列,∴a n +1-a n =d (常数).对于A ,b n +1-b n =a n -a n +1=-d ,正确;对于B 不一定正确,如a n =n ,则b n=a 2n =n 2,显然不是等差数列;对于C 和D ,a n 及1a n不一定有意义,故选A. 答案:A3.在等差数列{a n }中,若a 2=1,a 6=-1,则a 4=( )A .-1B .1C .0D .-12解析:∵2a 4=a 2+a 6=1-1=0,∴a 4=0.答案:C4.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( )A .a n =2n -2(n ∈N *)B .a n =2n +4(n ∈N *)C .a n =-2n +12(n ∈N *)D .a n =-2n +10(n ∈N *)解析:由⎪⎩⎪⎨⎧<=+=∙,,,08124242d a a a a ⇒⎩⎨⎧==,,2642a a ⇒⎩⎨⎧-==,,281d a ∴a n =a 1+(n -1)d =8+(n -1)·(-2)=-2n +10.5.如果数列{a n }是等差数列,则下列式子一定成立的有( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5解析:由等差数列的性质有a 1+a 8=a 4+a 5,故选B.答案:B6.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为() A . 3 B .±3C .-33 D .- 3解析:由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.答案:D7.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A .10B .20C .40D .2+log 25解析:由等差数列的性质知a 1+a 2+…+a 10=5(a 5+a 6)=5×4=20,从而log 2(2a 1·2a 2·…·2a 10)=log 2220=20.答案:B二、填空题8.等差数列{a n }中,a 15=33,a 25=66,则a 35=________.解析:由a 25是a 15与a 35的等差中项知2a 25=a 15+a 35,∴a 35=2a 25-a 15=2×66-33=99.答案:999.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解析:由等差数列的性质可知,a 2+a 8=a 4+a 6=a 3+a 7,∴a 2+a 4+a 6+a 8=37×2=74.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.解析:设数列{a n }的公差为d .法一:由题意知⎩⎨⎧=+==+=,,b d a a a d a a 9411015 解得⎪⎪⎩⎪⎪⎨⎧-=-=,,55491a b d b a a∴a 15=a 1+14d =9a -4b 5+14×b -a 5=2b -a .法二:d =a 10-a 510-5=b -a 5, ∴a 15=a 10+5d =b +5×b -a 5=2b -a .法三:∵a 5,a 10,a 15成等差数列,∴a 5+a 15=2a 10.∴a 15=2a 10-a 5=2b -a .答案:2b -a11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 解析:由题设知a n +m 3n -a n -1+m 3n -1=3a n -1+3n -1+m 3n -a n -1+m 3n -1 =3n -1-2m 3n=1-1+2m 3n 为常数, 则1+2m =0,故m =-12.答案:-1212.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 解析:n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13·(n -m )14·(n -m )=43. 答案:43三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.解析:由题意可设最低一级宽度为a 1,梯子的宽度依次成等差数列,设为{a n },依题意a 12=33,由a 12=a 1+(12-1)d ⇒33=110+11d ,∴d =-7,∴a n =110+(n -1)×(-7),∴a 2=103,a 3=96,a 4=89,a 5=82,a 6=75,a 7=68,a 8=61,a 9=54,a 10=47,a 11=40,故梯子中间各级的宽度依次为103,96,89,82,75,68,61,54,47,40.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.解析:显然a -4<a +2,(1)若a -4,a +2,26-2a 成等差数列,则(a -4)+(26-2a )=2(a +2),∴a =6,相应的等差数列为:2,8,14.(2)若a -4,26-2a ,a +2成等差数列,则(a -4)+(a +2)=2(26-2a ),∴a =9,相应的等差数列为:5,8,11.(3)若26-2a ,a -4,a +2成等差数列,则(26-2a )+(a +2)=2(a -4),∴a =12,相应的等差数列为:2,8,14.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?解析:设两个数列分别为{a n }与{b k }.则a 1=5,d 1=8-5=3,通项公式a n =5+(n -1)·3=3n +2;b 1=3,d 2=7-3=4,通项公式b k =3+(k -1)·4=4k -1.设数列{a n }的第n 项与{b k }的第k 项相同, 即a n =b k ,也就是3n +2=4k -1,∴n =43k -1,而n ∈N *,k ∈N *,∴k 必须为3的倍数,设k =3r (r ∈N *),得n =4r -1.由条件知⎩⎨⎧≤-≤≤≤,,10014110031r r 解得12≤r ≤1014.又r ∈N *,∴1≤r ≤25(r ∈N *).∴共有25个共同的项.16.已知数列{a n }的通项公式为a n =pn 2+qn (常数p ,q ∈R).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意的实数p 和q ,数列{a n +1-a n }都是等差数列. 解析:(1)设数列{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q , 若2pn +p +q 是一个与n 无关的常数,则2p =0,即p =0,q ∈R.∴当p =0,q ∈R 时,数列{a n }是等差数列.(2)证明:∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q ,∴(a n +2-a n +1)-(a n +1-a n )=[2p (n +1)+p +q ]-(2pn +p +q )=2p (常数). ∴对任意的实数p 和q ,数列{a n +1-a n }都是等差数列.。
人教A版高中数学必修五同步练测:模块检测(含答案详解)
高中数学学习材料(灿若寒星精心整理制作)模块检测题(人教实验A版必修5)建议用时实际用时满分实际得分120分钟150分一、选择题(每小题5分,共60分)1.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为()A.20(√2+√6)海里/时B.20(√6﹣√2)海里/时C.20(√6+√3)海里/时D.20(√6-√3)海里/时2.如图,在山脚A处测得该山峰仰角为θ,对着山峰在平行地面上前进600 m后测得仰角为原来的2倍,继续在平行地面上前进200 √3 m后,测得山峰的仰角为原来的4倍,则该山峰的高度为()A.200 mB.300 mC.400 mD.100 √3 m3.在200 m高的山顶上,测得山下一塔的塔顶和塔底的俯角分别为30°和60°,则塔高为()A.4003m B.4003√3 mC.2003√3m D.2003m4.甲船在岛B的正南方A处,AB=10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间是()A.1507分钟 B.157分钟C.21.5分钟D.2.15分钟5.已知一等比数列的前三项依次为33,22,++xxx,那么2113-是此数列的第()项.A.2 B.4 C.6 D.86.在ABC∆中,tan A是以-4为第三项,4为第七项的等差数列的公差,tan B是以13为第三项,9为第六项的等比数列的公比,则这个三角形 是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对7.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132log log a a +++310log a =( )A.12B.10C.31log 5+D.32log 5+8.如果正数a ,b ,c ,d 满足a+b =cd =4,那么( ) A .ab ≤c+d ,且等号成立时a ,b ,c ,d 的取值 唯一B.ab ≥c+d ,且等号成立时a ,b ,c ,d 的取值唯一C.ab ≤c+d ,且等号成立时a ,b ,c ,d 的取值不唯一D.ab ≥c+d ,且等号成立时a ,b ,c ,d 的取值不唯一9. 若x ,y 均为整数,且满足约束条件{x +y −2≤0,x −y +2≥0,y ≥0,则z =2x +y 的最大值为( )A.-4B.4C.-3D.310.若数列{a n }的前n 项和S n =n 2-2n +3,则此数列的前3项依次为 ( )A.-1,1,3B.2,1,3C.6,1,3D.2,3,611.等差数列{a n }中,a 1>0,S 5=S 11,则第一个使a n <0的项是( )A.a 7B.a 8C.a 9D.a 10 12. 已知{}n a 是等比数列,41252==a a ,, 则13221++++n n a a a a a a =( ) A.)41(16n -- B.)21(16n -- C.)41(332n -- D.)21(332n --二、填空题(每小题4分,共16分)13. 三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则::a b c = .14.在△ABC 中, 2sin A cos B =sin C ,那么△ABC 一定是 .15.关于x 的不等式x 2+(a +1)x +ab >0的解集是{x |x <-1或x >4},则实数a +b 的值为 .16.用两种材料做一个矩形框,按要求其长和宽分别选用价格为每米3元和5元的两种材料,且长和宽必须为整数米,现预算花费不超过100元,则做成的矩形框所围成的最大面积是 m 2.三、解答题(共74分)17.(12分)如图,某住宅小区的平面图呈扇形AO C.小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).18.(12分)研究问题:“已知关于x 的不等式a x 2-bx +c >0的解集为(1,2),解关于x 的不等式c x 2-bx +a >0”有如下解法: 解:由a x 2-bx +c >0得a -b (1x)+ c(1x)2>0,令y =1x,则12<y <1,所以不等式c x 2-bx +a >0的解集为(12,1).参考上述解法,已知关于x 的不等式 kx+a +x+bx+c<0的解集为(-2,-1)∪(2,3),求关 于 x 的不等式kxax−1+bx−1cx−1<0的解集.19.(12分)某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所获利润最大?20.(12分)已知{a n}为各项都为正数的等比数列, a1=1,a5=256,S n为等差数列{b n}的前n项和, b1=2,5S5=2S8.(1)求{a n}和{b n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.21.(12分)已知数列{a n }满足a 1=1,1n a +=2a n +1 (n ∈N +).(1)求数列{ a n }的通项公式;(2)若数列{ b n }满足114b -•214b -•…•14n b -=(1)n b n a + (n ∈N *),证明:{ b n }是等差数列.22. (14分)已知函数f (x )=-2x 2+22x ,数列{a n }的前n 项和为S n ,点P n (n ,S n )(n ∈N +)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式a n 及前n 项和S n ;(2)存在k ∈N +,使得S 11+S 22+…+Snn <k 对任意n ∈N +恒成立,求出k 的最小值.模块检测题答题纸得分:一、选择题二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.模块检测题参考答案1.B解析:由题意知SM=20,∠SNM=105°,∠NMS=45°,∴∠MSN=30°.在△MNS中,利用正弦定理可得,20, sin30sin105 MN=︒︒则()12021062,264MN ⨯==-+∴ 货轮航行的速度v =()()1062206212-=-(海里/时).点评:本题主要考查了正弦定理在解三角形中的应用,解决实际问题的关键是要把实际问题转化为数学问题,然后利用数学知识进行求解.2.B 解析:依题意可知AB =BP =600,BC =CP =200√3,∴ cos 2θ=2223.22BC BP PC BC BP +-=⋅ ∴ 2θ=30°,θ=15°, ∴ PD = PC •sin 60°=2003×32=300 m ,故选B. 点评:本题主要考查了解三角形中的实际应用,考查了学生分析问题和 解决问题的能力.3.A 解析:依题意可得图象如图所示, 从塔顶向山体引一条垂线CM ,则AB =BD ⋅tan 60°,AM =CM ⋅tan 30°,BD = CM , ∴ AM =tan 30tan 60AB⨯︒︒=, ∴ 塔高 CD =200﹣=m ,故选A.点评:本题主要考查构造三角形求解实际问题,属基础题.4.A 解析:假设经过x 小时两船相距最近,甲、乙分别行至C ,D , 可知BC =10﹣4x ,BD =6x ,∠CBD =120°,CD 2=BC 2+BD 2﹣2BC BD cos ∠CBD =(10﹣4x )2+36x 2-2(10﹣4x )6x 12⎛⎫- ⎪⎝⎭=28x 2﹣20x +100, 当x =514小时,即1507分钟时距离最小,故选A. 点评:本题主要考查余弦定理的应用,关键在于画出图象,属基础题.5.B 解析:由题意得x (3x +3)=(2x +2)2,解得x =-1或x =-4.当x =-1时,2x +2=0,故舍去,所以q =3x+32x+2=32,所以-13 12=−4×(32)n−1,所以n =4.6.B 解析:设等差数列为{a n },公差为d ,则a 3=-4,a 7=4,所以d =2,所以 t an A =2.设等比数列为{b n },公比为q ,则b 3=13,b 6=9,所以q =3,所以 tan B =3, 所以tan tan()1C A B =-+=,所以,,A B C 都是锐角,即此三角形为锐角三角形. 7.B 解析:313231031210log log log log ()a a a a a a +++=5103563log ()log (3)10a a ===.8.A 解析:因为a+b =cd =4,由基本不等式得a+b ≥2ab ,故ab ≤4.又cd ≤2()4c d +,故c+d ≥4,所以ab ≤c+d ,当且仅当a =b =c =d =2时,等号成立.故选A.9. B 解析:作出可行域如图中阴影部分,可知在可行域内的整点有(-2,0),(-1,0),(0,0),(1,0),(2,0),(-1,1),(0,1),(1,1),(0,2),分别代入z =2x +y 可知当x =2,y =0时,z 最大为4.10.B 解析:当n =1时,a 1=S 1=12-2×1+3=2;当n =2时,由S 2=a 1+a 2=22-2×2+3=3,得a 2=1;当n =3时,由S 3=a 1+a 2+a 3=32-2×3+3=6,得a 3=3.11.C 解析:由S 5=S 11 得2a 1+15d =0.又a 1>0,所以d <0.而2a n =2a 1+2(n -1)d =(2n -17)d <0,所以2n -17>0,即n >8.5. 12.C 解析:41252==a a ,,∴.21,41==q a ∴=++++13221n n a a a a a a )41(332n --. 13.)2(:1:4- 解析:22222,2,(2),540a c b c b a ab c b a a ab b +==-==--+=,又,4,2a b a b c b ≠∴==-. 14.等腰三角形 解析一:∵ 在△ABC 中,A +B +C =π, 即C =π-(A +B ),∴ sin C =sin(A +B ).由2sin A cos B =sin C ,得2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =0,即sin(A -B )=0.又∵ -π<A -B <π,∴ A -B =0,即A =B.∴ △ABC 是等腰三角形. 解析二:利用正弦定理和余弦定理.2sin A cos B =sin C 可化为2a ·2222a +c -b ac=c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0,a 2=b 2,故a =b .∴ △ABC 是等腰三角形.15.-3 解析:由不等式的解集为{x |x <-1或x >4}可得-1,4是方程x 2+(a +1)x +ab =0的两根, ∴ {−1+4=−(a +1),−1×4=ab ,解得{a =−4,b =1.∴ a +b =-3.16.40 解析:设长x 米,宽y 米,∴ 6x +10y ≤100,即3x +5y ≤50.∵ 50≥3x +5y ≥2√3x ·5y ,当且仅当3x =5y 时等号成立,又∵ x ,y 为正整数,∴ 只有当3x =24,5y =25时面积最大,此时面积xy =40平方米. 17. 解法一:设该扇形的半径为r 米. 由题意,得 CD =500(米),DA =300(米),∠CDO =60︒, 在CDO ∆中,2222cos 60,CD OD CD OD OC +-︒= 即()()22215003002500300,2r r r +--⨯⨯-⨯= 解得490044511r =≈(米). 解法二:连接AC ,作OH ⊥AC ,交AC 于点H ,由题意,得CD =500(米),AD =300(米),120,CDA ∠=︒∴AC =700(米),22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅∴ 4900445cos 11AH OA HAO ==≈∠(米).点评:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解. 18. 解:由于不等式kx+a +x+bx+c <0的解集为(-2,-1)∪(2,3), 则方程k x+a +x+bx+c =0的根分别为-2,-1,2,3.由kxax−1 + bx−1cx−1<0,得ka−1x+b−1x c−1x<0,因此方程ka− 1x+b−1x c−1x=0的根为12,1,(- 12,- 13.)所以不等式kxax−1+bx−1cx−1<0的解集为(- 12,- 13)∪(12,1). 19. 解:由题意可画表格如下:方木料(m 3) 五合板(m 2)利润(元)书桌(张) 0.1 2 80 书橱(个)0.21120(1)设只生产书桌x 张,可获得利润z 元,则{0.1x ≤90,2x ≤600⟹{x ≤900,x ≤300⟹x ≤300.又z =80x ,所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张,可获得利润24000元.(2)设只生产书橱y 个,可获利润z 元,则{0.2y ≤90,1·y ≤600⟹{y ≤450,y ≤600⟹y ≤450.又z =120y ,所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个,可获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元, 则{0.1x +0.2y ≤90,2x +y ≤600,x ≥0且x ∈Z ,y ≥0且y ∈Z⟹{x +2y ≤900,2x +y ≤600,x ≥0且x ∈Z ,y ≥0且y ∈Z.z =80x +120y .在平面直角坐标内作出上面不等式组所表示的平面区域,即可行域如图阴影部分.作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值. 由{x +2y =900,2x +y =600解得点M 的坐标为(100,400),所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所获利润最大. .20.解:(1)设{a n }的公比为q ,由a 5=a 1q 4,得q =4,所以a n =4n−1.设{b n }的公差为d ,由5S 5=2S 8及b 1=2得d =3, 所以b n =b 1+(n -1)d =3n -1.(2)因为T n =1×2+4×5+42×8+…+4n−1(3n -1),① 4T n =4×2+42×5+…+4n (3n -1),②由②-①,得3T n =-2-3(4+42+…+4n−1)+4n (3n -1)=2+(3n -2)·4n . 所以T n =(n -23)·4n +23.21.(1)解: ∵ a n+1=2a n +1(n ∈+N ),∴1+1=2+1n n a a +(),即1+1=2+1n n a a +, {}1n a ∴+是以112a +=为首项,2为公比的等比数列. 12.n n a ∴+=即a n =2n -1(n ∈+N ).(2)证明:12(...)42.n n b b b n nb +++-∴= 122[(...)],n n b b b n nb ∴+++-=① 12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+② ②-①,得 112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+=③21(1)20.n n nb n b ++-++=④④-③,得2120,n n n nb nb nb ++-+=即2120,n n n b b b ++-+=b n+2−b n+1=b n+1−b n (n ∈N ∗), 故{b n }是等差数列.22.解:(1)因为点P n (n ,S n )(n ∈N +)均在函数y =f (x )的图象上,所以S n =-2n 2+22n . 当n =1时,a 1=S 1=20;当n ≥2时,a n =S n -S n−1=-4n +24.S 1=20符合题意. 所以a n =-4n +24(n ∈N +).(2)存在k∈N+,使得S11+S22+…+S nn<k对任意n∈N+恒成立,只需k>(S11+S22+⋯+S nn)max,由(1)知S n=-2n2+22n,所以S nn=-2n+22=2(11-n).当n<11时,S nn >0;当n=11时,S nn=0;当n>11时,S nn<0.所以当n=10或n=11时,S11+S22+…+S nn有最大值是110.所以k>110.又因为k∈N+,所以k的最小值为111.。
人教a版高中数学必修5全册同步测控知能训练题集含答案
人教A高中数学必修5 知能优化训练1.在△ABC 中,A =60°,a =43,b =42,则( ) A .B =45°或135° B .B =135° C .B =45° D .以上答案都不对解析:选C.sin B =22,∵a >b ,∴B =45°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2解析:选D.由正弦定理6sin 120°=2sin C ⇒sin C =12,于是C =30°⇒A =30°⇒a =c = 2.3.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =__________.解析:在△ABC 中,若tan A =13,C =150°,∴A 为锐角,sin A =110,BC =1,则根据正弦定理知AB =BC ·sin C sin A =102.答案:1024.已知△ABC 中,AD 是∠BAC 的平分线,交对边BC 于D ,求证:BD DC =ABAC.证明:如图所示,设∠ADB =θ, 则∠ADC =π-θ.在△ABD 中,由正弦定理得:BD sinA 2=AB sin θ,即BDAB =sin A 2sin θ;① 在△ACD 中,CD sinA 2=ACsin (π-θ),∴CDAC =sin A 2sin θ.② 由①②得BD AB =CDAC,∴BD DC =AB AC.一、选择题1.在△ABC 中,a =5,b =3,C =120°,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.57解析:选A.根据正弦定理得sin A sin B =a b =53.2.在△ABC 中,若sin A a =cos Cc,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B.∵sin A a =cos C c ,∴sin A cos C =ac ,又由正弦定理a c =sin Asin C.∴cos C =sin C ,即C =45°,故选B.3.(2010年高考湖北卷)在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223C .-63 D.63解析:选D.由正弦定理得15sin 60°=10sin B ,∴sin B =10·sin 60°15=10×3215=33.∵a >b ,A =60°,∴B 为锐角. ∴cos B =1-sin 2B =1-(33)2=63. 4.在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:选B.由题意有a sin A =b =bsin B ,则sin B =1,即角B 为直角,故△ABC 是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c=( )A .1B .2 C.3-1 D. 3解析:选B.由正弦定理a sin A =b sin B ,可得3sin π3=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°.故C =90°,由勾股定理得c =2.6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( ) A .两解 B .一解C .无解D .无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解. 二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________.解析:AB =sin Csin ABC =2BC =2 5.答案:2 58.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________. 解析:A =180°-30°-120°=30°, 由正弦定理得:a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3. 答案:1∶1∶ 39.(2010年高考北京卷)在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.解析:由正弦定理,有3sin 2π3=1sin B ,∴sin B =12.∵∠C 为钝角,∴∠B 必为锐角,∴∠B =π6,∴∠A =π6.∴a =b =1. 答案:1 三、解答题10.在△ABC 中,已知sin A ∶sin B ∶sin C =4∶5∶6,且a +b +c =30,求a .解:∵sin A ∶sin B ∶sin C =a 2R ∶b 2R ∶c2R =a ∶b ∶c ,∴a ∶b ∶c =4∶5∶6.∴a =30×415=8.11.在△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c .已知a =5,b =2,B =120°,解此三角形.解:法一:根据正弦定理a sin A =b sin B ,得sin A =a sin Bb =5×322=534>1.所以A 不存在,即此三角形无解.法二:因为a =5,b =2,B =120°,所以A >B =120°.所以A +B >240°,这与A +B +C =180°矛盾.所以此三角形无解.法三:因为a =5,b =2,B =120°,所以a sin B =5sin 120°=532,所以b <a sin B .又因为若三角形存在,则b sin A =a sin B ,得b >a sin B ,所以此三角形无解.12.在△ABC 中,a cos(π2-A )=b cos(π2-B ),判断△ABC 的形状.解:法一:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形.法二:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得: 2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.1.在△ABC 中,已知a =4,b =6,C =120°,则边c 的值是( ) A .8 B .217 C .6 2 D .219解析:选D.根据余弦定理,c 2=a 2+b 2-2ab cos C =16+36-2×4×6cos 120°=76,c =219.2.在△ABC 中,已知a =2,b =3,C =120°,则sin A 的值为( )A.5719B.217C.338 D .-5719解析:选A.c 2=a 2+b 2-2ab cos C =22+32-2×2×3×cos 120°=19. ∴c =19.由a sin A =c sin C 得sin A =5719. 3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________. 解析:设底边边长为a ,则由题意知等腰三角形的腰长为2a ,故顶角的余弦值为4a 2+4a 2-a 22·2a ·2a =78.答案:784.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解:法一:根据余弦定理得 b 2=a 2+c 2-2ac cos B . ∵B =60°,2b =a +c ,∴(a +c 2)2=a 2+c 2-2ac cos 60°,整理得(a -c )2=0,∴a =c . ∴△ABC 是正三角形. 法二:根据正弦定理,2b =a +c 可转化为2sin B =sin A +sin C . 又∵B =60°,∴A +C =120°, ∴C =120°-A ,∴2sin 60°=sin A +sin(120°-A ), 整理得sin(A +30°)=1, ∴A =60°,C =60°. ∴△ABC 是正三角形.课时训练一、选择题1.在△ABC 中,符合余弦定理的是( ) A .c 2=a 2+b 2-2ab cos C B .c 2=a 2-b 2-2bc cos A C .b 2=a 2-c 2-2bc cos AD .cos C =a 2+b 2+c 22ab解析:选A.注意余弦定理形式,特别是正负号问题. 2.(2011年合肥检测)在△ABC 中,若a =10,b =24,c =26,则最大角的余弦值是( ) A.1213 B.513C .0 D.23解析:选C.∵c >b >a ,∴c 所对的角C 为最大角,由余弦定理得cos C =a 2+b 2-c 22ab=0.3.已知△ABC 的三边分别为2,3,4,则此三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定 解析:选B.∵42=16>22+32=13,∴边长为4的边所对的角是钝角,∴△ABC 是钝角三角形.4.在△ABC 中,已知a 2=b 2+bc +c 2,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3解析:选C.由已知得b 2+c 2-a 2=-bc , ∴cos A =b 2+c 2-a 22bc =-12,又∵0<A <π,∴A =2π3,故选C.5.在△ABC 中,下列关系式 ①a sin B =b sin A ②a =b cos C +c cos B ③a 2+b 2-c 2=2ab cos C ④b =c sin A +a sin C 一定成立的有( ) A .1个 B .2个 C .3个D .4个解析:选C.由正、余弦定理知①③一定成立.对于②由正弦定理知sin A =sin B cos C +sin C cos B =sin(B +C ),显然成立.对于④由正弦定理sin B =sin C sin A +sin A sin C =2sin A sin C ,则不一定成立.6.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( )A.14B.34C.24D.23解析:选B.∵b 2=ac ,c =2a , ∴b 2=2a 2,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a=34. 二、填空题7.在△ABC 中,若A =120°,AB =5,BC =7,则AC =________. 解析:由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即49=25+AC 2-2×5×AC ×(-12),AC 2+5AC -24=0.∴AC =3或AC =-8(舍去). 答案:38.已知三角形的两边分别为4和5,它们的夹角的余弦值是方程2x 2+3x -2=0的根,则第三边长是________.解析:解方程可得该夹角的余弦值为12,由余弦定理得:42+52-2×4×5×12=21,∴第三边长是21.答案:219.在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则B 的大小是________. 解析:由正弦定理,得a ∶b ∶c =sin A ∶sin B ∶sin C =5∶7∶8. 不妨设a =5k ,b =7k ,c =8k ,则cos B =(5k )2+(8k )2-(7k )22×5k ×8k=12,∴B =π3.答案:π3三、解答题10.已知在△ABC 中,cos A =35,a =4,b =3,求角C .解:A 为b ,c 的夹角,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴16=9+c 2-6×35c ,整理得5c 2-18c -35=0.解得c =5或c =-75(舍).由余弦定理得cos C =a 2+b 2-c 22ab =16+9-252×4×3=0,∵0°<C <180°,∴C =90°.11.在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边长,若(a +b +c )(sin A +sin B -sin C )=3a sin B ,求C 的大小.解:由题意可知, (a +b +c )(a +b -c )=3ab , 于是有a 2+2ab +b 2-c 2=3ab , 即a 2+b 2-c 22ab =12,所以cos C =12,所以C =60°.12.在△ABC 中,b =a sin C ,c =a cos B ,试判断△ABC 的形状. 解:由余弦定理知cos B =a 2+c 2-b 22ac ,代入c =a cos B ,得c =a ·a 2+c 2-b 22ac ,∴c 2+b 2=a 2,∴△ABC 是以A 为直角的直角三角形.又∵b =a sin C ,∴b =a ·ca ,∴b =c ,∴△ABC 也是等腰三角形. 综上所述,△ABC 是等腰直角三角形.1.某次测量中,若A 在B 的南偏东40°,则B 在A 的( ) A .北偏西40° B .北偏东50° C .北偏西50° D .南偏西50° 答案:A2.已知A 、B 两地间的距离为10 km ,B 、C 两地间的距离为20 km ,现测得∠ABC =120°,则A 、C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D.由余弦定理可知: AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC . 又∵AB =10,BC =20,∠ABC =120°, ∴AC 2=102+202-2×10×20×cos 120°=700.∴AC =107.3.在一座20 m 高的观测台测得对面一水塔塔顶的仰角为60°,塔底的俯角为45°,观测台底部与塔底在同一地平面,那么这座水塔的高度是________m.解析:h =20+20tan 60°=20(1+3) m. 答案:20(1+3)4.如图,一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°.求此时船与灯塔间的距离.解:BC sin ∠BAC =ACsin ∠ABC,且∠BAC =30°,AC =60, ∠ABC =180°-30°-105°=45°. ∴BC =30 2.即船与灯塔间的距离为30 2 km.一、选择题1.在某次测量中,在A 处测得同一方向的B 点的仰角为60°,C 点的俯角为70°,则∠BAC 等于( )A .10°B .50°C .120°D .130°解析:选D.如图,∠BAC 等于A 观察B 点的仰角与观察C 点的俯角和,即60°+70°=130°.2.一艘船以4 km/h 的速度沿着与水流方向成120°夹角的方向航行,已知河水流速为2 km/h ,则经过 3 h ,该船的实际航程为( )A .215 kmB .6 kmC .221 kmD .8 km解析:选B.v 实=22+42-2×4×2×cos 60°=2 3. ∴实际航程=23×3=6(km).故选B. 3.如图所示,D ,C ,B 在同一地平面的同一直线上,DC =10 m ,从D ,C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高度AB 等于( )A .10 mB .5 3 mC .5(3-1) mD .5(3+1) m解析:选D.在△ADC 中,AD =10·sin 135°sin 15°=10(3+1)(m).在Rt △ABD 中,AB =AD ·sin 30°=5(3+1)(m). 4.(2011年无锡调研)我舰在敌岛A 处南偏西50°的B 处,且AB 距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,则速度大小为( )A .28海里/小时B .14海里/小时C .14 2 海里/小时D .20海里/小时解析:选B.如图,设我舰在C 处追上敌舰,速度为v ,则在△ABC 中,AC =10×2=20(海里),AB =12海里,∠BAC =120°,∴BC 2=AB 2+AC 2-2AB ·AC cos 120°=784, ∴BC =28海里,∴v =14海里/小时.5.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,则B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时解析:选B.设t小时后,B市处于危险区内,则由余弦定理得:(20t)2+402-2×20t×40cos 45°≤302.化简得:4t2-82t+7≤0,∴t1+t2=22,t1·t2=7 4.从而|t1-t2|=(t1+t2)2-4t1t2=1.6.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点测得塔顶的仰角分别为45°、30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是() A.1002米B.400米C.2003米D.500米解析:选D.由题意画出示意图,设高AB=h,在Rt△ABC中,由已知BC=h,在Rt△ABD中,由已知BD=3h,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD·cos∠BCD,得3h2=h2+5002+h·500,解之得h=500(米),故选D.二、填空题7.一树干被台风吹断,折断部分与残存树干成30°角,树干底部与树尖着地处相距5米,则树干原来的高度为________米.答案:10+5 38.如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的__________.解析:由题意可知∠ACB=180°-40°-60°=80°.∵AC=BC,∴∠CAB=∠CBA=50°,从而所求为北偏西10°.答案:北偏西10°9.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107 海里,20分钟后测得海盗船距观测站20海里,再过________分钟,海盗船即可到达商船.解析:如图,设开始时观测站、商船、海盗船分别位于A、B、C处,20分钟后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD=400+900-7002×20×30=12.∴∠ACD =60°,在△ABD 中由已知得∠ABD =30°. ∠BAD =60°-30°=30°, ∴BD =AD =20,2090×60=403(分钟).答案:403三、解答题10.如图,A 、B 两点都在河的对岸(不可到达),在河岸边选定两点C 、D ,测得CD =1000米,∠ACB =30°,∠BCD =30°,∠BDA =30°,∠ADC =60°,求AB 的长.解:由题意知△ACD 为正三角形, 所以AC =CD =1000米. 在△BCD 中,∠BDC =90°,所以BC =CD cos ∠BCD =1000cos 30°=200033米.在△ACB 中,AB 2=AC 2+BC 2-2AC ·BC ·cos 30° =10002+200023-2×1000×200033×32=10002×13,所以AB =100033米.11.如图,地面上有一旗杆OP ,为了测得它的高度,在地面上选一基线AB ,测得AB =20 m ,在A 处测得点P 的仰角为30°,在B 处测得点P 的仰角为45°,同时可测得∠AOB =60°,求旗杆的高度(结果保留1位小数).解:设旗杆的高度为h ,由题意,知∠OAP =30°,∠OBP =45°.在Rt △AOP 中,OA =OPtan 30°=3h .在Rt △BOP 中,OB =OPtan 45°=h .在△AOB 中,由余弦定理,得AB 2=OA 2+OB 2-2OA ·OB cos 60°,即202=(3h )2+h 2-23h ×h ×12.解得h 2=4004-3≈176.4.∴h ≈13(m).∴旗杆的高度约为13 m.12.一商船行至索马里海域时,遭到海盗的追击,随即发出求救信号.正在该海域执行护航任务的海军“黄山”舰在A 处获悉后,即测出该商船在方位角为45°距离10海里的C 处,并沿方位角为105°的方向,以9海里/时的速度航行.“黄山”舰立即以21海里/时的速度前去营救.求“黄山”舰靠近商船所需要的最少时间及所经过的路程.解:如图所示,若“黄山”舰以最少时间在B 处追上商船,则A ,B ,C 构成一个三角形.设所需时间为t 小时, 则AB =21t ,BC =9t .又已知AC =10,依题意知,∠ACB =120°, 根据余弦定理,AB 2=AC 2+BC 2-2·AC ·BC cos ∠ACB . ∴(21t )2=102+(9t )2-2×10×9t cos 120°, ∴(21t )2=100+81t 2+90t , 即360t 2-90t -100=0.∴t =23或t =-512(舍).∴AB =21×23=14(海里).即“黄山”舰需要用23小时靠近商船,共航行14海里.1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32 C. 3 D .2 3解析:选B.S △ABC =12AB ·AC ·sin A =sin 60°=32.2.已知△ABC 的面积为32,且b =2,c =3,则( )A .A =30°B .A =60°C .A =30°或150°D .A =60°或120°解析:选D.∵S =12bc sin A =32,∴12×2×3sin A =32.∴sin A =32.∴A =60°或120°.3.在△ABC 中,AC =5,AB =2,cos A =255,则S △ABC =________.解析:在△ABC 中,cos A =255,∴sin A =55,∴S △ABC =12AB ·AC ·sin A =12×5×2×55=22.答案:224.在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB . 解:在△ADC 中,cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=1114.又0°<C <180°,∴sin C =5314.在△ABC 中,AC sin B =ABsin C ,∴AB =sin C sin B AC =5314×2×7=562.一、选择题1.在△ABC 中,a 2=b 2+c 2-bc ,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3解析:选A.∵a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =12,即A =π3.2.在△ABC ,下列关系一定成立的是( ) A .a <b sin A B .a =b sin A C .a >b sin A D .a ≥b sin A解析:选D.由正弦定理知a sin A =b sin B ,∴sin B =ba sin A .又∵在△ABC 中,0<sin B ≤1,∴0<ba sin A ≤1,∴a ≥b sin A .故选D.3.已知△ABC 的三个内角之比为A ∶B ∶C =3∶2∶1,那么对应三边之比a ∶b ∶c 等于( )A .3∶2∶1 B.3∶2∶1 C.3∶2∶1 D .2∶3∶1解析:选D.由已知得A =90°,B =60°,C =30°.又由正弦定理得a ∶b ∶c =sin A ∶sin B ∶sin C =1∶32∶12=2∶3∶1.故选D. 4.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152B.15C .2D .3 解析:选A.b 2-bc -2c 2=0, ∴(b -2c )(b +c )=0. ∴b =2c .由a 2=b 2+c 2-2bc cos A , 解得c =2,b =4,∵cos A =78,∴sin A =158,∴S △ABC =12bc sin A =12×2×4×158=152.5.三角形两边长之差为2,其夹角的余弦值为35,面积为14,那么这个三角形的两边长分别是( )A .3和5B .4和6C .6和8D .5和7解析:选D.设a -b =2,∵cos C =35,∴sin C =45.又S △ABC =12ab sin C ,∴ab =35.由a -b =2和ab =35,解得a =7,b =5.6.在△ABC 中,a =1,B =45°,S △ABC =2,则此三角形的外接圆的半径R =( ) A.12B .1C .2 2D.522解析:选D.S △ABC =12ac sin B =24c =2,∴c =4 2.b 2=a 2+c 2-2ac cos B =1+32-82×22=25,∴b =5.∴R =b 2sin B =52×22=522.二、填空题7.在△ABC 中,已知a =7,b =5,c =3,则△ABC 是________三角形.解析:法一:∵72>52+32,即a 2>b 2+c 2, ∴△ABC 是钝角三角形. 法二:∵cos A =52+32-722×5×3<0,∴△ABC 是钝角三角形. 答案:钝角8.(2011年江南十校联考)在△ABC 中,A =30°,AB =2,BC =1,则△ABC 的面积等于________.解析:由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos 30°, ∴AC 2-23AC +3=0.∴AC = 3.∴S △ABC =12AB ·AC sin 30°=12×2×3×12=32.答案:329.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的长为________. 解析:由S △ABC =32,得12AB ·AC sin A =32, 即12×2AC ×32=32,∴AC =1,由余弦定理得 BC 2=AB 2+AC 2-2AB ·AC ·cos A=22+12-2×2×1×12=3.∴BC = 3.答案: 3 三、解答题10.在△ABC 中,已知a =2b cos C ,求证:△ABC 为等腰三角形.证明:由余弦定理,得cos C =a 2+b 2-c 22ab .又cos C =a2b ,∴a 2+b 2-c 22ab =a 2b .整理得b 2=c 2.∴b =c .∴△ABC 是等腰三角形.11.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,又c =21,b =4,且BC边上的高h =2 3.(1)求角C ;(2)求a 边的长.解:(1)由于△ABC 为锐角三角形,过A 作AD ⊥BC 于D 点, sin C =234=32,则C =60°.(2)由余弦定理可知c 2=a 2+b 2-2ab cos C ,则(21)2=a 2+42-2×a ×4×12,即a 2-4a -5=0.所以a =5或a =-1(舍). 因此a 边的长为5.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A =35,A B →·A C →=3.(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解:(1)因为cos A =35,所以sin A =45.又由A B →·A C →=3,得bc cos A =3, 所以bc =5.因此S △ABC =12bc sin A =2.(2)由(1)知,bc =5, 又b +c =6,所以b =5,c =1或b =1,c =5. 由余弦定理,得a 2=b 2+c 2-2bc cos A =20, 所以a =2 5.1.数列1,12,14,…,12n,…是( )A .递增数列B .递减数列C .常数列D .摆动数列 答案:B2.已知数列{a n }的通项公式a n =12[1+(-1)n +1],则该数列的前4项依次是( )A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0 答案:A3.数列{a n }的通项公式a n =cn +d n ,又知a 2=32,a 4=154,则a 10=__________.答案:99104.已知数列{a n }的通项公式a n =2n 2+n.(1)求a 8、a 10.(2)问:110是不是它的项?若是,为第几项?解:(1)a 8=282+8=136,a 10=2102+10=155.(2)令a n =2n 2+n =110,∴n 2+n =20.解得n =4.∴110是数列的第4项.一、选择题1.已知数列{a n }中,a n =n 2+n ,则a 3等于( ) A .3 B .9 C .12 D .20 答案:C2.下列数列中,既是递增数列又是无穷数列的是( )A .1,12,13,14,…B .-1,-2,-3,-4,…C .-1,-12,-14,-18,…D .1,2,3,…,n解析:选C.对于A ,a n =1n,n ∈N *,它是无穷递减数列;对于B ,a n =-n ,n ∈N *,它也是无穷递减数列;D 是有穷数列;对于C ,a n =-(12)n -1,它是无穷递增数列.3.下列说法不正确的是( )A .根据通项公式可以求出数列的任何一项B .任何数列都有通项公式C .一个数列可能有几个不同形式的通项公式D .有些数列可能不存在最大项解析:选B.不是所有的数列都有通项公式,如0,1,2,1,0,….4.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.2223解析:选C.由题意知数列的通项公式是a n =2n2n +1,∴a 10=2×102×10+1=2021.故选C.5.已知非零数列{a n }的递推公式为a n =nn -1·a n -1(n >1),则a 4=( )A .3a 1B .2a 1C .4a 1D .1解析:选C.依次对递推公式中的n 赋值,当n =2时,a 2=2a 1;当n =3时,a 3=32a 2=3a 1;当n =4时,a 4=43a 3=4a 1.6.(2011年浙江乐嘉调研)已知数列{a n }满足a 1>0,且a n +1=12a n ,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列解析:选B.由a 1>0,且a n +1=12a n ,则a n >0.又a n +1a n =12<1,∴a n +1<a n . 因此数列{a n }为递减数列. 二、填空题7.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为__________.解析:由a n =19-2n >0,得n <192,∵n ∈N *,∴n ≤9.答案:9 8.已知数列{a n }满足a 1=2,a 2=5,a 3=23,且a n +1=αa n +β,则α、β的值分别为________、________.解析:由题意a n +1=αa n +β,得⎩⎪⎨⎪⎧ a 2=αa 1+βa 3=αa 2+β⇒⎩⎪⎨⎪⎧ 5=2α+β23=5α+β⇒⎩⎪⎨⎪⎧α=6,β=-7.答案:6 -79.已知{a n }满足a n =(-1)n a n -1+1(n ≥2),a 7=47,则a 5=________.解析:a 7=-1a 6+1,a 6=1a 5+1,∴a 5=34.答案:34三、解答题10.写出数列1,23,35,47,…的一个通项公式,并判断它的增减性.解:数列的一个通项公式a n =n2n -1.又∵a n +1-a n =n +12n +1-n2n -1=-1(2n +1)(2n -1)<0,∴a n +1<a n .∴{a n }是递减数列.11.在数列{a n }中,a 1=3,a 17=67,通项公式是关于n 的一次函数. (1)求数列{a n }的通项公式; (2)求a 2011;(3)2011是否为数列{a n }中的项?若是,为第几项?解:(1)设a n =kn +b (k ≠0),则有⎩⎪⎨⎪⎧k +b =3,17k +b =67,解得k =4,b =-1.∴a n =4n -1. (2)a 2011=4×2011-1=8043.(3)令2011=4n -1,解得n =503∈N *, ∴2011是数列{a n }的第503项.12.数列{a n }的通项公式为a n =30+n -n 2. (1)问-60是否是{a n }中的一项?(2)当n 分别取何值时,a n =0,a n >0,a n <0?解:(1)假设-60是{a n }中的一项,则-60=30+n -n 2. 解得n =10或n =-9(舍去). ∴-60是{a n }的第10项.(2)分别令30+n -n 2=0;>0;<0, 解得n =6;0<n <6;n >6, 即n =6时,a n =0; 0<n <6时,a n >0; n >6时,a n <0.1.已知等差数列{a n }的首项a 1=1,公差d =2,则a 4等于( ) A .5 B .6 C .7 D .9 答案:C2.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项公式a n =( ) A .2n +1 B .2n -1 C .2n D .2(n -1) 答案:B3.△ABC 三个内角A 、B 、C 成等差数列,则B =__________. 解析:∵A 、B 、C 成等差数列,∴2B =A +C . 又A +B +C =180°,∴3B =180°,∴B =60°. 答案:60°4.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9.解:(1)由题意,知⎩⎪⎨⎪⎧a 1+(5-1)d =-1,a 1+(8-1)d =2.解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)由题意,知⎩⎪⎨⎪⎧a 1+a 1+(6-1)d =12,a 1+(4-1)d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a 9=a 1+(9-1)d =1+8×2=17.一、选择题1.在等差数列{a n }中,a 1=21,a 7=18,则公差d =( ) A.12 B.13C .-12D .-13解析:选C.∵a 7=a 1+(7-1)d =21+6d =18,∴d =-12.2.在等差数列{a n }中,a 2=5,a 6=17,则a 14=( ) A .45 B .41 C .39 D .37解析:选B.a 6=a 2+(6-2)d =5+4d =17,解得d =3.所以a 14=a 2+(14-2)d =5+12×3=41.3.已知数列{a n }对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列 D .非等差数列解析:选A.a n =2n +1,∴a n +1-a n =2,应选A. 4.已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( ) A .2 B .3 C .6 D .9解析:选B.由题意得⎩⎪⎨⎪⎧m +2n =82m +n =10,∴m +n =6,∴m 、n 的等差中项为3.5.下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,… ④110,210,310,410,… A .1个 B .2个 C .3个 D .4个解析:选C.利用等差数列的定义验证可知①、③、④是等差数列.6.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为( )A .4B .5C .6D .7解析:选B.a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6,令a n =b n 得3n -1=4n -6,∴n =5. 二、填空题7.已知等差数列{a n },a n =4n -3,则首项a 1为__________,公差d 为__________. 解析:由a n =4n -3,知a 1=4×1-3=1,d =a 2-a 1=(4×2-3)-1=4,所以等差数列{a n }的首项a 1=1,公差d =4.答案:1 48.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=__________.解析:设等差数列的公差为d ,首项为a 1,则a 3=a 1+2d =7;a 5-a 2=3d =6.∴d =2,a 1=3.∴a 6=a 1+5d =13.答案:139.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________.解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4,∴数列{a 2n }是公差为4的等差数列,∴a 2n =a 21+(n -1)·4=4n -3. ∵a n >0,∴a n =4n -3.答案:4n -3 三、解答题10.在等差数列{a n }中,已知a 5=10,a 12=31,求它的通项公式. 解:由a n =a 1+(n -1)d 得⎩⎪⎨⎪⎧ 10=a 1+4d 31=a 1+11d ,解得⎩⎪⎨⎪⎧a 1=-2d =3. ∴等差数列的通项公式为a n =3n -5.11.已知等差数列{a n }中,a 1<a 2<a 3<…<a n 且a 3,a 6为方程x 2-10x +16=0的两个实根.(1)求此数列{a n }的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a 3=2,a 6=8.又∵{a n }为等差数列,设首项为a 1,公差为d ,∴⎩⎪⎨⎪⎧ a 1+2d =2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-2d =2. ∴a n =-2+(n -1)×2 =2n -4(n ∈N *).∴数列{a n }的通项公式为a n =2n -4. (2)令268=2n -4(n ∈N *),解得n =136.∴268是此数列的第136项.12.已知(1,1),(3,5)是等差数列{a n }图象上的两点. (1)求这个数列的通项公式; (2)画出这个数列的图象; (3)判断这个数列的单调性.解:(1)由于(1,1),(3,5)是等差数列{a n }图象上的两点,所以a 1=1,a 3=5,由于a 3=a 1+2d =1+2d =5,解得d =2,于是a n =2n -1.(2)图象是直线y =2x -1上一些等间隔的点(如图).(3)因为一次函数y =2x -1是增函数, 所以数列{a n }是递增数列.1.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A .4 B .5 C .6 D .7解析:选C.由等差数列性质得a 2+a 8=2a 5=12,所以a 5=6.2.等差数列{a n }的公差为d ,则数列{ca n }(c 为常数且c ≠0)( ) A .是公差为d 的等差数列 B .是公差为cd 的等差数列 C .不是等差数列 D .以上都不对 答案:B3.在等差数列{a n }中,a 10=10,a 20=20,则a 30=________. 解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30.法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:304.已知三个数成等差数列,其和为15,首、末两项的积为9,求这三个数. 解:由题意,可设这三个数分别为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧(a -d )+a +(a +d )=15,(a -d )(a +d )=9, 解得⎩⎪⎨⎪⎧ a =5d =4或⎩⎪⎨⎪⎧a =5,d =-4.所以,当d =4时,这三个数为1,5,9; 当d =-4时,这三个数为9,5,1.一、选择题1.下列命题中,为真命题的是( )A .若{a n }是等差数列,则{|a n |}也是等差数列B .若{|a n |}是等差数列,则{a n }也是等差数列C .若存在自然数n 使2a n +1=a n +a n +2,则{a n }是等差数列D .若{a n }是等差数列,则对任意n ∈N *都有2a n +1=a n +a n +2 答案:D2.等差数列{a n }中,前三项依次为1x +1,56x ,1x,则a 101=( )A .5013B .1323C .24D .823解析:选D.∵53x =1x +1x +1,∴x =2.∴首项a 1=1x +1=13,d =12(12-13)=112.∴a 101=823,故选D.3.若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( ) A .24 B .27 C .30 D .33解析:选D.经观察发现(a 2+a 5)-(a 1+a 4)=(a 3+a 6)-(a 2+a 5)=2d =39-45=-6,所以a 3+a 6=a 2+a 5-6=39-6=33.4.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 解析:选C.设等差数列{a n }的公差为d , 则由等差数列的性质得5a 8=120,∴a 8=24,a 9-13a 11=3a 9-a 113=2a 9+(a 9-a 11)3=2(a 9-d )3=2a 83=2×243=16.5.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100 D .-37 解析:选C.设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2.∴{a n +b n }为等差数列.又∵a 1+b 1=a 2+b 2=100,∴a 37+b 37=100.6.首项为-24的等差数列从第10项起开始为正数,则公差d 的取值范围是( )A .d >83 B .d <3C.83≤d <3D.83<d ≤3 解析:选D.设等差数列为{a n },首项a 1=-24,则a 9≤0⇒a 1+8d ≤0⇒-24+8d ≤0⇒d ≤3,a 10>0⇒a 1+9d >0⇒-24+9d >0⇒d >83.∴83<d ≤3. 二、填空题7.已知{a n }为等差数列,a 3+a 8=22,a 6=7,则a 5=________.解析:由于{a n }为等差数列,故a 3+a 8=a 5+a 6,故a 5=a 3+a 8-a 6=22-7=15. 答案:158.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=________.解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m . 答案:2n -m9.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________. 解析:法一:因为{a n }为等差数列, 所以a 15,a 30,a 45,a 60,a 75也成等差数列, 设其公差为d ,a 15为首项,则a 60为其第四项, 所以a 60=a 15+3d ,得d =4. 所以a 75=a 60+d ⇒a 75=24.法二:因为a 15=a 1+14d ,a 60=a 1+59d ,所以⎩⎪⎨⎪⎧a 1+14d =8a 1+59d =20,解得⎩⎨⎧a 1=6415d =415.故a 75=a 1+74d =6415+74×415=24.答案:24 三、解答题10.已知正数a ,b ,c 组成等差数列,且公差不为零,那么由它们的倒数所组成的数列1a ,1b ,1c能否成为等差数列? 解:由已知,得a ≠b 且b ≠c 且c ≠a ,且2b =a +c ,a >0,b >0,c >0.因为2b -(1a +1c )=2b -a +c ac =2ac -2b 2abc =2ac -(a +c )22abc =-(a -c )22abc <0,所以2b ≠1a +1c. 所以1a ,1b ,1c不能成为等差数列.11.已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16. (1)求数列{a n }的通项公式;(2)若从数列{a n }中,依次取出第2项,第4项,第6项,…,第2n 项,按原来顺序组成一个新数列{b n },试求出{b n }的通项公式.解:(1)∵a 1+a 2+a 3=12,∴a 2=4, ∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2, ∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n . 当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4. ∴{b n }是以4为首项,4为公差的等差数列.∴b n =b 1+(n -1)d =4+4(n -1)=4n .12.某单位用分期付款方式为职工购买40套住房,共需1150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%.若交付150万元后的第一个月算分期付款的第一个月,求分期付款的第10个月应付多少钱?最后一次应付多少钱?解:购买时先付150万元,还欠款1000万元.依题意知20次可付清.设每次交付的欠款依次为a 1,a 2,a 3,…,a 20,构成数列{a n },则a 1=50+1000×0.01=60; a 2=50+(1000-50)×0.01=59.5; a 3=50+(1000-50×2)×0.01=59; …a n =50+[1000-50(n -1)]×0.01=60-12(n -1)(1≤n ≤20).所以{a n }是以60为首项,-12为公差的等差数列.则a 10=60-9×12=55.5,a 20=60-19×12=50.5,故第10个月应付55.5万元,最后一次应付50.5万元.1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( ) A .360 B .370 C .380 D .390 答案:C2.已知a 1=1,a 8=6,则S 8等于( ) A .25 B .26 C .27 D .28 答案:D3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.解析:由已知⎩⎪⎨⎪⎧ a 1+5d =123a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n .答案:2n4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5. 解:d =a 7-a 57-5=20-142=3,a 1=a 5-4d =14-12=2, 所以S 5=5(a 1+a 5)2=5(2+14)2=40.一、选择题1.(2011年杭州质检)等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( ) A .12 B .10 C .8 D .6 解析:选C.d =a 3-a 2=2,a 1=-1,S 4=4a 1+4×32×2=8.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .24 B .27 C .29 D .48解析:选C.由已知⎩⎪⎨⎪⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎪⎨⎪⎧a 1=2,d =3.∴a 10=2+9×3=29.3.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48解析:选B.S 10=10(a 1+a 10)2=5(a 2+a 9)=120.∴a 2+a 9=24.4.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( )A .99B .66C .33D .0解析:选B.由a 1+a 2+…+a 98+a 99=99,得99a 1+99×982=99.∴a 1=-48,∴a 3=a 1+2d =-46.又∵{a 3n }是以a 3为首项,以3为公差的等差数列.∴a 3+a 6+a 9+…+a 99=33a 3+33×322×3=33(48-46)=66.5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项解析:选A.∵a 1+a 2+a 3=34,① a n +a n -1+a n -2=146,② 又∵a 1+a n =a 2+a n -1=a 3+a n -2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③ S n =(a 1+a n )·n 2=390.④将③代入④中得n =13.6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B.由等差数列前n 项和的性质知S 偶S 奇=n n +1,即150165=n n +1,∴n =10.二、填空题7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________.解析:由题意得a n +1-a n =2,∴{a n }是一个首项a 1=-7,公差d =2的等差数列.∴a 1+a 2+…+a 17=S 17=17×(-7)+17×162×2=153.答案:1538.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________. 解析:a 4+a 6=a 1+3d +a 1+5d =6.①S 5=5a 1+12×5×(5-1)d =10.②由①②得a 1=1,d =12.答案:129.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:由等差数列的性质知S 9=9a 5=-9,∴a 5=-1. 又∵a 5+a 12=a 1+a 16=-9,∴S 16=16(a 1+a 16)2=8(a 1+a 16)=-72.答案:-72 三、解答题10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *). (1)写出该数列的第3项; (2)判断74是否在该数列中. 解:(1)a 3=S 3-S 2=-18. (2)n =1时,a 1=S 1=-24, n ≥2时,a n =S n -S n -1=2n -24,即a n =⎩⎪⎨⎪⎧-24,n =1,2n -24,n ≥2,由题设得2n -24=74(n ≥2),解得n =49.∴74在该数列中.11.(2010年高考课标全国卷)设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n . (2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2.因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12.已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数; (2)S n =20,S 2n =38,求S 3n .解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67, 所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.所以a 1+a n =884=22.因为S n =n (a 1+a n )2=286,所以n =26.(2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列, 所以S 3n =3(S 2n -S n )=54.1.下列数列是等比数列的是( ) A .1,1,1,1,1B .0,0,0,…C .0,12,14,18,…D .-1,-1,1,-1,…答案:A2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12答案:D3.若等比数列的前三项分别为5,-15,45,则第5项是________. 答案:4054.在等比数列{a n }中,(1)已知a 3=9,a 6=243,求a 5;(2)已知a 1=98,a n =13,q =23,求n .解:(1)∵a 6=a 3q 3,∴q 3=27,∴q =3. ∴a 5=a 6·13=81.(2)∵a n =a 1q n -1,∴13=98·(23)n -1.∴(23)n -1=(23)3,∴n =4.一、选择题1.等比数列{a n }中,a 1=2,q =3,则a n 等于( )A .6B .3×2n -1C .2×3n -1 D .6n 答案:C2.在等比数列{a n }中,若a 2=3,a 5=24,则数列{a n }的通项公式为( ) A.32·2n B.32·2n -2 C .3·2n -2 D .3·2n -1解析:选C.∵q 3=a 5a 2=243=8,∴q =2,而a 1=a 2q =32,∴a n =32×2n -1=3·2n -2.3.等比数列{a n }中,a 1+a 2=8,a 3-a 1=16,则a 3等于( ) A .20 B .18 C .10 D .8 解析:选B.设公比为q (q ≠1),则 a 1+a 2=a 1(1+q )=8,a 3-a 1=a 1(q 2-1)=16,两式相除得:1q -1=12,解得q =3.。
2019-2020学年高中数学人教A版必修5同步作业与测评:综合质量测评(二) Word版含解析
姓名,年级:时间:综合质量测评(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a,b,c分别是△ABC中内角A,B,C的对边,且a=1,b=5,c=2错误!,则△ABC的面积S=( )A.错误!B.2 C.3 D.4答案B解析因为cos C=错误!=错误!,所以sin C=错误!,所以S=错误!ab sin C=2.故选B.2.若a<0,b<0,则p=错误!+错误!与q=a+b的大小关系为( )A.p<q B.p≤q C.p>q D.p≥q答案B解析因为p-q=错误!+错误!-a-b=错误!≤0,所以p≤q.故选B.3.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c成等差数列,则错误!+错误!的值等于( )A.错误!B.错误!C.2 D.1答案C解析用特殊值法,令a=b=c.4.若数列{a n}满足a1=2,a n+1=3a n+2,则{a n}的通项公式为( )A.a n=2n-1 B.a n=3n-1C.a n=22n-1D.a n=6n-4答案B解析∵数列{a n}满足a1=2,a n+1=3a n+2,∴a2=6+2=8=32-1,a3=24+2=26=33-1,a4=78+2=80=34-1,…,a n=3n-1,故数列{a n}的通项公式为a n=3n-1.故选B.5.已知a,b,c为△ABC的三个内角A,B,C的对边,向量m=(错误!,-1),n =(cos A,sin A).若m⊥n,且a cos B+b cos A=c sin C,则角A,B的大小分别为( )A.π6,错误! B.错误!,错误! C.错误!,错误! D.错误!,错误!答案C解析∵错误!cos A-sin A=0,∴A=错误!.∵sin A cos B+sin B cos A=sin2C,即sin A cos B+sin B cos A=sin(A+B)=sin C=sin2C,∴C=π2,∴B=错误!.6.在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+c2+bc-a2=0,则错误!=( )A.-错误! B.错误! C.-错误! D.错误!答案B解析∵b2+c2+bc-a2=0,∴cos A=错误!=-错误!,∴A=120°.由正弦定理可得错误!=错误!=错误!=错误!=错误!=错误!.故选B.7.已知实数m,n满足不等式组错误!则关于x的方程x2-(3m+2n)x+6mn=0的两根之和的最大值和最小值分别是()A.7,-4 B.8,-8C.4,-7 D.6,-6答案A解析两根之和z=3m+2n,画出可行域,当m=1,n=2时,z max=7;当m=0,n =-2时,z min=-4.8.已知a>b>0,c<0,下列不等关系中正确的是()A.ac〉bcB.a c〉b cC.log a(a-c)>log b(b-c)D.aa-c>bb-c答案D解析当a=2,b=1,c=-1时,A,B不成立;设a=错误!,b=错误!,c=-2,则log错误!错误!〈log错误!错误!<log错误!错误!,即log a(a-c)<log b(b-c),C不成立;∵a〉b>0,c〈0,∴ac<bc,∴-ac>-bc,ab-ac>ab-bc,a(b-c)>b(a-c),又(a-c)(b-c)>0,∴aa-c>错误!,D成立,故选D.9.在△ABC中,若A<B<C,A+C=2B,且最大边为最小边的2倍,则A∶B∶C =()A.1∶2∶3 B.2∶3∶4 C.3∶4∶5 D.4∶5∶6答案A解析∵A+C=2B,∴A+B+C=3B=180°,即B=60°.∵A<B<C,且最大边为最小边的2倍,∴c=2a,根据正弦定理得sin C=2sin A,将C=120°-A代入上式得sin(120°-A)=2sin A,整理得错误!cos A=错误!sin A,即tan A=错误!,∴A=30°,C =90°,∴A∶B∶C=1∶2∶3.10.当实数x,y满足错误!时,1≤ax+y≤4恒成立,则实数a的取值范围是() A.1,错误! B.1,错误!C.1,错误! D.1,错误!答案D解析画可行域如下图所示,设目标函数z=ax+y,即y=-ax+z,要使1≤z≤4恒成立,则a〉0,数形结合知,满足错误!即可,解得1≤a≤错误!.所以a的取值范围是1,错误!.11.下表给出一个“直角三角形数阵”:错误!满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i行第j列的数为a ij(i≥j,i,j∈N*),则a83等于( )A.错误! B.错误! C.错误! D.1答案C解析第1列为错误!,错误!=错误!,错误!,…,所以第8行第1个数为错误!,又每一行都成等比数列且公比为错误!,所以a83=错误!×错误!×错误!=错误!.12.已知等差数列{a n}中,a8=错误!,若函数f(x)=sin2x-2cos2错误!,c n=f(a n),则数列{c n}的前15项的和为( )A.0 B.1 C.15 D.-15答案D解析本题考查等差数列、三角函数性质的综合应用.f(x)=sin2x-2cos2错误!=sin2x-2×错误!=sin2x-1-cos x.因为a1+a15=a2+a14=…=2a8=π,所以cos a1+cos a15=cos a2+cos a14=…=cos a8=0.又2a1+2a15=2a2+2a14=…=4a8=2π,所以sin2a1+sin2a15=sin2a2+sin2a14=…=sin2a8=0,于是数列{c n}的前15项和为0-15-0=-15.故选D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.在△ABC中,B=45°,C=60°,c=1,则最短边的边长等于________.解析∵B=45°,C=60°,∴A=180°-B-C=75°.∴最短边为b.由正弦定理,得b=错误!=错误!=错误!.14.一批货物随17列货车从A市以v千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于错误!2千米,那么这批货物全部运到B市,最快需要________小时.答案8解析这批货物从A市全部运到B市的时间为t,则t=错误!=错误!+错误!≥2错误!=8(小时),当且仅当错误!=错误!,即v=100时等号成立,此时t=8小时.15.已知x,y满足约束条件错误!(k为常数且k<0),若目标函数z=x+3y的最大值为8,则k=________.答案-6解析本题考查简单的线性规划.画出可行域如图所示.联立方程错误!解得错误!即点C错误!.由目标函数z=x+3y,得y=-错误!x+错误!,平移直线y=-错误!x,可知当直线经过点C时,z最大,则8=-错误!+3×错误!,解得k=-6.16.设数列{a n}的前n项和为S n,关于数列{a n}有下列四个结论:①若数列{a n}既是等差数列又是等比数列,则S n=na1;②若S n=2n-1,则数列{a n}是等比数列;③若S n=an2+bn(a,b∈R),则数列{a n}是等差数列;④若S n=an(a∈R),则数列{a n}既是等差数列又是等比数列.其中正确结论的序号是________.解析本题主要考查等差数列、等比数列的定义和性质.①若数列{a n}既是等差数列又是等比数列,则对数列中任意相邻三项有2a m+1=a m+a m+2,a2,m+1=a m a m+2,则(a m+a m+2)2=4a m a m+2,得a m=a m+2=a m+1,故a n=a1,S n=na1,①正确;②a1=S1=21-1=1,S2=22-1=2,∴a2=S2-S1=1,a3=S3-S2=22-2=2,11≠错误!,∴数列{a n}不是等比数列,②错误;③∵a1=S1=a+b,当n≥2时,a n=S n-S n-1=an2+bn-a(n-1)2-b(n-1)=2an-a+b,∴数列{a n}是等差数列,③正确;④当a=0时,数列{a n}不是等比数列,④错误.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A =错误!a cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.解(1)由b sin A=错误!a cos B及正弦定理错误!=错误!,得sin B=错误!cos B,所以tan B=3,所以B=错误!.(2)由sin C=2sin A及错误!=错误!,得c=2a.由b=3及余弦定理b2=a2+c2-2ac cos B,得9=a2+c2-ac.所以a=错误!,c=2错误!.18.(本小题满分12分)(1)已知S n为等差数列{a n}的前n项和,S2=S6,a4=1,求a5;(2)在等比数列{b n}中,若b4-b2=24,b2+b3=6,求首项b1和公比q.解(1)设等差数列{a n}的公差为d.由题意得错误!即错误!解得错误!所以a5=a1+4d=7+4×(-2)=-1.(2)由题意得错误!解得错误!19.(本小题满分12分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,若投资人计划投资的金额不超过10万元,并要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元才能使可能的盈利最大?解设投资人分别对甲、乙两个项目投资x万元,y万元,由题意得错误!目标函数为z=x+0.5y.上述不等式组表示的平面区域如图中阴影部分(含边界)所示.作直线l0:x+0.5y=0,并在可行域内平移l0,由图可知,当直线经过可行域上的点M时,z最大,这里点M是直线x+y=10与直线0.3x+0.1y=1.8的交点.解方程组{x+y=10得错误!,0.3x+0。
人教新课标版数学高二必修五练习人教A版必修5综合质量评估(含答案解析)
综合质量评估第一~三章 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如果a<0,b>0,那么,下列不等式中正确的是( )()(()()2211A B C a b D a b a b< < >2.在△ABC 中,∠A=60°,a =b=4,那么满足条件的△ABC ( ) (A)有一个解 (B)有两个解 (C)无解 (D)不能确定3.已知数列{a n }满足a 1=0,a n+1=a n +2n ,那么a 2 012的值是( ) (A)2 0122 (B)2 011×2 010 (C)2 012×2 013 (D)2 011×2 0124.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a,b,c ,2asinAsinB bcos A +=则ba=( ) ()()((A B C D 5.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )()()()()A B 7C 6D6.设a,b, c ∈(-∞,0),则111a ,b ,c bca+++( ) (A)都不大于-2(B)都不小于-2 (C)至少有一个不大于-2 (D)至少有一个不小于-27.在△ABC 中,角A ,B ,C 的对边分别为a,b,c ,若(a 2+c 2-b 2则角B 的值为( )()()()()52A B C D 636633ππππππ 或或 8.已知x>0,y>0,2x+y=2,c=xy,那么c 的最大值为( )()()()()11A 1BCD 2249.在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1-x 2)sinC=0有两个不相等的实根,则A 为( ) (A)锐角 (B)直角 (C)钝角 (D)不能确定10.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )(A)35 (B)33 (C)31 (D)2911.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( )(A)50 (B)25 (C)100 (D)12.已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使等差数列{a n }前n 项和S n 取最大值的正整数n 是( )(A)4或5 (B)5或6 (C)6或7 (D)8或9 二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中的横线上)13.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于__________.14.在△ABC 中,A ,B ,C 分别为a,b,c 三条边的对角,如果b=2a,B=A+60°,那么A=________.15.若负数a,b,c 满足a+b+c=-1,则111a b c++的最大值是__________. 16.不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是_______.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在△ABC 中,角A ,B ,C 成等差数列,并且sinA ·sinC=cos 2B ,三角形的面积ABC S =求三边a,b,c.18.(12分)(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项的和S k =-35,求k 的值.19.(12分)(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a,b,c,已知cosA 2cosC 2c a.cosB b--=(1)求sinCsinA的值; (2)若1cosB ,4=b=2,求△ABC 的面积S.20.(12分)已知f(x)=ax 2+(b-8)x-a-ab,当x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0. (1)求y=f(x)的解析式;(2)c为何值时,ax2+bx+c≤0的解集为R.21.(12分)某公司计划在2012年内同时出售空调机和洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?22.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(1)求a n及S n;(2)令n2n1ba1=-(n∈N*),求数列{b n}的前n项和T n.答案解析1.【解析】选A.如果a<0,b>0,那么110,0,ab<>11,a b∴<故选A. 2.【解析】选C.根据正弦定理得bsinA sinB 1,a ===>故无解.故选C.3.【解析】选D.由已知a n+1-a n =2n,∴a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n-1=2(n-1),以上各式两端分别相加得:()()()n 1n 2 012a a 2123n 1n n 1.a n n 1.a 2 011 2 012.-=++⋯+-=-=-∴=⨯[]即故选D.4.【解析】选D.2asinAsinB bcos A +=2sinAsinAsinB sinBcos A b sinBsinB a sinA∴+=∴=∴==故选D. 5.【解析】选A.18789123a a a q 2.a a a== ()99456123q a a a a a a q ∴===故选A.6.【解题提示】解答本题关键是分析111a b c bca+++++的最大值.【解析】选C.111a b c 6,b c a+++++≤- 三者不能都大于-2.故选C.7.【解析】选D.在△ABC 中,根据b 2=c 2+a 2-2cacosB 得a 2+c 2-b 2=2cacosB ,代入已知得sinB 2∴=2B B ,33ππ∴==或故选D.8.【解析】选B.由已知,22x y =+≥=1c ,2∴≤故选B.9.【解析】选A.4sin 2B-4(sin 2A-sin 2C)>0, 即sin 2B+sin 2C>sin 2A,由正弦定理得b 2+c 2>a 2, 再由余弦定理得cosA>0,所以A 为锐角,故选A. 10.【解析】选C.设公比为q,由题意知2323113647113133311a a a q 2a .5a 2a a q 2a q 2a q 25a q 2a q q 2⎧==⎪⎨+=+=⎪⎩⎧=⎪⎨+=⎪⎩即 解得11q .2a 16⎧=⎪⎨⎪=⎩故55116(1)2S 31 .112⨯-==-故选C.11.【解析】选B.由题可知()3181202031820a a 20a a )S 100,a a 10,22++===∴+=(2318318a a a a ()25.2+∴≤=故选B.12.【解题提示】解答本题的关键是分析出数列{a n }第几项开始有符号发生变化.【解析】选B.由|a 3|=|a 9|得()()()22111n 1a 2d a 8d .a 5d.a a n 1d n 6d,d 0,+=+∴=-=+-=-<()∴当n ≤6时,a n ≥0,当n>6时,a n <0, ∴前5项或前6项的和最大,故选B. 13.【解析】∵a n =2n-49,∴{a n }是等差数列,且首项为-47,公差为2,由()n n 1a 2n 490,a 2n 1490-=->⎧⎪⎨=--≤⎪⎩,解得n=25. ∴从第25项开始为正,前24项都为负数,即前24项之和最小. 答案:24【方法技巧】求等差数列前n 项和最值的方法:对于等差数列,当公差不等于零时,则其为单调数列,所以其前n 项和往往存在最大值或最小值,常用的方法有:(1)通项公式法:先求出通项公式,通过通项公式确定等差数列的单调性,再求其正项或负项为哪些项,从而确定前n 项和的最值. (2)二次函数法:根据等差数列的前n 项和S n 是关于项数n 的一元二次函数,从而可直接配方,求其最值,但应注意项数n 为正整数,由此,本题还可有以下解法:方法二,a n =2n-49,a 1=-47<0,公差d=2>0,∴数列{a n }为递增等差数列. 令a n =0,得1n 24.2=∴该数列中,a 1,a 2,…,a 24<0,a 25>0,…… ∴数列{a n }的前24项和最小,故n=24. 方法三,可知数列{a n }为等差数列,a 1=-47.()()1n n 222n a a n 472n 49S 22n 48n n 2424,+-+-∴===-=--()∴当n=24时,S n 取最小值,故n=24. 14.【解析】∵b=2a,B=A+60°,∴sinB=2sinA, sinB=sin(A+60°),∴2sinA=sin(A+60°).12sinA sinA tanA 223=+∴=又∵0°<A<180°,∴A=30°. 答案:30°15.【解题提示】解答本题一方面要注意常值代换的应用,另一方面要注意利用不等式的性质化“负”为“正”. 【解析】∵a+b+c=-1,∴1=-a-b-c.111a b c a b c a b ca b c a b cb ac a c b3()()()a b a c b c32229.---------∴++=++=--+-+-+≤----=-当且仅当a=b=c=13-时取等号. 答案:-916.【解析】不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立,若a+2=0,则4x-3>0,显然不恒成立;若a+2≠0,则a 200+>⎧⎨∆<⎩,即()()2a 2044a 2a 10+>⎧⎪⎨-+-<⎪⎩,解得a>2. 答案:(2,+∞)17.【解析】∵角A ,B ,C 成等差数列, ∴A+C=2B ,A+B+C=180°,∴B=60°, 所以21sinAsinC cos 60.4=︒= ①又ABC 1S acsinB,2==得ac=16. ② 由①②及a csinA sinC=得:22ac a c ()()64,sinAsinC sinA sinCa c 8.sinA sinC asinBb 8sinB 8sin60sinA ========︒=所以又222a c b 1cosB ,2ac 2+-== ()()222222a cb ac,ac b 3ac,a c 484896,a c ∴+-=+-=∴+=+=∴+=③联立③与②得a 2,c 2,a 2,c 2.====或18.【解析】(1)设等差数列{a n }的公差为d,则a n =a 1+(n-1)d,由a 1=1,a 3=-3可得1+2d=-3.解得d=-2. 从而a n =1+(n-1)×(-2)=3-2n ,n ∈N *. (2)由(1)可知a n =3-2n.()2n n 132n S 2n n .2+-∴==-[]由S k =-35可得2k-k 2=-35. 即k 2-2k-35=0,解得k=7或k=-5. 又k ∈N *,故k=7.19.【解析】(1)由正弦定理设a b ck,sinA sinB sinC=== 则2c a 2ksinC ksinA 2sinC sinA ,b ksinB sinB ---==cosA 2cosC 2sinC sinAcosB sinB--∴=即(cosA-2cosC )sinB=(2sinC-sinA)cosB, 化简可得sin(A+B)=2sin(B+C), 又A+B+C=π,∴sinC=2sinA.因此sinC2.sinA= (2)由sinC2sinA=得c=2a.由余弦定理b 2=a 2+c 2-2accosB 及1cosB ,b 2.4==22214a 4a 4a .a 1.c 2.4=+-⨯==得解得从而又∵cosB=14且0<B<π,sinB 4∴=因此11S acsinB 122244==⨯⨯⨯= 20.【解析】(1)由x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0知:-3,2是方程ax 2+(b-8)x-a-ab=0的两根且a <0,()2b 832a 3,a a ab b 5.32a f x 3x 3x 18.-⎧-+=-⎪=-⎧⎪∴⎨⎨--=⎩⎪-⨯=⎪⎩∴=--+得(2)由a<0,知二次函数y=ax 2+bx+c 的图象开口向下.要使-3x 2+5x+c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,得25c .12≤-∴当25c 12≤-时,ax 2+bx+c ≤0的解集为R. 21.【解析】设空调机、洗衣机的月供应量分别是x 台,y 台,总利润是z ,则z=6x+8y由题意有30x 20y 3005x 10y 110x 0y 0+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩且x, y 均为整数. 作出可行域如图.由图知直线31y x z 48=-+过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.22.【解题提示】第(1)题可以列方程组求出首项和公差,从而易求a n ,S n .第(2)题要注意对b n 的化简变形和裂项求和法的应用.【解析】(1)设等差数列{a n }的首项为a 1,公差为d,由于a 3=7,a 5+a 7=26,∴a 1+2d=7,2a 1+10d=26.解得a 1=3,d=2.由于a n =a 1+(n-1)d,()1n n n a a S .2+=∴a n =2n+1,S n =n(n+2),n ∈N *.(2)∵a n =2n+1,()2n a 14n n 1.∴-=+()n 1111b ().4n n 14n n 1∴==-++ 故T n =b 1+b 2+…+b n()111111(1)4223n n 111n (1).4n 14n 1=-+-+⋯+-+=-=++ ∴数列{b n }的前n 项和()*n n T n N .4n 1=∈+,。
人教a版数学必修5模块过关测试题及详细答案
人教a 版数学必修5模块测试题一.选择题(本题共10小题,每小题5分,共50分.) 1. 在△ABC 中,角A 、B 、C 成等差数列,则角B 为( ) (A) 30° B 60° (C) 90° (D) 120°2.在ABC ∆中,bc c b a ++=222,则A 等于 ( )A ︒︒︒︒30.45.60.120.D C B3.在等比数列{}n a 中,若0n a >且3764a a =,5a 的值为 ( )A .2B .4C .6D .8 4.在等比数列}{n a 中, ,8,1641=-=a a 则=7a ( )A.4-B.4±C. 2-D. 2± 5.已知,,a b c R ∈,则下列推理正确的是 ( )A.22ab am bm >⇒> B.a ba b c c>⇒> C.3311,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bcos C +ccos B =asin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.如图:B C D ,,三点在地面同一直线上,a DC=,从D C ,两点测得A 点仰角分别是()βαβ<a ,,则A 点离地面的高度AB 等于 ( )A.()αββα-⋅sin sin sin a B.()βαβα-⋅cos sin sin aC()αββα-⋅sin cos sin a D .()βαβα-⋅cos sin cos a8. 设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为( )9.定义在(-∞,0)∪(0,+∞)上的函数()f x ,如果对于任意给定的等比数列{a n},{f (a n)}仍是等比数列,则称()f x 为“保等比数列函数”。
2019-2020学年高中数学人教A版必修5同步作业与测评:综合质量测评(一) Word版含解析
姓名,年级:时间:综合质量测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式错误!〈错误!的解集是( )A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)答案D解析错误!<错误!⇔错误!-错误!<0⇔错误!<0⇔错误!〉0⇔x〈0或x〉2.2.在△ABC中,若sin2A+sin2B=2sin2C,则角C为( )A.钝角B.直角C.锐角D.60°答案C解析由sin2A+sin2B=2sin2C,得a2+b2=2c2,即a2+b2-c2=c2〉0,cos C>0.故角C为锐角.3.在△ABC中,a=20,b=10,B=29°,则此三角形解的情况是()A.无解B.有一解C.有两解D.有无数个解答案C解析a sin B=a sin29°〈a sin30°=20×错误!=10=b<a,所以有两解.故选C.4.设变量x,y满足约束条件错误!则目标函数z=2x+5y的最小值为()A.-4 B.6 C.10 D.17答案B解析 由题意知,约束条件错误!所表示的三角形区域的顶点分别为A(0,2),B(3,0),C (1,3).将A ,B ,C 三点的坐标分别代入z =2x +5y ,得z =10,6,17,故z 的最小值为6.5.已知△ABC 的三边长构成公差为2的等差数列,且最大角的正弦值为错误!,则这个三角形的周长为( )A .15B .18C .21D .24答案 A解析 根据题意,设△ABC 的三边长为a,a +2,a +4,且a +4所对的角为最大角α,∵sin α=错误!,∴cos α=错误!或-错误!,当cos α=错误!时,α=60°,不符合题意,舍去; 当cos α=-12时,α=120°,由余弦定理得:cos α=cos 120°=错误!=-错误!,解得a =3或a =-2(不符合题意,舍去),则这个三角形周长为a +a +2+a +4=3a +6=9+6=15.故选A .6.在△ABC 中,三个内角A ,B ,C 所对的边分别是a ,b ,c ,若内角A ,B,C 依次成等差数列,且不等式-x 2+6x -8>0的解集为{x |a <x <c},则S △ABC =( )A . 3B .2错误!C .3错误!D .4错误!答案 B解析 不等式-x 2+6x -8>0的解集为{x |2<x <4},由此可知a =2,c =4.又由A ,B ,C 依次成等差数列,知2B =A +C ,而A +B +C =π,所以B =错误!.于是S △ABC =错误!ac sin B =错误!×2×4×错误!=2错误!.故选B .7.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=200,则4a 5-2a 3的值为( )A .80B .60C .40D .20答案 A解析 ∵a 3+a 5+a 7+a 9+a 11=200,∴5a7=200,a7=40.又4a5=2(a3+a7)=2a3+2a7,∴4a5-2a3=2a7=80.故选A.8.已知S n和T n分别为数列{a n}与数列{b n}的前n项和,且a1=e4,S n=e S n+1-e5,a n=e b n,则当T n取得最大值时n的值为()A.4 B.5 C.4或5 D.5或6答案C解析由S n=e S n+1-e5,得S n-1=e S n-e5(n≥2),两式相减,得a n=e a n+1(n≥2),易知a2=e3,错误!=错误!=错误!,所以{a n}是首项为e4,公比为错误!的等比数列,所以a n=e5-n.因为a n=e b n,所以b n=5-n.由错误!即错误!解得4≤n≤5,所以当n=4或n=5时,T n取得最大值.故选C.9.已知△ABC的周长为2,角A,B,C的对边分别为a,b,c,且满足错误!=3c,则c等于()A.错误!B.1 C.1或错误!D.错误!答案D解析由正弦定理得:错误!=错误!=3c,即3c2=b+a,又∵a+b+c=2,∴3c2+c=2.解得c=错误!.故选D.10.某种生产设备购买时费用为10万元,每年的设备管理费用为9千元,这种生产设备的维护费用:第一年2千元,第二年4千元,第三年6千元,依每年2千元的增量逐年递增,则这套生产设备最多使用________年报废最划算( )A.3 B.5 C.7 D.10答案D解析设使用x年,年平均费用为y万元,则y=错误!=错误!=1+x10+错误!≥3,当且仅当x=10时等号成立.故选D.11.设{a n}是正数等差数列,{b n}是正数等比数列,且a1=b1,a2n+1=b2n+1,则()A.a n+1〉b n+1B.a n+1≥b n+1C.a n+1<b n+1D.a n+1=b n+1答案B解析a n+1=错误!≥错误!=错误!=b n+1.12.如图,一轮船从A点沿北偏东70°的方向行驶10海里至海岛B,又从B沿北偏东10°的方向行驶10海里至海岛C,若此轮船从A点直接沿直线行驶至海岛C,则此船沿________方向行驶________海里至海岛C()A.北偏东60°;10错误!B.北偏东40°;10错误!C.北偏东30°;10错误!D.北偏东20°;10错误!答案B解析由已知得在△ABC中,∠ABC=180°-70°+10°=120°,AB=BC=10,故∠BAC=30°.所以从A到C的航向为北偏东70°-30°=40°.由余弦定理得AC2=AB2+BC2-2AB·BC cos∠ABC=102+102-2×10×10×-错误!=300,所以AC=10 3.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,b=4,c=6,则bc cos A+ca cos B+ab cos C=________.答案61 2解析由余弦定理得bc cos A+ca cos B+ab cos C=错误!+错误!+错误!=错误!=错误!.14.已知数列{a n}是各项为正数,首项为1的等差数列,S n为其前n项和,若数列{错误!}也为等差数列,则错误!的最小值是________.答案错误!解析设数列{a n}的公差为d(d>0),即有a n=1+(n-1)d,S n=n+错误!n(n-1)d,错误!=错误!,由于数列{错误!}也为等差数列,可得d=2,即有a n=2n-1,S n=n2,则错误!=错误!=错误!错误!≥错误!·2错误!=2错误!,当且仅当n=2错误!取得等号,由于n为正整数,即有n=2或3取得最小值.当n=2时,取得3;n=3时,取得错误!,故最小值为错误!.15.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元,另一种是每袋24千克,价格为120元,在满足需要的条件下,最少要花费________元.答案500解析设购买35 kg的x袋,24 kg的y袋,则35x+24y≥106,x∈N*,y∈N*,共花费z=140x+120y.作出由35x+24y≥106,x∈N*,y∈N*对应的平面区域,再作出目标函数z=140x+120y对应的一组平行线,观察在点(1,3)处z最小,为500元.16.如果a〉b,给出下列不等式:①1a〈错误!;②a3>b3;③错误!〉错误!;④2ac2〉2bc2;⑤错误!>1;⑥a2+b2+1>ab+a+b.其中一定成立的不等式的序号是________.答案②⑥解析①若a>0,b〈0,则错误!>错误!,故①不成立;②∵y=x3在x∈R上单调递增,且a〉b.∴a3〉b3,故②成立;③取a=0,b=-1,知③不成立;④当c=0时,ac2=bc2=0,2ac2=2bc2,故④不成立;⑤取a=1,b=-1,知⑤不成立;⑥∵a2+b2+1-(ab+a+b)=错误![(a-b)2+(a-1)2+(b-1)2]〉0,∴a2+b2+1〉ab+a+b,故⑥成立.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b cos2错误!+a cos2错误!=错误!c.(1)求证:a,c,b成等差数列;(2)若C=π3,△ABC的面积为2错误!,求c.解(1)证明:由正弦定理得:sin B cos2A2+sin A cos2错误!=错误!sin C,即sin B·错误!+sin A·错误!=错误!sin C,∴sin B+sin A+sin B cos A+cos B sin A=3sin C,∴sin B+sin A+sin(A+B)=3sin C,∴sin B+sin A+sin C=3sin C,∴sin B+sin A=2sin C,∴a+b=2c,∴a,c,b成等差数列.(2)S=错误!ab sin C=错误!ab=2错误!,∴ab=8,c2=a2+b2-2ab cos C=a2+b2-ab=(a+b)2-3ab=4c2-24.∴c2=8,得c=2错误!.18.(本小题满分12分)已知{a n}是公差不为零的等差数列,{b n}是各项都是正数的等比数列.(1)若a1=1,且a1,a3,a9成等比数列,求数列{a n}的通项公式;(2)若b1=1,且b2,错误!b3,2b1成等差数列,求数列{b n}的通项公式.解(1)由题意可设公差为d,则d≠0.由a1=1,a1,a3,a9成等比数列,得错误!=错误!,解得d=1或d=0(舍去).故数列{a n}的通项公式为a n=1+(n-1)×1=n.(2)由题意可设公比为q,则q>0.由b1=1,且b2,错误!b3,2b1成等差数列,得b3=b2+2b1,∴q2=2+q,解得q=2或q=-1(舍去).故数列{b n}的通项公式为b n=1×2n-1=2n-1.19.(本小题满分12分)已知函数f(x)=ax2-bx+1.(1)是否存在实数a,b使不等式f(x)〉0的解集是{x|3<x<4},若存在,求实数a,b的值,若不存在,请说明理由;(2)若a为整数,b=a+2,且函数f(x)在(-2,-1)上恰有一个零点,求a的值.解(1)∵不等式ax2-bx+1>0的解集是{x|3<x〈4},∴方程ax2-bx+1=0的两根是3和4,∴错误!解得a=错误!,b=错误!.而当a=错误!>0时,不等式ax2-bx+1〉0的解集不可能是{x|3<x〈4},故不存在实数a,b使不等式f(x)〉0的解集是{x|3<x<4}.(2)∵b=a+2,∴f(x)=ax2-(a+2)x+1.∵Δ=(a+2)2-4a=a2+4>0,∴函数f(x)=ax2-(a+2)x+1必有两个零点.又函数f(x)在(-2,-1)上恰有一个零点,∴f(-2)·f(-1)〈0,∴(6a+5)(2a+3)<0,解得-错误!<a〈-错误!.∵a∈Z,∴a=-1.20.(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a =2b cos A.(1)求角B的大小;(2)若b=2错误!,求a+c的最大值.解(1)∵2c-a=2b cos A,∴根据正弦定理,得2sin C-sin A=2sin B cos A,∵A+B=π-C,可得sin C=sin(A+B)=sin B cos A+cos B sin A,∴代入上式,得2sin B cos A=2sin B cos A+2cos B sin A-sin A,化简得(2cos B-1)sin A=0,∵A是三角形的内角,可得sin A>0,∴2cos B-1=0,解得cos B=错误!,∵B∈(0,π),∴B=错误!.(2)由余弦定理b2=a2+c2-2ac cos B,得12=a2+c2-ac.∴(a+c)2-3ac=12,∴12≥(a+c)2-3错误!2,即(a+c)2≤48(当且仅当a=c=2错误!时等号成立),∵a+c>0,∴a+c≤43,∴a+c的最大值为43.21.(本小题满分12分)因发生交通事故,一辆货车上的某种液体泄漏到一池塘中,为了治污,根据环保部门的建议,现决定在池塘中投放一种与污染液体发生化学反应的药剂,已知每投放a(1≤a≤4,a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a·f(x),其中f(x)=错误!若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(1)若一次投放4个单位的药剂,则有效治污时间可达几天?(2)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值.(精确到0.1,参考数据:错误!取1.4)解(1)因为a=4,所以y=错误!①当0≤x≤4时,由648-x-4≥4,解得x≥0,所以此时0≤x≤4.②当4<x≤10时,由20-2x≥4,解得x≤8,所以此时4<x≤8.综合得0≤x≤8,即若一次投放4个单位的药剂,则有效治污时间可达8天.(2)当6≤x≤10时,y=2·错误!+a错误!-1=10-x+错误!-a=(14-x)+错误!-a-4,由题意知,y≥4对于x∈[6,10]恒成立.因为14-x∈[4,8],而1≤a≤4,所以4错误!∈[4,8],故当且仅当14-x=4错误!时,y有最小值为8错误!-a-4,令8错误!-a-4≥4,解得24-162≤a≤4,所以a的最小值为24-16错误!.又24-16错误!≈1.6,所以a的最小值约为1.6.22.(本小题满分12分)已知f(x)=错误!sin x·cos x+cos2x,锐角△ABC的三个角A,B,C所对的边分别为a,b,c.(1)求函数f(x)的最小正周期和单调递增区间;(2)若f(C)=1,求m=a2+b2+c2ab的取值范围.解(1)f(x)=错误!sin x·cos x+cos2x=错误!sin2x+错误!cos2x+错误!=sin错误!+错误!.∴函数f(x)的最小正周期T=错误!=π.由2kπ-错误!≤2x+错误!≤2kπ+错误!,解得kπ-错误!≤x≤kπ+错误!.∴函数f(x)的单调递增区间错误!,k∈Z,最小正周期为π.(2)由(1)可得,f(C)=sin错误!+错误!=1,∴sin错误!=错误!,2019-2020学年高中数学人教A版必修5同步作业与测评:综合质量测评(一) Word版含解析∵△ABC是锐角三角形,∴错误!〈2C+错误!<错误!,∴2C+错误!=错误!,即C=错误!.由余弦定理c2=a2+b2-2ab cos C,可得c2=a2+b2-ab,∴m=错误!=错误!-1=2错误!-1.①∵△ABC为锐角三角形,∴错误!∴错误!<A<错误!.由正弦正理得错误!=错误!=错误!=错误!+错误!∈错误!.②由②式设t=错误!,则t∈错误!,那么①式化简为m=2错误!-1.由y=t+错误!≥2,t=1时取等号.∴m≥3.根据对勾函数的性质可得错误!是单调递减,(1,2)是单调递增,∴m<4,故得m=错误!∈[3,4).。
高中数学人教A版必修五 模块综合测评1 Word版含答案
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是()A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于()A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12-(-1)=32. 【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2 C.32 D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3.【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52 D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n (n -1)2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0. 【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189. 【答案】 A10.已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( ) A .T >0 B .T <0 C .T =0 D .T ≥0【解析】 法一 取特殊值,a =2,b =c =-1, 则T =-32<0,排除A ,C ,D ,可知选B.法二 由a +b +c =0,abc >0,知三数中一正两负, 不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc =ab +c (b +a )abc=ab -c 2abc .∵ab <0,-c 2<0,abc >0,故T <0,应选B. 【答案】 B11.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =( )A .2 3B .2 C. 2 D .1【解析】 由正弦定理得:a sin A =bsin B , ∵B =2A ,a =1,b =3, ∴1sin A =32sin A cos A .∵A 为三角形的内角,∴sin A ≠0. ∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形. 由勾股定理得c =12+(3)2=2. 【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4,两式相乘,得a 61q 3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n 1·q n (n -1)2=64,即(a 21q n -1)n=642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×(3+2n -1)2=-n (n +1)2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n+1n (n +1)2.【答案】 (-1)n +1n (n +1)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·tan B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3ac tan B , 所以cos B =a 2+c 2-b 22ac =32tan B , 即tan B cos B =32,即sin B =32, 所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1; (3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a <-1,即-2<a <0时,原不等式等价于2a ≤x ≤-1. 综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154. ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎨⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B产品225 t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m ,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245 t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。
数学人教A版必修5新课标(RJA)作业本高考数学练习测评卷及参考答案
高中数学必修5 新课标(RJA)单元测评(一)第一章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,内角A,B,C的对边分别是a,b,c,已知a=3,c=2,B=150°,则=()S△ABCA.2B.C.D.2.已知圆的半径R=4,a,b,c为该圆的内接三角形的三边,若abc=16,则三角形的面积为()A.2B.8C.D.3.在△ABC中,内角A,B,C的对边分别是a,b,c,若c=2a,b sin B-a sin A=a sin C,则sin B=()A. B.C. D.4.在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,则cos∠DAC=()A.B.C. D.5.已知△ABC的周长为9,内角A,B,C的对边分别是a,b,c,且sin A∶sin B∶sin C=3∶2∶4,则cos C的值为()A.-B.C.-D.6.在△ABC中,a,b,c分别是内角A,B,C的对边,已知a=2c·cos B,那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=k(k>0),b=k,A=45°,则满足条件的三角形有 ()A.0个B.1个C.2个D.无数个8.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b2+c2-a2=bc,sin2A+sin2B=sin2C,则角B的大小为()A.30°B.45°C.60°D.90°9.在△ABC中,已知A=60°,AC=16,面积为220,则BC的长度为()A.25B.51C.49D.4910.已知锐角三角形的三边长分别为1,3,a,则a的取值范围是()A.(8,10)B.(2,)C.(2,10)D.(,8)11.在△ABC中,内角A,B,C的对边分别为a,b,c,若a2+b2=2c2,则C的最大值为()A. B.C. D.12.在△ABC中,A=60°,BC=,D是AB边上的一点,CD=,△BCD的面积为1,则AC的长为 ()A.2B.C. D.第卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知△ABC的面积S=,A=,则·=.14.已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.15.在△ABC中,a,b,c分别是内角A,B,C的对边,已知a2+c2=ac+b2,b=,且a ≥c,则2a-c的最小值是.16.如图D1-1,△ABC中,∠BAC=,且BC=1,若E为BC的中点,则AE的最大值是.图D1-1三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=2b=6,A=30°,求B及S△ABC.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,a+b=2,ab=2,且2cos A cos B-2sin A sin B=1.求:(1)角C的大小;(2)△ABC的周长.19.(12分)如图D1-2,某海岛上一观察哨A在上午11时测得一轮船在海岛北偏东60°的C处,12时20分测得轮船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5 km的E港口,如果轮船始终匀速直线前进,求船速.图D1-220.(12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a+2c=2b cos A.(1)求角B的大小;(2)若b=2,a+c=4,求△ABC的面积.21.(12分)已知△ABC的内角Α,Β,C所对的边分别为a,b,c,若向量m=cosB,2cos2-1与n=(2a-b,c)共线.(1)求角C的大小;(2)若c=2,S△ABC=2,求a,b的值.22.(12分)在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且sin2A=sin2B+sin2C-sin B sin C.(1)求角A的大小;(2)若a=2,求b+c的取值范围.单元测评(二)第二章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列-,,-,…的一个通项公式是()A.a n=(-1)n-B.a n=(-1)n++C.a n=(-1)n+D.a n=(-1)n-2.已知a,b,c,d依次成等比数列,且曲线y=x2-4x+7的顶点坐标是(b,c),则ad 等于()A.5B.6C.7D.123.设{a n}是等比数列,若a2=3,a7=1,则数列{a n}前8项的积为()A.56B.80C.81D.1284.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的等于较小的两份之和,则最小的一份为()A.B.C.D.5.已知数列{a n}中,a1=2,a n+1=a n+2n(n∈N*),则a100的值是()A.9900B.9902C.9904D.11 0006.在等差数列{a n}中,若a1008+a1009+a1010+a1011=18,则该数列的前2018项的和为()A.18 126B.9072C.9081D.12 0847.等差数列{a n}中,已知a1=-12,S13=0,则使得a n>0的最小正整数n为()A.7B.8C.9D.108.已知等差数列{a n}的前n项和为S n,S17>0,S18<0,则当S n取得最大值时,n为()A.7B.8C.9D.109.已知数列{a n}中,a1=3,a n+1=a n+2(n∈N*),则此数列的前10项和S10=()A.140B.120C.80D.6010.在等比数列{a n}中,a1+a2=1,a3+a4=2,则a5+a6+a7+a8=()A.10B.11C.12D.1411.已知等比数列{a n}的前n项和为S n,且S n=2n-c(c∈R),若log2a1+log2a2+…+log2an=10,则n=()A.2B.3C.4D.512.对于正项数列{a n},定义G n=+++…+为数列{a n}的“匀称”值.已知正项数列{a n}的“匀称”值为G n=n+2,则该数列中的a10等于()A.2B.C.1D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.设等比数列{a n}的前n项和为S n,若S10∶S5=1∶2,则S15∶S5=.14.已知数列{a n}中,a1=1,前n项和为S n,且点P(a n,a n+1)(n∈N*)在直线x-y+1=0上,则+++…+=.15.已知数列{a n}满足2a1+22a2+23a3+…+2n a n=n(n∈N*),则数列{a n}的前n项和S n=.16.若一个实数数列{a n}满足条件+-an=d(d为常数,n∈N*),则称这一数列为“伪等差数列”,d称为“伪公差”.给出下列关于“伪等差数列”{a n}的说法:①对于任意的首项a1,若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为递增数列;③若这一数列的首项为1,“伪公差”为3,则-可以是这一数列中的一项;④若这一数列的首项为0,第三项为-1,则这一数列的“伪公差”可以是-.其中说法正确的是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知等差数列{a n}中,公差d≠0,a1=2,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)求数列{-1}的前n项和S n.18.(12分) 设{a n}是公比大于1的等比数列,S n为数列{a n}的前n项和,已知S3=7,且a1+3,3a2,a3+4依次构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=ln a3n+1,求数列{b n}的前n项和T n.19.(12分) 已知数列和满足a1=2,b1=1,a n+1=2a n,b1+b2+b3+…+b n =bn+1-1.(1)求a n与b n;(2)记数列的前n项和为T n,求T n.20.(12分)等差数列{a n}中,a1=3,其前n项和为S n.等比数列{b n}的各项均为正数,b1=1,且b2+S2=12,a3=b3.(1)求数列{a n}与{b n}的通项公式;(2)证明:数列的前n项和T n<.21.(12分) 已知数列为等差数列,且a2+a3=8,a5=3a2.(1)求数列的通项公式;(2)记b n=+,设的前n项和为S n,求最小的正整数n,使得S n>.22.(12分)已知数列{a n}的前n项和为S n,且S n=2a n-2.(1)求数列{a n}的通项公式;(2)设函数f(x)=,数列{b n}满足条件b1=2,f(b n+1)=--,若c n=,求数列{c n}的前n项和T n.单元测评(三)第三章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式-3x2+7x-2<0的解集为()A.<<B.<或>C.-<<-D.{x|x>2}2.已知a,b为非零实数,且a<b,则下列不等式成立的是()A.a2<b2B.a2b<a3C.<D.->-3.直线3x+2y+5=0把平面分成两个区域,下列各点与原点位于同一区域的是()A.(-3,4)B.(-3,-4)C.(0,-3)D.(-3,1)4.设x,y满足约束条件+,,-,则z=3x+y的最大值为()A.5B.3C.7D.-85.不等式<的解集是()A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)6.若x>0,y>0,且+=1,则x+y的最小值是()A.3B.6C.9D.127.当k>0时,直线kx-y=0,2x+ky-2=0与x轴围成的三角形的面积的最大值为()A.B.C.D.8.已知关于x的方程x2+(a2-1)x+a-2=0的一根比1大且另一根比1小,则实数a的取值范围为()A.-1<a<1B.a<-1或a>1C.-2<a<1D.a<-2或a>19.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是()A.a<-2B.a>-2C.a>-6D.a<-610.已知x,y满足约束条件--,--,若目标函数z=ax+by(a>0,b>0)在该约束条件下取到的最小值为2,则a2+b2的最小值为()A.5B.4C.D.211.在△ABC中,C=90°,BC=2,AC=4,AB边上的点P到边AC,BC的距离的乘积的取值范围是()A.[0,2]B.[0,3]C.[0,4]D.0,12.已知实数x,y满足xy-3=x+y,且x>1,则y(x+8)的最小值为 ()A.33B.26C.25D.21第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若f(x)=ax2+ax-1在R上满足f(x)<0恒成立,则实数a的取值范围是.14.若变量x,y满足约束条件-+,+-,,则z=3x+y的最小值为.15.函数y=log a(x+4)-2(a>0,且a≠1)的图像恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为.16.若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知不等式ax2-3x+2>0.(1)若a=-2,求不等式的解集;(2)若不等式的解集为{x|x<1或x>b},求a,b的值.18.(12分)解关于x的不等式:x2-(m+m2)x+m3<0.19.(12分)如图D3-1,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD,公园由矩形的休闲区(阴影部分)A1B1C1D1和环公园人行道组成.已知休闲区A 1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米,设休闲区的长为x米.(1)求矩形ABCD所占面积S(单位:平方米)关于x的函数解析式.(2)要使公园所占面积最小,问休闲区A1B1C1D1的长和宽应分别为多少米?图D3-120.(12分)某企业生产甲、乙两种产品,已知生产1吨甲产品要用A原料3吨,B 原料2吨;生产1吨乙产品要用A原料1吨,B原料3吨.销售1吨甲产品可获得利润5万元,销售1吨乙产品可获得利润3万元.如果该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得的最大利润是多少?21.(12分)设函数f(x)=x2+2ax+3.(1)解关于x的不等式f(x)<1;(2)若函数f(x)在区间[-1,]上有零点,求实数a的取值范围.22.(12分)第二届世界互联网大会在浙江省乌镇开幕后,某科技企业为抓住互联网带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x(x>0)台,需另投入成本C(x)万元.若年产量不足80台,则C(x)=x2+40x;若年产量不小于80台,则C(x)=101x+-2180.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?模块终结测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n}中,若a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3B.a1=2,d=-3C.a1=-3,d=2D.a1=3,d=-22.在△ABC中,a=2,b=,c=1,则最小角的大小为()A.B.C.D.3.设a,b,c∈R,且a>b,则()A.<B.a2>b2C.a-c>b-cD.ac>bc4.△ABC的内角A,B,C的对边分别为a,b,c,已知a=3,A=60°,b=,则B=()A.45°B.30°C.60°D.135°5.若数列{a n}满足a n+1=1+,a8=,则a5=()A.B.C.D.6.某公司要测量一水塔CD的高度,测量人员在该水塔所在的东西方向水平直线上选择A,B两个观测点,在A处测得该水塔顶端D的仰角为α,在B处测得该水塔顶端D的仰角为β.已知A,B在水塔的同一侧,AB=a,0<β<α<,则水塔CD 的高度为()A.-B.-C.-D.-7.不等式x2-ax-12a2<0(其中a<0)的解集为 ()A.(-3a,4a)B.(4a,-3a)C.(-3,4)D.(-4,3)8.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2等于()A.-18B.-15C.-12D.-99.设变量x,y满足约束条件-,-,+-,则目标函数z=3x+y的最大值为()A.7B.8C.9D.1410.已知函数y=a x+2-2(a>0且a≠1)的图像恒过定点A,若点A在直线mx+ny +1=0上,其中mn>0,则+的最小值为()A.3B.3+2C.4D.811.数列{2n-(-1)n}的前10项和为()A.210-3B.210-2C.211-3D.211-212.在△ABC中,内角A,B,C所对的边分别是a,b,c,若b2+c2-a2=bc,且b=a,则下列关系式一定不成立的是 ()A.a=cB.b=cC.2a=cD.a2+b2=c2第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若x,y满足,--,+-,则z=x+y的最小值为.14.△ABC的内角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,a,b,c成等比数列,则sin A·sin C=.15.某人从A处出发,沿北偏东60°方向行走3km到达B处,再沿正东方向行走2 km到达C处,则A,C两地间的距离为.图M1-116.在数列{a n}中,若a1=2,a n+1=a n+ln1+,则a n=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos B=.(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值.18.(12分)已知等差数列{a n}的前n项和为S n,a2+a4=14,S7=70.(1)求数列{a n}的通项公式.(2)设nb n=2S n+48,则数列{b n}的最小项是第几项?求出最小项的值.19.(12分)为保护环境,绿色出行,某高校今年年初成立自行车租赁公司,初期投入36万元,建成后每年收入25万元,该公司第n年需要付出的维修费用记作a n 万元,已知{a n}为等差数列,相关信息如图M1-2所示.(1)设该公司前n年总盈利为y万元,试把y表示成关于n的函数,并求出y的最大值.(总盈利即n年总收入减去成本及总维修费用)(2)该公司经过几年经营后,年平均盈利最大?并求出最大值.图M1-220.(12分)如图M1-3,某货轮在A处看灯塔B在货轮的北偏东75°方向上,距离为12 n mile,在A处看灯塔C在货轮的北偏西30°方向上,距离为8 n mile,货轮由A处向正北方向航行到D处时,再看灯塔B在南偏东60°方向上,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.图M1-321.(12分)已知等差数列{a n}满足a1+a2+a3=a5=9,等比数列{b n}满足0<b n+1<b,b1+b2+b3=,b1b2b3=.n(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n·b n,试求数列{c n}的前n项和S n.22.(12分)已知函数f(x)=ax2-4x+c(a,c∈R),满足f(2)=9,f(c)<a,且函数f(x)的值域为[0,+∞).(1)求函数f(x)的解析式;(2)设函数g(x)= +-(k∈R),若对任意x∈[1,2],存在x0∈[-1,1],使得g(x)<f(x),求k的取值范围.模块终结测评(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式4x2-4x+1>0的解集是()A.>B.C.RD.⌀2.一个等差数列共有10项,其中偶数项的和为15,则这个数列的第6项是()A.3B.4C.5D.63.在△ABC中,内角A,B,C的对边分别是a,b,c,若B=45°,C=60°,c=1,则最短边的长为()A.B.C.D.4.下列说法中正确的是 ()A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若a>b,则<D.若a>b,c<d,则a-c>b-d5.在△ABC中,内角A,B,C的对边分别是a,b,c,若a=80,b=100,A=45°,则此三角形的解的情况是()A.一解B.两解C.解的个数不确定D.无解6.已知等比数列{a n}的前n项和为S n,a4-a1=78,S3=39,设b n=log3a n,则数列{b n}的前10项和为()A.log371B.C.50D.557.若点M(a,b)在由不等式组,,+确定的平面区域内,则点N(a+b,a-b)所在平面区域的面积是()A.1B.2C.4D.88.海中有一小岛,周围a n mile内有暗礁.一艘海轮由西向东航行,望见该岛在北偏东75°方向上,航行b n mile以后,望见该岛在北偏东60°方向上.若这艘海轮不改变航向继续前进且没有触礁,则a,b所满足的不等关系是 ()A.a<bB.a>bC.a<bD.a>b9.将正奇数按下表排列:则199在()A.第10列B.第11列C.第11行D.第12行10.在△ABC中,a,b,c分别是内角A,B,C的对边,已知sin A,sin B,sin C成等比数列,且a2=c(a+c-b),则角A的大小为()A.B.C.D.11.已知a>b>0,则a+++-的最小值为()A.B.4 C.2D.312.设u(n)表示正整数n的个位数,例如u(23)=3.若a n=u(n2)-u(n),则数列{a n}的前2015项的和等于()A.0B.2C.8D.10第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在△ABC中,内角A,B,C的对边分别为a,b,c.若b=2,c=3,△ABC的面积为2,则sin A=.14.在数列{a n}中,a1=2,a n+1-2a n=0,b n是a n和a n+1的等差中项,设S n为数列{b n}的前n项和,则S6=.15.不等式(m+1)x2+(m2-2m-3)x-m+3>0恒成立,则m的取值范围是.16.定义:若数列{a n}对一切正整数n均满足++>an+1,则称数列{a n}为“凸数列”.有以下关于凸数列的说法: ①等差数列{an}一定是凸数列;②首项a1>0,公比q>0且q≠1的等比数列{an}一定是凸数列;③若数列{an}为凸数列,则数列{a n+1-a n}是递增数列;④若数列{an}为凸数列,则下标成等差数列的项构成的子数列也为凸数列.其中正确说法的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知关于x的不等式ax2+(a-2)x-2≥0(a∈R)的解集为(-∞,-1]∪[2,+∞).(1)求a的值;(2)设关于x的不等式x2-(3c+a)x+2c(c+a)<0的解集是集合A,不等式(2-x)(x+1)>0的解集是集合B,若A⊆B,求实数c的取值范围.18.(12分)已知等差数列{a n}中,a7=4,a19=2a9.(1)求{a n}的通项公式;(2)设b n=,求{b n}的前n项和S n.19.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且(sin C-sin A+sinB)(sin C+sin A-sin B)=sin A sin B.(1)求角C的大小;(2)若c=,求a+b的最大值.20.(12分)某公司因业务发展需要,准备印制如图M2-1所示的宣传彩页,宣传彩页由三幅大小相同的画组成,每幅画的面积都是200 cm2,这三幅画中都要绘制半径为5 cm的圆形图案,为了美观,每两幅画之间要留1 cm的空白,三幅画周围要留2 cm的页边距.设每幅画的一边长为x cm,所选用的彩页纸张面积为S cm2.(1)试写出所选用彩页纸张的面积S关于x的函数解析式及其定义域.(2)为节约纸张,即使所选用的纸张面积最小,应选用长、宽分别为多少的纸张?图M2-121.(12分)如图M2-2,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB为一边作等边三角形ABC.当点B在什么位置时,四边形OACB的面积最大?图M2-222.(12分)设数列的前n项和为S n,且S n+a n=1,数列为等差数列,且b1+b2=b3=3.(1)求S n;(2)求数列的前n项和T n.模块终结测评(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知{a n}为等差数列,若a3+a4+a8=9,则a5=()A.3B.4C.5D.62.若a<0,b>0,则下列不等式中恒成立的是()A.<B.-<C.a2<b2D.|a|>|b|3.在△ABC中,内角A,B,C的对边分别是a,b,c,若cos B=,b=2,sin C=2sin A,则△ABC的面积为 ()A. B.C. D.4.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2B.4C.7D.85.若关于x的二次不等式x2+mx+1≥0的解集为实数集R,则实数m的取值范围是()A.m≤-2或m≥2B.-2≤m≤2C.m<-2或m>2D.-2<m<26.在△ABC中,若sin2A-sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形7.已知S n表示数列{a n}的前n项和,若对任意n∈N*都有a n+1=a n+a2,且a3=2,则=()S2018A.1008×2017B.1008×2018C.1009×2017D.1009×2018(x>-1),当x=a时,y取得最小值b,则a+b=8.已知函数y=x-4++()A.-3B.2C.3D.89.在△ABC中,已知||=4,||=1,△ABC的面积为,则·=()A.±2B.±4C.2D.410.若实数x,y满足-+,+,,则z=3x+2y的最小值是()A.0B.1C.D.911.设圆x2+y2=4的一条切线与x轴、y轴分别交于点A,B,则|AB|的最小值为()A.4B.4C.6D.812.定义+++…+为n个正数p1,p2,p3,…,p n的“均倒数”.已知各项均为正数的数列{a n}的前n项的“均倒数”为+,且b n=+,则++…+=()A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知等差数列{a n}的公差d为整数,首项为13,若从第5项开始每一项均为负数,则d等于.14.已知A船在灯塔C北偏东80°方向上,且A到C的距离为2 km,B船在灯塔C 北偏西40°方向上,若A,B两船间的距离为3 km,则B到C的距离为km.15.已知变量x,y满足约束条件+,,-,若z=kx+y的最大值为5,且k为负整数,则k=.16.已知各项均为正数的等比数列{a n}中,a4与a14的等比中项为2,则2a7+a11的最小值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知△ABC的内角A,B,C的对边分别为a,b,c,且a cos C+(c-2b)cos A=0.(1)求角A的大小;(2)若△ABC的面积为2,且a=2,求b+c的值.18.(12分)已知等差数列{a n}的前n项和为S n,a4=-5,a8=3.(1)求数列{a n}的通项公式;(2)求S n的最小值及此时n的值.19.(12分)如图M3-1,我国南海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C都相距5 n mile,与小岛D相距3 n mile,在小岛A测得∠BAD 为钝角,且sin∠BAD=.(1)求小岛A与小岛D之间的距离;(2)记∠CDB=α,∠DBC=β,求sin(2α+β)的值.图M3-120.(12分)已知不等式-+>0(a∈R).(1)解这个关于x的不等式;(2)若当x=-a时不等式成立,求a的取值范围.21.(12分)某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C=3+x,每日的销售额S(单位:万元)与日产量x的函数关系式为S=+-+,<<,,.已知每日的利润L=S-C,且当x=2时,L=.(1)求k的值.(2)当日产量为多少吨时,每日的利润可以达到最大?并求出最大值. 22.(12分)已知数列{a n}的首项为1,前n项和为S n,a n+1=2S n+1,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=log3a n+1,求数列的前n项和T n,并证明:1≤T n<.|高中数学必修5 新课标(RJA)单元测评(一)1.B【试题解析】由三角形面积公式得S△ABC=ac sin B=×3×2×=,故选B.2.C【试题解析】∵===2R=8,∴sin C=,∴S△ABC=ab sin C ===.3.A【试题解析】∵b sin B-a sin A=a sin C,∴由正弦定理可得b2-a2=ac.又∵c=2a,∴a2+c2-b2=4a2-ac=3a2,∴利用余弦定理可得cos B=+-==,由0<B<π,得sin B=-=-=,故选·A.4.B【试题解析】如图所示,设CD=a,则在△ACD中,CD2=AD2+AC2-2AD·AC·cos ∠DAC,∴a2=(a)2+(a)2-2×a·a·cos∠DAC,∴cos∠DAC=. 5.A【试题解析】由正弦定理可得a∶b∶c=sin A∶sin B∶sin C=3∶2∶4.设a=3k(k>0),则b=2k,c=4k,周长为9k=9,解得k=1,所以a=3,b=2,c=4,所以cos C=+-=-,故选A.6.A【试题解析】由正弦定理得=,代入a=2c·cos B,得sin A=2sin C cos B①.又∵sin A=sin(B+C)=sin B cos C+cos B sin C②,∴联立①②,得sin B cos C-cos B sin C=0,即sin(B-C)=0,即B=C,故选A.7.A【试题解析】由正弦定理得=,∴sin B==>1,即sin B>1,这是不成立的,∴没有满足题设条件的三角形.8.A【试题解析】b2+c2-a2=bc⇒cos A=+-=,所以A=60°.又sin2A +sin2B=sin2C⇒a2+b2=c2,所以C=90°,所以B=30°.9.D【试题解析】S△ABC=AC×AB×sin 60°=×16×AB×=220,∴AB=55,∴BC2=AB2+AC2-2AB×AC cos 60°=552+162-2×55×16×=2401,即BC=49,故选D.10.B【试题解析】设1,3,a所对的内角分别为C,B,A,则由余弦定理知a2=12+32-2×3cos A<12+32=10,且32=12+a2-2×a cos B<12+a2,∴2<a<.11.C【试题解析】∵a2+b2=2c2,∴cos C=+-≥+-+=-=,又C是三角形的内角,∴C的最大值为.12.D【试题解析】∵BC=,CD=,△BCD的面积为1,∴××sin ∠DCB=1,∴sin∠DCB=,∴cos∠DCB=,∴BD2=CB2+CD2-2CD·CB cos∠DCB =4,解得BD=2.在△BDC中,由余弦定理可得cos∠BDC==-,∴∠BDC =135°,∴∠ADC=45°.在△ADC中,∠ADC=45°,A=60°,DC=,由正弦定理可得,°=°,∴AC=.13.2【试题解析】S△ABC=·AB·AC·sin A,即=·AB·AC·,所以AB·AC =4,于是·=··cos A=4×=2.14.【试题解析】设内角A,B,C所对的边分别为a,b,c,且a=3,b=5,c=7,∴cos C=+-=-,∴sin C=,∴外接圆的半径R==.15.【试题解析】因为a2+c2-b2=2ac cos B=ac,所以cos B=,则B=60°,又a≥c,则A≥C=120°-A,所以60°≤A<120°.由正弦定理得====2,则2a-c=4sin A-2sin C=4sin A-2sin 120°-A)=2sin(A-30° ,所以当A=60°时,2a-c取得最小值.16.1+【试题解析】设C=α,则B=π--α=-α,在△ABC中,由正弦定理得====2,则AB=2sin α,AC=2sin-α.在△ABE中,AE2=AB2+BE2-2AB·BE cos-α=(2sin α)2+2-2×2sin α××cos-α=4sin2α-2sin α-cos α+sin α+=3sin2α+sin αcos α+=-+sin 2α+=-cos 2α+sin 2α+=sin2α-+,当sin2α-=1时,AE2有最大值+=1+2,即AE的最大值是1+.17.解:在△ABC中,由正弦定理得sin B=sin A=×=.又A=30°,且a<b,∴B=60°或B=120°.①当B=60°时,C=90°,△ABC为直角三角形,故S△ABC=ab=6.②当B=120°时,C=30°,△ABC为等腰三角形,故S△ABC=ab sin C=×2×6sin 30°=3.18.解:(1)∵2cos A cos B-2sin A sin B=1,∴cos(A+B)=,∴cos C=cos[180°-(A+B)]=-cos(A+B)=-.又∵C∈ 0°,180° ,∴C=120°.(2)由题知a+b=2,ab=2,∴c2=a2+b2-2ab cos 120°=a2+b2+ab=(a+b)2-ab=(2)2-2=10,∴c=.从而△ABC的周长为2+.19.解:设∠ABE=θ,船的速度为v km/h,则BC=v,BE=v.在△ABE中,=°,∴sin θ=.在△ABC中,°-=°,∴AC=··.在△ACE中,=25+-2×5×·cos 150°,即v2=25++100=,∴v2=93,∴船的速度为 km/h.20.解:(1)因为a+2c=2b cos A,所以由正弦定理,得sin A+2sin C=2sin B cos A,又C=π-(A+B),所以sin A+2sin(A+B)=2sin B cos A,即sin A+2sin A cos B+2cos A sin B=2sin B cos A,所以sin A(1+2cos B)=0,因为sin A≠0,所以cos B=-,又0<B<π,所以B=.(2)由余弦定理得a2+c2-2ac cos B=b2,即a2+c2+ac=12,即(a+c)2-ac=12, 因为a+c=4,所以ac=4,所以S△ABC=ac sin B=×4×=.21.解:(1)∵m=(cos B,cos C),m∥n,∴c cos B=(2a-b)cos C, 由正弦定理得sin C cos B=(2sin A-sin B)cos C,∴sin C cos B+sin B cos C=2sin A cos C,∴sin A=2sin A cos C.∵sin A>0,∴cos C=.∵C∈ 0,π ,∴C=.(2)由余弦定理得(2)2=a2+b2-2ab cos ,∴a2+b2-ab=12①.∵S△ABC =ab sin C=2,∴ab=8②.由①②得=,=或=,=.22.解:(1)由正弦定理及sin2A=sin2B+sin2C-sin B sin C,知a2=b2+c2-bc, 所以cos A=+-=.又0<A<,所以A=.(2)由(1)知A=,所以B+C=,所以B=-C.因为a=2,所以==,所以b=4sin B,c=4sin C,所以b+c=4sin B+4sin C=4sin-+4sin C=2(cos C+sin C)=4+.因为△ABC是锐角三角形,所以0<B=-C<,0<C<,所以<C<,所以<C +<,所以<sin+≤1,所以6<4sin+≤4.故b+c的取值范围为(6,4].单元测评(二)1.C【试题解析】观察数列各项知符号可用(-1)n表示.各项绝对值的分母依次为3,5,7,…,故可表示为2n+1;各项绝对值的分子依次为1,4,9,…,故可表示为n2.所以a n=(-1)n+,故选C.2.B【试题解析】由y=x2-4x+7,得y=(x-2)2+3,所以顶点坐标为(2,3),即b=2,c=3.由a,b,c,d依次成等比数列,得ad=bc=6,故选B.3.C【试题解析】由等比数列的性质,得a1a8=a2a7=a3a6=a4a5,则数列{a n}前8项的积为a1a2a3a4a5a6a7a8=(a2a7)4=34=81,故选C.4.A【试题解析】设五个人所分得的面包个数为a-2d,a-d,a,a+d,a+2d,其中d>0,则(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=100,∴a=20.由(a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d),∴24d=11a,∴d=,∴最小的一份为a-2d=20-=.故选A.5.B【试题解析】∵a1=2,a n+1=a n+2n,∴a n+1-a n=2n,∴a n=(a n-a n-1)+(a n-1-an-2)+…+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×1+2=2×-+2=n2-n+2,∴a100=1002-100+2=9902.6.C【试题解析】∵a1+a2018=a1008+a1011=a1009+a1010,而a1008+a1009+a1010+a1011=18,∴a1+a2018=9,∴S2018=(a1+a2018)×2018=9081,故选C.7.B【试题解析】由S13=+=0,得a13=12,则a1+12d=12,得d=2,∴数列{a n}的通项公式为a n=-12+(n-1)×2=2n-14,由2n-14>0,得n>7,即使得a n>0的最小正整数n为8,故选B.8.C【试题解析】∵等差数列{a n}中,S17>0,S18<0,∴a9>0,a9+a10<0,∴a10<0,∴数列的前9项和最大.9.B【试题解析】∵a n+1=a n+2,∴a n+1-a n=2,∴{a n}是首项为3,公差为2的等差数列,∴S10=10×3+×2=120,故选B.10.C【试题解析】由题意知,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,所以a5+a6=2×2=4,a7+a8=4×2=8,所以a5+a6+a7+a8=4+8=12.选C.11.D【试题解析】当n≥2时,a n=S n-S n-1=2n-c-(2n-1-c)=2n-1.∵{a n}是等比数列,∴当n=1时,a1=S1=2-c也满足上式,∴2-c=20=1,∴c=1,∴a n=2n-1.∴log2a1+log2a2+…+log2an=log2(a1a2…a n)=log2(20×21×…×2n-1)=log220+1+2+…+n-1=-=10,解得n=5.12.D【试题解析】由正项数列{a n}的“匀称”值的定义,得G1=a1=3;G2=+=4,即a2=;G3=++=5,即a3=;…….故数列{an}的通项公式为a n=+,所以a10=,故选D.13.3∶4【试题解析】显然等比数列{a n}的公比q≠1,则由=--=1+q5=⇒q5=-,故=--=--=----=.故S15∶S5=3∶4.14.+【试题解析】由题意,a n-a n+1+1=0,∴a n+1-a n=1,∴{a n}为等差数列,且a1=1,d=1,∴an =1+(n-1)×1=n,∴Sn=+,∴=+=2-+,∴++…+=21-+-+…+-+=+.15.1-【试题解析】由2a1+22a2+23a3+…+2n a n=n(n∈N*),可得2a1+22a2+23a3+…+2n an+2n+1an+1=n+1,两式相减得2n+1an+1=1,∴an+1=+.∵当n=1时,2a1=1,∴a1=,∴{an}是首项a1=,公比q=的等比数列,则数列{a n}的前n项和S n=--=1-.16.③【试题解析】①当a1=,d=-,a n>0时,依题意,a n=,这一数列不是有穷数列,故不正确;②当d>0,a1>0时,∵an+1=±+,∴这一数列不一定是递增数列,故不正确;③∵a1=1,d=3,∴a2=±+=±2,当a2=2时,a3=±+=±,故正确;④∵a1=0,∴=a1+d=d,∴d≥0,而-<0,故不正确.综上所述,③正确.17.解:(1)由题意知=a1a9,即(2+2d)2=2×(2+8d),即d2-2d=0,∴d=2或d =0(舍),∴an=2n.(2)-1=22n-1=4n-1,∴S n=41+42+43+…+4n-n=(4n-1)-n.18.解:(1)由已知得a1+a2+a3=7,a1+3+a3+4=2×3a2,可得a2=2.设数列{a n}的公比为q,由a2=2,可得a1=,a3=2q,∵S3=7,∴+2+2q=7,即2q2-5q+2=0,解得q=2或q=.由题意知q>1,∴q=2,∴a1=1,故数列{an}的通项公式为an=2n-1.(2)∵b n=ln a3n+1,a3n+1=23n,∴b n=ln 23n=3n ln 2,∴b n+1-b n=3ln 2,故数列{b n}为等差数列,∴T n=b1+b2+…+b n=+=+=+ln 2,故T n =+ln 2.19.解:(1)由a1=2,a n+1=2a n,得a n=2n.由题意知,当n=1时,b1=b2-1,故b2=2.易知当n≥2时,b n=b n+1-b n,整理得+=+(n≥2),所以b n=n(n≥2).又b1=1也满足上式,所以bn=n.(2)由(1)知,a n b n=n·2n,所以T n=2+2×22+3×23+…+n×2n,2T n=22+2×23+3×24+…+(n-1)×2n+n×2n+1,所以T n-2T n=-T n=2+22+23+…+2n-n×2n+1=(1-n)2n+1-2,所以T n=(n-1)2n+1+2.20.解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,由a1=3,b1=1,b2+S2=12,a3=b3,得+++=,=+,又q>0,∴=,=,∴数列{an}的通项公式为a n=3+3(n-1)=3n,数列{b n}的通项公式为b n=3n-1.(2)证明:由(1)知a n=3n,则S n=+,∴=+=-+,∴Tn =×1-+×-+×-+…+×-+=1-+<.21.解:(1)设等差数列的公差为d,则依题意有+=,+=+,解得=,=,所以数列的通项公式为a n=2n-1.(2)因为b n=+=--+,所以S n=-+-+…+--+=1-+.令1-+>,解得n>1009,所以满足条件的最小正整数n为1010.22.解:(1)当n≥2时,a n=S n-S n-1=2a n-2a n-1,得a n=2a n-1;当n=1时,a1=S1=2a1-2,得a1=2.因此数列{a n}为等比数列,且首项为2,公比为2,∴通项公式为an=2n.(2)∵f(x)=,f(b n+1)=--,∴+=--,∴+=+.∴bn+1=bn+3,即bn+1-bn=3.又∵b1=2,∴{bn}是以2为首项,3为公差的等差数列,∴bn =3n-1.∴cn==-,T n =+++…+--+-①,T n =+++…+-+-+②,①-②得Tn =1++++…+--+,即T n=1+3×-----+,即T n=1+----+,∴Tn =2+3----=2+3----=5-+.单元测评(三)1.B【试题解析】不等式-3x2+7x-2<0可化为3x2-7x+2>0,方程3x2-7x+2=0的两根为x1=,x2=2,则不等式3x2-7x+2>0的解集是<或>,故选B.2.D【试题解析】取a=-2,b=1,可排除选项A,B,C;由a<b,得a-b<0,不等式a<b两边都乘-,得->-,故D正确.故选D.3.A【试题解析】当x=y=0时,3x+2y+5=5>0,则原点一侧对应的不等式是3x+2y+5>0,可以验证仅有点(-3,4)满足3x+2y+5>0,故选A.4.C【试题解析】如图,画出约束条件表示的可行域,由+-=,=-,得=,=-,即C(3,-2),由图可知,当直线3x+y-z=0过点C(3,-2)时,z取得最大值,z max=3×3-2=7.5.D【试题解析】不等式<可化为->0,即2x(x-2)>0,方程2x(x-2)=0的两根为x1=0,x2=2,则不等式2x(x-2)>0的解集是{x|x<0或x>2},故选D.6.C【试题解析】因为x>0,y>0,所以x+y=(x+y)+=5++≥5+2·=9,当且仅当=,即x=3,y=6时,等号成立,故选C.7.B【试题解析】由直线kx-y=0,2x+ky-2=0与x轴围成的三角形区域如图,易知A的坐标为(1,0).联立-=,+-=,解得B+,+,则S△OAB=×1×+=+=+≤·=,当且仅当k=,即k=时上式取等号,故选B.8.C【试题解析】构造函数f(x)=x2+(a2-1)x+a-2,因为方程x2+(a2-1)x +a-2=0的一根比1大且另一根比1小,所以f(1)<0,即a2+a-2<0,解得-2<a<1,故选C.9.A【试题解析】不等式x2-4x-2-a>0在区间(1,4)内有解等价于当x∈(1,4)时a<(x2-4x-2)max,令g(x)=x2-4x-2,x∈(1,4),则g(x)<g(4)=-2,所以a<-2.10.B【试题解析】画出约束条件表示的可行域(如图所示).显然,当直线z=ax+by过点A(2,1)时,z取得最小值,即2=2a+b,所以2-2a=b,所以a2+b2=a2+(2-2a)2=5a2-8a+20.构造函数m(a)=5a2-8a+20(>a >0),利用二次函数求最值,显然函数m(a)=5a2-8a+20的最小值是- =4,即a2+b2的最小值为4.故选B.11.A【试题解析】以C为坐标原点建立直角坐标系(如图),则直线AB的方程为+=1,设点P的坐标为(m,n),则0≤m≤4,0≤n≤2,+=1,由+≥2·=,得mn≤2,故AB边上的点P到边AC,BC的距离的乘积的取值范围是[0,2],故选A.12.C【试题解析】由实数x,y满足xy-3=x+y,且x>1,可得y=+-,则y(x+8)=++-,令t=x-1(t>0),则有x=t+1,则y(x+8)=++=t ++13≥2·+13=12+13=25,当且仅当t=6,即x=7时取等号,此时y(x+8)取得最小值25.13.(-4,0]【试题解析】当a=0时,f(x)=-1<0恒成立,故a=0符合题意;当a≠0时,由题意得<,=+<⇒<,-<<⇒-4<a<0.综上所述,a的取值范围是-4<a≤0.14.1【试题解析】作出不等式组表示的平面区域(如图所示),把z=3x+y变形为y=-3x+z,则当直线y=-3x+z经过点(0,1)时,z最小,将(0,1)代入z=3x+y,得z min=1,即z=3x+y的最小值为1.15.5+2【试题解析】∵y=log a x的图像恒过定点(1,0),∴函数y=log a(x +4)-2的图像恒过定点A(-3,-2),把点A的坐标代入直线方程得m×(-3)+n×(-2)+1=0,即3m+2n=1,又mn>0,∴m>0,n>0,∴+=(3m+2n)+=5++≥5+2·=5+2,当且仅当=时,等号成立,故+的最小值为5+2.16.[-4,3]【试题解析】原不等式可化为(x-a)(x-1)≤0,当a<1时,不等式的解集为[a,1],此时只要a≥-4即可,即-4≤a<1;当a=1时,不等式的解为x=1,此时符合要求;当a>1时,不等式的解集为[1,a],此时只要a≤3即可,即1<a≤3.综上可得,-4≤a≤3.17.解:(1)当a=-2时,不等式为-2x2-3x+2>0,即2x2+3x-2<0,方程2x2+3x-2=0的两根为x1=-2,x2=,∴不等式2x2+3x-2<0的解集为-<<.(2)由题意知1,b是方程ax2-3x+2=0的两根,∴a-3+2=0,即a=1,又1×b =,∴b=2.18.解:方程x2-(m+m2)x+m3=0的解为x1=m和x2=m2.二次函数y=x2-(m+m2)x+m3的图像开口向上,所以①当m=0或1时,原不等式的解集为⌀;②当0<m<1时,原不等式的解集为{x|m2<x<m};③当m<0或m>1时,原不等式的解集为{x|m<x<m2}.19.解:(1)S=(x+20)×+=8x++4160,x>0.(2)∵x>0,∴S≥2+4160=1600+4160=5760,当且仅当8x=,即x=100时取等号.故要使公园所占面积最小,则休闲区A1B1C1D1的长应为100米,宽为40米.20.解:设生产甲产品x吨,生产乙产品y吨,在一个生产周期内该企业获得的利润为z万元,。
人教A版高中数学必修五5全册测试--含答案.docx
数学5全册测试说明:时间120分钟,满分150分;可以使用计算器.一、选择题(每小题只有一个正确选项;每小题5分,共60分) 1.数列1,3,6,10,…的一个通项公式是(A )a n =n 2-(n-1) (B )a n =n 2-1 (C )a n =2)1(+n n (D )a n =2)1(-n n 2.已知数列3,3,15,…,)12(3-n ,那么9是数列的(A )第12项 (B )第13项 (C )第14项 (D )第15项3.在数列{a n }中,a 1=1,当n ≥2时,n 2=a 1a 2…a n 恒成立,则a 3+a 5等于 (A )7613111(B)(C)(D)3161544.一个三角形的两内角分别为45°和60°,如果45°角所对的边长是6,那么60°角所对的边长为(A )36 (B )32 (C )33 (D ) 26 5.在△ABC 中,若∠A ∶∠B ∶∠C =1∶2∶3,则a ∶b ∶c 等于(A )1∶2∶3(B )3∶2∶1 (C )2∶3∶1(D )1∶3∶26.在△ABC 中,∠A =60°,a =6,b =4,满足条件的△ABC(A )无解 (B )有解 (C )有两解 (D )不能确定7、等差数列{n a }的前n 项和记为n S ,若1062a a a ++为一个确定的常数,则下列各数中可以用这个常数表示的是(A ) 6S (B ) 11S (C )12S (D ) 13S8.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2 a 10-a 12的值为 (A)20(B)22(C)24 (D)289. 当a <0时,不等式42x 2+ax -a 2<0的解集为 (A){x |-6a <x <7a } (B ){x |7a <x <-6a } (C){x |6a <x <-7a} (D ){x |-7a <x <6a} 10.在∆ABC 中,A B C ,,为三个内角,若cot cot 1A B ⋅>,则∆ABC 是 ( ) (A )直角三角形 (B )钝角三角形(C )锐角三角形 (D )是钝角三角形或锐角三角形11.已知等差数列{a n }满足56a a +=28,则其前10项之和为 ( ) (A )140 (B )280 (C )168 (D )5612.不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( )(A ) 矩形( B ) 三角形(C ) 直角梯形(D ) 等腰梯形二、填空题(把答案写在题中的横线上;每小题4分,共16分)13. 数列{a n }中,已知a n =(-1)n·n +a (a 为常数)且a 1+a 4=3a 2,则a =_________,a 100=_________.14.在△ABC 中,若 0503,30,b c a ===则边长___________.15.若不等式ax 2+bx +2>0的解集为{x |-3121<<x },则a +b =_________. 16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖 块.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 非等边三角形ABC 的外接圆半径为2,最长的边23BC =,求sin sin B C +的取值范围.18. (本小题满分12分)在湖的两岸A 、B 间建一座观赏桥,由于条件限制,无法直接度量A 、B 两点间的距离.请你用学过的数学知识按以下要求设计一测量方案. (1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB 的距离(写出求解或推理过程,结果用字母表示).19.(本小题满分12分)设{}n a 为等差数列,{}n b 为等比数列,,,,134234211a b b b a a b a ==+==分别求出{}n a 及{}n b 的前10项的和1010T S 及.20.(本小题满分12分)已知10<<m ,解关于x 的不等式13>-x mx. 21、(本小题满分12分)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本)(n g 与科技成本的投入次数n 的关系是)(n g =180+n .若水晶产品的销售价格不变,第n 次投入后的年利润为)(n f 万元.①求出)(n f 的表达式;②问从今年算起第几年利润最高?最高利润为多少万元?22.(本小题满分14分)已知等比数列{}n a 的通项公式为13-=n n a ,设数列{}n b 满足对任意自然数n 都有11a b +22a b +33a b +┅+nn a b =n 2+1恒成立. ①求数列{}n b 的通项公式;②求+++321b b b ┅+2005b 的值. 参考答案:一、选择题CCBAD ABCBB AD二、填空题42n +. 三、解答题 17. 解:由正弦定理2BC R SinA= ,得23sin =A . ∵BC 是最长边,且三角形为非等边三角形, ∴π32=A . )3sin(sin sin sin B B c B -+=+π1sin 2B B =+sin()3B π=+. 又30π<<B ,∴2333B πππ<+< ,sin()13B π<+≤.故 c B sin sin +的取值范围为1]18.略.19.解:设等差数列{}n a 的公差为,d 等比数列{}n b 的公比为q . d q q b d a d a 42,,31,122342+=∴=+=+=Θ ①又,,21,,2333342b a d a q b q b =+===ΘΘd q 214+=∴ ② 则由①,②得242q q =-.22,21,02±==∴≠q q q Θ 将212=q 代入①,得855,8310-=∴-=S d当22=q 时,)22(323110+=T , 当22-=q 时,)22(323110-=T , 20. 解:原不等式可化为:[x (m -1)+3](x -3)>0Θ 0<m <1, ∴-1<m -1<0, ∴ 31313>-=--m m ; ∴ 不等式的解集是⎭⎬⎫⎩⎨⎧-<<m x x 133|.21.解:第n 次投入后,产量为10+n 万件,价格为100元,固定成本为180+n 元,科技成本投入为100n ,所以,年利润为n n n n f 100)180100)(10()(-+-+=(+∈N n ) =)191(801000+++-n n520≤ (万元) 当且仅当191+=+n n 时,即 8=n 时,利润最高,最高利润为520万元.22. 解:(1)Θ对任意正整数n ,有11a b +22a b +33a b +┅+nn a b=n 2+1 ① ∴当n =1时,311=a b ,又11=a ,∴31=b ; 当2≥n 时,11a b +22a b +33a b +┅+11--n n a b =n 2-1 ② ∴②-①得 2=nn a b ; 1322-⨯==n n n a b ;∴n-13 , (1),23 , (2)n n b n =⎧=⎨⨯≥⎩(2)+++321b b b ┅+2005b=)323232(320042⨯++⨯+⨯+Λ=)13(332004-+=20053。
高中数学人教A版必修5测试题及答案
,知
⑵
当且仅当
A1B1C1D1 的长为 100 米、宽为 40 米.
6/6
ABCD ,公园由长方形的休闲区 A1B1C1D1 的面积为 4000 平方
(1)若设休闲区的长
米,求公园 ABCD 所占面积 S 关于 的函数
(2)要使公园所占面积最小,休闲区 A1B1C1D1 的长和宽该如何设计?
的解析式;
4/6
高中数学人教 A 版必修 5 测试题答案
1.D; 2.B; 3.B; 4.B; 5.C; 6.C; 7.A; 8.C; 9.D; 10.B;11.
高中数学人教 A 版必修 5 测试题
1.如果
,那么
的最小值是( )
A.4
B.
C. 9
D. 18
2、数列
的通项为
小值为( ) A.7
=
,
B.8
3、若不等式
和不等式
,其前 项和为 ,则使 >48 成立的 的最
C. 9
D. 10
的解集相同,则 、 的值为( )
A . =﹣ 8 =﹣ 10
B . =﹣ 4 =﹣ 9
; 12.
15.10; 16.5;
; 13. 48 ; 14.18;
17、⑴由
⑵ 18、⑴由题意知
所以 ⑵当
时,数列
是首项为 、公比为 8 的等比数列
所以
当
时,
所以
综上,所以
或
19、⑴由
时,
;
时,
5/6
知:
是是方程
的两根
⑵由 要使
,知二次函数
的图象开口向下
的解集为 R,只需
即
∴当
时
人教版高中数学必修5测试题及答案全套【最新整理】
第一章 解三角形测试一 正弦定理和余弦定理Ⅰ 学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ 基础训练题一、选择题1.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60°(B)30°(C)60°或120°(D)30°或150°2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-41,则c 等于( ) (A)2(B)3(C)4(D)53.在△ABC 中,已知32sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)512 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形(C)直角三角形(D)等腰三角形或直角三角形5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2(C)1∶4∶9(D)1∶2∶3二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若2cos B cos C =1-cos A ,则△ABC 形状是________三角形.9.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,B =60°,则c =________. 10.在△ABC 中,若tan A =2,B =45°,BC =5,则 AC =________.三、解答题11.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =4,C =60°,试解△ABC . 12.在△ABC 中,已知AB =3,BC =4,AC =13.(1)求角B 的大小;(2)若D 是BC 的中点,求中线AD 的长.13.如图,△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),求角A 的大小.14.在△ABC 中,已知BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.测试二 解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( ) (A)6π (B)3π (C)32π (D)65π2.在△ABC 中,给出下列关系式: ①sin(A +B )=sin C②cos(A +B )=cos C ③2cos 2sinCB A =+ 其中正确的个数是( ) (A)0(B)1(C)2(D)33.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c .若a =3,sin A =32,sin(A +C )=43,则b 等于( ) (A)4(B)38(C)6 (D)827 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,sin C =32,则此三角形的面积是( ) (A)8(B)6(C)4(D)35.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的形状是( ) (A)直角三角形(B)正三角形 (C)腰和底边不等的等腰三角形 (D)等腰直角三角形二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,B =45°,则角A =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,c =19,则角C =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b =3,c =4,cos A =53,则此三角形的面积为________. 9.已知△ABC 的顶点A (1,0),B (0,2),C (4,4),则cos A =________.10.已知△ABC 的三个内角A ,B ,C 满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________. 三、解答题11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =3,b =4,C =60°.(1)求c ; (2)求sin B .12.设向量a ,b 满足a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),若BD ⊥OA 于D .(1)求高线BD 的长; (2)求△OAB 的面积.14.在△ABC 中,若sin 2A +sin 2B >sin 2C ,求证:C 为锐角.(提示:利用正弦定理R CcB b A a 2sin sin sin ===,其中R 为△ABC 外接圆半径) Ⅱ 拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX 、OY 上的A 、B 两点,| OA |=3km ,| OB |=1km ,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向. 问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ca bC B +-=2cos cos . (1)求角B 的值;(2)若b =13,a +c =4,求△ABC 的面积.第二章 数列测试三 数列Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数. 2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( ) (A)a n =4n (B)a n =4n (C)a n =94(10n-1)(D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( ) (A)30(B)35(C)36(D)423.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( ) (A)4(B)13(C)28(D)434.156是下列哪个数列中的一项( ) (A){n 2+1}(B){n 2-1}(C){n 2+n }(D){n 2+n -1}5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( ) (A)递增数列 (B)递减数列(C)先减后增数列(D)以上都不对二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1Λ=________;(2)0,1,0,1,0,…,a n =________.7.一个数列的通项公式是a n =122+n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211-++++=n a n Λ(n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项.三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0.12.在数列{a n }中,已知a n =312-+n n (n ∈N *).(1)写出a 10,a n +1,2n a ; (2)7932是否是此数列中的项?若是,是第几项? 13.已知函数xx x f 1)(-=,设a n =f (n )(n ∈N +). (1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( ) (A)98(B)-195(C)-201(D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( ) (A)667(B)668(C)669(D)6703.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( ) (A)15(B)30(C)31(D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( ) (A)nab - (B)1+-n ab (C)1++n ab (D)2+-n ab 5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( ) (A)S 4<S 5 (B)S 4=S 5 (C)S 6<S 5 (D)S 6=S 5二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________. 9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________.10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n 项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50.(1)求通项a n ; (2)若S n =242,求n .13.数列{a n }是等差数列,且a 1=50,d =-0.6.(1)从第几项开始a n <0;(2)写出数列的前n 项和公式S n ,并求S n 的最大值.Ⅲ 拓展训练题14.记数列{a n }的前n 项和为S n ,若3a n +1=3a n +2(n ∈N *),a 1+a 3+a 5+…+a 99=90,求S 100.测试五 等比数列Ⅰ 学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=2a n ,则a 4等于( )(A)83(B)24 (C)48 (D)542.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5等于( ) (A)33(B)72(C)84(D)1893.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4 (B)23 (C)916 (D)34.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( ) (A)81(B)120(C)168 (D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论: ①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列;④{a n }可能是递减数列.其中正确的结论是( ) (A)①③ (B)①④(C)②③(D)②④二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________. 9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n }中,若a 2a 6=36,a 3+a 5=15,求公比q .13.已知实数a ,b ,c 成等差数列,a +1,b +1,c +4成等比数列,且a +b +c =15,求a ,b ,c .Ⅲ 拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列.a ij 表示位于第i 行第j 列的数,其中a 24=1,a 42=1,a 54=5.(1)求q 的值;(2)求a ij 的计算公式.测试六 数列求和Ⅰ 学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( ) (A)15(B)17(C)19(D)212.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60(B)72.5(C)85 (D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( ) (A)100 (B)-100(C)200(D)-2004.数列⎭⎬⎫⎩⎨⎧+-)12)(12(1n n 的前n 项和为( )(A)12+n n(B)122+n n(C)24+n n(D)12+n n5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( ) (A)7000 (B)7250 (C)7500 (D)14950二、填空题 6.nn +++++++++11341231121Λ=________.7.数列{n +n21}的前n 项和为________. 8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________.9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.n n 21813412211⨯++⨯+⨯+⨯Λ=________. 三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ; (2)求13221111++++n n a a a a a a Λ.13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211-++++n Λ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( ) (A)3(B)2(C)-2(D)2或-22.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( ) (A)5(B)10(C)15(D)203.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( ) (A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5 (C)a 1+a 8>a 4+a 5(D)a 1a 8=a 4a 54.一给定函数y =f (x )的图象在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N *),则该函数的图象是( )5.已知数列{a n }满足a 1=0,1331+-=+n n n a a a (n ∈N *),则a 20等于( ) (A)0 (B)-3(C)3(D)23 二、填空题6.设数列{a n }的首项a 1=41,且⎪⎪⎩⎪⎪⎨⎧+=+.,,41,211为奇数为偶数n a n a a n nn 则a 2=________,a 3=________.7.已知等差数列{a n }的公差为2,前20项和等于150,那么a 2+a 4+a 6+…+a 20=________.8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则a n =________.10.在数列{a n }和{b n }中,a 1=2,且对任意正整数n 等式3a n +1-a n =0成立,若b n 是a n 与a n +1的等差中项,则{b n }的前n 项和为________. 三、解答题11.数列{a n }的前n 项和记为S n ,已知a n =5S n -3(n ∈N *).(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求a 1+a 3+…+a 2n -1的和.12.已知函数f (x )=422+x (x >0),设a 1=1,a 21+n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m .(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( ) (A)16(B)20(C)24(D)362.在50和350间所有末位数是1的整数和( ) (A)5880(B)5539(C)5208(D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( ) (A)0(B)1(C)2(D)不能确定4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( ) (A)-2(B)2(C)-4(D)45.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) (A)4012 (B)4013(C)4014(D)4015二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________.7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________. 8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a a a a ++++=________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21+n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________.三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元. (1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题15.已知函数f (x )=412-x (x <-2),数列{a n }满足a 1=1,a n =f (-11+n a )(n ∈N *).(1)求a n ;(2)设b n =a 21+n +a 22+n +…+a 212+n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f 是直角坐标系平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作Q =f (P ).设P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点P n (x n ,y n )(n ∈N *)都在这个圆内或圆上,那么称这个圆为点P n (x n ,y n )的一个收敛圆.特别地,当P 1=f (P 1)时,则称点P 1为映射f 下的不动点.若点P (x ,y )在映射f 下的象为点Q (-x +1,21y ). (1)求映射f 下不动点的坐标;(2)若P 1的坐标为(2,2),求证:点P n (x n ,y n )(n ∈N *)存在一个半径为2的收敛圆.第三章 不等式测试九 不等式的概念与性质Ⅰ 学习目标1.了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小. 2.理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( ) (A)a >b ⇒a -c >b -c (B)a >b ⇒ac >bc (C)a >b ⇒a 2>b 2(D)a >b ⇒ac 2>bc 22.若-1<α<β<1,则α-β 的取值范围是( ) (A)(-2,2)(B)(-2,-1)(C)(-1,0)(D)(-2,0)3.设a >2,b >2,则ab 与a +b 的大小关系是( ) (A)ab >a +b (B)ab <a +b(C)ab =a +b(D)不能确定4.使不等式a >b 和ba 11>同时成立的条件是( ) (A)a >b >0(B)a >0>b(C)b >a >0(D)b >0>a5.设1<x <10,则下列不等关系正确的是( ) (A)lg 2x >lg x 2>lg(lg x )(B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x ) (D)lg x 2>lg(lg x )>lg 2x二、填空题6.已知a <b <0,c <0,在下列空白处填上适当不等号或等号: (1)(a -2)c ________(b -2)c ; (2)a c ________bc; (3)b -a ________|a |-|b |. 7.已知a <0,-1<b <0,那么a 、ab 、ab 2按从小到大排列为________. 8.已知60<a <84,28<b <33,则a -b 的取值范围是________;ba的取值范围是________. 9.已知a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③cbc a >;④a -c >b -c .以其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是________⇒________;________⇒________.(在“⇒”的两侧填上论断序号).10.设a >0,0<b <1,则P =23+a b 与)2)(1(++=a a bQ 的大小关系是________.三、解答题11.若a >b >0,m >0,判断a b 与ma mb ++的大小关系并加以证明.12.设a >0,b >0,且a ≠b ,b a q a b ba p +=+=,22.证明:p >q .注:解题时可参考公式x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知a >0,且a ≠1,设M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较a 5和b 5的大小.测试十 均值不等式Ⅰ 学习目标1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.Ⅱ 基础训练题一、选择题1.已知正数a ,b 满足a +b =1,则ab ( ) (A)有最小值41 (B)有最小值21 (C)有最大值41 (D)有最大值21 2.若a >0,b >0,且a ≠b ,则( )(A)2222b a ab ba +<<+ (B)2222b a ba ab +<+< (C)2222ba b a ab +<+<(D)2222ba ab b a +<<+ 3.若矩形的面积为a 2(a >0),则其周长的最小值为( ) (A)a(B)2a(C)3a(D)4a4.设a ,b ∈R ,且2a +b -2=0,则4a +2b 的最小值是( ) (A)22(B)4(C)24(D)85.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( ) (A)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值唯一(B)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (C)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 (D)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 二、填空题6.若x >0,则变量xx 9+的最小值是________;取到最小值时,x =________. 7.函数y =142+x x(x >0)的最大值是________;取到最大值时,x =________. 8.已知a <0,则316-+a a 的最大值是________. 9.函数f (x )=2log 2(x +2)-log 2x 的最小值是________.10.已知a ,b ,c ∈R ,a +b +c =3,且a ,b ,c 成等比数列,则b 的取值范围是________. 三、解答题11.四个互不相等的正数a ,b ,c ,d 成等比数列,判断2da +和bc 的大小关系并加以证明. 12.已知a >0,a ≠1,t >0,试比较21log a t 与21log +t a 的大小.Ⅲ 拓展训练题13.若正数x ,y 满足x +y =1,且不等式a y x ≤+恒成立,求a 的取值范围.14.(1)用函数单调性的定义讨论函数f (x )=x +xa(a >0)在(0,+∞)上的单调性; (2)设函数f (x )=x +xa(a >0)在(0,2]上的最小值为g (a ),求g (a )的解析式. 测试十一 一元二次不等式及其解法Ⅰ 学习目标1.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系. 2.会解简单的一元二次不等式.Ⅱ 基础训练题一、选择题1.不等式5x +4>-x 2的解集是( ) (A){x |x >-1,或x <-4} (B){x |-4<x <-1} (C){x |x >4,或x <1}(D){x |1<x <4}2.不等式-x 2+x -2>0的解集是( ) (A){x |x >1,或x <-2}(B){x |-2<x <1}(C)R(D)∅3.不等式x 2>a 2(a <0)的解集为( ) (A){x |x >±a }(B){x |-a <x <a } (C){x |x >-a ,或x <a }(D){x |x >a ,或x <-a }4.已知不等式ax 2+bx +c >0的解集为}231|{<<-x x ,则不等式cx 2+bx +a <0的解集是( )(A){x |-3<x <21} (B){x |x <-3,或x >21} (C){x -2<x <31}(D){x |x <-2,或x >31}5.若函数y =px 2-px -1(p ∈R )的图象永远在x 轴的下方,则p 的取值范围是( )(A)(-∞,0) (B)(-4,0](C)(-∞,-4)(D)[-4,0)二、填空题6.不等式x 2+x -12<0的解集是________. 7.不等式05213≤+-x x 的解集是________. 8.不等式|x 2-1|<1的解集是________. 9.不等式0<x 2-3x <4的解集是________. 10.已知关于x 的不等式x 2-(a +a 1)x +1<0的解集为非空集合{x |a <x <a1},则实数a 的取值范围是________. 三、解答题11.求不等式x 2-2ax -3a 2<0(a ∈R )的解集.12.k 在什么范围内取值时,方程组⎩⎨⎧=+-=-+0430222k y x x y x 有两组不同的实数解?Ⅲ 拓展训练题13.已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1)求实数a 的取值范围,使C ⊇(A ∩B ); (2)求实数a 的取值范围,使C ⊇(U A )∩(U B ).14.设a ∈R ,解关于x 的不等式ax 2-2x +1<0.测试十二 不等式的实际应用Ⅰ 学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ 基础训练题一、选择题 1.函数241xy -=的定义域是( )(A){x |-2<x <2}(B){x |-2≤x ≤2} (C){x |x >2,或x <-2}(D){x |x ≥2,或x ≤-2}2.某村办服装厂生产某种风衣,月销售量x (件)与售价p (元/件)的关系为p =300-2x ,生产x 件的成本r =500+30x (元),为使月获利不少于8600元,则月产量x 满足( ) (A)55≤x ≤60 (B)60≤x ≤65 (C)65≤x ≤70(D)70≤x ≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r 的取值范围为( ) (A)2≤r ≤10 (B)8≤r ≤10 (C)2≤r ≤8(D)0≤r ≤84.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( ) (A)2∈M ,0∈M (B)2∉M ,0∉M (C)2∈M ,0∉M(D)2∉M ,0∈M二、填空题5.已知矩形的周长为36cm ,则其面积的最大值为________.6.不等式2x 2+ax +2>0的解集是R ,则实数a 的取值范围是________. 7.已知函数f (x )=x |x -2|,则不等式f (x )<3的解集为________.8.若不等式|x +1|≥kx 对任意x ∈R 均成立,则k 的取值范围是________. 三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m ,乙车的刹车距离略超过10m .已知甲乙两种车型的刹车距离s (km)与车速x (km/h)之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.问交通事故的主要责任方是谁?Ⅲ 拓展训练题11.当x ∈[-1,3]时,不等式-x 2+2x +a >0恒成立,求实数a 的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm 的空白,上下留有都为6cm 的空白,中间排版面积为2400cm 2.如何选择纸张的尺寸,才能使纸的用量最小?测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题1.已知点A (2,0),B (-1,3)及直线l :x -2y =0,那么( ) (A)A ,B 都在l 上方(B)A ,B 都在l 下方 (C)A 在l 上方,B 在l 下方(D)A 在l 下方,B 在l 上方2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤+≥≥2,0,0y x y x 所表示的平面区域的面积为( )(A)1 (B)2 (C)3 (D)43.三条直线y =x ,y =-x ,y =2围成一个三角形区域,表示该区域的不等式组是( )(A)⎪⎩⎪⎨⎧≤-≥≥.2,,y x y x y(B)⎪⎩⎪⎨⎧≤-≤≤.2,,y x y x y(C)⎪⎩⎪⎨⎧≤-≥≤.2,,y x y x y(D)⎪⎩⎪⎨⎧≤-≤≥.2,,y x y x y4.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-,3,0,05x y x y x 则z =2x +4y 的最小值是( )(A)-6 (B)-10 (C)5 (D)105.某电脑用户计划使用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) (A)5种 (B)6种 (C)7种 (D)8种二、填空题6.在平面直角坐标系中,不等式组⎩⎨⎧<>00y x 所表示的平面区域内的点位于第________象限.7.若不等式|2x +y +m |<3表示的平面区域包含原点和点(-1,1),则m 的取值范围是________. 8.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,033,3,1y x y x 那么z =x -y 的取值范围是________.9.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,022,2,1y x y x 那么x y 的取值范围是________.10.方程|x |+|y |≤1所确定的曲线围成封闭图形的面积是________. 三、解答题11.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x12.某实验室需购某种化工原料106kg ,现在市场上该原料有两种包装,一种是每袋35kg ,价格为140元;另一种是每袋24kg ,价格为120元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13.商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖和750克硬糖,每袋可盈利0.5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0.9元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向A ,B 两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A 镇需大米70吨,B 镇需大米110吨,两个粮库到两镇的路程和运费如下表:问:(1)这两个粮库各运往A 、B 两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题1.设a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( ) (A)ac 2>bc 2(B)ba 11< (C)a -c >b -c (D)|a |>|b |2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≥+-≤-+2,042,04y y x y x 表示的平面区域的面积是( )(A)23 (B)3 (C)4 (D)63.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m ,则这个矩形的面积最大值是( ) (A)50m 2(B)100m 2(C)200m 2(D)250m 24.设函数f (x )=222x x x +-,若对x >0恒有xf (x )+a >0成立,则实数a 的取值范围是( )(A)a <1-22(B)a <22-1(C)a >22-1(D)a >1-225.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0,则( ) (A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题6.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba的取值范围是________. 7.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________. 8.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 9.若函数f (x )=1222--⋅+aax x的定义域为R ,则a 的取值范围为________.10.三个同学对问题“关于x 的不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值.”乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于x 的函数,作出函数图象.”参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是________. 三、解答题11.已知全集U =R ,集合A ={x | |x -1|<6},B ={x |128--x x >0}. (1)求A ∩B ; (2)求(U A )∪B .12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题13.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与ij a a 两数中至少有一个属于A .(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (2)证明:a 1=1,且n nna a a a a a a =++++++---1121121ΛΛ.测试十五必修5模块自我检测题一、选择题1.函数42-=xy的定义域是( )(A)(-2,2) (B)(-∞,-2)∪(2,+∞)(C)[-2,2] (D)(-∞,-2]∪[2,+∞)2.设a>b>0,则下列不等式中一定成立的是( )(A)a-b<0 (B)0<ba<1(C)ab<2ba+(D)ab>a+b3.设不等式组⎪⎩⎪⎨⎧≥-≥≤,0,1yxyx所表示的平面区域是W,则下列各点中,在区域W内的点是( )(A))31,21((B))31,21(-(C))31,21(--(D))31,21(-4.设等比数列{a n}的前n项和为S n,则下列不等式中一定成立的是( )(A)a1+a3>0 (B)a1a3>0 (C)S1+S3<0 (D)S1S3<05.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若A∶B∶C=1∶2∶3,则a∶b∶c等于( )(A)1∶3∶2 (B)1∶2∶3 (C)2∶3∶1 (D)3∶2∶16.已知等差数列{a n}的前20项和S20=340,则a6+a9+a11+a16等于( )(A)31 (B)34 (C)68 (D)707.已知正数x、y满足x+y=4,则log2x+log2y的最大值是( )(A)-4 (B)4 (C)-2 (D)28.如图,在限速为90km/h的公路AB旁有一测速站P,已知点P距测速区起点A的距离为0.08 km,距测速区终点B的距离为0.05 km,且∠APB=60°.现测得某辆汽车从A点行驶到B点所用的时间为3s,则此车的速度介于( )(A)60~70km/h (B)70~80km/h(C)80~90km/h (D)90~100km/h二、填空题9.不等式x(x-1)<2的解集为________.10.在△ABC中,三个内角A,B,C成等差数列,则cos(A+C)的值为________.11.已知{a n}是公差为-2的等差数列,其前5项的和S5=0,那么a1等于________.12.在△ABC中,BC=1,角C=120°,cos A=32,则AB=________.13.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤-+≤-+≥≥342,0yxyxyx,所表示的平面区域的面积是________;变量z=x+3y的最大值是________.14.如图,n2(n≥4)个正数排成n行n列方阵,符号a ij(1≤i≤n,1≤j≤n,i,j∈N)表示位于第i行第j列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若a11=21,a24=1,a32=41,则q=________;a ij=________.三、解答题15.已知函数f(x)=x2+ax+6.(1)当a=5时,解不等式f(x)<0;(2)若不等式f(x)>0的解集为R,求实数a的取值范围.16.已知{a n}是等差数列,a2=5,a5=14.(1)求{a n}的通项公式;(2)设{a n}的前n项和S n=155,求n的值.17.在△ABC中,a,b,c分别是角A,B,C的对边,A,B是锐角,c=10,且34coscos==abBA.(1)证明角C=90°;(2)求△ABC的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配给该厂的煤至多56吨,供电至多45千瓦,问该厂如何安排生产,使得该厂日产值最大?19.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos A =31.(1)求A CB 2cos 2sin 2++的值; (2)若a =3,求bc 的最大值.20.数列{a n }的前n 项和是S n ,a 1=5,且a n =S n -1(n =2,3,4,…).(1)求数列{a n }的通项公式; (2)求证:⋅<++++531111321n a a a a Λ参考答案第一章 解三角形测试一 正弦定理和余弦定理一、选择题1.B 2.C 3.B 4.D 5.B 提示:4.由正弦定理,得sin C =23,所以C =60°或C =120°, 当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形. 5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°, 由正弦定理CcB b A a sin sin sin ===k , 得a =k ·sin30°=21k ,b =k ·sin60°=23k ,c =k ·sin90°=k ,所以a ∶b ∶c =1∶3∶2. 二、填空题 6.362 7.30° 8.等腰三角形 9.2373+ 10.425 提示:8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1, ∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C . 9.利用余弦定理b 2=a 2+c 2-2ac cos B . 10.由tan A =2,得52sin =A ,根据正弦定理,得ABC B AC sin sin =,得AC =425. 三、解答题11.c =23,A =30°,B =90°. 12.(1)60°;(2)AD =7. 13.如右图,由两点间距离公式,得OA =29)02()05(22=-+-,同理得232,145==AB OB .由余弦定理,得cos A =222222=⨯⨯-+AB OA OB AB OA , ∴A =45°.14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°.(2)由题意,得a +b =23,ab =2,又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=12-4-4×(21-)=10. 所以AB =10. (3)S △ABC =21ab sin C =21·2·23=23.测试二 解三角形全章综合练习1.B 2.C 3.D 4.C 5.B 提示:5.化简(a +b +c )(b +c -a )=3bc ,得b 2+c 2-a 2=bc , 由余弦定理,得cos A =212222=-+bc a c b ,所以∠A =60°.因为sin A =2sin B cos C ,A +B +C =180°, 所以sin(B +C )=2sin B cos C , 即sin B cos C +cos B sin C =2sin B cos C . 所以sin(B -C )=0,故B =C . 故△ABC 是正三角形. 二、填空题6.30° 7.120° 8.524 9.55 10.3三、解答题11.(1)由余弦定理,得c =13;(2)由正弦定理,得sin B =13392. 12.(1)由a ·b =|a |·|b |·cos 〈a ,b 〉,得〈a ,b 〉=60°;(2)由向量减法几何意义,知|a |,|b |,|a -b |可以组成三角形,所以|a -b |2=|a |2+|b |2-2|a |·|b |·cos 〈a ,b 〉=7, 故|a -b |=7.13.(1)如右图,由两点间距离公式,得29)02()05(22=-+-=OA , 同理得232,145==AB OB . 由余弦定理,得,222cos 222=⨯⨯-+=AB OA OB AB OA A所以A =45°.故BD =AB ×sin A =229.(2)S △OAB =21·OA ·BD =21·29·229=29. 14.由正弦定理R CcB b A a 2sin sin sin ===,得C Rc B R b A R a sin 2,sin 2,sin 2===. 因为sin 2A +sin 2B >sin 2C , 所以222)2()2()2(RcR b R a >+, 即a 2+b 2>c 2.所以cos C =abc b a 2222-+>0, 由C ∈(0,π),得角C 为锐角.15.(1)设t 小时后甲、乙分别到达P 、Q 点,如图,则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以t =43h 时,P 与O 重合. 故当t ∈[0,43]时, |PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°; 当t >43h 时,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°. 故得|PQ |=724482+-t t (t ≥0). (2)当t =h 4148224=⨯--时,两人距离最近,最近距离为2km . 16.(1)由正弦定理R CcB b A a 2sin sin sin ===, 得a =2R sin A ,b =2R sin B ,c =2R sinC . 所以等式c a b C B +-=2cos cos 可化为CR A R BR C B sin 2sin 22sin 2cos cos +⋅-=, 即CA BC B sin sin 2sin cos cos +-=, 2sin A cos B +sin C cos B =-cos C ·sin B ,故2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为A +B +C =π,所以sin A =sin(B +C ), 故cos B =-21, 所以B =120°.(2)由余弦定理,得b 2=13=a 2+c 2-2ac ×cos120°, 即a 2+c 2+ac =13 又a +c =4,解得⎩⎨⎧==31c a ,或⎩⎨⎧==13c a .所以S △ABC =21ac sin B =21×1×3×23=433.第二章 数列测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12+=n a n (或其他符合要求的答案) (2)2)1(1n n a -+=(或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.151 10.4提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102-+=++==+n n a n n a a n n ; (2)7932是该数列的第15项. 13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11+-n ]-(n -n1)=1+)1(1+n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n . 所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2, 即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *).。
人教A数学必修5:高中同步测试卷十五模块综合检测 含
高中同步测试卷(十五)模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <b <c ,则下列结论中正确的是( )A .a |c |<b |c |B .ab <acC .a -c <b -c D.1a >1b >1c2.等比数列x ,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .243.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( )A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±155.已知△ABC 中,三内角A 、B 、C 成等差数列,边a 、b 、c 依次成等比数列,则△ABC 是( )A .直角三角形B .等边三角形C .锐角三角形D .钝角三角形6.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x +y -7≤0,x ≥1则yx的最大值为( )A .6B .3 C.95D .17.已知数列{a n }满足(n +2)a n +1=(n +1)a n ,且a 2=13,则a n 等于( )A.1n +1B.12n -1 C.n -12n -1 D.n -1n +18.已知f (x )=⎩⎨⎧-2x +1x 2,x >01x ,x <0,则f (x )>-1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,-1)∪(0,1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-1,0)∪(0,1)9.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 10.已知数列{a n }共有m 项,定义{a n }的所有项和为S (1),第二项及以后所有项和为S (2),第三项及以后所有项和为S (3),…,第n 项及以后所有项和为S (n ).若S (n )是首项为2,公比为12的等比数列的前n 项和,则当n <m 时,a n 等于( )A .-12n -2 B.12n -2 C .-12n -1 D.12n -111.在使f (x )≥M 成立的所有常数M 中,把M 的最大值叫做f (x )的“下确界”,例如f (x )=x 2+2x ≥M ,则M max =-1,故-1是f (x )=x 2+2x 的下确界,那么a 2+b 2(a +b )2(其中a ,b ∈R ,且a ,b 不全为0)的下确界是( )A .2 B.12 C .4 D.1412.在△ABC 中,若AB →·AC →=|AB →-AC →|=8,则△ABC 的面积的最大值为( ) A .8 B .16 C .10 3 D .8 6二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =________.14.(2015·高考广东卷)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.15.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0,所表示的区域上一动点,则|OM |的最小值是________.16.(2015·高考全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2015·高考湖南卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角.(1)证明:B -A =π2;(2)求sin A +sin C 的取值范围.18.(本小题满分12分)公差不为零的等差数列{a n}中,a3=7,且a2,a4,a9成等比数列.(1)求数列{a n}的通项公式;(2)设b n=2a n,求数列{b n}的前n项和S n.19.(本小题满分12分)已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16.(1)求不等式g(x)<0的解集;(2)若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.20.(本小题满分12分)设数列{a n}的前n项和为S n=2n2,{b n}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{a n}和{b n}的通项公式;(2)设c n =a nb n,求数列{c n }的前n 项和T n .21.(本小题满分12分)在锐角△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且ac sin C =(a 2+c 2-b 2)·sin B .(1)若C =π4,求A 的大小;(2)若a ≠b ,求cb 的取值范围.22.(本小题满分12分)要制作一个如图的框架(单位:m),要求所围成的总面积为19.5 m 2,其中ABCD 是一个矩形,EFCD 是一个等腰梯形,梯形高h =12|AB |,tan ∠FED =34,设|AB |=x m ,|BC |=y m.(1)求y 关于x 的表达式;(2)如何设计x ,y 的长度,才能使所用材料最少?参考答案与解析1.【解析】选C.选项A 中c =0时不成立;选项B 中a ≤0时不成立;选项D 中取a =-2,b =-1,c =1验证,不成立,故选C.2.【解析】选A.由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.3.【解析】选D.因为当x >1时,x +1x -1=1+(x -1)+1x -1≥3,所以x +1x -1≥a 恒成立,只需a ≤3.4. 【解析】选D.由已知(a 4+a 7)2=9,所以a 4+a 7=±3,从而a 1+a 10=±3. 所以S 10=a 1+a 102×10=±15.5.【解析】选B.由A 、B 、C 成等差数列,可得B =60°,不妨设A =60°-α,C =60°+α(0°≤α<60°),由a ,b ,c 成等比数列, 得b 2=ac ,由正弦定理得sin 2B =sin A sin C , 所以34=sin(60°-α)sin(60°+α),所以34=(sin 60°cos α)2-(cos 60°sin α)2,所以34=34cos 2α-14sin 2α,34()1-cos 2α=-14sin 2α, sin 2α=0,所以α=0°, 所以A =B =C ,故选B. 6.【解析】选 A.不等式组表示的可行域如图阴影部分所示,A (1,6),yx≤k OA =6,故选A.7.【解析】选A.因为(n +2)·a n +1=(n +1)a n ,所以a n +1a n =n +1n +2,又当n =1时,3a 2=2a 1,所以a 1=32a 2=12.所以a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=12×23×34×…×n -1n ×n n +1=1n +1.8.【解析】选B.依题意,若-2x +1x 2>-1,则x >0且x ≠1;若1x>-1,则x <-1,综上所述,x ∈(-∞,-1)∪(0,1)∪(1,+∞).9.【解析】选 A.因为x >1,所以x -1>0.所以y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥23+2.10.【解析】选C.因为n <m ,所以m ≥n +1. 又S (n )=2(1-12n )1-12=4-12n -2,所以S (n +1)=4-12n -1,故a n =S (n )-S (n +1) =12n -1-12n -2=-12n -1.11.【解析】选B.因为a 2+b 2(a +b )2=a 2+b 2a 2+b 2+2ab=11+2ab a 2+b2≥12, 所以a 2+b 2(a +b )2的下确界为12. 12.【解析】选D.S △ABC =12 (|AB ―→|·|AC ―→|)2-(AB →·AC →)2=12(|AB ―→|·|AC ―→|)2-64,因为|AB →-AC →|=8,所以|AB →|2+|AC →|2=80,由均值不等式可得|AB →|·|AC →|≤40, 所以S △ABC ≤12(40-8)(40+8)=86,当且仅当|AB →|=|AC →|时取等号.13. 【解析】因为sin ∠BAM =13,所以cos ∠BAM =223.如图,在△ABM 中,利用正弦定理,得BM sin ∠BAM =AM sin B,所以BM AM =sin ∠BAM sin B =13sin B =13cos ∠BAC .在Rt △ACM 中,有CMAM =sin ∠CAM =sin(∠BAC -∠BAM ).由题意知BM =CM ,所以13cos ∠BAC=sin(∠BAC -∠BAM ).化简,得22sin ∠BAC cos ∠BAC -cos 2∠BAC =1. 所以22tan ∠BAC -1tan 2∠BAC +1=1,解得tan ∠BAC = 2.再结合sin 2∠BAC +cos 2∠BAC =1,∠BAC 为锐角可解得sin ∠BAC =63. 【答案】6314.【解析】因为等差数列{a n }中,a 3+a 4+a 5+a 6+a 7=25,所以5a 5=25,即a 5=5.所以a 2+a 8=2a 5=10.【答案】10 15.【解析】如图所示,M 为图中阴影部分区域上的一个动点,由于点到直线的距离最短,所以|OM |的最小值=22= 2. 【答案】 2 16.【解析】画出可行域如图阴影所示,因为 yx 表示过点(x ,y )与原点(0,0)的直线的斜率,所以点(x ,y )在点A 处时yx最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3. 所以A (1,3). 所以yx 的最大值为3.【答案】317.【解】(1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin Asin B ,在△ABC 中,sin A ≠0,所以sin B =cos A ,即sin B =sin ⎝⎛⎭⎫π2+A . 又B 为钝角,因此π2+A ∈⎝⎛⎭⎫π2,π, 故B =π2+A ,即B -A =π2.(2)由(1)知,C =π-(A +B )=π-⎝⎛⎭⎫2A +π2=π2-2A >0, 所以A ∈⎝⎛⎭⎫0,π4. 于是sin A +sin C =sin A +sin ⎝⎛⎭⎫π2-2A =sin A +cos 2A =-2sin 2A +sin A +1 =-2⎝⎛⎭⎫sin A -142+98. 因为0<A <π4,所以0<sin A <22,因此22<-2⎝⎛⎭⎫sin A -142+98≤98. 由此可知sin A +sin C 的取值范围是⎝⎛⎦⎤22,98.18.【解】(1)由数列{a n }为公差不为零的等差数列,设其公差为d ,且d ≠0. 因为a 2,a 4,a 9成等比数列,所以a 24=a 2·a 9,即(a 1+3d )2=(a 1+d )(a 1+8d ),整理得d 2=3a 1d .因为d ≠0,所以d =3a 1.① 因为a 3=7,所以a 1+2d =7.②由①②解得a 1=1,d =3, 所以a n =1+(n -1)×3=3n -2. 故数列{a n }的通项公式是a n =3n -2. (2)由(1)知b n =23n -2,因为b n +1b n =23(n +1)-223n -2=8,所以{b n }是等比数列,且公比为8,首项b 1=2, 所以S n =2(1-8n )1-8=2(8n -1)7.19.【解】(1)g (x )=2x 2-4x -16<0, 所以(2x +4)(x -4)<0, 所以-2<x <4,所以不等式g (x )<0的解集为{x |-2<x <4}. (2)因为f (x )=x 2-2x -8.当x >2时,f (x )≥(m +2)x -m -15恒成立, 所以x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1). 所以对一切x >2,均有不等式x 2-4x +7x -1≥m 成立.而x 2-4x +7x -1=(x -1)+4x -1-2≥ 2(x -1)×4x -1-2=2.(当且仅当x -1=4x -1即x =3时等号成立) 所以实数m 的取值范围是(-∞,2]. 20.【解】(1)当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2,当n =1时,a 1=S 1=2满足上式,故{a n }的通项公式为a n =4n -2.设{b n }的公比为q ,由已知条件a 1=b 1,b 2(a 2-a 1)=b 1知,b 1=2,b 2=12,所以q =14,所以b n =b 1q n -1=2×14n -1,即b n =24n -1.(2)因为c n =a n b n =4n -224n -1=(2n -1)4n -1,所以T n =c 1+c 2+…+c n =1+3×41+5×42+…+(2n -1)4n -1.4T n =1×4+3×42+5×43+…+(2n -3)4n -1+(2n -1)4n .两式相减得:3T n =-1-2(41+42+43+…+4n -1)+(2n -1)4n =13[(6n -5)4n +5].所以T n =19[(6n -5)4n+5].21.【解】(1)因为ac sin C =(a 2+c 2-b 2)sin B ,所以sin C sin B =a 2+c 2-b 2ac=2a 2+c 2-b 22ac =2cos B ,所以sin C =sin 2B ,所以C =2B 或C +2B =π.若C =2B ,C =π4,则A =5π8(舍去).若C +2B =π,C =π4,则A =3π8.故A =3π8.(2)若三角形为非等腰三角形,则C =2B 且A =π-B -C =π-3B , 又因为三角形为锐角三角形, 因为0<2B <π2,0<π-3B <π2,故π6<B <π4. 而c b =sin C sin B =2cos B ,所以c b ∈(2,3). 22.【解】(1)过点D 作DH ⊥EF 于H (图略), 则依题意知|DH |=12|AB |=12x ,|EH |=|DH |tan ∠FED =43×12x =23x ,所以392=xy +12⎝⎛⎭⎫x +x +43x ×12x =xy +56x 2,所以y =392x -56x , 因为x >0,y >0,所以392x -56x >0,解得0<x <3655.所以所求表达式为y =392x -56x ⎝⎛⎭⎫0<x <3655.(2)在Rt △DEH 中,因为tan ∠FED =34,所以sin ∠FED =35.所以|DE |=|DH |sin ∠FED =12x ×53=56x .所以l =(2x +2y )+2×56x +(2×23x +x )=2y +6x =39x -53x +6x =39x +133x ≥2 39x ×13x 3=26, 当且仅当39x =133x ,即x =3时取等号. 此时y =392x -56x =4, 所以当|AB |=3 m ,|BC |=4 m 时,能使整个框架用材料最少.。
高中数学人教A版必修五 模块综合测评2 Word版含答案
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项a n 可能是( ) A .2n B .2n +1 C .2n -1D .2n -1【解析】 取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D. 【答案】 C2.不等式x 2-2x -5>2x 的解集是( ) A .{x |x ≤-1或x ≥5} B .{x |x <-1或x >5} C .{x |1<x <5} D .{x |-1≤x ≤5}【解析】 不等式化为x 2-4x -5>0,所以(x -5)(x +1)>0,所以x <-1或x >5. 【答案】 B3.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 10·a 12等于( )A .16B .32C .64D .256【解析】 ∵{a n }是等比数列且由题意得a 1·a 19=16=a 210(a n >0),∴a 8·a 10·a 12=a 310=64.【答案】 C4.下列不等式一定成立的是( ) A .lg ⎝ ⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R )D.1x2+1>1(x∈R)【解析】5.在△ABC中,角A,B,C的对边分别为a,b,c,ac=3,且a=3b sin A,则△ABC的面积等于()A.12 B.32C.1 D.3 4【解析】∵a=3b sin A,∴由正弦定理得sin A=3sin B sin A,∴sin B=1 3.∵ac=3,∴△ABC的面积S=12ac sin B=12×3×13=12,故选 A.【答案】 A6.等比数列{a n}前n项的积为T n,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是()A.T10B.T13C.T17D.T25【解析】由等比数列的性质得a3a6a18=a6a10a11=a8a9a10=a39,而T17=a179,故T17为常数.【答案】 C7.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3【解析】 由题意:A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3. 【答案】 A8.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?( )A .2B .3C .4D .5【解析】 远望巍巍塔七层,说明该数列共有7项,即n =7.红光点点倍加增,说明该数列是公比为2的等比数列.共灯三百八十一,说明7项之和S 7=381.请问尖头几盏灯,就是求塔顶几盏灯,即求首项a 1. 代入公式S n =a 1(1-q n )1-q ,即381=a 1(1-27)1-2,∴a 1=381127=3. ∴此塔顶有3盏灯. 【答案】 B9.若实数x ,y 满足⎩⎨⎧x -y +1≤0,x >0,则yx 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)【解析】 实数x ,y 满足⎩⎨⎧x -y +1≤0,x >0的相关区域如图中的阴影部分所示. y x 表示阴影部分内的任意一点与坐标原点(0,0)连线的斜率,由图可知,y x 的取值范围为(1,+∞).【答案】 C10.在△ABC 中,若c =2b cos A ,则此三角形必是( ) A .等腰三角形 B .正三角形 C .直角三角形D .有一角为30°的直角三角形【解析】 由正弦定理得sin C =2cos A sin B , ∴sin (A +B )=2cos A sin B ,即sin A cos B +cos A sin B =2cos A sin B , 即sin A cos B -cos A sin B =0, 所以sin (A -B )=0. 又因为-π<A -B <π, 所以A -B =0, 即A =B . 【答案】 A11.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 【解析】 ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2 ≥23+2. 【答案】 A12.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且tan B =2-3a 2-b 2+c 2,BC →·BA→=12,则tan B 等于( ) A.32 B.3-1 C .2D .2- 3【解析】 由BC →·BA→=12,得ac cos B =12,∴2ac cos B =1.又由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-1, ∴a 2-b 2+c 2=1, ∴tan B =2-31=2- 3. 【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知点P (1,-2)及其关于原点的对称点均在不等式2x +by +1>0表示的平面区域内,则b 的取值范围是______. 【导学号:05920089】【解析】 点P (1,-2)关于原点的对称点为点P ′(-1,2). 由题意知⎩⎨⎧2×1-2b +1>0,-2+2b +1>0,解得12<b <32. 【答案】 ⎝ ⎛⎭⎪⎫12,3214.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.【解析】 由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1, ∴a n =n 2+n2(n ≥2). ∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *). ∴1a n =2n 2+n=2⎝ ⎛⎭⎪⎫1n -1n +1.∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝ ⎛⎭⎪⎫1-111=2011. 【答案】 201115.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.【解析】 ∵a sin A =b sin B =csin C =2R ,a =2, 又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c , ∴a 2-b 2=c 2-bc , ∴b 2+c 2-a 2=bc .∴b 2+c 2-a 22bc =bc 2bc =12=cos A , ∴A =60°.∵在△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3.【答案】 316.若1a <1b <0,已知下列不等式: ①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab >2; ⑤a 2>b 2;⑥2a >2b .其中正确的不等式的序号为______. 【解析】 ∵1a <1b <0, ∴b <a <0,故③错;又b <a <0,可得|a |<|b |,a 2<b 2, 故②⑤错,可证①④⑥正确. 【答案】 ①④⑥三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由. 【解】 (1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0, ∴⎩⎨⎧12a 1+66d >0,13a 1+78d <0, 即⎩⎨⎧24+7d >0,3+d <0, ∴-247<d <-3. (2)∵S 12>0,S 13<0, ∴⎩⎨⎧ a 1+a 12>0,a 1+a 13<0, ∴⎩⎨⎧a 6+a 7>0,a 7<0,∴a 6>0, 又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.18.(本小题满分12分)已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值. 【解】 ∵⎩⎨⎧α+β=-a ,αβ=2b ,∴⎩⎪⎨⎪⎧a =-(α+β),b =αβ2,∵0≤α≤1,1≤β≤2, ∴1≤α+β≤3,0≤αβ≤2. ∴⎩⎨⎧-3≤a ≤-1,0≤b ≤1,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如下图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.取B (-1,0),C (-3,1), 则k AB =32,k AC =12,∴12≤b -3a -1≤32.故b -3a -1的最大值是32,最小值是12. 19.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2b -c )cos A -a cos C =0.(1)求角A 的大小;(2)若a =3,试求当△ABC 的面积取最大值时,△ABC 的形状. 【导学号:05920090】【解】 (1)∵(2b -c )cos A -a cos C =0,由余弦定理得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0, 整理得b 2+c 2-a 2=bc , ∴cos A =b 2+c 2-a 22bc =12, ∵0<A <π, ∴A =π3.(2)由(1)得b 2+c 2-bc =3及b 2+c 2≥2bc 得bc ≤3. 当且仅当b =c =3时取等号. ∴S △ABC =12bc sin A ≤12×3×32=334. 从而当△ABC 的面积最大时,a =b =c = 3.∴当△ABC 的面积取最大值时△ABC 为等边三角形.20.(本小题满分12分)已知函数y =ax 2+2ax +1的定义域为R . (1)求a 的取值范围;(2)解关于x 的不等式x 2-x -a 2+a <0.【解】 (1)∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立. ①当a =0时,1≥0,不等式恒成立; ②当a ≠0时,则⎩⎨⎧a >0,Δ=4a 2-4a ≤0, 解得0<a ≤1.综上可知,a 的取值范围是[0,1].(2)由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0. ∵0≤a ≤1, ∴①当1-a >a ,即0≤a <12时, a <x <1-a ;②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解;③当1-a <a ,即12<a ≤1时, 1-a <x <a .综上,当0≤a <12时,原不等式的解集为(a,1-a ); 当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为(1-a ,a ).21.(本小题满分12分)若数列{a n }满足a 2n +1-a 2n =d ,其中d 为常数,则称数列{a n }为等方差数列.已知等方差数列{a n }满足a n >0,a 1=1,a 5=3.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和.【解】 (1)由a 21=1,a 25=9, 得a 25-a 21=4d ,∴d =2.a 2n =1+(n -1)×2=2n -1, ∵a n >0, ∴a n =2n -1.数列{a n }的通项公式为a n =2n -1. (2)a 2n ⎝ ⎛⎭⎪⎫12n=(2n -1)12n , 设S n =1·12+3·122+5·123+…+(2n -1)·12n ,① 12S n =1·122+3·123+5·124+…+(2n -1)· 12n +1,② ①-②,得12S n =12+2⎝ ⎛⎭⎪⎫122+123+…+12n -(2n -1)·12n +1 =12+2·14⎝ ⎛⎭⎪⎫1-12n -11-12-(2n -1)·12n +1, 即S n =3-2n +32n ,即数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和为3-2n +32n . 22.(本小题满分12分)如图1所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分时测得该轮船在海岛北偏西60°的B 处,12时40分该轮船到达位于海岛正西方且距海岛5千米的E 港口,如果轮船始终匀速直线航行,则船速是多少?(结果保留根号)图1【解】 轮船从点C 到点B 用时80分钟,从点B 到点E 用时20分钟,而船始终匀速航行,由此可见,BC =4EB .设EB =x ,则BC =4x ,由已知得∠BAE =30°,在△AEC 中,由正弦定理得EC sin ∠EAC=AE sin C , 即sin C =AE sin ∠EAC EC=5sin 150°5x =12x , 在△ABC 中,由正弦定理得BC sin ∠BAC=AB sin C ,即AB=BC sin Csin 120°=4x×12xsin 120°=43=433.在△ABE中,由余弦定理得BE2=AE2+AB2-2AE·AB cos 30°=25+163-2×5×433×32=313,所以BE=313(千米).故轮船的速度为v=313÷2060=93(千米/时).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教A高中数学必修5 知能优化训练1.在△ABC 中,A =60°,a =43,b =42,则( ) A .B =45°或135° B .B =135° C .B =45° D .以上答案都不对解析:选C.sin B =22,∵a >b ,∴B =45°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2解析:选D.由正弦定理6sin 120°=2sin C ⇒sin C =12,于是C =30°⇒A =30°⇒a =c = 2.3.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =__________.解析:在△ABC 中,若tan A =13,C =150°,∴A 为锐角,sin A =110,BC =1,则根据正弦定理知AB =BC ·sin C sin A =102.答案:1024.已知△ABC 中,AD 是∠BAC 的平分线,交对边BC 于D ,求证:BD DC =ABAC.证明:如图所示,设∠ADB =θ, 则∠ADC =π-θ.在△ABD 中,由正弦定理得:BD sinA 2=AB sin θ,即BDAB =sin A 2sin θ;① 在△ACD 中,CD sinA 2=ACsin (π-θ),∴CDAC =sin A 2sin θ.② 由①②得BD AB =CDAC,∴BD DC =AB AC .一、选择题1.在△ABC 中,a =5,b =3,C =120°,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.57解析:选A.根据正弦定理得sin A sin B =a b =53.2.在△ABC 中,若sin A a =cos Cc,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B.∵sin A a =cos C c ,∴sin A cos C =ac ,又由正弦定理a c =sin Asin C.∴cos C =sin C ,即C =45°,故选B.3.(2010年高考湖北卷)在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223C .-63 D.63解析:选D.由正弦定理得15sin 60°=10sin B ,∴sin B =10·sin 60°15=10×3215=33.∵a >b ,A =60°,∴B 为锐角. ∴cos B =1-sin 2B =1-(33)2=63. 4.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选B.由题意有a sin A =b =bsin B,则sin B =1,即角B 为直角,故△ABC 是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c=( )A .1B .2 C.3-1 D. 3解析:选B.由正弦定理a sin A =b sin B ,可得3sin π3=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°. 故C =90°,由勾股定理得c =2.6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( ) A .两解 B .一解 C .无解 D .无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解. 二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________.解析:AB =sin Csin ABC =2BC =2 5.答案:2 58.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________. 解析:A =180°-30°-120°=30°, 由正弦定理得:a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3. 答案:1∶1∶ 39.(2010年高考北京卷)在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.解析:由正弦定理,有3sin 2π3=1sin B ,∴sin B =12.∵∠C 为钝角,∴∠B 必为锐角,∴∠B =π6,∴∠A =π6.∴a =b =1. 答案:1 三、解答题10.在△ABC 中,已知sin A ∶sin B ∶sin C =4∶5∶6,且a +b +c =30,求a .解:∵sin A ∶sin B ∶sin C =a 2R ∶b 2R ∶c2R=a ∶b ∶c ,∴a ∶b ∶c =4∶5∶6.∴a =30×415=8.11.在△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c .已知a =5,b =2,B =120°,解此三角形.解:法一:根据正弦定理a sin A =b sin B ,得sin A =a sin Bb =5×322=534>1.所以A 不存在,即此三角形无解.法二:因为a =5,b =2,B =120°,所以A >B =120°.所以A +B >240°,这与A +B +C =180°矛盾.所以此三角形无解.法三:因为a =5,b =2,B =120°,所以a sin B =5sin 120°=532,所以b <a sin B .又因为若三角形存在,则b sin A =a sin B ,得b >a sin B ,所以此三角形无解.12.在△ABC 中,a cos(π2-A )=b cos(π2-B ),判断△ABC 的形状.解:法一:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形.法二:∵a cos(π2-A )=b cos(π2-B ),∴a sin A=b sin B.由正弦定理可得:2R sin2A=2R sin2B,即sin A=sin B,∴A=B.(A+B=π不合题意舍去)故△ABC为等腰三角形.1.在△ABC 中,已知a =4,b =6,C =120°,则边c 的值是( ) A .8 B .217 C .6 2 D .219解析:选D.根据余弦定理,c 2=a 2+b 2-2ab cos C =16+36-2×4×6cos 120°=76,c =219.2.在△ABC 中,已知a =2,b =3,C =120°,则sin A 的值为( )A.5719B.217C.338 D .-5719 解析:选A.c 2=a 2+b 2-2ab cos C =22+32-2×2×3×cos 120°=19. ∴c =19.由a sin A =c sin C 得sin A =5719. 3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________. 解析:设底边边长为a ,则由题意知等腰三角形的腰长为2a ,故顶角的余弦值为4a 2+4a 2-a 22·2a ·2a =78.答案:784.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状. 解:法一:根据余弦定理得 b 2=a 2+c 2-2ac cos B . ∵B =60°,2b =a +c , ∴(a +c 2)2=a 2+c 2-2ac cos 60°,整理得(a -c )2=0,∴a =c . ∴△ABC 是正三角形. 法二:根据正弦定理,2b =a +c 可转化为2sin B =sin A +sin C . 又∵B =60°,∴A +C =120°, ∴C =120°-A , ∴2sin 60°=sin A +sin(120°-A ), 整理得sin(A +30°)=1, ∴A =60°,C =60°. ∴△ABC 是正三角形.课时训练一、选择题1.在△ABC 中,符合余弦定理的是( ) A .c 2=a 2+b 2-2ab cos C B .c 2=a 2-b 2-2bc cos A C .b 2=a 2-c 2-2bc cos AD .cos C =a 2+b 2+c 22ab解析:选A.注意余弦定理形式,特别是正负号问题. 2.(2011年合肥检测)在△ABC 中,若a =10,b =24,c =26,则最大角的余弦值是( ) A.1213 B.513C .0 D.23解析:选C.∵c >b >a ,∴c 所对的角C 为最大角,由余弦定理得cos C =a 2+b 2-c 22ab =0.3.已知△ABC 的三边分别为2,3,4,则此三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定解析:选B.∵42=16>22+32=13,∴边长为4的边所对的角是钝角,∴△ABC 是钝角三角形.4.在△ABC 中,已知a 2=b 2+bc +c 2,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3 解析:选C.由已知得b 2+c 2-a 2=-bc ,∴cos A =b 2+c 2-a 22bc =-12,又∵0<A <π,∴A =2π3,故选C.5.在△ABC 中,下列关系式 ①a sin B =b sin A ②a =b cos C +c cos B ③a 2+b 2-c 2=2ab cos C ④b =c sin A +a sin C 一定成立的有( ) A .1个 B .2个 C .3个 D .4个解析:选C.由正、余弦定理知①③一定成立.对于②由正弦定理知sin A =sin B cos C +sin C cos B =sin(B +C ),显然成立.对于④由正弦定理sin B =sin C sin A +sin A sin C =2sin A sin C ,则不一定成立.6.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23解析:选B.∵b 2=ac ,c =2a , ∴b 2=2a 2,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a=34. 二、填空题7.在△ABC 中,若A =120°,AB =5,BC =7,则AC =________. 解析:由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即49=25+AC 2-2×5×AC ×(-12),AC 2+5AC -24=0.∴AC =3或AC =-8(舍去). 答案:38.已知三角形的两边分别为4和5,它们的夹角的余弦值是方程2x 2+3x -2=0的根,则第三边长是________.解析:解方程可得该夹角的余弦值为12,由余弦定理得:42+52-2×4×5×12=21,∴第三边长是21.答案:219.在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则B 的大小是________. 解析:由正弦定理,得a ∶b ∶c =sin A ∶sin B ∶sin C =5∶7∶8. 不妨设a =5k ,b =7k ,c =8k ,则cos B =(5k )2+(8k )2-(7k )22×5k ×8k=12,∴B =π3.答案:π3三、解答题10.已知在△ABC 中,cos A =35,a =4,b =3,求角C .解:A 为b ,c 的夹角,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴16=9+c 2-6×35c ,整理得5c 2-18c -35=0.解得c =5或c =-75(舍).由余弦定理得cos C =a 2+b 2-c 22ab =16+9-252×4×3=0,∵0°<C <180°,∴C =90°.11.在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边长,若(a +b +c )(sin A +sin B -sin C )=3a sin B ,求C 的大小.解:由题意可知,(a +b +c )(a +b -c )=3ab , 于是有a 2+2ab +b 2-c 2=3ab , 即a 2+b 2-c 22ab =12,所以cos C =12,所以C =60°.12.在△ABC 中,b =a sin C ,c =a cos B ,试判断△ABC 的形状.解:由余弦定理知cos B =a 2+c 2-b 22ac,代入c =a cos B ,得c =a ·a 2+c 2-b 22ac,∴c 2+b 2=a 2,∴△ABC 是以A 为直角的直角三角形.又∵b =a sin C ,∴b =a ·ca,∴b =c ,∴△ABC 也是等腰三角形.综上所述,△ABC 是等腰直角三角形.1.某次测量中,若A 在B 的南偏东40°,则B 在A 的( ) A .北偏西40° B .北偏东50° C .北偏西50° D .南偏西50° 答案:A2.已知A 、B 两地间的距离为10 km ,B 、C 两地间的距离为20 km ,现测得∠ABC =120°,则A 、C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km 解析:选D.由余弦定理可知: AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC . 又∵AB =10,BC =20,∠ABC =120°,∴AC 2=102+202-2×10×20×cos 120°=700. ∴AC =107.3.在一座20 m 高的观测台测得对面一水塔塔顶的仰角为60°,塔底的俯角为45°,观测台底部与塔底在同一地平面,那么这座水塔的高度是________m.解析:h =20+20tan 60°=20(1+3) m. 答案:20(1+3)4.如图,一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°.求此时船与灯塔间的距离.解:BC sin ∠BAC =ACsin ∠ABC ,且∠BAC =30°,AC =60, ∠ABC =180°-30°-105°=45°. ∴BC =30 2.即船与灯塔间的距离为30 2 km.一、选择题1.在某次测量中,在A 处测得同一方向的B 点的仰角为60°,C 点的俯角为70°,则∠BAC 等于( )A .10°B .50°C .120°D .130°解析:选D.如图,∠BAC 等于A 观察B 点的仰角与观察C 点的俯角和,即60°+70°=130°.2.一艘船以4 km/h 的速度沿着与水流方向成120°夹角的方向航行,已知河水流速为2 km/h ,则经过 3 h ,该船的实际航程为( )A .215 kmB .6 kmC .221 kmD .8 km解析:选B.v 实=22+42-2×4×2×cos 60°=2 3.∴实际航程=23×3=6(km).故选B. 3.如图所示,D ,C ,B 在同一地平面的同一直线上,DC =10 m ,从D ,C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高度AB 等于( )A .10 mB .5 3 mC .5(3-1) mD .5(3+1) m 解析:选D.在△ADC 中,AD =10·sin 135°sin 15°=10(3+1)(m).在Rt △ABD 中,AB =AD ·sin 30°=5(3+1)(m). 4.(2011年无锡调研)我舰在敌岛A 处南偏西50°的B 处,且AB 距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,则速度大小为( )A .28海里/小时B .14海里/小时C .14 2 海里/小时D .20海里/小时解析:选B.如图,设我舰在C 处追上敌舰,速度为v ,则在△ABC 中,AC =10×2=20(海里),AB =12海里,∠BAC =120°,∴BC 2=AB 2+AC 2-2AB ·AC cos 120°=784, ∴BC =28海里, ∴v =14海里/小时.5.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,则B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 解析:选B.设t 小时后,B 市处于危险区内, 则由余弦定理得:(20t )2+402-2×20t ×40cos 45°≤302. 化简得:4t 2-82t +7≤0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1.6.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点测得塔顶的仰角分别为45°、30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是( )A .1002米B .400米C .2003米D .500米解析:选D.由题意画出示意图,设高AB =h ,在Rt △ABC 中,由已知BC =h ,在Rt △ABD 中,由已知BD =3h ,在△BCD 中,由余弦定理BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD ,得3h 2=h 2+5002+h ·500,解之得h =500(米),故选D. 二、填空题7.一树干被台风吹断,折断部分与残存树干成30°角,树干底部与树尖着地处相距5米,则树干原来的高度为________米.答案:10+5 3 8.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的__________.解析:由题意可知∠ACB =180°-40°-60°=80°.∵AC =BC ,∴∠CAB =∠CBA =50°,从而所求为北偏西10°.答案:北偏西10°9.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107 海里,20分钟后测得海盗船距观测站20海里,再过________分钟,海盗船即可到达商船.解析:如图,设开始时观测站、商船、海盗船分别位于A 、B 、C 处,20分钟后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD=400+900-7002×20×30=12.∴∠ACD =60°,在△ABD 中由已知得∠ABD =30°. ∠BAD =60°-30°=30°,∴BD =AD =20,2090×60=403(分钟).答案:403三、解答题10.如图,A 、B 两点都在河的对岸(不可到达),在河岸边选定两点C 、D ,测得CD =1000米,∠ACB =30°,∠BCD =30°,∠BDA =30°,∠ADC =60°,求AB 的长.解:由题意知△ACD 为正三角形, 所以AC =CD =1000米. 在△BCD 中,∠BDC =90°,所以BC =CD cos ∠BCD =1000cos 30°=200033米.在△ACB 中,AB 2=AC 2+BC 2-2AC ·BC ·cos 30°=10002+200023-2×1000×200033×32=10002×13,所以AB =100033米.11.如图,地面上有一旗杆OP ,为了测得它的高度,在地面上选一基线AB ,测得AB =20 m ,在A 处测得点P 的仰角为30°,在B 处测得点P 的仰角为45°,同时可测得∠AOB =60°,求旗杆的高度(结果保留1位小数).解:设旗杆的高度为h , 由题意,知∠OAP =30°,∠OBP =45°.在Rt △AOP 中,OA =OPtan 30°=3h .在Rt △BOP 中,OB =OPtan 45°=h .在△AOB 中,由余弦定理, 得AB 2=OA 2+OB 2-2OA ·OB cos 60°,即202=(3h )2+h 2-23h ×h ×12.解得h 2=4004-3≈176.4.∴h ≈13(m).∴旗杆的高度约为13 m.12.一商船行至索马里海域时,遭到海盗的追击,随即发出求救信号.正在该海域执行护航任务的海军“黄山”舰在A 处获悉后,即测出该商船在方位角为45°距离10海里的C 处,并沿方位角为105°的方向,以9海里/时的速度航行.“黄山”舰立即以21海里/时的速度前去营救.求“黄山”舰靠近商船所需要的最少时间及所经过的路程.解:如图所示,若“黄山”舰以最少时间在B 处追上商船,则A ,B ,C 构成一个三角形.设所需时间为t 小时,则AB =21t ,BC =9t .又已知AC =10,依题意知,∠ACB =120°,根据余弦定理,AB 2=AC 2+BC 2-2·AC ·BC cos ∠ACB .∴(21t )2=102+(9t )2-2×10×9t cos 120°,∴(21t )2=100+81t 2+90t , 即360t 2-90t -100=0.∴t =23或t =-512(舍).∴AB =21×23=14(海里).即“黄山”舰需要用23小时靠近商船,共航行14海里.1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32 C. 3 D .2 3解析:选B.S △ABC =12AB ·AC ·sin A =sin 60°=32.2.已知△ABC 的面积为32,且b =2,c =3,则( )A .A =30°B .A =60°C .A =30°或150°D .A =60°或120°解析:选D.∵S =12bc sin A =32,∴12×2×3sin A =32.∴sin A =32.∴A =60°或120°.3.在△ABC 中,AC =5,AB =2,cos A =255,则S △ABC =________.解析:在△ABC 中,cos A =255,∴sin A =55,∴S △ABC =12AB ·AC ·sin A =12×5×2×55=22.答案:224.在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB . 解:在△ADC 中,cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=1114.又0°<C <180°,∴sin C =5314.在△ABC 中,AC sin B =ABsin C ,∴AB =sin C sin B AC =5314×2×7=562.一、选择题1.在△ABC 中,a 2=b 2+c 2-bc ,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3 解析:选A.∵a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =12,即A =π3.2.在△ABC ,下列关系一定成立的是( ) A .a <b sin A B .a =b sin A C .a >b sin A D .a ≥b sin A解析:选D.由正弦定理知a sin A =b sin B ,∴sin B =basin A .又∵在△ABC 中,0<sin B ≤1,∴0<basin A ≤1,∴a ≥b sin A .故选D.3.已知△ABC 的三个内角之比为A ∶B ∶C =3∶2∶1,那么对应三边之比a ∶b ∶c 等于( )A .3∶2∶1 B.3∶2∶1 C.3∶2∶1 D .2∶3∶1 解析:选D.由已知得A =90°,B =60°,C =30°.又由正弦定理得a ∶b ∶c =sin A ∶sin B ∶sin C =1∶32∶12=2∶3∶1.故选D.4.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152B.15C .2D .3解析:选A.b 2-bc -2c 2=0, ∴(b -2c )(b +c )=0. ∴b =2c .由a 2=b 2+c 2-2bc cos A , 解得c =2,b =4,∵cos A =78,∴sin A =158,∴S △ABC =12bc sin A =12×2×4×158=152.5.三角形两边长之差为2,其夹角的余弦值为35,面积为14,那么这个三角形的两边长分别是( )A .3和5B .4和6C .6和8D .5和7解析:选D.设a -b =2,∵cos C =35,∴sin C =45.又S △ABC =12ab sin C ,∴ab =35.由a -b =2和ab =35, 解得a =7,b =5.6.在△ABC 中,a =1,B =45°,S △ABC =2,则此三角形的外接圆的半径R =( ) A.12B .1C .2 2 D.522解析:选D.S △ABC =12ac sin B =24c =2,∴c =4 2.b 2=a 2+c 2-2ac cos B =1+32-82×22=25,∴b =5.∴R =b 2sin B =52×22=522. 二、填空题7.在△ABC 中,已知a =7,b =5,c =3,则△ABC 是________三角形. 解析:法一:∵72>52+32,即a 2>b 2+c 2, ∴△ABC 是钝角三角形.法二:∵cos A =52+32-722×5×3<0,∴△ABC 是钝角三角形. 答案:钝角8.(2011年江南十校联考)在△ABC 中,A =30°,AB =2,BC =1,则△ABC 的面积等于________.解析:由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos 30°,∴AC 2-23AC +3=0.∴AC = 3.∴S △ABC =12AB ·AC sin 30°=12×2×3×12=32.答案:329.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的长为________.解析:由S △ABC =32,得12AB ·AC sin A =32,即12×2AC ×32=32,∴AC =1,由余弦定理得 BC 2=AB 2+AC 2-2AB ·AC ·cos A=22+12-2×2×1×12=3.∴BC = 3. 答案: 3 三、解答题10.在△ABC 中,已知a =2b cos C ,求证:△ABC 为等腰三角形.证明:由余弦定理,得cos C =a 2+b 2-c 22ab.又cos C =a2b ,∴a 2+b 2-c 22ab =a 2b.整理得b 2=c 2.∴b =c .∴△ABC 是等腰三角形.11.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,又c =21,b =4,且BC 边上的高h =2 3.(1)求角C ;(2)求a 边的长.解:(1)由于△ABC 为锐角三角形,过A 作AD ⊥BC 于D 点,sin C =234=32,则C =60°.(2)由余弦定理可知c 2=a 2+b 2-2ab cos C ,则(21)2=a 2+42-2×a ×4×12,即a 2-4a -5=0.所以a =5或a =-1(舍). 因此a 边的长为5.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A =35,A B →·A C →=3.(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解:(1)因为cos A =35,所以sin A =45.又由A B →·A C →=3,得bc cos A =3, 所以bc =5.因此S △ABC =12bc sin A =2.(2)由(1)知,bc =5, 又b +c =6,所以b =5,c =1或b =1,c =5. 由余弦定理,得a 2=b 2+c 2-2bc cos A =20, 所以a =2 5.1.数列1,12,14,…,12n,…是( )A .递增数列B .递减数列C .常数列D .摆动数列 答案:B2.已知数列{a n }的通项公式a n =12[1+(-1)n +1],则该数列的前4项依次是( )A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0 答案:A3.数列{a n }的通项公式a n =cn +d n ,又知a 2=32,a 4=154,则a 10=__________.答案:99104.已知数列{a n }的通项公式a n =2n 2+n.(1)求a 8、a 10.(2)问:110是不是它的项?若是,为第几项?解:(1)a 8=282+8=136,a 10=2102+10=155.(2)令a n =2n 2+n =110,∴n 2+n =20.解得n =4.∴110是数列的第4项.一、选择题1.已知数列{a n }中,a n =n 2+n ,则a 3等于( ) A .3 B .9 C .12 D .20 答案:C2.下列数列中,既是递增数列又是无穷数列的是( )A .1,12,13,14,…B .-1,-2,-3,-4,…C .-1,-12,-14,-18,…D .1,2,3,…,n解析:选C.对于A ,a n =1n,n ∈N *,它是无穷递减数列;对于B ,a n =-n ,n ∈N *,它也是无穷递减数列;D 是有穷数列;对于C ,a n =-(12)n -1,它是无穷递增数列.3.下列说法不正确的是( )A .根据通项公式可以求出数列的任何一项B .任何数列都有通项公式C .一个数列可能有几个不同形式的通项公式D .有些数列可能不存在最大项解析:选B.不是所有的数列都有通项公式,如0,1,2,1,0,….4.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.2223解析:选C.由题意知数列的通项公式是a n =2n2n +1,∴a 10=2×102×10+1=2021.故选C.5.已知非零数列{a n }的递推公式为a n =nn -1·a n -1(n >1),则a 4=( )A .3a 1B .2a 1C .4a 1D .1解析:选C.依次对递推公式中的n 赋值,当n =2时,a 2=2a 1;当n =3时,a 3=32a 2=3a 1;当n =4时,a 4=43a 3=4a 1.6.(2011年浙江乐嘉调研)已知数列{a n }满足a 1>0,且a n +1=12a n ,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列解析:选B.由a 1>0,且a n +1=12a n ,则a n >0.又a n +1a n =12<1,∴a n +1<a n . 因此数列{a n }为递减数列. 二、填空题7.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为__________.解析:由a n =19-2n >0,得n <192,∵n ∈N *,∴n ≤9.答案:9 8.已知数列{a n }满足a 1=2,a 2=5,a 3=23,且a n +1=αa n +β,则α、β的值分别为________、________.解析:由题意a n +1=αa n +β, 得⎩⎪⎨⎪⎧ a 2=αa 1+βa 3=αa 2+β⇒⎩⎪⎨⎪⎧ 5=2α+β23=5α+β⇒⎩⎪⎨⎪⎧α=6,β=-7. 答案:6 -79.已知{a n }满足a n =(-1)n a n -1+1(n ≥2),a 7=47,则a 5=________.解析:a 7=-1a 6+1,a 6=1a 5+1,∴a 5=34.答案:34三、解答题10.写出数列1,23,35,47,…的一个通项公式,并判断它的增减性.解:数列的一个通项公式a n =n2n -1.又∵a n +1-a n =n +12n +1-n2n -1=-1(2n +1)(2n -1)<0,∴a n +1<a n .∴{a n }是递减数列.11.在数列{a n }中,a 1=3,a 17=67,通项公式是关于n 的一次函数. (1)求数列{a n }的通项公式; (2)求a 2011;(3)2011是否为数列{a n }中的项?若是,为第几项?解:(1)设a n =kn +b (k ≠0),则有⎩⎪⎨⎪⎧k +b =3,17k +b =67,解得k =4,b =-1.∴a n =4n -1. (2)a 2011=4×2011-1=8043.(3)令2011=4n -1,解得n =503∈N *, ∴2011是数列{a n }的第503项.12.数列{a n }的通项公式为a n =30+n -n 2. (1)问-60是否是{a n }中的一项?(2)当n 分别取何值时,a n =0,a n >0,a n <0?解:(1)假设-60是{a n }中的一项,则-60=30+n -n 2. 解得n =10或n =-9(舍去). ∴-60是{a n }的第10项.(2)分别令30+n -n 2=0;>0;<0, 解得n =6;0<n <6;n >6, 即n =6时,a n =0; 0<n <6时,a n >0; n >6时,a n <0.1.已知等差数列{a n }的首项a 1=1,公差d =2,则a 4等于( ) A .5 B .6 C .7 D .9 答案:C2.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项公式a n =( ) A .2n +1 B .2n -1 C .2n D .2(n -1) 答案:B3.△ABC 三个内角A 、B 、C 成等差数列,则B =__________. 解析:∵A 、B 、C 成等差数列,∴2B =A +C . 又A +B +C =180°,∴3B =180°,∴B =60°. 答案:60°4.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9.解:(1)由题意,知⎩⎪⎨⎪⎧a 1+(5-1)d =-1,a 1+(8-1)d =2.解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)由题意,知⎩⎪⎨⎪⎧a 1+a 1+(6-1)d =12,a 1+(4-1)d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a 9=a 1+(9-1)d =1+8×2=17.一、选择题1.在等差数列{a n }中,a 1=21,a 7=18,则公差d =( ) A.12 B.13C .-12D .-13解析:选C.∵a 7=a 1+(7-1)d =21+6d =18,∴d =-12.2.在等差数列{a n }中,a 2=5,a 6=17,则a 14=( ) A .45 B .41 C .39 D .37解析:选B.a 6=a 2+(6-2)d =5+4d =17,解得d =3.所以a 14=a 2+(14-2)d =5+12×3=41.3.已知数列{a n }对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列 D .非等差数列 解析:选A.a n =2n +1,∴a n +1-a n =2,应选A. 4.已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( )A .2B .3C .6D .9解析:选B.由题意得⎩⎪⎨⎪⎧m +2n =82m +n =10,∴m +n =6,∴m 、n 的等差中项为3.5.下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,… ④110,210,310,410,… A .1个 B .2个 C .3个 D .4个解析:选C.利用等差数列的定义验证可知①、③、④是等差数列.6.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为( )A .4B .5C .6D .7 解析:选B.a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6,令a n =b n 得3n -1=4n -6,∴n =5. 二、填空题7.已知等差数列{a n },a n =4n -3,则首项a 1为__________,公差d 为__________. 解析:由a n =4n -3,知a 1=4×1-3=1,d =a 2-a 1=(4×2-3)-1=4,所以等差数列{a n }的首项a 1=1,公差d =4.答案:1 48.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=__________.解析:设等差数列的公差为d ,首项为a 1,则a 3=a 1+2d =7;a 5-a 2=3d =6.∴d =2,a 1=3.∴a 6=a 1+5d =13.答案:139.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________.解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4, ∴数列{a 2n }是公差为4的等差数列, ∴a 2n =a 21+(n -1)·4=4n -3. ∵a n >0,∴a n =4n -3. 答案:4n -3 三、解答题10.在等差数列{a n }中,已知a 5=10,a 12=31,求它的通项公式. 解:由a n =a 1+(n -1)d 得 ⎩⎪⎨⎪⎧ 10=a 1+4d 31=a 1+11d ,解得⎩⎪⎨⎪⎧a 1=-2d =3. ∴等差数列的通项公式为a n =3n -5.11.已知等差数列{a n }中,a 1<a 2<a 3<…<a n 且a 3,a 6为方程x 2-10x +16=0的两个实根.(1)求此数列{a n }的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由. 解:(1)由已知条件得a 3=2,a 6=8.又∵{a n }为等差数列,设首项为a 1,公差为d , ∴⎩⎪⎨⎪⎧ a 1+2d =2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-2d =2. ∴a n =-2+(n -1)×2=2n-4(n∈N*).∴数列{a n}的通项公式为a n=2n-4.(2)令268=2n-4(n∈N*),解得n=136.∴268是此数列的第136项.12.已知(1,1),(3,5)是等差数列{a n}图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.解:(1)由于(1,1),(3,5)是等差数列{a n}图象上的两点,所以a1=1,a3=5,由于a3=a1+2d=1+2d=5,解得d=2,于是a n=2n-1.(2)图象是直线y=2x-1上一些等间隔的点(如图).(3)因为一次函数y=2x-1是增函数,所以数列{a n}是递增数列.1.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A .4 B .5 C .6 D .7解析:选C.由等差数列性质得a 2+a 8=2a 5=12,所以a 5=6.2.等差数列{a n }的公差为d ,则数列{ca n }(c 为常数且c ≠0)( ) A .是公差为d 的等差数列 B .是公差为cd 的等差数列 C .不是等差数列 D .以上都不对 答案:B3.在等差数列{a n }中,a 10=10,a 20=20,则a 30=________.解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30.法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:304.已知三个数成等差数列,其和为15,首、末两项的积为9,求这三个数. 解:由题意,可设这三个数分别为a -d ,a ,a +d , 则⎩⎪⎨⎪⎧(a -d )+a +(a +d )=15,(a -d )(a +d )=9, 解得⎩⎪⎨⎪⎧ a =5d =4或⎩⎪⎨⎪⎧a =5,d =-4.所以,当d =4时,这三个数为1,5,9; 当d =-4时,这三个数为9,5,1.一、选择题1.下列命题中,为真命题的是( )A .若{a n }是等差数列,则{|a n |}也是等差数列B .若{|a n |}是等差数列,则{a n }也是等差数列C .若存在自然数n 使2a n +1=a n +a n +2,则{a n }是等差数列D .若{a n }是等差数列,则对任意n ∈N *都有2a n +1=a n +a n +2 答案:D2.等差数列{a n }中,前三项依次为1x +1,56x ,1x,则a 101=( )A .5013B .1323C .24D .823解析:选D.∵53x =1x +1x +1,∴x =2.∴首项a 1=1x +1=13,d =12(12-13)=112.∴a 101=823,故选D.3.若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( ) A .24 B .27 C .30 D .33解析:选D.经观察发现(a 2+a 5)-(a 1+a 4)=(a 3+a 6)-(a 2+a 5)=2d =39-45=-6,所以a 3+a 6=a 2+a 5-6=39-6=33.4.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 解析:选C.设等差数列{a n }的公差为d , 则由等差数列的性质得5a 8=120,∴a 8=24,a 9-13a 11=3a 9-a 113=2a 9+(a 9-a 11)3=2(a 9-d )3=2a 83=2×243=16.5.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100 D .-37解析:选C.设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2.∴{a n +b n }为等差数列.又∵a 1+b 1=a 2+b 2=100, ∴a 37+b 37=100.6.首项为-24的等差数列从第10项起开始为正数,则公差d 的取值范围是( )A .d >83 B .d <3C.83≤d <3D.83<d ≤3 解析:选D.设等差数列为{a n },首项a 1=-24,则 a 9≤0⇒a 1+8d ≤0⇒-24+8d ≤0⇒d ≤3,a 10>0⇒a 1+9d >0⇒-24+9d >0⇒d >83.∴83<d ≤3. 二、填空题7.已知{a n }为等差数列,a 3+a 8=22,a 6=7,则a 5=________.解析:由于{a n }为等差数列,故a 3+a 8=a 5+a 6,故a 5=a 3+a 8-a 6=22-7=15. 答案:158.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=________.解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m . 答案:2n -m9.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________. 解析:法一:因为{a n }为等差数列,所以a 15,a 30,a 45,a 60,a 75也成等差数列, 设其公差为d ,a 15为首项, 则a 60为其第四项,所以a 60=a 15+3d ,得d =4. 所以a 75=a 60+d ⇒a 75=24.法二:因为a 15=a 1+14d ,a 60=a 1+59d ,所以⎩⎪⎨⎪⎧a 1+14d =8a 1+59d =20,解得⎩⎨⎧a 1=6415d =415.故a 75=a 1+74d =6415+74×415=24.答案:24三、解答题10.已知正数a ,b ,c 组成等差数列,且公差不为零,那么由它们的倒数所组成的数列1a ,1b ,1c能否成为等差数列? 解:由已知,得a ≠b 且b ≠c 且c ≠a ,且2b =a +c ,a >0,b >0,c >0.因为2b -(1a +1c )=2b-a +c ac =2ac -2b 2abc =2ac -(a +c )22abc =-(a -c )22abc <0,所以2b ≠1a +1c. 所以1a ,1b ,1c不能成为等差数列.11.已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16. (1)求数列{a n }的通项公式;(2)若从数列{a n }中,依次取出第2项,第4项,第6项,…,第2n 项,按原来顺序组成一个新数列{b n },试求出{b n }的通项公式.解:(1)∵a 1+a 2+a 3=12,∴a 2=4,∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2, ∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n . 当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4. ∴{b n }是以4为首项,4为公差的等差数列. ∴b n =b 1+(n -1)d =4+4(n -1)=4n .12.某单位用分期付款方式为职工购买40套住房,共需1150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%.若交付150万元后的第一个月算分期付款的第一个月,求分期付款的第10个月应付多少钱?最后一次应付多少钱?解:购买时先付150万元,还欠款1000万元.依题意知20次可付清.设每次交付的欠款依次为a 1,a 2,a 3,…,a 20,构成数列{a n },则a 1=50+1000×0.01=60;a 2=50+(1000-50)×0.01=59.5; a 3=50+(1000-50×2)×0.01=59; …a n =50+[1000-50(n -1)]×0.01=60-12(n -1)(1≤n ≤20).所以{a n }是以60为首项,-12为公差的等差数列.则a 10=60-9×12=55.5,a 20=60-19×12=50.5,故第10个月应付55.5万元,最后一次应付50.5万元.1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( ) A .360 B .370 C .380 D .390 答案:C2.已知a 1=1,a 8=6,则S 8等于( ) A .25 B .26 C .27 D .28 答案:D3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.解析:由已知⎩⎪⎨⎪⎧ a 1+5d =123a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n . 答案:2n4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5.解:d =a 7-a 57-5=20-142=3,a 1=a 5-4d =14-12=2,所以S 5=5(a 1+a 5)2=5(2+14)2=40.一、选择题1.(2011年杭州质检)等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( ) A .12 B .10 C .8 D .6 解析:选C.d =a 3-a 2=2,a 1=-1,S 4=4a 1+4×32×2=8.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .24 B .27 C .29 D .48解析:选C.由已知⎩⎪⎨⎪⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎪⎨⎪⎧a 1=2,d =3.∴a 10=2+9×3=29.3.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48解析:选B.S 10=10(a 1+a 10)2=5(a 2+a 9)=120.∴a 2+a 9=24.4.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( )A .99B .66C .33D .0 解析:选B.由a 1+a 2+…+a 98+a 99=99,得99a 1+99×982=99.∴a 1=-48,∴a 3=a 1+2d =-46.又∵{a 3n }是以a 3为首项,以3为公差的等差数列.∴a 3+a 6+a 9+…+a 99=33a 3+33×322×3=33(48-46)=66.5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项 解析:选A.∵a 1+a 2+a 3=34,① a n +a n -1+a n -2=146,②又∵a 1+a n =a 2+a n -1=a 3+a n -2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③S n =(a 1+a n )·n 2=390.④将③代入④中得n =13.6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B.由等差数列前n 项和的性质知S 偶S 奇=n n +1,即150165=nn +1,∴n =10.二、填空题7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________.解析:由题意得a n +1-a n =2,∴{a n }是一个首项a 1=-7,公差d =2的等差数列.∴a 1+a 2+…+a 17=S 17=17×(-7)+17×162×2=153.答案:1538.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________. 解析:a 4+a 6=a 1+3d +a 1+5d =6.①S 5=5a 1+12×5×(5-1)d =10.②由①②得a 1=1,d =12.答案:129.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:由等差数列的性质知S 9=9a 5=-9,∴a 5=-1. 又∵a 5+a 12=a 1+a 16=-9,∴S 16=16(a 1+a 16)2=8(a 1+a 16)=-72.答案:-72 三、解答题10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *). (1)写出该数列的第3项; (2)判断74是否在该数列中. 解:(1)a 3=S 3-S 2=-18.(2)n =1时,a 1=S 1=-24,n ≥2时,a n =S n -S n -1=2n -24,即a n =⎩⎪⎨⎪⎧-24,n =1,2n -24,n ≥2,由题设得2n -24=74(n ≥2),解得n =49. ∴74在该数列中.11.(2010年高考课标全国卷)设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得 ⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2, 所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2.因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12.已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数; (2)S n =20,S 2n =38,求S 3n .解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67, 所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.所以a 1+a n =884=22.因为S n =n (a 1+a n )2=286,所以n =26.(2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列, 所以S 3n =3(S 2n -S n )=54.1.下列数列是等比数列的是( ) A .1,1,1,1,1B .0,0,0,…C .0,12,14,18,…D .-1,-1,1,-1,…答案:A2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12答案:D3.若等比数列的前三项分别为5,-15,45,则第5项是________. 答案:4054.在等比数列{a n }中,(1)已知a 3=9,a 6=243,求a 5;(2)已知a 1=98,a n =13,q =23,求n .解:(1)∵a 6=a 3q 3,∴q 3=27,∴q =3.∴a 5=a 6·13=81.(2)∵a n =a 1q n -1,∴13=98·(23)n -1.∴(23)n -1=(23)3,∴n =4.一、选择题1.等比数列{a n }中,a 1=2,q =3,则a n 等于( )A .6B .3×2n -1C .2×3n -1 D .6n 答案:C2.在等比数列{a n }中,若a 2=3,a 5=24,则数列{a n }的通项公式为( ) A.32·2n B.32·2n -2 C .3·2n -2 D .3·2n -1解析:选C.∵q 3=a 5a 2=243=8,∴q =2,而a 1=a 2q =32,∴a n =32×2n -1=3·2n -2.3.等比数列{a n }中,a 1+a 2=8,a 3-a 1=16,则a 3等于( ) A .20 B .18 C .10 D .8 解析:选B.设公比为q (q ≠1),则 a 1+a 2=a 1(1+q )=8, a 3-a 1=a 1(q 2-1)=16,两式相除得:1q -1=12,解得q =3.又∵a 1(1+q )=8,∴a 1=2, ∴a 3=a 1q 2=2×32=18.。