2016-2017年山东省威海市乳山市初三上学期期末数学试卷含答案解析

合集下载

2016-2017学年第一学期期末考试九年级数学答案

2016-2017学年第一学期期末考试九年级数学答案

2016—2017学年第一学期期末考试试卷九年级数学参考答案二、填空题(每题5分,共30分)11.60 12.3 13.π48 14.5415. ②③ 16.5 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.3602r n S π= ………………4分=ππ91036021002=⨯(2cm )………………4分 18.解:(1)一次出拳小聪出“石头”的概率是;………………2分(2)如图:………………4分则小聪胜小明的概率是=; ………………2分19.设经过t 小时后,乙船在甲船的正东方………………1分︒⨯=︒-302045)10100(Sin t Sin t ………………3分解得:)12(101210-=+=t ………………3分(不化简不扣分)答:经过)12(10-小时后,乙船在甲船的正东方.………………1分 20.(1) C ………………3分(2) 4)1(221--=x y ,其顶点为(1,-4), ………………1分 而抛物线2y 的顶点坐标为(m ,2),由它们的系数关系,可以得出友好抛物线的顶点的横坐标相同,纵坐标抛物线1y 是抛物线2y 的k 倍,………………2分∴2-=k , ∴1222++-=x x y ………………2分21.解:(1)y 1=2x ﹣20,(0<x≤200)………………2分y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x≤80).………………2分(2)对于y 1=2x ﹣20,当x=200时,y 1的值最大=380万元.………………2分对于y 2=﹣0.05(x ﹣100)2+460, ∵0<x≤80, ∴x=80时,y 2最大值=440万元.………………2分∵440>380,∴选择生产乙产品利润比较高.………………2分22.(1)证△OPI ≌△ODI (SAS) ………………6分 (2) I 为△OPQ 的内心,且∠OQP=90°,所以∠OIP=135°,……………4分则∠OID=135°,所以∠PID=90°………………2分23.(1)证△BHF ∽△DFG (两角对应相等的两个三角形相似) ………2分得出DGBFDF BH =,………………2分 又因为F 是BD 的中点,所以24BD GD BH =⋅………………2分 (2)同理可得△CBF ∽△FDG , ∴FGCFDF BC =, 又∵DF=BF ,∴FGCFBF BC = ∵∠CBF=∠CFG ,∴△CBF ∽△CFG ………………4分 ∴∠BCF =∠FCG ………………1分当CA=CG 时,CF ⊥AD ………………1分24.(1)3(2)(4)8y x x =-+-343832++-=x x ………………5分(2)当CD ∥BF 时,△COD ∽△FDB ∴DBDFOD OC = ∴ tt t t --+-=4)4)(2(833………………3分解得:41-=t (舍),22=t ………………2分∴ t=2时,CD ∥BF(3)当40<<t 时,①若CE=EF ,t t t 2383452+-=,32=t ………………1分 ②若CF=EF , 53)2383(852⨯+-=t t t ,911=t ………………1分③若CE=CF , 3433438362+-++-=t t t ,0=t (舍………1分当t>4时,只有CE=EF ,t t t 2383452-=,322=t …………1分∴ 当32=t 或119或223时CEF ∆为等腰三角形.。

(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案

(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案

(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案的全部内容。

第1 页共6 页2016—-—2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A.y=2(x-1)2-3 B.y=2(x-1)2+3C.y=2(x+1)2-3 D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于 ( )A.55° B。

70° C。

125° D。

145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A。

4 5.一个半径为2cm的圆内接正六边形A.24cm2 B.63 cm2 C .6.如图,若AB是⊙O的直径,CD是A.35° B.45° C.55°7.函数mxxy+--=822的图象上有两点B。

2016-2017年山东省威海市乳山市初三上学期期末数学试卷及参考答案

2016-2017年山东省威海市乳山市初三上学期期末数学试卷及参考答案

2016-2017学年山东省威海市乳山市初三上学期期末数学试卷(五四学制)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.1.(3分)在函数y=中,自变量x的取值范围是()A.x≠﹣4B.x>﹣4C.x≥﹣4D.x>﹣4且x≠0 2.(3分)有一实物模型如图所示,它的主视图是()A.B.C.D.3.(3分)在同一时刻,身高1.8m的小强影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22.5m B.24m C.20.5m D.10m4.(3分)如图,某厂房人字架屋顶的上弦AB=AC=10米,∠β=α,则该屋顶的跨度BC为()A.10sinα米B.10cosα米C.20sinα米D.20cosα米5.(3分)如图,△ABC内接于⊙O,∠OAB=45°,则∠ACB的度数为()A.135°B.130°C.120°D.140°6.(3分)二次函数y=ax2+bx和反比例函数y=在同一直角坐标系中的大致图象是()A.B.C.D.7.(3分)若关于x的方程x2﹣x+cosα=0有两个相等实数根,则锐角α的度数为()A.60°B.45°C.30°D.22.5°8.(3分)x取任意实数,二次函数y=ax2﹣2x+c的值必定为正数的条件是()A.a<0,ac>1B.a<0,ac<1C.a>0,ac>1D.a>0,ac<1 9.(3分)如图,等边△ABO的顶点O与原点重合,点A的坐标是(﹣4,0),点B在第二象限,反比例函数y=的图象经过点B,则k的值是()A.2B.﹣2C.4D.﹣410.(3分)抛物线y=x2﹣bx+9的顶点在坐标轴上,则b的值为()A.6B.±6C.±6或0D.011.(3分)如图,点M是⊙O内接正n边形ABCDE…边AB的中点,连接OM、OC,则∠MOC的度数为()A.180°﹣B.C.D.12.(3分)一副三角板如图摆放,AC、DF在同一条直线上且点C、D重合,将三角板DEF沿CA方向以1cm/s的速度运动,当点D与点A重合时运动停止,已知AC=3cm,DF=4cm,设运动的时间为t(s),两三角板重合部分的面积为S(cm2),下列图象能大致反映S(cm2)与t(s)间函数关系的是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分,只要求填出最后结果.13.(3分)小颖同学设置了六位数的手机开机密码,每个数位上的数字都是0﹣9这10个数字中的一个,粗心的小颖有一次忘记了密码的后三位数字,她尝试一次就能打开手机的概率是.14.(3分)如图,点D是△ABC的外心,若∠DBC=40°,∠DBA=23°,则∠DCA 的度数为.15.(3分)如图,正方体纸盒的棱长为4,点M、N分别在CD、HE上,CM=CD,点N是HE的中点,将纸盒展开,若HC与NM的延长线交于点Q,则tan∠QNH=.16.(3分)若A(5,y1),B(﹣5,y2)是抛物线y=(x+3)2+k图象上两点,则y1y2(填“>”、“<”或“=”).17.(3分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D、E.若BE=2AE,AD=3,tan∠BCE=,则CE=.18.(3分)如图,以等边△ABC的边BC为直径画半圆,分别交边AB、AC于点E,D,DF是半圆的切线,交AB于点F,若AF的长为1,则△FBC的面积为.三、解答题:本大题共7小题,共66分,写出必要的运算、推理过程.19.(7分)如图是某工件的三视图,求此工件的全面积.20.(8分)一位摊主在休闲广场组织“摸球游戏”,摊主把分别标有数字1,2,3的三个白球和标有数字4,5,6的三个黑球放在同一个不透明的口袋里(球除颜色外,完全相同).摸球规则为:每付5元就可以玩一局,每局连续摸两次,每次只能摸一个球,第一次摸完后,要把球放回口袋搅匀后再摸第二次.若前、后两次摸得的都是白球,摊主就送一件纪念品作为奖品.(1)用列表法列举出摸出的两个球可能会出现的所有结果;(2)求出能获得奖品的概率.21.(8分)如图,某人在山坡坡脚A处测得电视塔BC塔尖B的仰角为60°,沿山坡AM走到D处测得塔尖B的仰角为30°,已知AC为100米,山坡坡度i=1:3,C、A、E三点在同一直线上.求此人所在位置点D的铅直高度DE.(结果保留根号形式)22.(9分)销售公司购进2000千克的某种商品,购进价格为50元/千克,物价部门规定其销售单价不得高于80元/千克,也不得低于50元/千克,公司经过市场调查发现:销售单价定为80元/千克时,每天可销售200千克;单价每降低1元,每天可多销售20千克.设销售单价为x元,每天可获利润为y元.(1)求y与x间的函数关系式;(2)单价定为多少元时商场每天可获得最高利润?最高利润是多少?23.(10分)如图,在Rt△ABC中,∠ACB=90°,O是AB边上的一点,以OB为半径的⊙O与边AC相切于点E,与AB和BC交于点D、H.连接EH、DE,延长DE,BC交于点F.求证:DE=EH=EF.24.(11分)如图,一次函数y=﹣2x﹣2的图象分别交x轴、y轴于点B、A,与反比例函数y=(m≠0)的图象在第二象限交于点M,△OBM的面积是1.(1)求反比例函数的解析式;(2)若x轴上的点P与点A,M是以AM为直角边的直角三角形的三个顶点,求点P的坐标.25.(13分)如图,抛物线y=a(x﹣1)2+k与x轴交于A、C两点,与y轴交于点B,点A、B的坐标分别为(﹣1,0)和(0,3).(1)求抛物线的解析式;(2)点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D.①若直线DM经过线段BC的中点,求点D的坐标;②是否存在点M,使得以M、D、O、B为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.四、星号题:共1小题,共10分,写出必要的运算、推理或分析过程.26.(10分)抛物线y=ax2+bx+c(a≠0)的顶点在直线y=x上,将该抛物线沿直线y=x方向平移一定的距离后,再绕顶点旋转180°,最终得到的抛物线y=﹣3x2﹣12x﹣14与原抛物线关于原点中心对称.(1)求原抛物线的解析式及平移的距离;(2)若1≤x≤5,求代数式的最小值.2016-2017学年山东省威海市乳山市初三上学期期末数学试卷(五四学制)参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.1.(3分)在函数y=中,自变量x的取值范围是()A.x≠﹣4B.x>﹣4C.x≥﹣4D.x>﹣4且x≠0【解答】解:由题意得,x+4>0,解得x>﹣4.故选:B.2.(3分)有一实物模型如图所示,它的主视图是()A.B.C.D.【解答】解:从正面看图形的左右两边是弧线,中间是虚线的矩形,故选:C.3.(3分)在同一时刻,身高1.8m的小强影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22.5m B.24m C.20.5m D.10m【解答】解:设旗杆高为xm,由题意得,=,解得x=22.5m,所以,旗杆高为22.5m.故选:A.4.(3分)如图,某厂房人字架屋顶的上弦AB=AC=10米,∠β=α,则该屋顶的跨度BC为()A.10sinα米B.10cosα米C.20sinα米D.20cosα米【解答】解:如图,作AD⊥BC于点D,∵AB=AC=10米,∴BC=2BD=2CD,∵在Rt△ABD中,∠B=α,∴BD=ABcosB=10cosα,则BC=2BD=20cosα,故选:D.5.(3分)如图,△ABC内接于⊙O,∠OAB=45°,则∠ACB的度数为()A.135°B.130°C.120°D.140°【解答】解:连接OB,在圆周上取一点D,连接AD,BD,∵OA=OB,∠OAB=45°,∴∠OBA=∠OAB=45°,∴∠AOB=90°,∴∠ADB=45°,∴∠ACB=180°﹣∠ADB=135°,故选:A.6.(3分)二次函数y=ax2+bx和反比例函数y=在同一直角坐标系中的大致图象是()A.B.C.D.【解答】解:A、由反比例函数得:b>0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b<0,∴选项A不正确;B、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b>0,∴选项B正确;C、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b<0,∴选项C不正确;D、由反比例函数得:b<0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b>0,∴选项D不正确;故选:B.7.(3分)若关于x的方程x2﹣x+cosα=0有两个相等实数根,则锐角α的度数为()A.60°B.45°C.30°D.22.5°【解答】解:根据题意得△=(﹣)2﹣4×1×cosα=0,解得:cosα=,∴锐角α的度数为60°,故选:A.8.(3分)x取任意实数,二次函数y=ax2﹣2x+c的值必定为正数的条件是()A.a<0,ac>1B.a<0,ac<1C.a>0,ac>1D.a>0,ac<1【解答】解:根据题意得当a>0,△=b2﹣4ac<0时,抛物线在x轴上方,∴4﹣4ac<0,∴ac>1,且a>0,故选:C.9.(3分)如图,等边△ABO的顶点O与原点重合,点A的坐标是(﹣4,0),点B在第二象限,反比例函数y=的图象经过点B,则k的值是()A.2B.﹣2C.4D.﹣4【解答】解:∵△ABO为等边三角形,且点A的坐标是(﹣4,0),∴点B的坐标为(﹣2,2),∵反比例函数y=的图象经过点B,∴k=﹣2×2=﹣4.故选:D.10.(3分)抛物线y=x2﹣bx+9的顶点在坐标轴上,则b的值为()A.6B.±6C.±6或0D.0【解答】解:∵y=x2﹣bx+9=(x﹣)2+9﹣,∴抛物线顶点坐标为(,9﹣),∵抛物线顶点在坐标轴上,∴=0或9﹣=0,解得b=0或b=±6,故选:C.11.(3分)如图,点M是⊙O内接正n边形ABCDE…边AB的中点,连接OM、OC,则∠MOC的度数为()A.180°﹣B.C.D.【解答】解:连接OB,如图所示:则∠BOC=,∵点M是⊙O内接正n边形ABCDE…边AB的中点,∴OM⊥AB,∴∠MOB=×=,∴∠MOC=+=;故选:C.12.(3分)一副三角板如图摆放,AC、DF在同一条直线上且点C、D重合,将三角板DEF沿CA方向以1cm/s的速度运动,当点D与点A重合时运动停止,已知AC=3cm,DF=4cm,设运动的时间为t(s),两三角板重合部分的面积为S(cm2),下列图象能大致反映S(cm2)与t(s)间函数关系的是()A.B.C.D.【解答】解:当0<t≤2时,如图1,DC=t,CG=t,∴S=t2,当2<t<3时,如图2,BF=BG=4﹣t,∴S=4﹣(4﹣t)2=﹣t2+8t﹣12,故选:D.二、填空题:本大题共6小题,每小题3分,共18分,只要求填出最后结果.13.(3分)小颖同学设置了六位数的手机开机密码,每个数位上的数字都是0﹣9这10个数字中的一个,粗心的小颖有一次忘记了密码的后三位数字,她尝试一次就能打开手机的概率是.【解答】解:1÷(10×10×10)=1÷1000=∴她尝试一次就能打开手机的概率是.故答案为:.14.(3分)如图,点D是△ABC的外心,若∠DBC=40°,∠DBA=23°,则∠DCA 的度数为27°.【解答】解:∵点D是△ABC的外心,∴DB=DC,∴∠DCB=∠DBC=40°,∴∠BDC=100°,∴∠A=∠BDC=50°,∴∠DCA=180°﹣40°﹣40°﹣50°﹣23°=27°,故答案为:27°.15.(3分)如图,正方体纸盒的棱长为4,点M、N分别在CD、HE上,CM=CD,点N是HE的中点,将纸盒展开,若HC与NM的延长线交于点Q,则tan∠QNH=4.【解答】解:如图,延长HC、NM交于点Q,∵正方体的棱长为4,点M,N分别在CD,HE上,CM=CD,点N是HE的中点,∴CM=1,HN=NE=2,∴==,∵HC=4,∴QC=4,∴QH=8,∴tan∠QNH===4,故答案为:4.16.(3分)若A(5,y1),B(﹣5,y2)是抛物线y=(x+3)2+k图象上两点,则y1>y2(填“>”、“<”或“=”).【解答】解:由y=(x+3)2+k可知抛物线的对称轴为直线x=﹣3,∵抛物线开口向上,而点A(5,y1)到对称轴的距离比B(﹣5,y2)远,∴y1>y2.故答案为>.17.(3分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D、E.若BE=2AE,AD=3,tan∠BCE=,则CE=4.【解答】解:∵tan∠BCE=∴∠BCE=30°∴∠B=60°又∵在Rt△ABD中,AD=3,∴BD=,AB=2,∵BE=2AE∴BE=,AE=,在Rt△BEC中,BE=,∠BCE=30°,故答案为:4.18.(3分)如图,以等边△ABC的边BC为直径画半圆,分别交边AB、AC于点E,D,DF是半圆的切线,交AB于点F,若AF的长为1,则△FBC的面积为3.【解答】解:如图,连接OD,过点F作FG⊥BC,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠ACB=60°,∵OD=OC,∴△OCD为等边三角形,∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=1,∴AD=2AF=2,∴AC=4,即:BC=AC=4,∴FB=AB﹣AF=4﹣1=3,在Rt△BFG中,∠BFG=30°,∴cos∠BFG==,∴FG=BF=.∴S△FBC=BC×FG=×4×=3,故答案为:3.三、解答题:本大题共7小题,共66分,写出必要的运算、推理过程.19.(7分)如图是某工件的三视图,求此工件的全面积.【解答】解:由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥体,这圆锥的母线长为=(cm),圆锥的侧面积为s=πrl==100π(cm2),圆锥的底面积为102π=100πcm2,圆锥的全面积为π=π(cm2).20.(8分)一位摊主在休闲广场组织“摸球游戏”,摊主把分别标有数字1,2,3的三个白球和标有数字4,5,6的三个黑球放在同一个不透明的口袋里(球除颜色外,完全相同).摸球规则为:每付5元就可以玩一局,每局连续摸两次,每次只能摸一个球,第一次摸完后,要把球放回口袋搅匀后再摸第二次.若前、后两次摸得的都是白球,摊主就送一件纪念品作为奖品.(1)用列表法列举出摸出的两个球可能会出现的所有结果;(2)求出能获得奖品的概率.【解答】解:(1)列表如下:白白白黑黑黑白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)所有等可能的情况有36种;(2)摸出两次都为白球的情况有9种,则P(两次都为白球)==.21.(8分)如图,某人在山坡坡脚A处测得电视塔BC塔尖B的仰角为60°,沿山坡AM走到D处测得塔尖B的仰角为30°,已知AC为100米,山坡坡度i=1:3,C、A、E三点在同一直线上.求此人所在位置点D的铅直高度DE.(结果保留根号形式)【解答】解:作DH⊥BC于H,在Rt△ACB中,tan∠BAC=,则BC=AC•tan60°=100,设DE=x,则AE=3x,CE=100+3x,在Rt△BHD中,tan∠BDH=,∴BH=(100+3x)•,∴100﹣x=(100+3x)•,解得,x=,答:此人所在位置点D的铅直高度DE为米.22.(9分)销售公司购进2000千克的某种商品,购进价格为50元/千克,物价部门规定其销售单价不得高于80元/千克,也不得低于50元/千克,公司经过市场调查发现:销售单价定为80元/千克时,每天可销售200千克;单价每降低1元,每天可多销售20千克.设销售单价为x元,每天可获利润为y元.(1)求y与x间的函数关系式;(2)单价定为多少元时商场每天可获得最高利润?最高利润是多少?【解答】解:(1)根据题意知,y=(x﹣50)[200+20(80﹣x)]=﹣20x2+2800x ﹣90000;(2)∵y=﹣20x2+2800x﹣90000=﹣20(x﹣70)2+8000,且50≤x≤80,∴当x=70时,y最大=8000,答:单价定为70元时商场每天可获得最高利润,最高利润是8000.23.(10分)如图,在Rt△ABC中,∠ACB=90°,O是AB边上的一点,以OB为半径的⊙O与边AC相切于点E,与AB和BC交于点D、H.连接EH、DE,延长DE,BC交于点F.求证:DE=EH=EF.【解答】解:连接OE,BE.∵CA是⊙O的切线,∴∠OEA=90°,∵∠ACB=90°,∴OE∥BF,∴∠DOE=∠DBF,∠DEO=∠DFB,∴△ODE∽△BDF,∴==,∴DE=EF,∵BD是⊙O的直径,∴∠DEB=90°,∴BE垂直平分DF,∴BD=BF,∴∠BDF=∠BFD,∵四边形BDEH是⊙O的内接四边形,∴∠EHF=∠BDF,∠EHF=∠BFD,∴EH=EF,∴DE=EH=EF.24.(11分)如图,一次函数y=﹣2x﹣2的图象分别交x轴、y轴于点B、A,与反比例函数y=(m≠0)的图象在第二象限交于点M,△OBM的面积是1.(1)求反比例函数的解析式;(2)若x轴上的点P与点A,M是以AM为直角边的直角三角形的三个顶点,求点P的坐标.【解答】解:(1)令x=0,y=﹣2x﹣2=﹣2,∴点A的坐标为(0,﹣2);令y=﹣2x﹣2=0,解得:x=﹣1,∴点B的坐标为(﹣1,0).=OB•y M=y M=1,∵S△OBM∴y M=2,当y=﹣2x﹣2=2时,x=﹣2,∴点M的坐标为(﹣2,2).∵点M在反比例函数y=(m≠0)的图象上,∴m=﹣2×2=﹣4,∴反比例函数的解析式为y=﹣.(2)依照题意找出点P并过点M作MC⊥x轴于点C,如图所示.当∠BMP1=90°时,∵∠BMP1=∠BCM,∠MBP1=∠CBM,∴△BMP1∽△BCM,∴.∵点B(﹣1,0),点M(﹣2,2),∴点C(﹣2,0),∴BC=1,BM=,∴BP1=5,∴点P1的坐标为(﹣6,0);当∠BAP2=90°时,同理可由△BAP2∽△BCM求出点P2的坐标为(4,0).综上所述:点P的坐标为(﹣6,0)或(4,0).25.(13分)如图,抛物线y=a(x﹣1)2+k与x轴交于A、C两点,与y轴交于点B,点A、B的坐标分别为(﹣1,0)和(0,3).(1)求抛物线的解析式;(2)点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D.①若直线DM经过线段BC的中点,求点D的坐标;②是否存在点M,使得以M、D、O、B为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(0,﹣3)代入y=a(x﹣1)2+k中,得:,解得:,∴抛物线的解析式为:y=(x﹣1)2﹣4;(2)由(x﹣1)2﹣4=0,解得x1=﹣1,x2=3,∴点C的坐标为(3,0),设直线BC的解析式为:y=kx+b,将C(3,0),B(0,﹣3)代入,得:,解得:,∴直线BC的解析式为:y=x﹣3;①又EM∥BO,可求得△CEM∽△COB,∵直线DM经过BC的中点,∴,解得:OE=,∴点M的坐标为(,),点D的横坐标为,将x=代入y=(x﹣1)2﹣4,解得:y=,∴点D的坐标为(,);②存在点M,设点M的坐标为(m,m﹣3),点D的坐标为(m,m2﹣2m﹣3),∴DM=m﹣3﹣(m2﹣2m﹣3)=m﹣3﹣m2+2m+3=﹣m2+3m,或DM=m2﹣2m﹣3﹣(m﹣3)=m2﹣2m﹣3﹣m+3=m2﹣3m,若以M、D、O、B为顶点的四边形为平行四边形,则DM=3,即﹣m2+3m=3,或m2﹣3m=3,对于方程﹣m2+3m=3,△=b2﹣4ac=﹣3<0,方程无解,即点M不存在;对于方程m2﹣3m=3,解得m1=,m2=,∴点M的坐标为(,)或(,),综上所述,点M的坐标为(,)或(,).四、星号题:共1小题,共10分,写出必要的运算、推理或分析过程.26.(10分)抛物线y=ax2+bx+c(a≠0)的顶点在直线y=x上,将该抛物线沿直线y=x方向平移一定的距离后,再绕顶点旋转180°,最终得到的抛物线y=﹣3x2﹣12x﹣14与原抛物线关于原点中心对称.(1)求原抛物线的解析式及平移的距离;(2)若1≤x≤5,求代数式的最小值.【解答】解:(1)∵y=﹣3x2﹣12x﹣14=﹣3(x+2)2﹣2,∴顶点为(﹣2,﹣2),∵抛物线y=﹣3x2﹣12x﹣14与原抛物线关于原点中心对称,∴原抛物线的顶点为(2,2),∴原抛物线的解析式为y=3(x﹣2)2+2,即y=3x2﹣12x+14.由顶点坐标可知,顶点沿x轴的正方向平移2个单位,沿y轴的正方向平移2个单位,∴沿直线y=x方向平移了4个单位.(2)把x=1代入y=3x2﹣12x+14得,y=5,把x=5代入y=3x2﹣12x+14得,y=29,∴1≤x≤5时,函数y=3x2﹣12x+14的最大值为29,∴代数式的最小值为.。

2017年初中毕业升学考试(山东威海卷)数学(带解析)

2017年初中毕业升学考试(山东威海卷)数学(带解析)

试卷第1页,共9页绝密★启用前2017年初中毕业升学考试(山东威海卷)数学(带解析)学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、从新华网获悉:商务部5月27日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币.16553亿用科学记数法表示为( ) A .B .C .D .2、某校排球队10名队员的身高(厘米)如下: 195,186,182,188,182,186,188,186,188. 这组数据的众数和中位数分别是( )A .186,188B .188,187C .187,188D .188,1863、下列运算正确的是( ) A .B .C .D .试卷第2页,共9页4、计算的结果是( )A .1B .2C .D .35、不等式组的解集在数轴上表示正确的是( )A .B .C .D .6、为了方便行人推车过某天桥,市政府在高的天桥一侧修建了长的斜道(如图所示).我们可以借助科学计算器求这条斜道倾斜角的度数.具体按键顺序是( )A .B .C .D .7、若是方程的一个根,则的值为( )A .B .C .D .试卷第3页,共9页8、一个几何体由个大小相同的小正方体搭成,其左视图、俯视图如图所示,则的最小值是( )A .5B .7C .9D .109、甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( )A .B .C .D .10、如图,在□中,的平分线交于点,交的延长线于点,的平分线交于点,交的延长线于点,与交于点,连接.下列结论错误的是( )A .B .C .D .试卷第4页,共9页11、已知二次函数的图象如图所示,则正比例函6570与反比例函数在同一坐标系中的大致图象是( )A .B .C .D .12、如图,正方形的边长为5,点的坐标为,点在轴上,若反比例函数()的图象过点,则该反比例函数的表达式为( )A .B .C .D .试卷第5页,共9页第II 卷(非选择题)二、填空题(题型注释)13、如图,直线,,则 .14、方程的解是 .15、阅读理解:如图1,⊙与直线都相切.不论⊙如何转动,直线之间的距离始终保持不变(等于⊙的半径).我们把具有这一特性的图形称为“等宽曲线”.图2是利用圆的这一特性的例子.将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力就可以推动物体前进.据说,古埃及就是利用只有的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”.如图4,夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变.若直线之间的距离等于,则莱洛三角形的周长为.16、某广场用同一种如图所示的地砖拼图案.第一次拼成形如图1所示的图案,第二次拼成形如图2所示的图案,第三次拼成形如图3的图案,第四次拼成形如图4的图案……试卷第6页,共9页按照只有的规律进行下去,第次拼成的图案用地砖 块.17、如图,点的坐标为,点的坐标为,点的坐标为,点的坐标为.小明发现:线段与线段存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一线段.你认为这个旋转中心的坐标是 .18、如图,为等边三角形,,若为内一动点,且满足,则线段长度的最小值为 .三、解答题(题型注释)19、先化简,然后从的范围内选取一个合适的整数作为的值代入求值.20、某农场去年计划生产玉米和小麦共200吨.采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%.该农场去年实际生产玉米、小麦各多少吨?试卷第7页,共9页21、央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书.学校组织学生会成随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类.根据调查结果绘制了统计图(未完成).请根据图中信息,解答下列问题:(1)此次共调查了 名学生; (2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为 度;(4)若该学校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.22、图1是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能.玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好.假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角()确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),前完成以下计算. 如图2,,垂足为点,,垂足为点,,,,,垂足为点.(1)若,则的长约为;试卷第8页,共9页(参考数据:)(2)若,,求的长.23、已知:为⊙的直径,,弦,直线与相交于点,弦在⊙上运动且保持长度不变,⊙的切线交于点.(1)如图1,若,求证:;(2)如图2,当点运动至与点重合时,试判断与是否相等,并说明理由.24、如图,四边形为一个矩形纸片,,,动点自点出发沿方向运动至点后停止.以直线为轴翻折,点落到点的位置.设,与原纸片重叠部分的面积为.(1)当为何值时,直线过点? (2)当为何值时,直线过的中点?(3)求出与的函数关系式.25、如图,已知抛物线过点,,.点为抛物线上的动点,过点作轴,交直线于点,交轴于点.试卷第9页,共9页(1)求二次函数的表达式; (2)过点作轴,垂足为点.若四边形为正方形(此处限定点在对称轴的右侧),求该正方形的面积;(3)若,,求点的横坐标.参考答案1、C2、B3、C4、D5、B6、A7、A8、B9、C10、D11、C12、A13、200°14、x=315、2π16、2n2+2n17、(1,1)或(4,4)18、19、,20、农场去年实际生产小麦52.5吨,玉米172.5吨21、(1)200(2)图形见解析(3)126(4)30022、(1)83.2(2)23、(1)证明见解析(2)相等24、(1)当x=时,直线AD1过点C(2)当x=时,直线AD1过BC的中点E(3)当0<x≤2时,y=x;当2<x≤3时,y=25、(1)y=﹣x2+2x+3(2)24+8或24﹣8(3)点M的横坐标为、2、﹣1、【解析】1、试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将16553亿用科学记数法表示为:1.6553×1012.故选:C.考点:科学记数法的表示方法2、试题分析:根据众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.将数据重新排列为:182、182、186、186、186、188、188、188、188、195,∴众数为188,中位数为=187,故选:B.考点:1、众数,2、中位数3、试题分析:A、根据合并同类项法则,可知=7x2,不符合题意;B、根据单项式乘以单项式以及同底数幂相乘,可知原式=6x6,不符合题意;C、根据同底数幂相乘除,可得原式=aa2=a3,符合题意;D、根据积的乘方,等于各个因式分别乘方,可知原式=﹣a6b3,不符合题意,故选:C考点:1、整式的混合运算,2、负整数指数幂4、试题分析:首先计算乘方,然后从左向右依次计算,求出算式的值为:﹣()2+(+π)0+(﹣)﹣2=﹣2+1+4=3故选:D.考点:实数的运算5、试题分析:解不等式,得:x<﹣2;解不等式3﹣x≥2,得:x≤1;根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,求得不等式组的解集为x<﹣2,故选:B.考点:解一元一次不等式组6、试题分析:【分析】先利用正弦的定义得sinA==0.25,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为.故选:A.考点:计算器﹣三角函数7、试题分析:把x=1﹣代入已知方程x2﹣2x+c=0,可以列出关于c的新方程(1﹣)2﹣2(1﹣)+c=0,通过解新方程即可求得c=﹣2.故选:A.考点:一元二次方程的根8、试题分析:由题中所给出的左视图知物体共三层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数,所以图中的小正方体最少1+2+4=7.故选:B.考点:三视图9、试题分析:首先画出树状图如图所示:数字之和为偶数的情况有5种,因此加获胜的概率为,故选:C.考点:树状图和概率10、试题分析:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG,∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB,同理可证BG=AB,∴AH=BG,∵AD=BC,∴DH=CG,故③正确,∵AH=AB,∠OAH=∠OAB,∴OH=OB,故①正确,∵DF∥AB,∴∠DFH=∠ABH,∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH,同理可证EC=CG,∵DH=CG,∴DF=CE,故②正确,无法证明AE=AB,故选:D.考点:1、平行四边形的性质,2、等腰三角形的判定和性质11、试题分析:由二次函数图象可知a>0,c>0,由对称轴x=﹣>0,可知b<0,当x=1时,a+b+c<0,即b+c<0,所以正比例函数y=(b+c)x经过二四象限,反比例函数y=图象经过一三象限,故选:C.,考点:1、二次函数图象的性质,2、一次函数的图象的性质,3、反比例函数图象的性质12、试题分析:过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明△ABO≌△BCE,根据全等三角形对应边相等可得OA=BE=4,CE=OB=3,再求出OE=1,然后写出点C的坐标(3,1),再把点C的坐标代入反比例函数解析式计算即可求出k =xy=3×1=3,得到反比例函数的表达式为.故选:A.考点:1、反比例函数图象上点的坐标特点,2、正方形的性质,3、全等三角形的判定与性质13、试题分析:过∠2的顶点作l2的平行线l,则l∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC+∠3=180°,即可得出∠2+∠3=200°.故答案为:200°.考点:平行线性质14、试题分析:方程两边都乘最简公分母x-4,可以把分式方程转化为整式方程3﹣x﹣1=x﹣4,化简为﹣2x=﹣6,解得x=3,经检验x=3是原方程的解.故答案是:x=3.考点:解分式方程15、试题分析:由等宽曲线的定义知AB=BC=AC=2cm,即可得∠BAC=∠ABC=∠ACB=60°,因此可知在以点C为圆心、2为半径的圆上,根据弧长公式可求得的长为,则莱洛三角形的周长为×3=2π,故答案为:2π.考点:新定义下弧长的计算16、试题分析:第一次拼成形如图1所示的图案共有4块地砖,4=2×(1×2),第二拼成形如图2所示的图案共有12块地砖,12=2×(2×3),第三次拼成形如图3所示的图案共有24块地砖,24=2×(3×4),第四次拼成形如图4所示的图案共有40块地砖,40=2×(4×5),…第n次拼成形如图1所示的图案共有2×n(n+1)=2n2+2n块地砖,故答案为2n2+2n.考点:规律题目17、试题分析:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示,∵A点的坐标为(﹣1,5),B点的坐标为(3,3),∴E点的坐标为(1,1);②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示,∵A点的坐标为(﹣1,5),B点的坐标为(3,3),∴M点的坐标为(4,4).综上所述:这个旋转中心的坐标为(1,1)或(4,4).故答案为:(1,1)或(4,4).考点:坐标与图形变化中的旋转18、试题分析:由等边三角形的性质得出∠ABC=∠BAC=60°,AC=AB=2,求出∠APC=120°,当PB⊥AC时,PB长度最小,设垂足为D,此时PA=PC,由等边三角形的性质得出AD=CD=AC=1,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,求出PD=ADtan30°=AD=,BD=AD=,即可得出PB=BD﹣PD=﹣=;故答案为:.考点:1、等边三角形的性质,2、等腰三角形的性质,3、三角形内角和定理,4、勾股定理,5、三角函数19、试题分析:根据分式的减法和除法可以化简题目中的式子,然后在﹣<x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.试题解析:====∵﹣<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=﹣2时,原式=﹣=.考点:1、分式的化简求值,2、估算无理数的大小20、试题分析:设农场去年计划生产小麦x吨,玉米y吨,利用去年计划生产小麦和玉米200吨,则x+y=200,再利用小麦超产15%,玉米超产5%,则实际生产了225吨,得出等式(1+5%)x+(1+15%)y=225,进而组成方程组求出答案.试题解析:设农场去年计划生产小麦x吨,玉米y吨,根据题意可得:,解得:,则50×(1+5%)=52.5(吨),150×(1+15%)=172.5(吨),答:农场去年实际生产小麦52.5吨,玉米172.5吨.考点:二元一次方程组的应用21、试题分析:(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数.试题解析:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示;(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300人考点:统计问题22、试题分析:(1)作EP⊥BC、DQ⊥EP,知CD=PQ=10,∠2+∠3=90°,由∠1+∠θ=90°且∠1=∠2知∠3=∠θ=37°50′,根据EQ=DEsin∠3和AB=EP=EQ+PQ可得答案;(2)延长ED、BC交于点K,结合(1)知∠θ=∠3=∠K=60°,从而由CK=、KF=可得答案.试题解析:(1)如图,作EP⊥BC于点P,作DQ⊥EP于点Q,则CD=PQ=10,∠2+∠3=90°,∵∠1+∠θ=90°,且∠1=∠2,∴∠3=∠θ=37°50′,则EQ=DEsin∠3=120×sin37°50′,∴AB=EP=EQ+PQ=120sin37°50′+10=83.2,故答案为:83.2;(2)如图,延长ED、BC交于点K,由(1)知∠θ=∠3=∠K=60°,在Rt△CDK中,CK==,在Rt△KGF中,KF===,则CF=KF﹣KC=﹣==.考点:解直角三角形的应用23、试题分析:(1)如图1,连接OD、OE,证得△OAD、△ODE、△OEB、△CDE 是等边三角形,进一步证得DF⊥CE即可证得结论;(2)根据切线的性质以及等腰三角形的性质即可证得结论.试题解析:(1)如图1,连接OD、OE,∵AB=2,∴OA=OD=OE=OB=1,∵DE=1,∴OD=OE=DE,∴△ODE是等边三角形,∴∠ODE=∠OED=60°,∵DE∥AB,∴∠AOD=∠ODE=60°,∠EOB=∠OED=60°,∴△AOD和△△OE是等边三角形,∴∠OAD=∠OBE=60°,∴∠CDE=∠OAD=60°,∠CED=∠OBE=60°,∴△CDE是等边三角形,∵DF是⊙O的切线,∴OD⊥DF,∴∠EDF=90°﹣60°=30°,∴∠DFE=90°,∴DF⊥CE,∴CF=EF;(2)相等;如图2,点E运动至与点B重合时,BC是⊙O的切线,∵⊙O的切线DF交BC于点F,∴BF=DF,∴∠BDF=∠DBF,∵AB是直径,∴∠ADB=∠BDC=90°,∴∠FDC=∠C,∴DF=CF,∴BF=CF.考点:1、切线的性质,2、平行线的性质,3、等边三角形的判定,4、等腰三角形的判定和性质24、试题分析:(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC 中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E=﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2,求出a即可.试题解析:(1)如图1,∵由题意得:△ADP≌△AD1P,∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,∵直线AD1过C,∴PD1⊥AC,在Rt△ABC中,AC=,CD1=﹣2,在Rt△PCD1中,PC2=PD12+CD12,即(3﹣x)2=x2+(﹣2)2,解得:x=,∴当x=时,直线AD1过点C;(2)如图2,连接PE,∵E为BC的中点,∴BE=CE=1,在Rt△ABE中,AE==,∵AD1=AD=2,PD=PD1=x,∴D1E=﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,x2+(﹣2)2=(3﹣x)2+12,解得:x=,∴当x=时,直线AD1过BC的中点E;(3)如图3,当0<x≤2时,y=x,如图4,当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,∵AB∥CD,∴∠1=∠2,∵∠1=∠3(根据折叠),∴∠2=∠3,∴AF=PF,作PG⊥AB于G,设PF=AF=a,由题意得:AG=DP=x,FG=x﹣a,在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2,解得:a=,所以y==,综合上述,当0<x≤2时,y=x;当2<x≤3时,y=.考点:1、勾股定理,2、折叠的性质,3、矩形的性质,4、分类推理思想25、试题分析:(1)待定系数法求解可得;(2)设点M坐标为(m,﹣m2+2m+3),分别表示出ME=|﹣m2+2m+3|、MN=2m﹣2,由四边形MNFE为正方形知ME=MN,据此列出方程,分类讨论求解可得;(3)先求出直线BC解析式,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3)、点D(a,﹣a+3),由MD=MN列出方程,根据点M的位置分类讨论求解可得.试题解析:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),∴设抛物线的函数解析式为y=a(x+1)(x﹣3),将点C(0,3)代入上式,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴所求抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)由(1)知,抛物线的对称轴为x=﹣=1,如图1,设点M坐标为(m,﹣m2+2m+3),∴ME=|﹣m2+2m+3|,∵M、N关于x=1对称,且点M在对称轴右侧,∴点N的横坐标为2﹣m,∴MN=2m﹣2,∵四边形MNFE为正方形,∴ME=MN,∴|﹣m2+2m+3|=2m﹣2,分两种情况:①当﹣m2+2m+3=2m﹣2时,解得:m1=、m2=﹣(不符合题意,舍去),当m=时,正方形的面积为(2﹣2)2=24﹣8;②当﹣m2+2m+3=2﹣2m时,解得:m3=2+,m4=2﹣(不符合题意,舍去),当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8;综上所述,正方形的面积为24+8或24﹣8.(3)设BC所在直线解析式为y=kx+b,把点B(3,0)、C(0,3)代入表达式,得:,解得:,∴直线BC的函数表达式为y=﹣x+3,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3),点D(a,﹣a+3),①点M在对称轴右侧,即a>1,则|﹣a+3﹣(﹣a2+2a+3)|=a﹣(2﹣a),即|a2﹣3a|=2a﹣2,若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2a﹣2,解得:a=或a=<1(舍去);若a2﹣3a<0,即0≤a≤3,a2﹣3a=2﹣2a,解得:a=﹣1(舍去)或a=2;②点M在对称轴右侧,即a<1,则|﹣a+3﹣(﹣a2+2a+3)|=2﹣a﹣a,即|a2﹣3a|=2﹣2a,若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2﹣2a,解得:a=﹣1或a=2(舍);若a2﹣3a<0,即0≤a≤3,a2﹣3a=2a﹣2,解得:a=(舍去)或a=;综上,点M 的横坐标为、2、﹣1、.考点:二次函数的综合。

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣24.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1y2(填“>”或“<”或“=”).11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】分别找出这个图形的主视图、俯视图、左视图,然后结合选项选出正确答案即可.【解答】解:该图形的主视图为:,俯视图为:,左视图为:,A、该图形为原图形的主视图,本选项正确;B、该图形为原图形的俯视图,本选项正确;C、该图形为原图形的左视图,本选项正确;D、观察原图形,不能得到此平面图形,故本选项错误;故选D.【点评】本题考查了简单组合体的三视图,要求同学们掌握主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴,解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【考点】菱形的判定;平移的性质.【分析】首先根据平移的性质得出AB平行且等于CD,得出四边形ABCD为平行四边形,根据邻边相等的平行四边形是菱形可得添加条件AB=BC即可.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.故选:A.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB平行且等于CD是解题关键.7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.【考点】反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理.【分析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=4,则OA=4﹣3.设AB与y 轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出=,求得OD=4﹣,最后根据梯形的面积公式即可求出阴影部分的面积.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为x1=,x2=1.【考点】解一元二次方程-因式分解法.【分析】分解因式后即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1【点评】本题考查了解一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1<y2(填“>”或“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象所经过的象限与函数图象的增减性进行填空.【解答】解:∵函数y=﹣中的﹣2<0,∴函数y=﹣的图象经过第二、四象限,且在每一象限内,y随x的增大而增大,∴点(2,y1),(3,y2)同属于第四象限,∵2<3,∴y1<y2.故填:<.【点评】本题主要考查反比例函数图象上点的坐标特征.解答该题时,利用了反比例函数图象的增减性.当然了,解题时也可以把已知两点的坐标分别代入函数解析式,求得相应的y值后,再来比较它们的大小.11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【考点】相似图形.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.【考点】解直角三角形.【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC 的长度,然后根据锐角的正切等于对边比邻边解答.【解答】解:∵CD是斜边AB上的中线,CD=2,∴AB=2CD=4,根据勾股定理,BC==,tanB===.故答案为:.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分母为2的指数次幂,分子比分母小1,根据此规律解答即可.【解答】解:∵2=21,4=22,8=23,16=24,32=25,…∴第n个数的分母是2n,又∵分子都比相应的分母小1,∴第n个数的分子为2n﹣1,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键.三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2,于是求得S△ADE=27,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,∵AD=3BD,∴=,∴=,∵S△ABC=48,∴S△ADE=27,∴S四边形BCED=S△ABC﹣S△ADE=48﹣27=21.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.【考点】作图-位似变换.【专题】作图题.【分析】延长OA到A′,使AA′=OA,则点A′为点A的对应点,用同样方法作出B、C的对应点B′、C′,则△A′B′C′与△ABC位似,且相似比为2.【解答】解:如图,△A′B′C′为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】设窗口A到地面的高度AD为xm,根据题意在直角三角形ABD和直角三角形ACD中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再根据BD﹣CD=BC=6列出方程,解方程即可.【解答】解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ADC中,CD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?【考点】列表法与树状图法.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为:不放回;(3,2).【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x米,则绿地的面积就为(100﹣2x)(90﹣x),就有(100﹣2x)(90﹣x)=8448建立方程求出其解即可.【解答】解:设道路的宽为x米,由题意,得(100﹣2x)(90﹣x)=8448,解得:x1=2,x2=138(不符合题意,舍去)∴道路的宽为2米.【点评】本题考查了列一元二次方程解实际问题的运用,矩形面积公式的运用,一元二次方程的解法的运用,解答时根据绿地的面积为8448建立方程是关键.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠BFG=∠AED=90°,故可得出∠BGF=∠ADE=45°,GF=ED,∵在△ADE与△BGF中,,∴△ADE≌△BGF(ASA);(2)解:过点C作CG⊥AB于点H,∵正方形DEFG的面积为16cm2,∴DE=AE=4cm,∴AB=3DE=12cm,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=AB=×12=6cm,在Rt△ADE中,∵DE=AE=4cm,∴AD===4cm,∵CH⊥AB,DE⊥AB,∴CH∥DE,∴△ADE∽△ACH,∴=,=,解得AC=6cm.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.【考点】反比例函数综合题.【分析】(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标即为6,求出纵坐标,即可求出n的值.【解答】解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.【点评】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及平移的相关知识,此题难度不大,是中考的常考点.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A坐标代入y=kx﹣6,根据待定系数法即可求得直线AB的解析式;(2)根据直线AB的解析式求出点B的坐标,点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法即可求解;(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴直线AB的解析式为y=2x﹣6,(2)∵抛物线的顶点为A(1,﹣4),∴设此抛物线的解析式为y=a(x﹣1)2﹣4,∵点B在直线y=2x﹣6上,且横坐标为0,∴点B的坐标为(3,0),又∵点B在抛物线y=a(x﹣1)2﹣4上,∴a(3﹣1)2﹣4=0,解之得a=1,∴此抛物线的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(3)在y轴上存在点Q,使△ABQ为直角三角形.理由如下:作AE⊥y轴,垂足为点E.又∵点D是直线y=2x﹣6与y轴的交点,点C是抛物线y=x2﹣2x﹣3与y轴的交点∴E(0,﹣4),D(0,﹣6),C(0,﹣3)∴OD=6,OE=4,AE=1,ED=2,OC=3,OB=3,BD=,AD=①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=6﹣=,即Q1(0,﹣);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,﹣)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。

九年级上册威海数学期末试卷专题练习(解析版)

九年级上册威海数学期末试卷专题练习(解析版)

九年级上册威海数学期末试卷专题练习(解析版)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒3.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定4.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,AB AD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC =B .2EC AC = C .12DE BC = D .2AC AE= 5.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .126.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( )A .14B .34C .15D .357.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DE AB BC= D .AD AE AC AB= 8.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( ) A .相交B .相切C .相离D .无法确定 9.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm 10.二次函数y =()21x ++2的顶点是( )A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)11.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .22C .35D .4512.下列说法正确的是( )A .所有等边三角形都相似B .有一个角相等的两个等腰三角形相似C .所有直角三角形都相似D .所有矩形都相似二、填空题13.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____.14.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 15.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.16.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.17.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.18.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.19.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.20.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.21.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.22.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.23.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)24.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题25.(1)解方程:27100x x -+=(2)计算:cos60tan 452cos 45︒⨯︒-︒26.利用一面墙(墙的长度为20m ),另三边用长58m 的篱笆围成一个面积为200m 2的矩形场地.求矩形场地的各边长?27.如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与边BC 交于点D ,与边AC 交于点E ,连接AD ,且AD 平分∠BAC .(1)试判断BC 与⊙O 的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).28.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数4yx=(x>0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.29.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB 的高度.30.解方程:(1)x2-8x+6=0(2)(x -1)2 -3(x -1) =031.如图示,在平面直角坐标系中,二次函数26y ax bx =++(0a ≠)交x 轴于()4,0A -,()2,0B ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)点D 是第二象限内的点抛物线上一动点①求ADE ∆面积最大值并写出此时点D 的坐标;②若1tan 3AED ∠=,求此时点D 坐标; (3)连接AC ,点P 是线段CA 上的动点.连接OP ,把线段PO 绕着点P 顺时针旋转90︒至PQ ,点Q 是点O 的对应点.当动点P 从点C 运动到点A ,则动点Q 所经过的路径长等于______(直接写出答案)32.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.C解析:C【解析】【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.3.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM ,从而得出三角形全等,得出答案.详解:连接BD ,因为P 为平行四边形ABCD 的对称中心,则P 是平行四边形两对角线的交点,即BD 必过点P ,且BP=DP , ∵以P 为圆心作圆, ∴P 又是圆的对称中心, ∵过P 的任意直线与圆相交于点M 、N , ∴PN=PM , ∵∠DPN=∠BPM ,∴△PDN ≌△PBM (SAS ), ∴BM=DN .点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.4.D解析:D【解析】【分析】只要证明AC AB AE AD =,即可解决问题. 【详解】解:A.12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD =,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D. 2AC AB AE AD==,可得DE//BC , 故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.C解析:C【解析】【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论.【详解】解:连接OB ,OC ,∵∠BAC =30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等边三角形,∴OB=BC=8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.6.D解析:D【解析】【分析】根据题意即从5个球中摸出一个球,概率为3 5 .【详解】摸到红球的概率=33 235=+,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.7.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.8.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.9.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.10.C解析:C【解析】【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21x++2的顶点坐标.【详解】解:∵二次函数y=()21x++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.11.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题13.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x 1+x 2=b a -,x 1•x 2=c a. 14..【解析】试题分析:∵在△ABC 中,∠C=90°,cosA =,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理. 解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =. ∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.15.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.16.4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n 行n 个数,故前n 个数字的个数为:1+2+3+…+n =(1)2n n +, ∵当n =63时,前63行共有63642⨯=2016个数字,2020﹣2016=4, ∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.17.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC 的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<,∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.18.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴OC === ∴2CP OC OP =-=故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P的位置.19.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.20.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF 254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF 的最小值.21.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离22.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】 l =6012180π⨯=4π, 故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 23.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.24.【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可解析:3 2【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE :ED =1:2,∴BE =EF =DF ,∴BF =DE ,∵AB =AD ,∴∠ABD =∠D ,∵AD ⊥AE ,EF =DF ,∴AF =EF ,在△BAF 和△DAE 中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°故答案为:2. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题25.(1)∴x 1=2,x 2=5;(2)12-【解析】【分析】(1)用因式分解法解一元二次方程;(2)先将特殊角三角形函数值代入,然后进行实数的混合运算.【详解】解:(1)27100x x -+= (2)(5)0x x --=∴x 1=2,x 2=5(2)cos60tan 4545︒⨯︒-︒121222=⨯-⨯12=-.【点睛】本题考查解一元二次方程,特殊角三角函数值的混合运算,掌握运算法则正确计算是解题关键.26.矩形长为25m,宽为8m【解析】【分析】设垂直于墙的一边为x米,则邻边长为(58-2x),利用矩形的面积公式列出方程并解答.【详解】解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4,当x=4时,58﹣8=50,∵墙的长度为20m,∴x=4不符合题意,当x=25时,58﹣2x=8,∴矩形的长为25m,宽为8m,答:矩形长为25m,宽为8m.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.27.(1)BC与⊙O相切,理由见解析;(2)23π.【解析】试题分析:(1)连接OD,推出OD BC⊥,根据切线的判定推出即可;(2)连接,DE OE,求出阴影部分的面积=扇形EOD的面积,求出扇形的面积即可.试题解析:(1)BC与O相切,理由:连接OD,∵AD平分∠BAC,∴∠BAD =∠DAC ,∵AO =DO ,∴∠BAD =∠ADO ,∴∠CAD =∠ADO ,//AC OD ∴, 90ACD ∠=,∴OD ⊥BC ,∴BC 与O 相切;(2)连接OE ,ED ,60BAC OE OA ∠==,,∴△OAE 为等边三角形,60AOE ∴∠=,30ADE ,∴∠= 又1302OAD BAC ∠=∠=, ADE OAD ∴∠=∠,//ED AO ∴,AED AOD S S ∴=,∴阴影部分的面积=S 扇形ODE 60π42π.3603⨯⨯== 28.(1)见解析;(2)19180,sin 22MON MPN S αα∠=︒-=△;(3)43OP =,P 点坐标为46633⎛ ⎝⎭或26633⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】(1)由角平分线求出∠MOP =∠NOP =12∠AOB =30°,再证出∠OMP =∠OPN ,证明△MOP ∽△PON ,即可得出结论;(2)由∠MPN 是∠AOB 的“相关角”,判断出△MOP ∽△PON ,得出∠OMP =∠OPN ,即可得出∠MPN=180°﹣12α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=12ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出14CAAB=,由平行线得出△ACH∽△ABO,得出比例式:14CH AH ACOB OA AB===,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P 的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=12∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴OM OP OP ON=,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴OM OP OP ON=,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=12α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣12α,即∠MPN=180°﹣12α;过点M作MH⊥OB于H,如图2,则S△MON=12ON•MH=12ON•OM sinα=12OP2•sinα,∵OP=3,∴S△MON=92sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴14 CAAB=,∵CH//OB,∴△ACH∽△ABO,∴14 CH AH ACOB OA AB===,∴14 b OA aOB OA-==,∴OB=4b,OA=43 a,∴OA•OB=43a•4b=163ab=643,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴64833OP OA OB=⋅==,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:4646,33⎛⎫⎪ ⎪⎝⎭;②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴12 CAAB=,∵CH//OB,∴△ACH∽△ABO,∴12 CH AH ACOB OA AB===,∴12 b a OA OB OA-==∴OB=2b,OA=23 a,∴OA•OB=23a•2b=43ab=163,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴16433OP OA OB=⋅==,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:2626,33⎛⎫-⎪ ⎪⎝⎭;综上所述:点P的坐标为:4646,⎛⎫⎪⎪⎝⎭或2626,⎛⎫-⎪⎪⎝⎭.【点睛】本题考查反比例函数与几何综合,掌握数形结合和分类讨论的思想是解题的关键.29.4m【解析】【分析】首先根据DO=OE=1m,可得∠DEB=45°,然后证明AB=BE,再证明△ABF∽△COF,可得AB COBF OF=,然后代入数值可得方程,解出方程即可得到答案.【详解】解:延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴AB COBF OF=,1.51(51)5xx+∴=+-,解得:x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.【点睛】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根据相似三角形的判定方法证明△ABF∽△COF.30.(1)x14,x24(2) x1=1,x2=4.【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2-8x+6=0x2-8x+16=10(x-4)2=10x-4=∴x14,x24(2)(x -1)2 - 3(x -1)=0(x -1)(x -1-3)=0(x -1)(x-4)=0∴x-1=0或x-4=0解得x1=1,x2=4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.{题型:3-选择题}{题目}{适用范围:1.七年级}{类别:常考题}{章节:[1-1-3]003}计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是 °;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数(1)200;72(2)60(人),图见解析(3)1050人.【解析】【分析】(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D人数占总人数的比例可得;(2)首先求得C项目对应人数,即可补全统计图;(3)总人数乘以样本中B、C人数所占比例可得.【详解】(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);选“D一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°,故答案为:200、72;(2)C项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×8060200=1050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.31.(1)233642y x x =--+;(2)①503,点D 坐标为220,33⎛⎫- ⎪⎝⎭;②1533D ⎛⎫-+ ⎪ ⎪⎝⎭;(3)【解析】【分析】(1)根据点坐标代入解析式即可得解;(2)①由A 、E 两点坐标得出直线AE 解析式,设点D 坐标为()22,336t t t --+,过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --,然后构建ADE ∆面积与t 的二次函数,即可得出ADE ∆面积最大值和点D 的坐标;②过点M 作MN AE ⊥,在AME ∆中,由1tan 2MAE ∠=,1tan 3MEA ∠=,AE =M 的坐标,进而得出直线ME 的解析式,联立直线ME 和二次函数,即可得出此时点D 的坐标;(3)根据题意,当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),动点Q 所经过的路径是直线QQ′,求出两点之间的距离即可得解.【详解】(1)依题意得:016460426a b a b =-+⎧⎨=++⎩,解得3432a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴233642y x x =--+ (2)①∵()4,0A -,()0,2E -∴设直线AE 为y kx b =+将A 、E 代入,得042k b b =-+⎧⎨-=⎩∴122k b ⎧=-⎪⎨⎪=-⎩ ∴直线1:22AE y x =-- 设点D 坐标为()22,336t t t --+,其中20t -<<过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --∴2328DF t t =--+∴()2214328ADE S t t ∆=⋅⨯--+ 即:26416ADE S t t ∆=--+ 由函数知识可知,当13t =-时,()max 503ADE S ∆=,点D 坐标为220,33⎛⎫- ⎪⎝⎭ ②设DE 与OA 相交于点M过点M 作MN AE ⊥,垂足为N在AME ∆中,1tan 2MAE ∠=,1tan 3MEA ∠=,25AE = 设MN t =,则2AN t =,3NE t =∴2325t t +=∴255t = ∴52AM t ==∴()2,0M -∴:2ME y x =--∴2233642y x y x x =--⎧⎪⎨=--+⎪⎩∴232320x x +-=∴1197x -+=(舍去),2197x --= 当197x --=时,975y -= ∴197975,33D ⎛⎫-+- ⎪ ⎪⎝⎭(3)当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),如图所示:∴动点Q 所经过的路径是直线QQ′,∴()()226464226QQ =-+++=′故答案为26【点睛】此题主要考查二次函数以及动点综合问题,解题关键是找出合适的坐标,即可解题.32.(1)详见解析;(2)4;(3)252【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接OD∵OD OA =∴12∠=∠∵AD 平分BAE ∠∴13∠=∠∴32∠=∠∴OD AE ∥∵DE AF ⊥∴OD DE ⊥又∵OD 是O 的半径∴DE 与O 相切(2)解:连接BD∵AB 为直径∴∠ADB=90°∵13∠=∠∴AED ADB ∆∆∽∴2A D A A E B =⋅∴280AD =∴Rt ADE ∆中2228084DE AD AE =-=-=(3)连接DF ,过点D 作DG AB ⊥于G∵13∠=∠,DE ⊥AE ,AD=AD∴AED AGD ∆∆≌∴AE AG =,DE=DG∴EDF GDB ∆∆≌∴EF BG =∴2AB AF EF =+即:210x y +=∴152y x =-+ ∴2152AF EF x x ⋅=-+ 根据二次函数知识可知:当5x =时,()max 252AF EF ⋅=【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.。

九年级上册威海数学期末试卷专题练习(解析版)

九年级上册威海数学期末试卷专题练习(解析版)

九年级上册威海数学期末试卷专题练习(解析版) 一、选择题 1.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A .2:3B .2:3C .4:9D .16:81 2.已知34a b =(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b = C .43b a = D .43a b =3.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .14.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)5.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º 6.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( ) A .⊙O 上B .⊙O 外C .⊙O 内 7.方程(1)(2)0x x --=的解是( ) A .1x = B .2x = C .1x =或2x =D .1x =-或2x =-8.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=2且∠ACB 最大时,b 的值为( )A .226+B .226-+C .242+D .2429.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,0 10.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2 B .2C .−4D .4 11.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 12.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A 2B .1C 2D .2二、填空题13.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.14.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.15.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)16.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.17.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.18.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm .19.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.20.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).21.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.22.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.23.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.24.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.三、解答题25.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.26.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线;(2)若BD =3,AD =4,则DE = .27.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x 交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.28.如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t = 时,两点停止运动;(2)设△BPQ 的面积面积为S (平方单位)①求S 与t 之间的函数关系式;②求t 为何值时,△BPQ 面积最大,最大面积是多少?29.已知二次函数y =ax 2+bx ﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x 在什么范围内,y 随x 增大而减小?该函数有最大值还是有最小值?求出这个最值.30.已知关于x 的一元二次方程()222140x m x m +++-=. (1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.31.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF=,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案)32.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为4923. 故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.解析:B【解析】【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】 解:由34a b =,得出,3b=4a, A.由等式性质可得:3b=4a ,正确;B.由等式性质可得:4a=3b ,错误;C. 由等式性质可得:3b=4a ,正确;D. 由等式性质可得:4a=3b ,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键. 3.C解析:C【解析】【分析】根据随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒, ∴红灯的概率是:301302552=++. 故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键. 4.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D .【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.B解析:B【解析】【分析】根据圆周角定理可知当∠C=90°时,点C在圆上,由由题意∠C=88°,根据三角形外角的性质可知点C在圆外.【详解】解:∵以AB为直径作⊙O,当点C在圆上时,则∠C=90°而由题意∠C=88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.7.C解析:C【解析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:∵(1)(2)0x x --=,∴x -1=0或x -2=0,解得:1x =或2x =.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.8.B解析:B【解析】【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.【详解】解:∵AB=A(0,2)、B(a ,a +2)=解得a =4或a =-4(因为a >0,舍去)∴B(4,6),设直线AB 的解析式为y=kx+2,将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+,将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.9.C解析:C【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.10.B解析:B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.12.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.二、填空题13.7【解析】设树的高度为m ,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 14.-1<x <3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛解析:-1<x <3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.15.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 16.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70° ∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.17.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 18.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm 2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm . 故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.19.8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.20.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).21.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.22.【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:3 2【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.23.﹣1<x <3【解析】【分析】先求出函数与x 轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x =1,而抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x 轴的另一个解析:﹣1<x <3【解析】【分析】先求出函数与x 轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x =1,而抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x 轴的另一个交点坐标为(﹣1,0),∵当﹣1<x <3时,y >0,∴不等式ax 2+bx +c >0的解集为﹣1<x <3.故答案为﹣1<x <3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x 轴的另一个交点.24.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离三、解答题25.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得, 2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500, 解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.26.(1)见解析;(2)125【解析】【分析】(1)连接OD ,如图,先证明OD ∥AE ,再利用DE ⊥AE 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)证明△ABD ∽△ADE ,通过线段比例关系求出DE 的长.【详解】(1)证明:连接OD∵AD 平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE , ∴AB BD AD DE=, ∵BD =3,AD =4,22BD AD +∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.27.(1)y=﹣(x ﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0) 【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,得到y =2x−1,求得BD 于是得到结论;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ON BC AB=,可求得N 点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1,即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b=+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N点坐标为(53,0)或(73,0);②当或MN ONBC AB=时,∴=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.28.(1)7;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+24,当6<t≤7时,S=t2﹣10t+24,②t=3时,△PBQ的面积最大,最大值为9【解析】【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t =4时,△PBQ 的面积最大,最大值为8,当6<t≤7时,S =12(t ﹣6)•(2t ﹣8)=t 2﹣10t+24=(t ﹣5)2﹣1, t =7时,△PBQ 的面积最大,最大值为3,综上所述,t =3时,△PBQ 的面积最大,最大值为9.【点睛】 本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.29.(1)y =x 2﹣2x ﹣3;(2)当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【解析】【分析】(1)将(1,﹣4)和(﹣1,0)代入解析式中,即可求出结论;(2)将二次函数的表达式转化为顶点式,然后根据二次函数的图象及性质即可求出结论.【详解】(1)根据题意得3430a b a b +-=-⎧⎨--=⎩, 解得12a b =⎧⎨=-⎩, 所以抛物线解析式为y =x 2﹣2x ﹣3;(2)∵y =(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,顶点坐标为(1,﹣4),∵a >0,∴当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、二次函数的图象及性质是解决此题的关键.30.(1)174m >-;(2)4m =- 【解析】【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解.【详解】(1)∵方程有两个不相等的实数根,∴()()22=2144=417m m m ∆+--+>0 解得:174m >-∴当174m >-时,方程有两个不相等的实数根; (2)由题意得:2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++= 解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线∴122 1 0x x m +=-->,即12m <-∴4m =-【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键.31.(1)见解析(2)3)53或163或3 【解析】【分析】(1)根据已知中相似对角线的定义,只要证明△AEF ∽△ECF 即可;(2)AC 是四边形ABCD 的相似对角线,分两种情形:△ACB ~△ACD 或△ACB ~△ADC ,分别求解即可;(3)分三种情况①当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线.②取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD′,延长CD′交AB 于E ,则可得出 EF 是四边形AECF 的相似对角线.③取AB 的中点E ,连接CE ,作EF ⊥AD 于F ,延长CB 交FE 的延长线于M ,则可证出EF 是四边形AECF 的相似对角线.此时BE=3;【详解】解:(1)∵四边形ABCD 是正方形,∴AB=BC=CD=AD=4,∵E 为AD 的中点,1AF=,∴AE=DE=2, 12∴==AF AE DE CD∵∠A=∠D=90°,∴△AEF∽△DCE,∴∠AEF=∠DCE,12==EF AFCE DE∵∠DCE+∠CED=90°,∴∠AEF+∠CED=90°,∴∠FEC=∠A=90°,12==AF EFAE EC∴△AEF∽△ECF,∴EF为四边形AECF的相似对角线.(2)∵AC平分BAD∠,∴∠BAC=∠DAC =60°∵AC是四边形ABCD的相似对角线,∴△ACB~△ACD或△ACB~△ADC①如图2,当△ACB~△ACD时,此时,△ACB≌△ACD∴AB=AD=3,BC=CD,∴AC垂直平分DB,在Rt△AOB中,∵AB=3,∠ABO=30°,33cos30233︒∴=⋅=∴==BO ABBD OB②当△ACB~△ADC时,如图3∴∠ABC=∠ACD∴AC2=AB•AD,∵6AC =,3AB = ∴6=3AD ,∴AD=2, 过点D 作DHAB 于H在Rt △ADH 中,∵∠HAD=60°,AD=2,11,332∴====AH AD DH AH 在Rt △BDH 中,2222419(3)=+=+=BD DH BH综上所述,BD 的长为:33或19(3)①如图4,当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线,设AE=EC=x ,在Rt △BCE 中,∵EC 2=BE 2+BC 2,∴x 2=(6-x )2+42,解得x=133, ∴BE=AB-AE=6-133=53. ②如图5中,如图取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD′,延长CD′交AB 于E ,则 EF 是四边形AECF 的相似对角线.∵△AEF ∽△DFC ,∴=AE AF DF DC22623163∴=∴=∴=-=AEAEBE AB AE③如图6,取AB的中点E,连接CE,作EF⊥AD于F,延长CB交FE的延长线于M,则EF 是四边形AECF的相似对角线.则 BE=3.综上所述,满足条件的BE的值为53或163或3.【点睛】本题主要考查了相似形的综合题、相似三角形的判定和性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.32.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i)若APB∠=BPC∠时,∴BPC∠=APB∠=100°(ii)若BPC CPA∠=∠时,∴12BPC CPA∠=∠=(360°-APB∠)=130°;(iii)若APB∠=CPA∠时,BPC∠=360°-APB∠-CPA∠=160°,综上所述:BPC∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD。

山东省威海市九年级上学期数学期末考试试卷

山东省威海市九年级上学期数学期末考试试卷

山东省威海市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)下列方程,是一元二次方程的是()A . 2(x-1)=3x .B . =0.C . .D . x(x-1)=y.2. (1分)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A .B .C .D .3. (1分)(2020·拉萨模拟) 将抛物线y=x2﹣2向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A . y=(x+3)2+3B . y=(x﹣3)2+1C . y=(x+2)2+1D . y=(x+3)2+14. (1分) (2017九上·东丽期末) 如图,是⊙ 的弦,点在圆上,已知,则()A .B .C .D .5. (1分)(2013·台州) 如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A . 3B . 4﹣C . 4D . 6﹣26. (1分) (2017八下·丽水期末) 用配方法解方程时,此方程可变形为()A .B .C .D .7. (1分)若圆锥的侧面展开图是一个半径为a的半圆,则圆锥的高为()A . aB . aC . 3aD .8. (1分) (2017九上·宁县期中) 某学校组织篮球比赛,实行单循环制,共有36场比赛,则参加的队数为()A . 8支B . 9支C . 10支D . 11支9. (1分) (2018七上·普陀期末) 下列说法中,正确的是()A . 将一个图形先向左平移3厘米,再向下平移5厘米,那么平移的距离是8厘米B . 将一个图形绕任意一点旋转360°后,能与初始图形重合C . 等边三角形至少旋转60°能与本身重合D . 面积相等的两个三角形一定关于某条直线成轴对称10. (1分)抛物线y=ax2+bx﹣3经过点(2,4),则代数式8a+4b+1的值为()A . 3B . 9C . 15D . ﹣15二、填空题 (共6题;共6分)11. (1分) (2019九上·大田期中) 若是方程的一个根,则的值是________.12. (1分)(2017·广州) 如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=________.13. (1分)某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是________.14. (1分)(2019·金台模拟) 如图,正方形ABCD的边长为2 ,点E为正方形外一个动点,∠AED=45°,P为AB中点,线段PE的最大值是________.15. (1分) (2017九上·北京月考) 抛物线顶点的坐标为________;与x轴的交点坐标为________,与y轴的交点的坐标为________16. (1分)(2018·江城模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=2.分别以AC,BC为直径画半圆,则图中阴影部分的面积为________.(结果保留π)三、解答题 (共9题;共18分)17. (1分)(2020·乌鲁木齐模拟) 关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a 的值为________.18. (1分)(2016·温州) 如图,抛物线交轴于两点,交轴于点,.(Ⅰ)求抛物线的解析式;(Ⅱ)若是抛物线的第一象限图象上一点,设点的横坐标为m,点在线段上,CD=m,当是以为底边的等腰三角形时,求点的坐标;(Ⅲ)在(Ⅱ)的条件下,是否存在抛物线上一点,使,若存在,求出点的坐标;若不存在,请说明理由.19. (2分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有△ABC和一点O,△ABC的顶点和点O均与小正方形的顶点重合.①在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1;②在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,请画出△A2B2C2.20. (2分)(2018·青海) 某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查随机调查了某班所有同学最喜欢的节目每名学生必选且只能选择四类节目中的一类并将调查结果绘成如下不完整的统计图根据两图提供的信息,回答下列问题:(1)最喜欢娱乐类节目的有________人,图中 ________;(2)请补全条形统计图;(3)根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;(4)在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.21. (2分) (2020九上·息县期末) 如图①,在与中,, .(1)与的数量关系是: ________; .(2)把图①中的绕点旋转一定的角度,得到如图②所示的图形.①求证: .②若延长交于点,则与的数量关系是什么?并说明理由.(3)若,,把图①中的绕点顺时针旋转,直接写出长度的取值范围.22. (2分) (2016九上·溧水期末) 已知关于x的一元二次方程x2﹣2x﹣m=0有两个实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1、x2,且x1•x2=2m2﹣1,求实数m的值.23. (3分)已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)求证:不论m为何值,该函数图象的顶点都在函数y=(x+1)2的图象上.(2)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.24. (2分)(2018·滨州模拟) 已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O 于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sinA= ,求BH的长.25. (3分)(2016·贺州) 如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.参考答案一、选择题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共18分)17-1、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。

山东省威海市乳山市九年级数学上学期期末考试试题(含解析) 新人教版

山东省威海市乳山市九年级数学上学期期末考试试题(含解析) 新人教版

山东省威海市乳山市2016届九年级数学上学期期末考试试题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,错选、不选或多选,均不得分1.如图,直线OA过点(4,3),则tanα=()A.B.C.D.2.在Rt△ABC中,∠C=90°,tanA=,则sinB=()A.B.C.D.3.如图是将正方体切去一个角后的几何体,则该几何体的左视图是()A.B.C.D.4.二次函数y=﹣x2+ax﹣b的图象如图所示,点(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.二次函数y=﹣x2﹣(k﹣4)x+6,当x>﹣2时,y随着x的增大而减小,当x<﹣2时,y随着x 的增大而增大,则k的值为()A.﹣8 B.﹣4 C.4 D.86.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=60米,则小岛B到公路l的距离为()A.30米B.30米C.40米D.(30+30)米7.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠B=40°,∠ADC=110°,则∠A的度数为()A.50° B.55° C.60° D.65°8.抛物线y=﹣x2+bx+c的部分图象如图所示,对称轴是直线x=﹣1,与x轴交于点(1,0),若y<0,则x的取值范围是()A.x>0 B.x>1 C.x<﹣3或x>1 D.D﹣3<x<19.如图,点A在第一象限,以点A为顶点的抛物线经过原点,与x轴的正半轴交于点B,对称轴为x=1,点C在抛物线上,且位于点A,O之间(点C与A,O不重合),若△AOC的周长为m,则四边形ACOB的周长为()A.m B.m+1 C.m+2 D.m+310.如图,AB是⊙O的直径,点C是AB延长线上一点,CD是⊙O的切线,点D是切点,过点B作⊙O的切线,交CD于点E,若CD=8,BE=3,则⊙O的半径为()A.3 B.4 C.5 D.611.如图,某数学兴趣小组将长为6,宽为3的矩形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形BAD的面积为()A.3B.18 C.9 D.612.已知二次函数y=ax2+bx+c﹣2(a≠0)的图象如图所示,顶点为(﹣1,0),则下列结论:①abc<0;②b2﹣4ac=0;③a<﹣2;④4a﹣2b+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题3分,共18分.只要求填写最后结果13.抛物线y=ax2+bx+c经过点A(﹣4,﹣3),B(﹣2,﹣3),则它的对称轴是直线.14.若一个三角形的三边长的比为1::2,则最小角的余弦值是.15.如图,小丽想测量学校旗杆的高度,她在地面A点安置侧倾器,测得旗杆顶端C的仰角为30°,侧倾器到旗杆底部的距离AD为12米,侧倾器的高度AB为 1.6米,那么旗杆的高度CD为米(保留根号)16.将边长相等的正方形、正六边形的一边重合丙叠在一起,过正六边形的顶点B作正方形的边AC的垂线,垂足为点D,则tan∠ABD=.17.如图,AB是⊙O的一条弦,M,N是⊙O上两个动点,且在弦AB的异侧,若∠AMB=45°,若四边形MANB面积的最大值是4,则⊙O的半径为.18.如图,有一块边长为a的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝行,再沿图中虚线折起,做成一个无盖的直三棱柱纸盒,若该纸盒侧面积的最大值是cm2,则a的值为cm.三、解答题:本大题共7个小题,共66分.要写出必要的文字说明、证明过程或演算步骤19.画出如图所示几何体的主视图、左视图和俯视图.20.如图,在△ABC中,AC=BC,点O是AC上一动点,以O为圆心,OA的长为半径的圆与AB交于点D,作DE⊥BC,垂足为点E,试判断DE与⊙O的位置关系,并说明理由.21.一次数学活动课上,老师带领学生去测一条东西流向的河宽,如图所示,小明在河北岸点A处观测到河对岸有一点C在A的南偏西59°的方向上,沿河岸向西前行20m到达B处,又测得C在B 的南偏西45°的方向上,请你根据以上数据,帮助小明计算出这条河的宽度.(参考数据:tan31°≈,sin31°≈)22.如图,AB是⊙O的直径,延长BA到D,使DA=AO,AE垂直于弦AC,垂足为点A,点E在DC上,求S△AEC:S△AOC.23.如图,直角三角形纸片ACB,∠ACB=90°,AB=5,AC=3,将其折叠,使点C落在斜边上的点C′,折痕为AD;再沿DE折叠,使点B落在DC′的延长线上的点B′处.(1)求∠ADE的度数;(2)求折痕DE的长.24.某班同学参加社会公益活动,准备用每斤6元的价格购进一批水果进行销售,并将所得利润捐给孤寡老人.这种水果每天的销售量y(斤)与销售单价x(元/斤)之间的对应关系如表所示:x 10 11 12 13 14 …y 200 180 160 140 120 …(1)按照满足表中的销售规律,求y与x之间的函数表达式;(2)按照满足表中的销售规律,求每天销售利润W(元)与销售单价x(元/斤)之间的函数表达式;(3)在问题(2)条件下,若水果的进货成本每天不超过960元,每天要想获得最大的利润,试确定这种水果的销售单价,并求出该天的最大利润.25.如图,直线y=﹣x+1与y轴交于点E,与抛物线y=ax2﹣bx﹣3交于A,B两点,点A在x轴上,点B的纵坐标为3.点P是直线A,B下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求抛物线的解析式及cos∠CPD的值;(2)设点P的横坐标为m.①是否存在点P,使AD=BD?若存在,求出点P的坐标;若不存在,说明理由.②用含m的代数式表示线段PD的长,并求出线段PD长的最大值;③连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为3:4?若存在,求出m的值;若不存在,请说明理由.山东省威海市乳山市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,错选、不选或多选,均不得分1.如图,直线OA过点(4,3),则tanα=()A.B.C.D.【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据正弦函数是对边比邻边,可得答案.【解答】解:如图,tanα==,故选:A.【点评】本题考查了锐角三角函数,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.在Rt△ABC中,∠C=90°,tanA=,则sinB=()A.B.C.D.【考点】互余两角三角函数的关系.【分析】根据一个角的余切等于它余角的正切,可得cotB,根据cos2B+sin2B=1,可得答案.【解答】解:cotB=tanA==.cosB=sinB.(sinB)2+sin2B=1.解得sinB=,故选:A.【点评】本题考查了互余两角三角函数关系,利用cos2B+sin2B=1得出(sinB)2+sin2B=1是解题关键.3.如图是将正方体切去一个角后的几何体,则该几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个正方形的右上角部分是一个直角三角形,斜边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到的线用虚线表示.4.二次函数y=﹣x2+ax﹣b的图象如图所示,点(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】二次函数图象与系数的关系.【分析】由抛物线对称轴在y轴右侧得到﹣>0,得到a>0,而抛物线与y轴交点坐标为(0,﹣b)点,由图知该点在x轴下方得到﹣b<0,得到b>0,从而确定(a,b)所在位置.【解答】解:∵抛物线对称轴在y轴右侧,∴﹣>0,∴a>0,∵抛物线与y轴交点坐标为(0,﹣b)点,由图知该点在x轴下方,∴﹣b<0,∴b>0,∴(a,b)在第一象限.故选A.【点评】题考查了二次函数图象与系数的关系,属于基础题,关键是正确获取图象信息进行判断.5.二次函数y=﹣x2﹣(k﹣4)x+6,当x>﹣2时,y随着x的增大而减小,当x<﹣2时,y随着x 的增大而增大,则k的值为()A.﹣8 B.﹣4 C.4 D.8【考点】二次函数的性质.【分析】根据二次函数的增减性可知,对称轴x=﹣2,再根据对称轴公式求k的值.【解答】解:(1)依题意可知,抛物线对称轴为x=﹣2,即﹣=﹣2,﹣=﹣2,解得k=8.故选D.【点评】本题考查了二次函数的性质,解答本题的关键是用k表示出函数的对称轴,此题难度不大.6.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=60米,则小岛B到公路l的距离为()A.30米B.30米C.40米D.(30+30)米【考点】解直角三角形的应用.【分析】作BE⊥L于点E,易得AC=BC.那么利用60°的正弦函数可求得BE长,也就是小岛B到公路L的距离.【解答】解:作BE⊥L于点E.∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴BC=A C=60(米),∴BE=BC×sin60°=30(米).故选B.【点评】此题考查解直角三角形的应用,解答此题的关键是作出辅助线,构造出直角三角形.7.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠B=40°,∠ADC=110°,则∠A的度数为()A.50° B.55° C.60° D.65°【考点】圆周角定理.【分析】先根据补角的定义求出∠BDO的度数,再由三角形外角的性质求出∠BOC的度数,根据圆周角定理即可得出结论.【解答】解:∵∠ADC=110°,∴∠BDO=180°﹣110°=70°.∵∠B=40°,∴∠BOD=∠B+∠BDO=40°+70°=110°,∴∠A=∠BOC=55°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.8.抛物线y=﹣x2+bx+c的部分图象如图所示,对称轴是直线x=﹣1,与x轴交于点(1,0),若y<0,则x的取值范围是()A.x>0 B.x>1 C.x<﹣3或x>1 D.D﹣3<x<1【考点】二次函数与不等式(组).【分析】根据二次函数的对称性求出抛物线与x轴的另一交点坐标,然后写出x轴下方部分的x的取值范围即可.【解答】解:设抛物线与x轴的另一交点坐标为(x,0),则=﹣1,解得x=﹣3,∴另一交点坐标为(﹣3,0),∴y<0时,x的取值范围是x<﹣3或x>1.故选C.【点评】本题考查了二次函数与不等式,主要利用了二次函数的对称性,此类题目利用数形结合的思想求解更加简便.9.如图,点A在第一象限,以点A为顶点的抛物线经过原点,与x轴的正半轴交于点B,对称轴为x=1,点C在抛物线上,且位于点A,O之间(点C与A,O不重合),若△AOC的周长为m,则四边形ACOB的周长为()A.m B.m+1 C.m+2 D.m+3【考点】抛物线与x轴的交点.【分析】先根据点A抛物线的顶点得出OA=OB,再由△AOC的周长为m可得出AC+OC+OA=AC+OC+AB=m,再根据对称轴为x=1得出OB=2,由此可得出结论.【解答】解:∵点A抛物线的顶点,∴OA=OB.∵△AOC的周长为m,∴AC+OC+OA=AC+OC+AB=m.∵对称轴为x=1,∴OB=2,∴四边形ACOB的周长=(AC+OC+AB)+OB=m+2.故选C.【点评】本题考查的是抛物线与x轴的交点,此题利用了抛物线的对称性,解题的技巧性在于把求四边形AOBC的周长转化为求(△ABC的周长+OB)是关键.10.如图,AB是⊙O的直径,点C是AB延长线上一点,CD是⊙O的切线,点D是切点,过点B作⊙O 的切线,交CD于点E,若CD=8,BE=3,则⊙O的半径为()A.3 B.4 C.5 D.6【考点】切线的性质.【分析】连接OD,利用切线的性质和相似三角形△CBE∽△CDO的对应边成比例进行解答.【解答】解:如图,连接OD.∵CD是⊙O的切线,∴∠ODC=90°.又∵BE作⊙O的切线,∴∠CBE=90°且BE=ED,∴∠CBE=∠CDO.又∵∠BCE=∠DCO,∴△CBE∽△CDO,∴=,即=.又∵CD=8,BE=3,∴CE=CD﹣DE=CD﹣BE=5,∴在直角△CBE中,利用勾股定理求得CB=4,∴=,则OB=6,即该圆的半径为6.故选:D.【点评】本题考查了切线的性质和勾股定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.11.如图,某数学兴趣小组将长为6,宽为3的矩形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形BAD的面积为()A.3B.18 C.9 D.6【考点】扇形面积的计算.【分析】根据已知条件可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=lr,计算即可.【解答】解:∵矩形的长为6,宽为3,∴AB=CD=6,AD=BC=3,∴弧BD的弧长=6,∴S扇形DAB=lr=×6×6=18.故选B.【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB=lr.12.已知二次函数y=ax2+bx+c﹣2(a≠0)的图象如图所示,顶点为(﹣1,0),则下列结论:①abc<0;②b2﹣4ac=0;③a<﹣2;④4a﹣2b+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】①首先根据抛物线开口向下,可得a<0;然后根据对称轴在y轴左边,可得b<0;最后根据c﹣2<﹣2可得c<0,据此判断出abc<0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4a(c﹣2)=0,b2﹣4ac=﹣8a<0,据此解答即可.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=﹣8a,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y<﹣2,可得x=﹣2时,y<﹣2,据此判断即可.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴在y轴左边,∴b<0,∵抛物线与y轴的交点在x轴的下方,∴c﹣2<﹣2,∴c<0,∴abc<0,∴结论①正确;∵二次函数y=ax2+bx+c﹣2的图象与x轴只有一个交点,∴△=0,即b2﹣4a(c﹣2)=0,∴b2﹣4ac=﹣8a>0,∴结论②不正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=﹣8a,∴4a2﹣4ac=﹣8a,∴a=c﹣2,∵c<0,∴a<﹣2,∴结论③正确;∵对称轴是x=﹣1,而且x=0时,y<﹣2,∴x=﹣2时,y<﹣2,∴4a﹣2b+c﹣2<﹣2,∴4a﹣2b+c<0.∴结论④正确.综上,可得正确结论的个数是3个:①③④.故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c 决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题:本大题共6小题,每小题3分,共18分.只要求填写最后结果13.抛物线y=ax2+bx+c经过点A(﹣4,﹣3),B(﹣2,﹣3),则它的对称轴是直线x=﹣3 .【考点】二次函数的性质.【分析】因为点A和B的纵坐标都为﹣3,所以可判定A,B是一对对称点,利用二次函数的对称性求解即可【解答】解:∵点A和B的纵坐标都为﹣3,∴A,B是一对对称点,∴对称轴x==﹣3.故答案为:x=﹣3.【点评】此题考查二次函数的性质,掌握二次函数的对称性是解决问题的关键.14.若一个三角形的三边长的比为1::2,则最小角的余弦值是.【考点】解直角三角形;勾股定理的逆定理.【专题】推理填空题.【分析】根据一个三角形的三边长的比为1::2,可以判断这个三角形的形状,然后根据大边对大角,可知最小的角是比值中1所对的角,从而可以得到最小角的余弦值.【解答】解:∵一个三角形的三边长的比为1::2,∴设这个三角形的三边长为:x,,∵,(2x)2=4x2∴此三角形是直角三角形,∴最小角的余弦值是:,故答案为:.【点评】本题考查解直角三角形,勾股定理的逆定理,解题的关键是明确题意,找出所求问题需要的条件.15.如图,小丽想测量学校旗杆的高度,她在地面A点安置侧倾器,测得旗杆顶端C的仰角为30°,侧倾器到旗杆底部的距离AD为12米,侧倾器的高度AB为1.6米,那么旗杆的高度CD为 1.6+4米(保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据已知条件和正切值求出CE的长,再根据CD=CE+ED,即可得出答案.【解答】解:作BE⊥CD于点E.∵在直角△BCE中,∠CBE=30°,BE=AD=12(米),tan∠CBE=,∴CE=BE•tan∠CBE=12×=4.∴CD=CE+ED=(1.6+4)米.故答案是:1.6+4.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.16.将边长相等的正方形、正六边形的一边重合丙叠在一起,过正六边形的顶点B作正方形的边AC的垂线,垂足为点D,则tan∠ABD=2﹣.【考点】正多边形和圆.【分析】由正方形和正六边形的性质得出AC=BC,∠ACB=30°,由等腰三角形的性质得出∠CAB=∠CBA=75°,由直角三角形的性质得出∠ABD=15°,作∠BAE=∠ABD=15°,则AE=BE,由三角形的外角性质得出∠AED=30°,由含30°角的直角三角形的性质得出AE=2AD,设AD=x,则AE=BE=2x,DE=x,得出BD=(2+)x,即可得出结果.【解答】解:∵边长相等的正方形、正六边形的一边重合叠在一起,∴AC=BC,∠ACB=120°﹣90°=30°,∴∠CAB=∠CBA=(180°﹣30°)=75°,∵BD⊥AC,∴∠ABD=90°﹣75°=15°,作∠BAE=∠ABD=15°,如图所示:则AE=BE,∠AED=15°+15°=30°,∴AE=2AD,设AD=x,则AE=BE=2x,DE=x,∴BD=(2+)x,∴tan∠ABD===2﹣;故答案为:2﹣.【点评】本题考查了正多边形和圆、正方形的性质、正六边形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、勾股定理、三角函数等知识;本题综合性强,有一定难度.17.如图,AB是⊙O的一条弦,M,N是⊙O上两个动点,且在弦AB的异侧,若∠AMB=45°,若四边形MANB面积的最大值是4,则⊙O的半径为 2 .【考点】垂径定理;圆周角定理.【分析】过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=AB×DE,求出OA即可.【解答】解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=AB×DE=4,∴×OA×2OA=4,解得:OA=2,即⊙O的半径为2;故答案为:2.【点评】本题考查了垂径定理、圆周角定理、等腰直角三角形的判定与性质、四边形面积的计算;熟练掌握垂径定理和圆周角定理,得出四边形MANB面积取最大值时M点运动到D点,N点运动到E 点是解决问题的关键.18.如图,有一块边长为a的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝行,再沿图中虚线折起,做成一个无盖的直三棱柱纸盒,若该纸盒侧面积的最大值是cm2,则a的值为 3 cm.【考点】二次函数的应用;等边三角形的判定与性质;勾股定理.【专题】几何图形问题;二次函数的应用.【分析】如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质得到其最大值的代数式,根据题意列方程,解方程即可.【解答】解:如图,∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=a﹣x,∴纸盒侧面积=3x(a﹣2x)=﹣6x2+3ax=﹣6(x﹣)2+,∵该纸盒侧面积的最大值是cm2,∴=,解得:a=3,或a=﹣3(舍去);故答案为:3.【点评】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.三、解答题:本大题共7个小题,共66分.要写出必要的文字说明、证明过程或演算步骤19.画出如图所示几何体的主视图、左视图和俯视图.【考点】作图-三视图.【分析】分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【解答】解:如图所示:.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.20.如图,在△ABC中,AC=BC,点O是AC上一动点,以O为圆心,OA的长为半径的圆与AB交于点D,作DE⊥BC,垂足为点E,试判断DE与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】连接OD,由等腰三角形的性质得出∠ODA=∠B,证出OD∥BC,由已知条件得出DE⊥OD,即可得出结论.【解答】解:DE与⊙O相切;理由如下:连接OD,如图所示:∵OA=OD,∴∠ODA=∠A,∵AC=BC,∴∠B=∠C,∴∠ODA=∠B,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∴DE与⊙O相切.【点评】本题考查了切线的判定、等腰三角形的性质、平行线的判定;熟记切线的判定方法,证明OD∥BC是解决问题的关键.21.一次数学活动课上,老师带领学生去测一条东西流向的河宽,如图所示,小明在河北岸点A处观测到河对岸有一点C在A的南偏西59°的方向上,沿河岸向西前行20m到达B处,又测得C在B 的南偏西45°的方向上,请你根据以上数据,帮助小明计算出这条河的宽度.(参考数据:tan31°≈,sin31°≈)【考点】解直角三角形的应用-方向角问题.【分析】过点C作CD⊥AB于D.构造直角三角形,设CD=xm,列出关于x的比例式,再根据三角函数的定义解答即可.【解答】解:过点C作CD⊥AB于D.设CD=xm,∵在Rt△BCD中,∠CBD=45°,∴BD=CD=xm.∵在Rt△ACD中,∠DAC=90°﹣59°=31°,AD=AB+BD=m,CD=xm,∴tan∠DAC=,即=,解得x=30.答:这条河的宽度约为30m.【点评】本题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义等知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.如图,AB是⊙O的直径,延长BA到D,使DA=AO,AE垂直于弦AC,垂足为点A,点E在DC上,求S△AEC:S△AOC.【考点】垂径定理;三角形中位线定理.【分析】作OF⊥AC于F,延长OF交CD于G,证出AE∥OG,得出点G是EC的中点,证出AE是△ODG的中位线,由三角形中位线定理得出AE=OG,求出=,即可得出结果.【解答】解:作OF⊥AC于F,延长OF交CD于G,如图所示:∵OA=OC,∴F是AC的中点,∵AE垂直于弦AC,∴AE∥OG,∴点G是EC的中点,∴GF=AE,∵AE∥OG,DA=OA,∴点E是DG的中点,∴AE是△ODG的中位线,∴AE=OG,∴AE=(OF+GF)=(OF+AE),∴=,∵△AEC的面积=AE•AC,△AOC的面积=AC•OF,∴S△AEC:S△AOC==.【点评】本题考查了垂径定理、平行线的判定与性质、三角形中位线定理、三角形面积的计算等知识;本题综合性强,有一定难度,需要通过作辅助线运用三角形中位线定理才能得出结果.23.如图,直角三角形纸片ACB,∠ACB=90°,AB=5,AC=3,将其折叠,使点C落在斜边上的点C′,折痕为AD;再沿DE折叠,使点B落在DC′的延长线上的点B′处.(1)求∠ADE的度数;(2)求折痕DE的长.【考点】翻折变换(折叠问题).【分析】(1)根据折叠的性质可得DA和DE分别是∠CDC′和∠BDB′的角平分线,据此即可求解;(2)在直角△ABC中利用勾股定理求得BC的长,设DC=DC′=x,则BD=4﹣x,在直角△ABC和直角△BDC′分别利用三角函数即可得到关于x的方程,求得x的值,再在直角△ACD中利用勾股定理求得AD的长,再根据∠CAD=∠BAD,则函数值相等,据此列方程求解.【解答】解:(1)∵∠ADC=∠ADC′,∠BDE=∠B′DE,又∵∠ADC+∠ADC′+∠BDE+∠B′DE=180°,∴∠ADE=90°;(2)∵∠ACB=90°,AB=5,AC=3,∴BC===4.由折叠可知,∠ACD′=∠ACD=90°,DC=DC′,AC′=AC=3,BC′=5﹣3=2.设DC=DC′=x,则BD=4﹣x.∵在直角△ABC中,tan∠B==,又∵在直角△BDC′中,tan∠B==.∴=.∴x=,∴AD==.∵∠CAD=∠BAD,∴tan∠CAD==tan∠BAD=,∴=,∴DE=.【点评】本题考查了图形的折叠与三角函数,角度相等则对应的三角函数值相等,据此求得DC的长度是本题的关键.24.某班同学参加社会公益活动,准备用每斤6元的价格购进一批水果进行销售,并将所得利润捐给孤寡老人.这种水果每天的销售量y(斤)与销售单价x(元/斤)之间的对应关系如表所示:x 10 11 12 13 14 …y 200 180 160 140 120 …(1)按照满足表中的销售规律,求y与x之间的函数表达式;(2)按照满足表中的销售规律,求每天销售利润W(元)与销售单价x(元/斤)之间的函数表达式;(3)在问题(2)条件下,若水果的进货成本每天不超过960元,每天要想获得最大的利润,试确定这种水果的销售单价,并求出该天的最大利润.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据表格中的数据可知y与x之间的函数表达式符合一次函数的解析式,然后设出相应的表达式代入数据即可求得y与x之间的函数表达式;(2)根据题意和第一问中的表达式可以求得每天销售利润W(元)与销售单价x(元/斤)之间的函数表达式;(3)根据在问题(2)条件下,若水果的进货成本每天不超过960元,可以求得每天要想获得最大的利润,这种水果的销售单价,和该天的最大利润.【解答】解:(1)设y与x之间的函数表达式是y=kx+b,由题意可得,解得k=﹣20,b=400,级y与x之间的函数表达式是:y=﹣20x+400;(2)由题意可得,W=(x﹣6)×(﹣20x+400)=﹣20x2+520x﹣2400,即每天销售利润W(元)与销售单价x(元/斤)之间的函数表达式为:W=﹣20x2+520x﹣2400;(3)由题意可得,0<6(﹣20x+400)≤960,解得12≤x<20,∵W=﹣20x2+520x﹣2400,对称轴为:x=﹣,﹣20<0,∴当x=13时,W取得最大值,此时W=﹣20×132+520×13﹣2400=980,即每天要想获得最大的利润,这种水果的销售单价是13元,该天的最大利润是980元.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.如图,直线y=﹣x+1与y轴交于点E,与抛物线y=ax2﹣bx﹣3交于A,B两点,点A在x轴上,点B的纵坐标为3.点P是直线A,B下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求抛物线的解析式及cos∠CPD的值;(2)设点P的横坐标为m.①是否存在点P,使AD=BD?若存在,求出点P的坐标;若不存在,说明理由.②用含m的代数式表示线段PD的长,并求出线段PD长的最大值;③连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为3:4?若存在,求出m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出A、B点的坐标,将其代入抛物线解析式即可,而求cos∠CPD的值时,利用角的关系,得出∠CPD与∠ABF互余,求出∠ABF的正弦值即是所求;(2)①由已知可得PB=PA,由两点间的距离,即可用求出此时m的值;②代入点的坐标,找出线段的长度的表达式,配方即可得出结论;③假设存在,利用等底三角形的面积比等于其高的比,即可求的m值.【解答】解:(1)过点B做BF⊥x轴于点F,如图1,∵点A在x轴上,点B的纵坐标为3,且A、B两点均在直线y=﹣x+1上,∴将y=0与y=3代入直线方程解得x=2,x=﹣4,∴点A(2,0),点B(﹣4,3),∴AF=2﹣(﹣4)=6,BF=3﹣0=3,AB==3,∵A、B两点在抛物线上,∴,解得,∴抛物线解析式为y=x2+x﹣3.∵PC⊥x轴,PD⊥AB,BF⊥x轴,∴∠ABF=∠PCD,∠ABF+∠BAF=90°,∠PCD+∠CPD=90°,∴cos∠CPD=sin∠ABF===.(2)①连接AP,如图2,∵PD⊥AB于点D,且AD=BD,∴PA=PB,∵P点坐标为(m,m2+m﹣3),点A(2,0),点B(﹣4,3),由两点间距离公式可知:PA2=(m﹣2)2+,PB2=(m+4)2+,即有m2﹣3m﹣39=0,解得m=或m=>1(舍去),∴点P点坐标为(,),故存在点P,使AD=BD,P的坐标为(,).②∵P点坐标为(m,m2+m﹣3),C点坐标为(m,1﹣m),PC=1﹣m﹣(m2+m﹣3)=﹣m2﹣m+4,。

威海市九年级上册数学期末考试试卷

威海市九年级上册数学期末考试试卷

威海市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A . 4B . 5C . 6D . 82. (2分)下列说法正确的是()A . 在促销活动中某商品的中奖率是万分之一,则购买该商品一万件就一定会中奖B . 为了解某品牌节能灯的使用寿命,采用了普查的方式C . 一组数据6,7,8,8,9,10的众数和平均数都是8D . 若甲组数据的方差S甲2=0.05,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定3. (2分)山东省2014年的快递业务量为1.4亿件,若2016年的快递业务量达到4.5亿件,设这两年的平均增长率为x,则下列方程正确的是()A . 1.4(1+x)=4.5B . 1.4(1+2x)=4.5C . 1.4(1+x)2=4.5D . 1.4(1+x)+1.4(1+x)2=4.54. (2分)把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()A . 不变B . 缩小为原来的C . 扩大为原来的3倍D . 不能确定5. (2分)两相似三角形的周长之比为1:4,那么他们的对应边上的高的比为()A . 1∶4B . 1∶2C . 2∶1D . ∶26. (2分)把二次函数y=﹣2x2﹣4x+3用配方法化成y=a(x﹣h)2+k的形式()A . y=﹣2(x+1)2+5B . y=﹣2(x﹣1)2+5C . y=﹣2(x+2)2+5D . y=2(x+1)2+57. (2分)(2019·兰坪模拟) 如图,点A、B、C在⊙O上,CO的延长线交AB于点D,BD=BO,∠A=50°,则∠B的度数为()A . 15°B . 20°C . 25°D . 30°8. (2分)给出下列命题及函数y=x与y=x2和的图象:①如果>a>a2 ,那么0<a<1;②如果a2>a>,那么a>1或﹣1<a<0;③如>a2>a,那么﹣1<a<0;④如果a2>>a,那么a<﹣1.则()A . 正确的命题只有①B . 正确的命题有①②④C . 错误的命题有②③D . 错误的命题是③④二、填空题 (共10题;共10分)9. (1分) (2018八下·邗江期中) 已知a:b:c=3:4:5,则=________.10. (1分)已知一个圆锥的侧面积是2πcm2 ,它的侧面展开图是一个半圆,则这个圆锥的高为________ cm(结果保留根号).11. (1分) (2018·西华模拟) 关于x的一元二次方程x2- x+sinα=0有两个相等的实数根,则锐角α=________.12. (1分)在一个不透明的布袋中有2个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n= ________.13. (1分)(2016·长沙) 如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为________.14. (1分) (2018九上·金山期末) 如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A 正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是________.15. (1分) (2016九上·市中区期末) 已知抛物线y=x2+(m+1)x+m﹣1与x轴交于A,B两点,顶点为C,则△ABC面积的最小值为________.16. (1分) (2016九上·黔西南期中) 请写出一个开口向下,对称轴为直线x=1,且与y轴的交点坐标为(0,2)的抛物线的解析式________.17. (1分) (2017·大庆模拟) 如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB、AC 的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为________.18. (1分)(2019·孝感模拟) 如图所示,直线y= x分别与双曲线y= (k1>0,x>0)、双曲线y=(k2>0,x>0)交于点A,点B,且OA=2AB,将直线向左平移4个单位长度后,与双曲线y= 交于点C,若S△ABC=1,则k1k2的值为________.三、解答题 (共10题;共108分)19. (10分) (2018九上·渭滨期末) 计算或解方程(1)(2)20. (10分)德国有个叫鲁道夫的人,用毕生的精力,把圆周率π算到小数点后面35位.3.141 592 653 589 794 238 462 643 383 279 502 88(1)试用画“正”字的方法记录圆周率的上述近似值中各数字出现的频数,并完成下表;数字0 1 2 345678 9画“正”字发现的频数(2)在这串数字中,“3”,“6”,“9”出现的频率各是多少?21. (10分)(2017·北京) 如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.22. (6分)(2016·宿迁) 在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为________;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.23. (15分)(2013·宿迁) 如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣3(a,b是常数)的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.(1)求a和b的值;(2)求t的取值范围;(3)若∠PCQ=90°,求t的值.24. (10分) (2016九上·石景山期末) 如图,CE是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线,交CE延长线于点A,连接DE,过点O作OB∥ED,交AD的延长线于点B,连接BC.(1)求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO= ,求AO的长.25. (10分)如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时.①填空:点E到CD的距离是___;②求证:△BCE≌△GCF;③求△CEF的面积;(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.26. (15分) (2019·花都模拟) 抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.27. (10分)(2017·费县模拟) 如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣ x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣ x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.28. (12分)(2018·龙湖模拟) 如图,正方形OABC的顶点O在坐标原点,顶点A的坐标为(4,3).(备用图)(1)顶点的坐标为(________,________);(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.(3)若正方形OABC以每秒个单位的速度沿射线AO下滑,直至顶点C落到轴上时停止下滑.设正方形OABC在轴下方部分的面积为S,求S关于滑行时间的函数关系式,并写出相应自变量的取值范围.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共108分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、26-1、26-2、26-3、27-1、28-1、28-2、28-3、。

威海市九年级上学期数学期末考试试卷

威海市九年级上学期数学期末考试试卷

威海市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·永嘉月考) 下列函数是二次函数的是()A . y=B . y=2x-3C . y=3x2+D . y=8x2+12. (2分)(2019·香坊模拟) 如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A . 1B .C .D .3. (2分)小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc<0;③a-b+c>0;④2a-3b=0;⑤4a+2b+c>0.你认为其中正确的是()A . ①②④B . ①③⑤C . ②③⑤D . ①③④⑤4. (2分) (2017九下·江阴期中) 下列调查方式中适合的是()A . 要了解一批节能灯的使用寿命,采用普查方式B . 调查你所在班级同学的身高,采用抽样调查方式C . 环保部门调查沱江某段水域的水质情况,采用抽样调查方式D . 调查全市中学生每天的就寝时间,采用普查方式5. (2分)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A . 4B . 5C . 6D . 86. (2分)以O(2,2)为圆心,3为半径作圆,则⊙O与直线y=kx+k的位置关系是()A . 相交B . 相切C . 相离D . 都有可能7. (2分)如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为()A . 68°B . 88°C . 90°D . 112°8. (2分)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN 上一动点,则PA+PB的最小值为()A .B .C . 1D . 29. (2分)下列说法正确的是()A . 相切两圆的连心线经过切点B . 长度相等的两条弧是等弧C . 平分弦的直径垂直于弦D . 相等的圆心角所对的弦相等10. (2分) (2019九上·鄞州期末) 在Rt△ABC ,∠C=90°,AB=6.△ABC的内切圆半径为1,则△ABC的周长为()A . 13B . 14C . 15D . 16二、填空题 (共5题;共7分)11. (1分) (2018九上·下城期中) 将函数y=﹣ x2+4x﹣3化为y=a(x﹣m)2+k的形式,得________,它的图象顶点坐标是________.12. (1分) (2017九上·西城期中) 点A(3,y1),B(﹣2,y2)在抛物线y=x2﹣5x上,则y1________y2 .(填“>”,“<”或“=”)13. (1分) (2020九上·兰考期末) 二次函数的图象如图所示,则点在第________象限.14. (2分) (2019九上·保山期中) 如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为________.15. (2分)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1 ,连接A1C,再分别取A1C,BC的中点D1 , C1 ,连接D1C1 ,得到四边形A1BC1D1 .如图2,同样方法操作得到四边形A2BC2D2 ,如图3,…,如此进行下去,则四边形AnBCnDn的面积为________ .三、解答题 (共8题;共60分)16. (10分)(2016·大兴模拟) 抛物线y1=mx2+(m﹣3)x﹣3(m>0)与x轴交于A、B两点,且点A在点B 的左侧,与y轴交于点C,OB=OC.(1)求这条抛物线的表达式;(2)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,若点C在直线y2=﹣3x+t上,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求n的取值范围.17. (10分) (2019九上·温州期中) 已知二次函数y=x2-(2m-1)x+m2-m(m是常数)(1)当m=2时,求二次函数图象与x轴的交点;(2)若A(n-3,n2+2),B(-n+1,n2+2)是该二次函数图象上的两个不同点,求m的值和二次函数解析式.18. (11分)(2019·五华模拟) 为了庆祝“五四”青年节,我市某中学举行了书法比赛,赛后随机抽查部分参赛同学成绩(满分为100分),并制作成图表如下分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x≤100200.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了________学生;表中的数m=________,n=________;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是________;(4)全校共有600名学生参加比赛,估计该校成绩不低于80分的学生有多少人?19. (5分)如图,⊙O的直径AB=10,CD是⊙O的弦,AC与BD相交于点P.(1) 设∠BPC=α,如果sinα是方程5x2-13x+6=0的根,求cosα的值;(2) 在(1)的条件下,求弦CD的长.20. (10分)(2019·苏州模拟) 如图,己知点B的坐标为(1,3),点C的坐标为(1.0),直线y=x+k是经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.(1)填空:A点坐标为________,D点坐标为________;(2)若抛物线y= x2+bx+c经过C、D两点,求b、c的值:(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得真线EM∥x轴?若存在,此时抛物线向上平移了几个单位长度?若不存在,请说明理由。

九年级上册威海数学期末试卷专题练习(解析版)

九年级上册威海数学期末试卷专题练习(解析版)

九年级上册威海数学期末试卷专题练习(解析版)一、选择题1.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .13.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变4.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( ) A .42B .45C .46D .485.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23 B .1.15 C .11.5 D .12.5 6.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定 7.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .48.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .9.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=10.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变 D .平均分和方差都改变11.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50°12.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题13.已知tan (α+15°)=3,则锐角α的度数为______°. 14.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.15.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 16.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.17.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-1,x2=2 ,则二次函数y=x2+mx+n中,当y<0时,x的取值范围是________;18.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.19.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04则方程ax2+bx+c=0的一个解的范围是_____.20.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.21.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若ABBC=35,则EFBF的值为_____.22.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.23.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.24.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题25.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).26.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DEAC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD的长.(2)若点M是线段AD的中点,求EFDF的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得60CPG∠=︒?27.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于点B (-3 ,0) 和C (4 ,0)与y轴交于点A.(1) a = ,b = ;(2) 点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t为何值时,以B、M、N为顶点的三角形是等腰三角形?(3) 点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.28.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA ,OB 交于M ,N 两点,且∠MPN =150°.求证:∠MPN 是∠AOB 的“相关角”; (2)如图2,已知∠AOB =α(0°<α<90°),OP =3,若∠MPN 是∠AOB 的“相关角”,连结MN ,用含α的式子分别表示∠MPN 的度数和△MON 的面积; (3)如图3,C 是函数4y x=(x >0)图象上的一个动点,过点C 的直线CD 分别交x 轴和y 轴于点A ,B 两点,且满足BC =3CA ,∠AOB 的“相关角”为∠APB ,请直接写出OP 的长及相应点P 的坐标.29.已知□ABCD 边AB 、AD 的长是关于x 的方程212x mx -+=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形? (2)当AB=3时,求□ABCD 的周长.30.如图,小明家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =1m ,窗高CD =1.5m ,并测得OE =1m ,OF =5m ,求围墙AB 的高度.31.已知,如图,在平面直角坐标系中,直线122y x =-- 与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =++经过A 、B 两点,与x 轴的另一个交点为C . (1)直接写出点A 和点B 的坐标; (2)求抛物线的函数解析式;(3)D 为直线AB 下方抛物线上一动点;①连接DO 交AB 于点E ,若DE :OE=3:4,求点D 的坐标;②是否存在点D ,使得∠DBA 的度数恰好是∠BAC 度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.32.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由m≤x≤n 和mn <0知m <0,n >0,据此得最小值为2m 为负数,最大值为2n 为正数.将最大值为2n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m 时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n 求出,最小值只能由x=m 求出.【详解】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,2m=-(n-1)2+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣2+52=12.2.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.3.B解析:B 【解析】 【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280; 故A 正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003;调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003;故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280, 故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变, 故D 正确. 故选B. 【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.4.C解析:C 【解析】 【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数. 【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48 ∴中位数为4646462+=.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.5.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..6.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.7.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.8.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.9.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x2228494++=-+,x xx+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.10.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.11.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题13.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=3∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.14.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 15.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x -5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x 1,x 2是关于 x 的方程x 2+3x -5=0的两个根,根据根与系数的关系,得,x 1+x 2=-3,x 1x 2=-5,则 x 1+x 2-x 1x 2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x 1+x 2=-3,x 1x 2=-5是解题的关键. 16.46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD ∥BC ,可得∠DBC=∠ADB =54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC 的度数,从而使问题得解.【详解】解:连接OB ,OC ,∵直线EF 是⊙O 的切线,B 是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.17.-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围. 【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.18.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.19.18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19解析:18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,∴当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.20.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°21..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.22..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】解析:12.【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是36=12;故答案为:12.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.23.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD为等腰直角三角形,∵⊙O半径为,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.24.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题25.该段运河的河宽为303m .【解析】 【分析】 过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,33BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=, 由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(1)3DC =;(2)23EF DF =;(3)当1637DM =143435DM <<时,满足条件的点P 只有一个.【解析】【分析】(1)由角平分线定义得30DAC ∠=︒,在Rt ADC ∆中,根据锐角三角函数正切定义即可求得DC 长.(2)由题意易求得63BC =43BD =ASA 得DFM AGM ∆≅∆,根据全等三角形性质得DF AG =,根据相似三角形判定得~BFE BGA ∆∆,由相似三角形性质得EF BE BD AG AB BC==,将DF AG =代入即可求得答案.(3)由圆周角定理可得CQG ∆是顶角为120°的等腰三角形,再分情况讨论:①当Q 与DE 相切时,结合题意画出图形,过点Q 作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG ,设Q 半径为r ,由相似三角形的判定和性质即可求得DM 长;②当Q 经过点E 时,结合题意画出图形,过点C 作CK AB ⊥,设Q 半径为r ,在Rt EQK ∆中,根据勾股定理求得r ,再由相似三角形的判定和性质即可求得DM 长;③当Q 经过点D 时,结合题意画出图形,此时点M 与点G 重合,且恰好在点A 处,由此可得DM 长.【详解】(1)解:∵AD 平分BAC ∠,60BAC ∠=︒,∴1302DAC BAC ∠=∠=︒. 在Rt ADC ∆中,tan 3023DC AC =⋅︒=(2)解:易得,63BC =,43BD =.由DE AC ,得EDA DAC ∠=∠,DFM AGM ∠=∠.∵AM DM =,∴DFM AGM ∆≅∆,∴AG DF =.由DEAC ,得~BFE BGA ∆∆, ∴EF BE BD AG AB BC== ∴432363EF EF BD DF AG BC ==== (3)解:∵60CPG ∠=︒,过C ,P ,G 作外接圆,圆心为Q ,∴CQG ∆是顶角为120°的等腰三角形.①当Q 与DE 相切时,如图1,过Q 点作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG设Q 的半径QP r =则12QH r =,1232r r +=, 解得433r =. ∴43343CG =⨯=,2AG =. 易知DFMAGM ∆∆,可得43DM DF AM AG ==,则47DM AD = ∴1637DM =. ②当Q 经过点E 时,如图2,过C 点作CK AB ⊥,垂足为K .设Q 的半径QC QE r ==,则33-QK r =.在Rt EQK ∆中,()221332r r +-=,解得1439r =, ∴14143393CG =⨯= 易知DFMAGM ∆∆,可得1435DM = ③当Q 经过点D 时,如图3,此时点M 与点G 重合,且恰好在点A 处,可得43DM =综上所述,当DM=DM<P只有一个.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.27.(1)13-,13;(2)52530,,21111t=;(3)511(,)24【解析】【分析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN时,即5-t=t,②当BM=NM=5-t时,过点M作ME⊥OB,因为AO⊥BO,所以ME∥AO,可得:BM BEBA BO=即可解答;③当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=即可解答;(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设出点P坐标,易证△BGO∽△BPD,所以BO GOBD PD=,即可解答.【详解】解:解:(1)∵抛物线过点B (-3 ,0) 和C (4 ,0),∴9340 16440a ba b-+⎧⎨++⎩==,解得:1313ab⎧=-⎪⎪⎨⎪=⎪⎩;(2)∵B (-3 ,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒时,AM=t,BN=t,BM=AB-AM=5-t,①如图:当BM=BN时,即5-t=t,解得:t=5 2 ;,②如图,当BM=NM=5-t时,过点M作ME⊥OB,因为BN=t,由三线合一得:BE=12BN=12t,又因为AO⊥BO,所以ME∥AO,所以BM BEBA BO=,即15-253tt=,解得:t=3011;③如图:当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=,即5t253t-=,解得:t=2511.(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设P(m ,-13m 2+13m+4),因为GO ∥PD ,∴△BGO ∽△BPD ,∴BO GO BD PD = ,即2332113+433m m m =-++ ,解得:m 1=52,m 2=-3(点P 在第一象限,所以不符合题意,舍去),m 1=52时,-13m 2+13m+4=114 故点P 的坐标为511(,)24【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.28.(1)见解析;(2)19180,sin 22MON MPN S αα∠=︒-=△;(3)433OP =,P 点坐标为46633⎛ ⎝⎭或26633⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】(1)由角平分线求出∠MOP =∠NOP =12∠AOB =30°,再证出∠OMP =∠OPN ,证明△MOP ∽△PON ,即可得出结论;(2)由∠MPN 是∠AOB 的“相关角”,判断出△MOP ∽△PON ,得出∠OMP =∠OPN ,即可得出∠MPN =180°﹣12α;过点M 作MH ⊥OB 于H ,由三角形的面积公式得出:S △MON =12ON •MH ,即可得出结论; (3)设点C (a ,b ),则ab =3,过点C 作CH ⊥OA 于H ;分两种情况:①当点B 在y 轴正半轴上时;当点A 在x 轴的负半轴上时,BC =3CA 不可能;当点A 在x 轴的正半轴上时;先求出14CA AB =,由平行线得出△ACH ∽△ABO ,得出比例式:14CH AH AC OB OA AB ===,得出OB ,OA ,求出OA •OB ,根据∠APB 是∠AOB 的“相关角”,得出OP ,即可得出点P 的坐标;②当点B 在y 轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=12∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴OM OP OP ON=,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴OM OP OP ON=,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=12α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣12α,即∠MPN=180°﹣12α;过点M作MH⊥OB于H,如图2,则S△MON=12ON•MH=12ON•OM sinα=12OP2•sinα,∵OP=3,∴S△MON=92sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴14 CAAB=,∵CH//OB,∴△ACH∽△ABO,∴14 CH AH ACOB OA AB===,∴14 b OA aOB OA-==,∴OB=4b,OA=43 a,∴OA•OB=43a•4b=163ab=643,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴64833OP OA OB=⋅==,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:4646,⎛⎫⎪ ⎪⎝⎭;②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴12 CAAB=,∵CH//OB,∴△ACH∽△ABO,∴12 CH AH ACOB OA AB===,∴12 b a OA OB OA-==∴OB=2b,OA=23 a,∴OA•OB=23a•2b=43ab=163,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴16433OP OA OB⋅=∵∠AOB=90°,OP平分∠AOB,∴点P 的坐标为:⎝⎭;综上所述:点P 的坐标为:,33⎛⎫ ⎪ ⎪⎝⎭或,33⎛- ⎝⎭. 【点睛】本题考查反比例函数与几何综合,掌握数形结合和分类讨论的思想是解题的关键.29.(1)2)14【解析】【分析】(1)由菱形的四边相等知方程有两个相等的实数根,据此利用根的判别式求解可得,注意验根;(2)由AB=3知方程的一个解为3,代入方程求出m 的值,从而还原方程,再利用根与系数的关系得出AB+AD 的值,从而得出答案.【详解】解:(1)若四边形ABCD 是菱形,则AB=AD,所以方程有两个相等的实数根,则△=(-m )2-4×1×12=0,解得m=±检验:当m=,x=符合题意;当m=,x=-,不符合题意,故舍去.综上所述,当m 为,四边形ABCD 是菱形.(2)∵AB=3,∴9-3m+12=0,解得m=7,∴方程为x 2-7x+12=0,则AB+AD=7,∴平行四边形ABCD 的周长为2(AB+AD )=14.【点睛】本题主要考查根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系,菱形和平行四边形的性质.30.4m【解析】【分析】首先根据DO=OE=1m ,可得∠DEB=45°,然后证明AB=BE ,再证明△ABF ∽△COF ,可得AB CO BF OF=,然后代入数值可得方程,解出方程即可得到答案. 【详解】解:延长OD ,∵DO ⊥BF ,∴∠DOE=90°,∵OD=1m ,OE=1m ,∴∠DEB=45°,∵AB ⊥BF ,∴∠BAE=45°,∴AB=BE ,设AB=EB=x m ,∵AB ⊥BF ,CO ⊥BF ,∴AB ∥CO ,∴△ABF ∽△COF , ∴AB CO BF OF=, 1.51(51)5x x +∴=+-, 解得:x=4.经检验:x=4是原方程的解.答:围墙AB 的高度是4m .【点睛】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE ,根据相似三角形的判定方法证明△ABF ∽△COF .31.(1)A(-4,0)、B (0,-2);(2)213y x-222x =+;(3)①(-1,3)或(-3,-2);②(-2,-3).【解析】【分析】 (1)在122y x =--中由0y =求出对应的x 的值,由x=0求出对应的y 的值即可求得点A 、B 的坐标; (2)把(1)中所求点A 、B 的坐标代入212y x bx c =++中列出方程组,解方程组即可求得b 、c 的值,从而可得二次函数的解析式; (3)①如图,过点D 作x 轴的垂线交AB 于点F ,连接OD 交AB 于点E ,由此易得。

山东省威海市乳山市九年级数学上学期12月月考试卷(含解析) 新人教版五四学制-新人教版初中九年级全册

山东省威海市乳山市九年级数学上学期12月月考试卷(含解析) 新人教版五四学制-新人教版初中九年级全册

2016-2017学年某某省威海市乳山市九年级(上)月考数学试卷(12月份)一.选择题:(每题3分)1.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上2.有一已知点P到圆上各点的最大距离为5,最小距离为1,则圆的半径为()A.2或3 B.3 C.4 D.2 或43.如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是()A.110°B.70° C.55° D.125°4.在⊙O中,弦AB垂直且平分一条半径,则劣弧的度数等于()A.30° B.120°C.150°D.60°5.直线l上有一点到圆心O的距离等于⊙O的半径,则直线l与⊙O的位置关系是()A.相离 B.相切 C.相切或相交D.相交6.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)7.在平面直角坐标系中,⊙P的半径是2,点P(0,m)在y轴上移动,当⊙P与x轴相交时,m的取值X围是()A.m<2 B.m>2 C.m>2或m<﹣2 D.﹣2<m<28.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是()A.2cm B.4cm C.6cm D.8cm9.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切10.如图,AB是⊙O的直径,AC是弦.OD⊥AC于D,OC与BD交于E,若BD=6,则DE等于()A.1 B.2 C.3 D.411.如图,PA切⊙O于点A,PB切⊙O于点B,CD切⊙O于E,若∠APB=50°,则∠COD的度数是()A.50° B.40° C.25° D.65°12.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.二.填空题:(每题3分)13.6cm长的一条弦所对的圆周角为90°,则此圆的直径为cm.14.已知圆中,弦长等于半径,则此弦所对的圆周角是.15.如图,⊙O中,弦AB⊥弦CD于E,OF⊥AB于F,OG⊥CD于G,若AE=8cm,EB=4cm,则OG=cm.16.如图,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10CM,小圆半径为6CM,则弦AB的长为CM.17.如图,A是以EF为直径的半圆上的一点,作AG⊥EF交EF于G,又B为AG上一点,EB 的延长线交半圆于点K,若EB=2,EK=6,则AE=.18.已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是.三.解答题:19.△ABC 中,∠C=90°,点O为AB上一点,以O为圆心的半圆切AC于E,交AB于D,AC=12,BC=9,求AD的长.20.如图,AC⊥BC于点C,BC=3,CA=4,⊙O与直线AB,BC,CA都相切,求⊙O的半径.21.如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线l过点A (﹣1,0),与⊙C相切于点D,求直线l的解析式.22.△ABC中,AB=AC,以AC为直径作⊙O交BC于D,过D作⊙O的切线DE交AB于E,求证:(1)DE⊥AB(2)CD2=EB•AB.23.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC 平分∠PAE,过C作CD丄PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.24.如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的⊙O交AC于点E,F是⊙O上的点,且AF=BF.(1)求证:BC是⊙O的切线;(2)若sinC=,AE=,求sinF的值和AF的长.25.如图,在直角坐标系中直线AB分别交x轴,y轴与A(﹣6,0)、B(0,﹣8)两点,现有一半径为1的动圆,圆心由A点,沿着AB方向以每秒1个单位的速度做平移运动,则经过几秒后动圆与坐标轴相切.2016-2017学年某某省威海市乳山市九年级(上)月考数学试卷(12月份)(五四学制)参考答案与试题解析一.选择题:(每题3分)1.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上【考点】点与圆的位置关系.【分析】根据点与圆的位置关系进行判断.【解答】解:∵d≥R,∴点P在⊙O上或点P在⊙O外.故选D.2.有一已知点P到圆上各点的最大距离为5,最小距离为1,则圆的半径为()A.2或3 B.3 C.4 D.2 或4【考点】点与圆的位置关系.【分析】分类讨论:当点P在圆内,则圆的直径=5+1=6;当点P在圆外,则圆的直径=5﹣1=4,然后分别计算半径的长.【解答】解:当点P在圆内,则圆的直径=5+1=6,所以圆的半径=3;当点P在圆外,则圆的直径=5﹣1=4,所以圆的半径=2.故选A.3.如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是()A.110°B.70° C.55° D.125°【考点】圆内接四边形的性质;圆周角定理.【分析】首先通过同弧所对的圆心角与圆周角的关系求出角A,再利用圆内接四边形的对角互补,可以求出∠BDC.【解答】解:∵∠BOC=110°∴∠A=∠BOC=×110°=55°又∵ABDC是圆内接四边形∴∠A+∠D=180°∴∠D=180°﹣55°=125°故选D.4.在⊙O中,弦AB垂直且平分一条半径,则劣弧的度数等于()A.30° B.120°C.150°D.60°【考点】垂径定理;含30度角的直角三角形.【分析】根据题意画出图形,连接OA,OB,由弦AB垂直且平分OD可知,AB=2AE,再由直角三角形的性质得出∠OAE的度数,进而可得出结论.【解答】解:如图所示:连接OA,OB,∵AB垂直且平分OD,∴AB=2AE,OA=2EO,∴∠OAE=30°,∴∠AOE=60°,同理,∠BOE=60°,∴∠AOB=∠AOE+∠BOE=120°.故选B.5.直线l上有一点到圆心O的距离等于⊙O的半径,则直线l与⊙O的位置关系是()A.相离 B.相切 C.相切或相交D.相交【考点】直线与圆的位置关系.【分析】直线l上有一点到圆心O的距离等于⊙O的半径,即圆经过圆上一点,根据相交、相切的定义判断.【解答】解:直线l上有一点到圆心O的距离等于⊙O的半径,即圆经过圆上一点,则圆和直线相交或相切.故选C.6.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理.【分析】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可.【解答】解:连接AC,作AC,AB的垂直平分线,交格点于点O′,则点O′就是所在圆的圆心,∴三点组成的圆的圆心为:O′(2,0),∵只有∠O′BD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.7.在平面直角坐标系中,⊙P的半径是2,点P(0,m)在y轴上移动,当⊙P与x轴相交时,m的取值X围是()A.m<2 B.m>2 C.m>2或m<﹣2 D.﹣2<m<2【考点】直线与圆的位置关系;坐标与图形性质.【分析】当圆心P到x轴的距离小于2时,⊙P与x轴相交时,可得到|m|<2,由此不难解决问题.【解答】解:当圆心P到x轴的距离小于2时,⊙P与x轴相交时,∴OP<2,∴|m|<2,∴﹣2<m<2,故选D.8.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是()A.2cm B.4cm C.6cm D.8cm【考点】圆周角定理;相似三角形的判定与性质.【分析】连接CE,根据同圆中同弧所对的圆周角相等,可知∠AEC=∠ABC,由于AE是直径、AD⊥BC可知∠ACE=∠ADB=90°,利用相似三角形的判定可证△ABD∽△AEC,再利用相似三角形的性质可得比例线段,利用比例线段可求AE.【解答】解:作直径AE,∵AE是直径,AD⊥BC,∴∠ADB=∠ACE=90°,又∵∠AEC=∠ABC,∴△ABD∽△AEC,∴AC:AE=AD:AB,∵AD=2cm,AB=4cm,AC=3cm,∴3:AE=2:4,解得AE=6cm.故选C.9.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【考点】直线与圆的位置关系;坐标与图形性质.【分析】本题应将该点的横纵坐标分别与半径对比,大于半径的相离,等于半径的相切.【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选A.10.如图,AB是⊙O的直径,AC是弦.OD⊥AC于D,OC与BD交于E,若BD=6,则DE等于()A.1 B.2 C.3 D.4【考点】圆周角定理;垂径定理;相似三角形的判定与性质.【分析】根据相似三角形的判定和性质进行解答.【解答】解:连接CB,如图:∵AC是弦,OD⊥AC于D,∴AD=DC,∵OA=OB,∴OD=BC,OD∥BC,∴△DEO∽△BCE,∴,∵BD=6,∴DE=2.故选B11.如图,PA切⊙O于点A,PB切⊙O于点B,CD切⊙O于E,若∠APB=50°,则∠COD的度数是()A.50° B.40° C.25° D.65°【考点】切线的性质.【分析】连接OA,OB,OE,根据切线长定理,得∠AOC=∠COE,∠BOD=∠DOE,从而得∠COD=∠AOB,再由∠APB=50°,求得∠COD.【解答】解:如图,连接OA,OB,OE,∵PA、PB、CD分别切⊙O于A、B、E,∴∠AOC=∠EOC,同理∠BOD=∠DOE,∴∠COD=∠COE+∠DOE=∠AOB,∵∠APB=50°,∴∠AOB=130°,∴∠COD=65°.故选D.12.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】根据圆周角定理得出∠B=∠CDO,得出∠OBC的余弦值为∠CDO的余弦值,再根据CD=10,CO=5,得出DO=5,进而得出答案.【解答】解:连接CA并延长到圆上一点D,∵CD为直径,∴∠COD=∠yOx=90°,∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5,∴DO=5,∵∠B=∠CDO,∴∠OBC的余弦值为∠CDO的余弦值,∴cos∠OBC=cos∠CDO==.故选C.二.填空题:(每题3分)13.6cm长的一条弦所对的圆周角为90°,则此圆的直径为 6 cm.【考点】圆周角定理.【分析】本题利用了直径对的圆周角是直角求解,6cm长的一条弦所对的圆周角为90°,则此弦是直径,即直径为6cm.【解答】解:∵6cm长的一条弦所对的圆周角为90°,∴此弦是直径,∴直径为6cm.14.已知圆中,弦长等于半径,则此弦所对的圆周角是30°或150°.【考点】圆周角定理.【分析】根据题意画出相应的图形,如图所示,由半径等于弦长,得到三角形AOB为等边三角形,利用等边三角形的性质得到∠AOB为60°,利用同弧所对的圆心角等于所对圆周角的2倍求出∠ACB的度数,再利用圆内接四边形的对角1互补求出∠ADB的度数,即可得出弦AB所对圆周角的度数.【解答】解:根据题意画出相应的图形,如图所示,∵OA=OB=AB,∴△AOB为等边三角形,∴∠AOB=60°,∵∠AOB与∠ACB都对,∴∠ACB=∠AOB=30°,又四边形ACBD为圆O的内接四边形,∴∠ACB+∠ADB=180°,∴∠ADB=150°,则弦AB所对的圆周角为30°或150°.故答案为:30°或150°.15.如图,⊙O中,弦AB⊥弦CD于E,OF⊥AB于F,OG⊥CD于G,若AE=8cm,EB=4cm,则OG= 2 cm.【考点】垂径定理.【分析】根据垂径定理求解.【解答】解:∵AB⊥CD,OF⊥AB,OG⊥CD,∴AF=FB=AB=6,∴OG=EF=BF﹣BE=6﹣4=2(cm).16.如图,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10CM,小圆半径为6CM,则弦AB的长为16 CM.【考点】切线的性质;垂径定理.【分析】连接OA、OC根据切线的性质可知△OAC是直角三角形,OC垂直平分AB,根据勾股定理及垂径定理即可解答.【解答】解:连接OA、OC,∵AB是小圆的切线,∴OC⊥AB,∵OA=10cm,OC=6cm,∴AC==8cm,∵AB是大圆的弦,OC过圆心,OC⊥AB,∴AB=2AC=2×8=16cm.故答案为:16.17.如图,A是以EF为直径的半圆上的一点,作AG⊥EF交EF于G,又B为AG上一点,EB 的延长线交半圆于点K,若EB=2,EK=6,则AE= 2.【考点】相似三角形的判定与性质;圆周角定理.【分析】连接AF、KF,由圆周角定理推论可得∠EAF=∠EKF=90°,根据AG⊥EF可证△BEG ∽△FEK得=,即BE•EK=EF•EG,再证△AEG∽△FEA得=,从而知AE2=FE•EG=12,即可得答案.【解答】解:如图,连接AF、KF,∵EF是直径,∴∠EAF=∠EKF=90°又AG⊥EF交EF于G,∴∠BGE=∠EKF=90°,∴△BEG∽△FEK,则=,∴BE•EK=EF•EG;又AG⊥EF交EF于G,∠EAF=90°∴△AEG∽△FEA,则=即AE2=FE•EG∴AE2=EB•EK=2×6=12,则AE=2,故答案为:2.18.已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是15°或75°.【考点】垂径定理;勾股定理.【分析】根据垂径定理和勾股定理可得.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,根据垂径定理得AE=AC=,AD=AB=,∴sin∠AOE===,sin∠AOD==,根据特殊角的三角函数值可得∠AOE=60°,∠AOD=45°,∴∠BAO=45°,∠CAO=90°﹣60°=30°,∴∠BAC=45°+30°=75°,或∠BAC′=45°﹣30°=15°.故答案为:15°或75°.三.解答题:19.△ABC 中,∠C=90°,点O为AB上一点,以O为圆心的半圆切AC于E,交AB于D,AC=12,BC=9,求AD的长.【考点】切线的性质.【分析】连接OE,根据勾股定理得到AB=15,根据切线的性质得到OE⊥AC,根据平行线分线段成比例定理即可得到结论.【解答】解:连接OE,∵∠C=90°,AC=12,BC=9,∴AB=15,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴,∵OE=OD=OB,∴=,∴OE=,∴AD=15﹣2×=.20.如图,AC⊥BC于点C,BC=3,CA=4,⊙O与直线AB,BC,CA都相切,求⊙O的半径.【考点】切线的性质.【分析】设AC、BA、BC与⊙O的切点分别为D、F、E;由勾股定理可得:BF=BE,AF=AD,CD=CE;可用DC分别表示出BE、BF的长,根据BF=BE,得出CD的表达式;连接OD、OE;易证得四边形ODCE是正方形,即OE=OD=CD,由此可求出⊙O的半径.【解答】解:设AC、BA、BC与⊙O的切点分别为D、F、E;连接OD、OE;∵AC、BE是⊙O的切线,∴∠ODC=∠OEC=∠DCE=90°;∴四边形ODCE是矩形;∵OD=OE,∴矩形ODCE是正方形;即OE=OD=CD;设CD=CE=x,则AD=AF=4﹣x;连接OB,OF,由勾股定理得:BF2=OB2﹣OF2,BE2=OB2﹣OE2,∵OB=OB,OF=OE,∴BF=BE,∵AC⊥BC于点C,BC=3,CA=4,∴AB=5,则BA+AF=BC+CE,5+4﹣x=3+x,即2x=6,解得:x=3,即⊙O的半径为3.21.如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线l过点A (﹣1,0),与⊙C相切于点D,求直线l的解析式.【考点】一次函数综合题;待定系数法求一次函数解析式;切线的性质.【分析】连接CD,由于直线l为⊙C的切线,故CD⊥AD.C点坐标为(1,0),故OC=1,即⊙C的半径为1,由点A的坐标为(﹣1,0),可求出∠CAD=30度.作DE⊥AC于E点,则∠CDE=∠CAD=30°,可求出CE=,点B的坐标为(0,).设直线l的函数解析式为y=kx+b,把A,B两点的坐标代入即可求出未知数的值从而求出其解析式.【解答】解:如图所示,当直线l在x轴的上方时,连接CD,∵直线l为⊙C的切线,∴CD⊥AD.∵C点坐标为(1,0),∴OC=1,即⊙C的半径为1,∴CD=OC=1.又∵点A的坐标为(﹣1,0),∴AC=2,∴∠CAD=30度.在Rt△AOB中,OB=OA•tan30°=,即B(0,),设直线l解析式为:y=kx+b(k≠0),则,解得k=,b=,∴直线l的函数解析式为y=x+.故直线l的函数解析式为y=x+.22.△ABC中,AB=AC,以AC为直径作⊙O交BC于D,过D作⊙O的切线DE交AB于E,求证:(1)DE⊥AB(2)CD2=EB•AB.【考点】相似三角形的判定与性质;等腰三角形的性质;切线的性质.【分析】(1)连接OD.由等腰三角形的性质得出∴∠B=∠ODC,求出OD∥AB,再由切线的性质得出DE⊥AB,即可得出结论;(2)连接AD,由等腰三角形的性质得出BD=CD,证明△BDE∽△BAD,得出对应边成比例,即可得出结论.【解答】证明:(1)连接OD,如图1所示:∵AB=AC,OD=OC,∴∠B=∠C,∠ODC=∠C,∴∠B=∠ODC,∴OD∥AB,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AB;(2)连接AD,如图2所示:∵AC为⊙O的直径,∴∠ADB=∠ADC=90°,∴AD⊥BC,∵AB=AC,∴BD=CD,∵DE⊥AB,∴∠DEB=90°=∠ADB,又∵∠B=∠B,∴△BDE∽△BAD,∴BD:AB=EB:BD,∴BD2=EB•AB,∴CD2=EB•AB.23.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC 平分∠PAE,过C作CD丄PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【考点】切线的判定与性质;勾股定理;矩形的判定与性质;垂径定理.【分析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt △AOF中,由勾股定理得(5﹣x)2+(6﹣x)2=25,从而求得x的值,由勾股定理得出AB的长.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.24.如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的⊙O交AC于点E,F是⊙O上的点,且AF=BF.(1)求证:BC是⊙O的切线;(2)若sinC=,AE=,求sinF的值和AF的长.【考点】切线的判定与性质;圆周角定理;解直角三角形.【分析】(1)欲证BC是⊙O的切线,只需证明∠ABC=90°即可;(2)如图,连接BE,BF,构建Rt△AEB和Rt△AFB.利用圆周角定理(同弧所对的圆周角相等)、等量代换以及切线的性质推知所求的∠F与已知∠C的数量关系sin∠AFE=sin∠ABE=sinC;然后利用锐角三角函数的定义可以求得sinF的值和AF的长.【解答】解:(1)证明:∵DA=DB(已知),∴∠DAB=∠DBA(等边对等角);又∵∠C=∠DBC(已知),∴∠DBA﹢∠DBC=(∠DAB+∠DBA+∠C+∠DBC)=×180°=90°(三角形内角和定理),即∠ABC=90°,∴AB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)如图,连接BE,BF.∵AB是⊙O的直径(已知),∴∠AEB=90°(直径所对的圆周角是直角),∴∠EBC+∠C=90°(直角三角形的两个锐角互余),∵∠ABC=90°(由(1)知),∴∠ABE+∠EBC=90°,∴∠C=∠ABE(等量代换);又∵∠AFE=∠ABE(同弧所对的圆周角相等),∴∠AFE=∠C(等量代换),∴sin∠AFE=sin∠ABE=sinC,∴sin∠AFE=,∴∠AFB=90°,在Rt△ABE中,AB==5∵AF=BF(已知),∴AF=BF=5.25.如图,在直角坐标系中直线AB分别交x轴,y轴与A(﹣6,0)、B(0,﹣8)两点,现有一半径为1的动圆,圆心由A点,沿着AB方向以每秒1个单位的速度做平移运动,则经过几秒后动圆与坐标轴相切.【考点】直线与圆的位置关系;坐标与图形变化﹣平移.【分析】在直角三角形OAB中,OA=6,OB=8,由勾股定理得AB=10,设⊙经过t秒后与坐标轴相切,(1)当⊙经过t秒后到达P点与x轴相切,过P点作x轴的垂线,垂足为D,则PD=1,由△APD∽△ABO中的成比例线段求解;(2)当⊙经过t秒后到达K点与y轴相切,过k点作y轴的垂线,垂足为E,则KE=1,AQ=10﹣t;由△KEB∽△ABO中的成比例线段求解;(3)当⊙经过t秒后到达Q点与y轴相切,过q点作y轴的垂线,垂足为c,则QC=1,AK=t ﹣10,由△QBC∽△ABO中的成比例线段求解;【解答】解:∵A(﹣6,0)、B(0,﹣8)∴OA=6,OB=8,∴AB=10,(1)当⊙经过t秒后到达P点与x轴相切,过P点作x轴的垂线,垂足为D,则PD=1;由△APD∽△ABO得,=,即=,解得t=;(2)当⊙经过t秒后到达K点与y轴相切,过k点作y轴的垂线,垂足为E,则KE=1;AQ=10﹣t;由△KEB∽△ABO得,=,即=,解得t=.(3)当⊙经过t秒后到达Q点与y轴相切,过q点作y轴的垂线,垂足为c,则QC=1;AK=t﹣10,由△QBC∽△ABO得,=,即=,解得t=,综上所述,t=s或s或s时,动圆与坐标轴相切.。

9年级数学2016-2017上期末答案及建议

9年级数学2016-2017上期末答案及建议

2016-2017学年度上期期末检测九年级数学参考答案及评分建议A 卷(100分)一、选择题(本大题共十小题,每小题3分,共30分) 1-5 A B A C D 6-10 C B C D B二、填空题(本大题共四小题,每小题4分,共16分)11.2312.14m 13. 14. 6 三、解答题(本大题共六小题,共54分) 15.(本小题满分12分,每题6分)解:(1)原式12222=-⨯(4分) (2)254611∆=-⨯⨯= (2分)1= (2分) ∴ (5)26x --=⨯ (2分)∴ 112x =,213x = (2分) 16.(本小题满分6分)解:在Rt BCD V 中,45BCD ∠=︒, ∴ DC BC = (2分)在Rt ACD V 中,50ADC ∠=︒ ∴tan 50ACDC=︒ 即 1.2AC DC = (2分) 由题意知: 1.25AB AC BC BC BC m =-=-=,∴25BC m = (1分)∴建筑物BC 的高度为25m . (1分)18.(本小题满分8分)解:三张扑克牌可以分别简记为红2、红3、黑4,共有9种不同结果,如图所示.(4分)(1)∵两次抽得相同花色占5种情况,∴ 两次抽得相同花色的概率为59;(2分)(2)∵两次抽得的数字和是奇数占4种,∴两次抽得的数字和是奇数的概率为49.(2分) 19.(本小题满分10分)解:(1)∵ 抛物线2y x bx c =++过点A (-4,-3),对称轴是3x =- ∴ 1643321b c b -+=-⎧⎪⎨-=-⎪⎩⨯, (2分) ∴56c b =⎧⎨=⎩(1分) ∴ 抛物线的解析式为265y x x =++; (1分)(2)抛物线265y x x =++与x 轴的交点C (-5,0)、D(-1,0);(1分)与y 轴交点B (0,5)(1分)∴ 4CD =,5OB = ∴ △BCD 的面积1102CD OB =⨯⨯=; (1分)(3)连接BC 与对称轴交于点P ,此时△PBD 的周长最小(1分) 设对称轴与轴交于Q ,由平行得比例知255PQ =,2PQ =(1分) ∴ 所求点P 的坐标为(3-,2).(1分)20.(本小题满分10分)(1)证明: ∵矩形ABCD ∴AD ∥BC ,∴∠EAO=∠FCO ,∠AEO=∠CFO , 在△AOE 和△COF 中, ∠EAO =∠FCO ,∠AEO =∠CFO ,AO =CO∴ △AOE ≌△COF (AAS ), (1分)∴ EO=FO , ∴ 四边形AFCE 是平行四边形, (1分) ∵ EF ⊥AC , ∴ 四边形AFCE 是菱形;(1分)(2) ∵∠AEP=∠AOE=90°,∠EAP=∠OAE , ∴ △AOE ∽△AEP ,(1分) ∴AO AE=AE AP,∴2AE AO AP =⋅,(1分)∵ AC=2AO ,∴22AE AC AP =⋅.(1分) (3)解:∵ EF ⊥AC ,AO=CO ,∴ AF=CF (1分) ∵ 矩形ABCD ,AB=6,AD=8 ∴ AC=10(1分) ∵ ∠OCF=∠BCA ∴ Rt OCF Rt BCA ∆∆:(1分) ∴CF OC CA CB = ∴ 5108CF = ∴254AF CF ==(1分) B 卷(50分)一、填空题(本大题共五小题,每小题4分,共20分) 21. 31x -<<- 22.(1,4) 23.4.5 24.132521 二、解答题(本大题共三小题,共30分) 26.(本小题满分8分)解:(1)设BC 的长为x 米,则AB 的长为1(26)2x -)米,依题意得:(1分)1(26)802x x -=,(1分) 化简,得2261600x x -+=,解得:110x =,216x =,(1分) 当16x =米时,BC 的长超过墙的长12米,应舍去.(1分)答:若矩形猪舍的面积为80平方米,与墙平行的一边BC 的长为10米.(1分) (2)依题意得:1(26)2012x x x ⎧≥-⎪⎨⎪<≤⎩,(2分) 解得26123x ≤≤,(1分) 答:若边BC 的长度不小于与边AB 的长度,则BC 边至少应为26米.(1分) 27.(本小题满分10分)(1)证明:由题意知点C 与点N 重合,Rt △ABC 中,AD=BD ∴DC=DA=DB (1分)∵ α=30°,90EDF ∠=︒ ∴ ∠A=∠ADM=30°,∴MA=MD , ∵ MG ⊥AD ,∴ AG=12DC ,(1分) 同理,DH=12DB , ∴AG=DH ;(1分)(2)解:当0°<α<90°时,(1)中的结论成立.如图③,∵∠MDG=α, ∴ ∠DMG=90°-α=∠NDH ,∴ Rt △MGD ∽Rt △DHN ,∴DH NHMG DG=① (1分) 同理Rt △AGM ∽Rt △NHB ,∴AG MGNH BH=②(1分) 由①×②,得DG BH AG DH =,∴DG AG BH DHAG DH++=, 即AD BD AG DH=,(1分)∵AD=DB ,∴AG=DH ;(1分) (3)在Rt △DEF 绕点D 顺时针方向旋转过程中,DMDN值没有改变,(1分 ) ∵ Rt △MGD ∽Rt △DHN ,∴ DM MG DN DH =,∵AG=DH , ∴DM MGDN AG=(1分) 当α=30°时,MGAG=tan ∠A=tan30°=33 ∴33DM MG DN AG ==.(1分) 28.(本小题满分12分)解:(1)∵ 抛物线23y ax bx =+-与y 轴交于点C ∴ C (0,-3),∴ OC=3,(1分) ∵ BO=OC=3AO , ∴ BO=3,AO=1, ∴ B (3,0),A (-1,0),(1分) ∵ 该抛物线与x 轴交于A 、B 两点,∴ 933030a b a b +-=⎧⎨--=⎩,∴12a b =⎧⎨=-⎩,(1分) ∴ 抛物线解析式为223y x x =--,(1分)(2)由(1)知,抛物线解析式为2223(1)4y x x x =--=--,∴ E (1,-4), (1分) ∵ B (3,0),A (-1,0),C (0,-3),∴ BC=32,BE=25,CE=2, (1分)∵ 直线113y x =-+与y 轴交于点D , ∴ D (0,1), ∵ B (3,0),∴ OD=1,OB=3,BD=10, (1分) ∴2CE BC BEOD OB BD===, ∴ △BCE ∽△BDO ,(1分) (3)∵ BC 所在直线过点B (3,0)、C (0,-3) ∴ 直线BC 为3y x =- (1分) ∴ 当直线y x b =+与抛物线223y x x =--有唯一交点P 时,△PBC 的最大面积(1分) 把y x b =+代入223y x x =--得2330x x b ---=,由94(3)0b ∆=++=, ∴1232x x ==∴点P (32,154-)(1分) ∴ △PBC 的最大面积1315133115327()32442422428=⨯+⨯-⨯⨯-⨯⨯=.(1分)。

2016-2017年九年级上学期期末数学试卷及答案

2016-2017年九年级上学期期末数学试卷及答案

C O 图4DB A 2016-2017年九年级上学期期末数学试卷一、选择题(每小题4分,共40分)1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( B )A .B .C .D .2.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( B )A .6 B .16 C .18 D .243.已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( C )A .43-B .83C .83-D .434.已知二次函数y =-(x +k )2+h ,当x >-2时,y 随x 的增大而减小,则函数中k 的取值范围是( C )A .k ≥-2 B .k ≤-2 C .k ≥2 D .k ≤2 5.在△ABC 中,∠A =90°,AB =3cm ,AC =4cm ,若以A 为圆心3cm 为半径作⊙O ,则BC 与⊙O 的位置关系是( A )A .相交 B .相离 C .相切 D .不能确定 6.如图C 、D 是以线段AB 为直径的⊙O 上两点,若CA CD =,且40ACD ∠=, 则CAB ∠=( B ) A.10B.20C.30D.407.如图在△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为 ( A ) A .10 B .2 2 C .3 D .2 58.如图AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为 的中点,P 是直径AB 上一动点,则PC+PD 的最小值为( B )A .22B.2C.1D.29.如图⊙O 是以原点为圆心,2为半径的圆,点P 是直线 y =-x +6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( B )A .3B .4C .6-D .3-110.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为x =1,给出下列结论:①abc >0;②当x >2时,y >0;③3a +c >0;④3a+b >0.其中正确的结论有( C ) A .①② B .①④ C .①③④ D .②③④ 二、填空题(每小题4分,共40分)11.已知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2m 2﹣4m= 6 .12.若关于x 的二次函数221y kx x =+-与x 轴仅有一个公共点,则实数k 的值为1k =-. 13.如图,⊙O 的直径CD 与弦AB 垂直相交于点E ,且BC =1,AD =2,则⊙O 的直径长为5 .14.如图,AB 为⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是____32__________。

2016-2017学年第一学期九年级数学期末试题及答案

2016-2017学年第一学期九年级数学期末试题及答案

2016-2017学年第一学期期末测试九年级数学试卷(时间120分钟,满分120分)一、 选择题(本大题共10小题,每小题3分,共30分,请将答案填涂在答题卡上) 1、-5的倒数是( )A 、B 、C 、-5D 、52、a 2•a 3等于( )A 、3a 2B 、a 5C 、a 6D 、a 83、下列事件为必然事件的是( )A 、打开电视机,它正在播广告B 、抛掷一枚硬币,一定正面朝上C 、投掷一枚普通的正方体骰子,掷得的点数小于7D 、某彩票的中奖机会是1%,买1张一定不会中奖4、下面如图是一个圆柱体,则它的主视图是( )A B C D5.下列命题中,假命题是( ) A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x 2=y 2,则x=y6.若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是A .76<<mB .76<≤mC .76≤≤mD .76≤<m7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A .3 B .4 C .5 D .6ABCDFE8.如图是一块△ABC 余料,已知AB=20cm ,BC=7cm ,A C=15cm ,现将余料裁剪成一个圆形材料,则该圆的最大面积是( )A . πcm 2B . 2πcm 2C . 4πcm 2D . 8πcm 29.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边A C (或边CB )于点Q .设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .10. 如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有A .1个B .2个C .3个D .4个A BCDEFG二、填空题(本大题共8小题,11--14每小题3分,15--18每小题4分,共28分,请将答案填在后面的表格里)11.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为_ 12. 因式分解:22a b ab b ++= .13.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 .14.现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 .15.如图,已知正方形ABCD 的边长是8,M 在DC 上,且DM=2,N 是AC 边上的一动点,则DN+NM 的最小值是_______.16. 如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .17.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为xyABO1S2S16题图18.如图,点M 是反比例函数y=在第一象限内图象上的点,作MB⊥x 轴于B .过点M 的第一条直线交y 轴于点A 1,交反比例函数图象于点C 1,且A 1C 1=A 1M ,△A 1C 1B 的面积记为S 1;过点M 的第二条直线交y 轴于点A 2,交反比例函数图象于点C 2,且A 2C 2=A 2M ,△A 2C 2B 的面积记为S 2;过点M 的第三条直线交y 轴于点A 3,交反比例函数图象于点C 3,且A 3C 3=A 3M ,△A 3C 3B 的面积记为S 3;以此类推…;则S 1+S 2+S 3+…+S 8= _________ .11 12 13 1415 16 17 18三.解答题:本大题共7小题,总分62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1) 计算:1021()(52)18(2)23---+--⋅(2) 先化简再计算:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.20. (本题满分8分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a和b所表示的数分别为:a=___________,b=_______________;(2)请在图中补全额数分布直方图;(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?21.(本题满分8分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.22. (本题满分8分)周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)23. (本题满分9分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.24.(本题满分10分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P 是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式,不需要说明理由.25.(本题满分12分)如图,抛物线经过(40)(10)(02),,,,,三点.A B C-(1)求出抛物线的解析式;⊥轴,垂足为M,是否存在P点,使得以A,P,M为(2)P是抛物线上一动点,过P作PM x△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;顶点的三角形与OAC△的面积最大,求出点D的坐标.(3)在直线AC上方的抛物线上有一点D,使得DCAO xy AB C 4 12-(第25题图) O xyAB C4 12-(备用)数学答案1—10题:ABCAD,DDCDD 11---18题:9.63×10-5b(a+1)27/8, 18. 10 4 3 255/51219题:2-221xx 1 20题:解:(1)a=40,b=0.09;(2)如图:;(3)(0.12+0.09+0.08)×24000 =0.29×24000=6960(人)答:该市24000名九年级考生数学成绩为优秀的学生约有6960名。

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案2016-2017学年度上学期期末考试九年级数学试题 2017.01注意事项:1.答题前,请先将⾃⼰的姓名、考场、考号在卷⾸的相应位置填写清楚;2.选择题答案涂在答题卡上,⾮选择题⽤蓝⾊、⿊⾊钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)⼀、选择题(本⼤题共14⼩题,每⼩题3分,共42分)在每⼩题所给出的四个选项中,只有⼀项是符合题⽬要求的. 1.⽅程x x 22=的根是 A .2 B .0C .2或0D .⽆解 2.若反⽐例函数的图象过点(2,1),则这个函数的图象⼀定过点A .(-2,-1)B .(1,-2)C .(-2,1)D .(2,-1)3. 如图,点A 为α∠边上任意⼀点,作BC AC ⊥于点C ,AB CD ⊥于点D ,下列⽤线段⽐表⽰αsin 的值,错误..的是 A. BCCDB.AB AC C.AC AD D. ACCD4. 如图,AD ∥BE ∥CF ,直线a ,b 与这三条平⾏线分别交于点A ,B ,C 和点D ,E ,F ,若AB=2,AC =6,DE =1.5,则DF 的长为 A .7.5B .6C .4.5D .35.如图,四边形 A BCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是 A .88°B .92°C .106°D .136°6. 在Rt △ABC 中,∠C =90°,34tan =A ,若AC =6cm ,则BC 的长度为 A .8cmB .7cmC .6cmD .5cm7. 已知⼆次函数)0()3(2≠-+=a b x a y 有最⼤值1,则该函数图象的顶点坐标为 A.)1,3(--B.)(1,3-C.)1,3(D.)1,3(-8. 从n 个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n 的值是 A .8B .6C .4D .2(第3题图)(第4题图)(第5题图)9. 已知反⽐例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分⽀分布在第⼆、四象限 C .y 随x 的增⼤⽽增⼤D .若x >1,则5-<y <010. 直⾓三⾓形纸⽚的两直⾓边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知⼀块圆⼼⾓为270°的扇形铁⽪,⽤它作⼀个圆锥形的烟囱帽(接缝忽略不计),圆锥底⾯圆的直径是60cm ,则这块扇形铁⽪的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan ∠BDE 的值是 A .34B .43C .21D .1:213.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所⽰,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD ,某同学根据图象写出下列结论:①0=-b a ;②当x <21-时,y 随x 增⼤⽽增⼤;③四边形ACBD 是菱形;④c b a +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④(第13题图)(第14题图)第II 卷⾮选择题(共78分)15.若两个相似三⾓形的⾯积⽐为1∶4,则这两个相似三⾓形的周长⽐是. 16. 若n(其中0≠n)是关于x 的⽅程022=++n mx x 的根,则m +n 的值为 . 17.如图,⼤圆半径为6,⼩圆半径为3,在如图所⽰的圆形区域中,随机撒⼀把⾖⼦,多次重复这个实验,若把“⾖⼦落在⼩圆区域A中”记作事件W ,请估计事件W 的概率 P (W )的值.19. 如图,在直⾓坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂⾜为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增⼤⽽增⼤,2y 随x 的增⼤⽽减⼩;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本⼤题共7⼩题,共63分) 20.(本题满分5分)计算:2cos30sin 45tan 601cos 60?+?--?.21.(本题满分8分)解⽅程:(1))1(212+=-x x ;(2)05422=--x x .22. (本题满分8分)如图,⼀楼房AB 后有⼀假⼭,⼭坡斜⾯CD 与⽔平⾯夹⾓为30°,坡⾯上点E 处有⼀亭⼦,测得假⼭坡脚C 与楼房⽔平距离BC =10⽶,与亭⼦距离CE =20⽶,⼩丽从楼房顶测得点E 的俯⾓为45°.求楼房AB 的⾼(结果保留根号).(第22题图)30°如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)如图,在平⾯直⾓坐标系中,⼀次函数的图象与反⽐例函数的图象交于第⼆、四象限内的A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,点B 的坐标是(m ,﹣4),连接AO ,AO =5,sin ∠AOC =35.(1)求反⽐例函数的解析式;(2)连接OB ,求△AOB 的⾯积.(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三⾓形,若存在请直接写出点M 坐标,若不存在请说明理由.(第25题图)26.(本题满分12分)如图1,将两个完全相同的三⾓形纸⽚ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________;②设△BDC 的⾯积为1S ,△AEC 的⾯积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所⽰的位置时,⼩明猜想(1)中S 1与S 2的数量关系仍然成⽴,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的⾼,请你证明⼩明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其⾓平分线上⼀点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BD E DCF S S ??=,请直接写出相应的BF 的长.A (D )B (E )C 图1 图2图42016-2017学年度上学期期末考试九年级数学参考答案 2017-1注意:解答题只给出⼀种解法,考⽣若有其他正确解法应参照本标准给分. ⼀、选择题(每⼩题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB ⼆、填空题(每⼩题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④三、解答题(本⼤题共7⼩题,共63分)20. 解:原式=21(1)()222÷-+2分 124分 =12……5分21. (8分)解:(1)将原⽅程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分∴x 1=﹣1,x 2=3;……………………………………………………….4分(2)∵2x 2﹣4x ﹣5=0,∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30°∴EF =10 …………2分 CF =3 EF =103(⽶) ………4分过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt △AHE 中,∠HAE =45°,∴AH =HE ,⼜∵BC =10⽶,∴HE =(10+103)⽶, ………6分∴AB =AH +BH =10+103+10=20+103(⽶) ………………………7分答:楼房AB 的⾼为(20+103)⽶.………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C ,∴∠OCD =90°. ………………………2分∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分由(1)得DC =DE =21(3+x ). ……………7分在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=??++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所⽰.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin ∠AOC =35,∴AE =AO ?sin ∠AOC =3,OE ,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反⽐例函数解析式为k y x =.∵点A (﹣4,3)在反⽐例函数ky x=的图象上,∴3=4k -,解得k =﹣12.∴反⽐例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反⽐例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代⼊y =ax +b 中,得34,43,a b a b =-+??-=+? 解得1,1.a b =-??=-? ∴⼀次函数解析式为y =﹣x ﹣1.…………8分令⼀次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC ?(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代⼊y =x 2+bx +c 中,得:=++=+-03901c b c b ,解得:-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3. (3)分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m ,1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,??=?=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的⾯积和△AEC 的⾯积相等(等底等⾼的三⾓形的⾯积相等),即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的⾼相等,此时 BDE D CF S S ??=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴?=∠6021F DF ,=∠=∠=∠30211ABC DBE DB F ,∴?=∠6021DF F ,∴21F DF ?是等边三⾓形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是⾓平分线上⼀点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS),∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是⾓平分线上⼀点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形,连接EF 1,则BD EF ⊥1,垂⾜为O ,在1BOF Rt ?中,BO =21BD =2,?=∠301BO F ,∴=30cos 1BF BO,∴33423230cos 1==?=BO BF ………………11分. 在Rt BD F 2中,=30cos 2BF BD ,∴33823430cos 2==?=BD BF ,故BF 的长为334或338.…………………12分。

山东省威海市九年级上册数学期末测试卷

山东省威海市九年级上册数学期末测试卷

山东省威海市九年级上册数学期末测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共30分)1. (3分)下面的等式中,y是x的反比例函数的是()A .B .C . y=5x+6D .2. (3分) (2020九上·合山月考) 一元二次方程y2+y- =0配方后可化为()A . (y+ )2=1B . (y- )2=1C . (y+ )2=D . (y- )2=3. (3分)次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m=()A . -1B . 3C . 1D . -1或34. (3分) (2017八下·马山期末) 小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A . 小明B . 小李C . 小明和小李D . 无法确定5. (3分)(2018·遵义模拟) 关于x的方程|x2﹣x|﹣a=0,给出下列四个结论:①存在实数a,使得方程恰有2个不同的实根;②存在实数a,使得方程恰有3个不同的实根;③存在实数a,使得方程恰有4个不同的实根;④存在实数a,使得方程恰有6个不同的实根;其中正确的结论个数是()A . 1B . 2C . 3D . 46. (3分)已知相似三角形△ABC和△A′B′C′的面积比为1:4,则它们的相似比为()A . 1:4B . 1:3C . 1:2D . 1:17. (3分) (2020九上·瑶海期末) 如图,在△ABC中,AB=18,BC=15,cosB=,DE∥AB ,EF⊥AB ,若=,则BE长为()A . 7.5B . 9C . 10D . 58. (3分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A 落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是()A . +1B . +1C . 2.5D .9. (3分) (2020八下·龙泉驿期末) 如图,Rt△ABC中,∠BAC=90°,点D , E分别是边AB , BC的中点,AD与CE交于点F ,则△DEF与△ACF的面积之比是()A . 1:2B . 1:3C . 2:3D . 1:410. (3分) (2017八下·简阳期中) 函数y= 与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .二、填空题 (共8题;共24分)11. (3分) (2015八下·扬州期中) 已知≠0,则的值为________.12. (3分) (2020九上·滨海新期中) 把方程化为一元二次方程的一般形式,其结果是________.13. (3分)(2016·深圳模拟) 如图,已知点A,C在反比例函数y= (a>0)的图像上,点B,D在反比例函数y= (b<0)的图像上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a ﹣b的值是________.14. (3分) (2017九上·渭滨期末) 已知关于x的方程的一个根是1,则m=________.15. (3分) (2019九上·获嘉月考) 要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x 支球队参赛,根据题意列出的方程是________.16. (3分) (2020八上·南京月考) 如图,在中,,,的平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点恰好重合,则为________17. (3分) (2019八下·长春期末) 如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了________米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)18. (3分)如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=________ .三、计算题 (共1题;共8分)19. (8分) (2020九上·鞍山期末) 用适当的方法解下列一元二次方程(1) x2+2x=3;(2) 2x2﹣6x+3=0.四、作图题 (共1题;共6分)20. (6分)正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)试作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1________;点B1的坐标为________;(2)作△ABC关于原点O成中心对称的△A2B2C2________;点B2的坐标为________.五、解答题 (共6题;共62分)21. (8分)(2017·泰兴模拟) 已知:如图,在平面直角坐标系xOy中,正比例函数y= x的图象经过点A,点A的纵坐标为4,反比例函数y= 的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.22. (8分)(2019·呼和浩特模拟) 某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司在1﹣6月份每个月生产成本的下降率都相同,请你预测4月份该公司的生产成本.23. (10分) (2019九上·西安月考) 中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”。

山东省威海市开发区2016届九年级上学期期末数学试卷【解析版】

山东省威海市开发区2016届九年级上学期期末数学试卷【解析版】

山东省威海市开发区2016届九年级上学期期末数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.若tanA=,则sinA的值是()A. B.C.3 D.2.下列各组投影是平行投影的是()A.B.C.D.3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.5.下列说法错误的是()A.袋中装有一个红球和两个白球,它们除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,充分摇动后,再从中随机地摸出一个球,两次摸到不同颜色球的概率是B.甲、乙两人玩“石头、剪刀、布”的游戏,游戏规则是:如果两人的手势相同,那么第三人丙获胜,如果两人手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者.这个游戏规则对于甲、乙、丙三人是公平的C.连续抛两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是相同的D.一个小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的,抽签的先后不影响公平6.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F,若∠E=∠F=35°,则∠A的度数是()A.35°B.55°C.60°D.65°7.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c<0;②b+c=0;③2b+c<﹣2;④当x>3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个8.我国的“蛟龙号”创造了世界同类潜水器最大下潜深度纪录7062米.如图,在某次任务中,“蛟龙号”在点A处测得正前方海底沉船C的俯角为45°,然后在同一深度向正前方直线航行600米到点B,此时测得海底沉船C的俯角为60°,那么“蛟龙号”在点B下潜到沉船C处,下潜的垂直深度是()米.A.600﹣600B.600+600C.900﹣300D.900+3009.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴,y轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S210.一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的图象交于A(﹣2,b)、B两点.若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,则m的值为()A.1 B.1或8 C.2或8 D.1或911.如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,角直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.πB.πC.﹣π D.﹣π12.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本题共6小题,每小题3分,共18分)13.计算:(cos40°﹣2)0﹣cos230°﹣tan45°=.14.如图是某几何体的三视图,其中俯视图是等边三角形,则该几何体的侧面积是.15.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,若AC=3AE,则tan∠ABC=.16.如图是一个横断面为抛物线形状的拱桥,当水面宽8米时,拱顶(拱桥洞的最高点)离水面4m,水面上升1m时,水面的宽度为.17.如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(3,4),则△OAB的面积为.18.如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,若有B5C5=3C5A5时,则n=.三、解答题(本题共7小题,共66分)19.画出如图所示的几何体的主视图、左视图和俯视图.20.某班级的2名男生和3名女生报名参加志愿者活动.(1)若从这些报名者中随机选取一人参加志愿活动,求选到女生的概率;(2)若从报名者中随机选取两名学生参加志愿活动,请用列表法或画树状图求选取的两名都是女生的概率.(2)当销售单价定为多少时,销售该工艺品每天获得的利润最大?最大利润是多少?22.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部B处的高BC为8m,A、C在同一水平地面上.(1)求斜坡的水平宽度AC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=4m,EF=5m,将该货柜沿斜坡向上运送,当AE=7m 时,求点G到地面的垂直高度.23.如图,在直角坐标系中,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象,直接写出关于x的不等式kx+b>的解集;(2)求一次函数与反比例函数的解析式;(3)P是第二象限双曲线上AB之间的一点,连接PA,PB,PC,PD,若△PCA和△PBD面积相等,求点P坐标.24.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)点E是线段MC(不包括两端点)上的动点,连接BE,点Q为BE的中点,过点E作EG⊥BC 于G,连接MQ、QG.在点E运动过程中,∠MQG的大小是否发生变化?如果发生变化,说明理由;如果不变,求出∠MQG的度数.25.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.山东省威海市开发区2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.若tanA=,则sinA的值是()A. B.C.3 D.【考点】同角三角函数的关系.【分析】根据cosA=,tanA=,可得关于sinA的方程,根据解方程,可得答案.【解答】解:tanA===,4sinA=,解得sinA=,故选:B.【点评】本题考查了同角三角函数的关系,利用cosA=,tanA=得出关于sinA的方程是解题关键.2.下列各组投影是平行投影的是()A.B.C.D.【考点】平行投影.【分析】连接影子的顶端和木杆的顶端得到投影线,若投影线平行则为平行投影.【解答】解:只有A中的投影线是平行的,故选A.【点评】本题考查了平行投影的知识,牢记平行投影的定义是解题的关键.3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【专题】压轴题;数形结合.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y 轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y 轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.4.如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图;截一个几何体.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面看,是正方形右边有一条斜线,故选:A.【点评】本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.5.下列说法错误的是()A.袋中装有一个红球和两个白球,它们除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,充分摇动后,再从中随机地摸出一个球,两次摸到不同颜色球的概率是B.甲、乙两人玩“石头、剪刀、布”的游戏,游戏规则是:如果两人的手势相同,那么第三人丙获胜,如果两人手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者.这个游戏规则对于甲、乙、丙三人是公平的C.连续抛两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是相同的D.一个小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的,抽签的先后不影响公平【考点】游戏公平性;列表法与树状图法.【分析】根据概率的意义和游戏的公平性进行判断即可.【解答】解:A、袋中装有一个红球和两个白球,它们除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,充分摇动后,再从中随机地摸出一个球,两次摸到不同颜色球的概率是,正确;B、甲、乙两人玩“石头、剪刀、布”的游戏,游戏规则是:如果两人的手势相同,那么第三人丙获胜,如果两人手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者.这个游戏规则对于甲、乙、丙三人是公平的,正确;C、连续抛两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是不同的,错误;D、小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的,抽签的先后不影响公平,正确;故选C【点评】本题考查了概率的意义,考查游戏的公平性.根据概率=所求情况数与总情况数之比解答是关键.6.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F,若∠E=∠F=35°,则∠A的度数是()A.35°B.55°C.60°D.65°【考点】圆内接四边形的性质.【分析】由∠E=∠F=35°,利用三角形外角的性质,易证得∠ADC=∠ABC,又由圆的内接四边形的性质,证得∠ADC+∠ABC=180°,继而求得∠ABC的度数,然后由三角形内角和定理,求得答案.【解答】解:∵∠ADC=∠E+∠ECD,∠ABC=∠F+∠BCF,且∠E=∠F=35°,∠DCF=∠BCF,∴∠ADC=∠ABC,∵四边形ABCD内接⊙O,∴∠ADC+∠ABC=180°,∴∠ABC=90°,∴∠A=90°﹣∠E=55°.故选B.【点评】此题考查了圆的内接四边形的性质.注意求得∠ABC=90°是解此题的关键.7.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c<0;②b+c=0;③2b+c<﹣2;④当x>3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1,则b+c=0;当x=2时,二次函数值小于一次函数值,可得4+2b+c<2,继而可求得答案;当x>3时,二次函数值大于一次函数值,可得x2+bx+c>x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①正确;当x=1时,y=1+b+c=1,∴b+c=0故②正确;由图象可知当x=2时,二次函数值小于一次函数值,∴4+2b+c<2,∴2b+c<﹣2;故③正确;由图象可知当x>3时,二次函数值大于一次函数值,∴x2+bx+c>x,∴x2+(b﹣1)x+c>0.故④错误.故选C.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.8.我国的“蛟龙号”创造了世界同类潜水器最大下潜深度纪录7062米.如图,在某次任务中,“蛟龙号”在点A处测得正前方海底沉船C的俯角为45°,然后在同一深度向正前方直线航行600米到点B,此时测得海底沉船C的俯角为60°,那么“蛟龙号”在点B下潜到沉船C处,下潜的垂直深度是()米.A.600﹣600B.600+600C.900﹣300D.900+300【考点】解直角三角形的应用-仰角俯角问题.【分析】作CD⊥AB于点D,在直角△ACD和直角△BCD中分别利用三角函数表示出AD和BD 的长,然后根据AB=AD﹣BD即可列方程求解.【解答】解:作CD⊥AB于点D.设CD=x(米),∵在直角△ACD中,tan∠CAD=,即=tan45°=1,∴AD=CD=x(米).同理,BD===(米).∵AB=AD﹣BD,∴x﹣x=600,解得:x=900+300.故选D.【点评】本题考查俯角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.9.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴,y轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2【考点】反比例函数系数k的几何意义.【专题】数形结合.【分析】根据题意,易得AB两点关与原点对称,可设A点坐标为(m,﹣n),则B的坐标为(﹣m,n);在Rt△EOF中,由AE=AF,可得A为EF中点,分析计算可得S2,矩形OCBD中,易得S1,比较可得答案.【解答】解:设A点坐标为(m,﹣n),过点O的直线与双曲线y=交于A、B两点,则A、B两点关与原点对称,则B的坐标为(﹣m,n);矩形OCBD中,易得OD=n,OC=m;则S1=mn;在Rt△EOF中,AE=AF,故A为EF中点,由中位线的性质可得OF=2n,OE=2m;则S2=OF×OE=2mn;故2S1=S2.故选:B.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是2016届中考的重要考点,同学们应高度关注.10.一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的图象交于A(﹣2,b)、B两点.若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,则m的值为()A.1 B.1或8 C.2或8 D.1或9【考点】反比例函数与一次函数的交点问题;一次函数图象与几何变换.【分析】先利用反比例函数解析式求出b,得到A点坐标为(﹣2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=kx+5﹣m,则直线y=kx+5﹣m与反比例函数有且只有一个公共点,即方程组,只有一组解,然后消去y得到关于x的二次函数,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.【解答】解:把A(﹣2,b)代入y=﹣得b=﹣=4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5得﹣2k+5=4,解得k=,所以一次函数解析式为y=x+5;将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,根据题意方程组只有一组解,消去y得﹣=x+5﹣m,整理得x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4××8=0,解得m=9或m=1,故选D.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了一次函数与几何变换.11.如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,角直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.πB.πC.﹣π D.﹣π【考点】扇形面积的计算;弧长的计算.【分析】首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,=图中阴影部分的面积求出即可.AC的长,利用S△ABC﹣S扇形BOE【解答】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵的长为,∴=,解得:R=1,∴AB=ADcos30°=,∴BC=AB=,∴AC===,∴S△ABC=×BC×AC=××=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,=﹣=﹣π.∴图中阴影部分的面积为:S△ABC﹣S扇形BOE故答案为:﹣π.【点评】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△BOE和△ABE 面积相等是解题关键.12.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1.∴当点M位于点A处时,x=0,y=1.①当动点M从A点出发到AM=0.5的过程中,y随x的增大而减小,故排除D;②当动点M到达C点时,x=6,y=4,即此时y的值与点M在点A处时的值不相等.故排除A、C.故选:B.【点评】本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量,然后根据动点的行程判断y的变化情况.二、填空题(本题共6小题,每小题3分,共18分)13.计算:(cos40°﹣2)0﹣cos230°﹣tan45°=﹣.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数法则计算,后两项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣×﹣1=﹣,故答案为:﹣【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图是某几何体的三视图,其中俯视图是等边三角形,则该几何体的侧面积是30.【考点】由三视图判断几何体.【专题】投影与视图.【分析】根据左视图的长可知等边三角形的高为,进而可得其边长即侧面长方形的长为2,由主视图知侧面长方形的宽为5,列式计算可得侧面积.【解答】解:根据题意可知,该几何体为直三棱柱,∵等边三角形的高为,∴其边长为:=2,即三个侧面长方形的长为2,由题意可知侧面长方形的宽为5,则该几何体的侧面面积是:2×5×3=30,故答案为:30.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力,属中档题.15.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,若AC=3AE,则tan∠ABC=.【考点】圆周角定理;等腰三角形的性质;解直角三角形.【分析】要求tan∠ABC的值,只要求除∠C的正切值即可,因为AB=AC,则∠ABC=∠C,要求∠C 的正切值,则需要构造直角三角形,因而连接BE,由于AB是直径,则∠BEA=90°,然后根据题目中的条件可以求出BE、CE的长,从而可以得到∠C的正切值,本题得以解决.【解答】解:连接BE,如下图所示,∵AB为⊙O的直径,∴∠AEB=90°,∵AC=3AE,AB=AC,∴设AE=x,则AB=AC=3x,∠ABC=∠C,∴,∴tan∠C=,∴tan∠ABC=,故答案为:.【点评】本题考查圆周角定理、等腰三角形的性质、解直角三角形,解题的关是明确题意,利用数形结合的数学思想,构造直角三角形,然后找出所求问题需要的条件进行解答.16.如图是一个横断面为抛物线形状的拱桥,当水面宽8米时,拱顶(拱桥洞的最高点)离水面4m,水面上升1m时,水面的宽度为.【考点】二次函数的应用;待定系数法求二次函数解析式.【专题】计算题;函数思想;二次函数的应用.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半4米,抛物线顶点C坐标为(0,4),通过以上条件可设顶点式y=ax2+4,其中a可通过代入A点坐标(﹣4,0),到抛物线解析式得出:a=﹣,所以抛物线解析式为y=﹣x2+4,当水面上升1米,通过抛物线在图上的观察可转化为:当y=1时,对应的抛物线上两点之间的距离,也就是直线y=1与抛物线相交的两点之间的距离,可以通过把y=1代入抛物线解析式得出:1=﹣x2+4,解得:x=±,所以水面宽度增加到4米,故答案为:.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.17.如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(3,4),则△OAB的面积为18.【考点】反比例函数系数k的几何意义.【分析】将A坐标代入反比例解析式求出k的值即可;过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,得到CN与BM平行,进而确定出三角形OCN与三角形OBM相似,根据C为OB 的中点,得到相似比为1:2,确定出三角形OCN与三角形OBM面积比为1:4,利用反比例函数k 的意义确定出三角形OCN与三角形AOM面积,根据相似三角形面积之比为1:4,求出三角形AOB 面积即可.【解答】解:∵点A(3,4)在双曲线y=(x>0)上,∴k=3×4=12.过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB∥x轴,∴BM⊥y轴,∴MB∥CN,∴△OCN∽△OBM,∵C为OB的中点,即=,∴=()2,∵A,C都在双曲线y=上,∴S△OCN=S△AOM=6,由=,得:S△AOB=18,则△AOB面积为18.故答案是:18.【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,相似三角形的判定与性质,以及反比例函数k的意义,熟练掌握待定系数法是解本题的关键.18.如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,若有B5C5=3C5A5时,则n=10.【考点】二次函数图象上点的坐标特征.【专题】规律型.【分析】根据题意表示出OA5,B5A5的长,由B5C5=3C5A5确定点C5的坐标,代入解析式计算得到答案.为OA的n等分点,点B1,B2,…,【解答】解:∵正方形OABC的边长为n,点A1,A2,…,A n﹣1B n为CB的n等分点,﹣1∴OA5=•n=5,A5B5=n,∵B5C5=3C5A5,∴C5(5,),∵点C5在y=x2(x≥0)上,∴=×52,解得n=10.故答案为:10.【点评】本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C5的坐标是解题的关键.三、解答题(本题共7小题,共66分)19.画出如图所示的几何体的主视图、左视图和俯视图.【考点】作图-三视图.【分析】分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【解答】解:如图所示:【点评】考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.需特别注意实际存在,从某个方向看没有被其他棱挡住,又看不到的棱用虚线表示.20.某班级的2名男生和3名女生报名参加志愿者活动.(1)若从这些报名者中随机选取一人参加志愿活动,求选到女生的概率;(2)若从报名者中随机选取两名学生参加志愿活动,请用列表法或画树状图求选取的两名都是女生的概率.【考点】列表法与树状图法.【分析】(1)女生人数除以学生总数即为所求概率;(2)列举出所有情况,看恰好是两名都是女生的情况数占总情况数的多少即可.【解答】解:(1)5名学生中有3名女生,所以抽取1名,恰好是女生的概率为;(2)由树形图可得出:共有20种情况,恰好两名都是女生的情况数有6种,所以概率为=.【点评】本题考查了用列表与树状图求概率问题;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.(2)当销售单价定为多少时,销售该工艺品每天获得的利润最大?最大利润是多少?【考点】二次函数的应用;待定系数法求一次函数解析式;二次函数的最值.【专题】应用题;二次函数的应用.【分析】(1)根据表格中的数据可知,当x的值每增加10时,对应y的值每次减少10,故可模拟成一次函数,由待定系数法可求得解析式;(2)根据:总利润=单件利润×销售量可得函数关系式,配方成顶点式可知其最大值.【解答】解:(1)设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(70,100)、(80,90)这两点,∴,解得:,∴销售量y与销售单价x的函数关系式是y=﹣x+170.(2)设每天获得的利润是W元,依题意得:W=(x﹣50)(﹣x+170)=﹣x2+220x﹣8500=﹣(x﹣110)2+3600,∴当x=110时,W有最大值3600.∴当销售单价是100元时,每天获得的利润最大,最大利润是3600元.【点评】本题主要考查二次函数的实际应用能力,待定系数法求一次函数解析式是根本,找到等量关系并列出二次函数关系式是关键.22.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部B处的高BC为8m,A、C在同一水平地面上.(1)求斜坡的水平宽度AC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=4m,EF=5m,将该货柜沿斜坡向上运送,当AE=7m 时,求点G到地面的垂直高度.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据坡度是坡面的铅直高度h和水平宽度l的比计算即可;(2)作GH⊥AC,根据坡度的概念和矩形的性质以及勾股定理计算即可.【解答】解:(1)∵坡度为i=1:2,BC=8m,∴AC=8×2=16m;(2)作GH⊥AC,垂足为H,且与AB相交于I,∵∠GFI=∠AHI=90°,∠GIF=∠AIH,∴∠FGI=∠IAH,∴tan∠FGI=,∵GF=DE=4,∴FI=2,∴GI=2,EI=3,∴AI=10,设HI=x,则AH=2x,∴x2+(2x)2=102,∴x=2,即HI=2,∴GH=4m,答:点G到地面的垂直高度为4m.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,理解坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.23.如图,在直角坐标系中,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象,直接写出关于x的不等式kx+b>的解集;(2)求一次函数与反比例函数的解析式;(3)P是第二象限双曲线上AB之间的一点,连接PA,PB,PC,PD,若△PCA和△PBD面积相等,求点P坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)将点AB坐标代入y=kx+b,得出k和b,再把点A或B坐标代入反比例函数y=得出m,从而得出一次函数与反比例函数的解析式;(3)根据点P在双曲线上,设出点P坐标,再由△PCA和△PBD面积相等,得出关于a的等式,求得a的值,即可得出点P坐标.【解答】解:(1)由图象得,当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方,即不等式kx+b>的解集为﹣4<x<﹣1;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得,∴一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;∴反比例函数的解析式为y=﹣,(3)设P(a,﹣),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年山东省威海市乳山市初三上学期期末数学试卷(五四学制)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.1.(3分)在函数y=中,自变量x的取值范围是()A.x≠﹣4B.x>﹣4C.x≥﹣4D.x>﹣4且x≠0 2.(3分)有一实物模型如图所示,它的主视图是()A.B.C.D.3.(3分)在同一时刻,身高1.8m的小强影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22.5m B.24m C.20.5m D.10m4.(3分)如图,某厂房人字架屋顶的上弦AB=AC=10米,∠β=α,则该屋顶的跨度BC为()A.10sinα米B.10cosα米C.20sinα米D.20cosα米5.(3分)如图,△ABC内接于⊙O,∠OAB=45°,则∠ACB的度数为()A.135°B.130°C.120°D.140°6.(3分)二次函数y=ax2+bx和反比例函数y=在同一直角坐标系中的大致图象是()A.B.C.D.7.(3分)若关于x的方程x2﹣x+cosα=0有两个相等实数根,则锐角α的度数为()A.60°B.45°C.30°D.22.5°8.(3分)x取任意实数,二次函数y=ax2﹣2x+c的值必定为正数的条件是()A.a<0,ac>1B.a<0,ac<1C.a>0,ac>1D.a>0,ac<1 9.(3分)如图,等边△ABO的顶点O与原点重合,点A的坐标是(﹣4,0),点B在第二象限,反比例函数y=的图象经过点B,则k的值是()A.2B.﹣2C.4D.﹣410.(3分)抛物线y=x2﹣bx+9的顶点在坐标轴上,则b的值为()A.6B.±6C.±6或0D.011.(3分)如图,点M是⊙O内接正n边形ABCDE…边AB的中点,连接OM、OC,则∠MOC的度数为()A.180°﹣B.C.D.12.(3分)一副三角板如图摆放,AC、DF在同一条直线上且点C、D重合,将三角板DEF沿CA方向以1cm/s的速度运动,当点D与点A重合时运动停止,已知AC=3cm,DF=4cm,设运动的时间为t(s),两三角板重合部分的面积为S(cm2),下列图象能大致反映S(cm2)与t(s)间函数关系的是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分,只要求填出最后结果.13.(3分)小颖同学设置了六位数的手机开机密码,每个数位上的数字都是0﹣9这10个数字中的一个,粗心的小颖有一次忘记了密码的后三位数字,她尝试一次就能打开手机的概率是.14.(3分)如图,点D是△ABC的外心,若∠DBC=40°,∠DBA=23°,则∠DCA 的度数为.15.(3分)如图,正方体纸盒的棱长为4,点M、N分别在CD、HE上,CM=CD,点N是HE的中点,将纸盒展开,若HC与NM的延长线交于点Q,则tan∠QNH=.16.(3分)若A(5,y1),B(﹣5,y2)是抛物线y=(x+3)2+k图象上两点,则y1y2(填“>”、“<”或“=”).17.(3分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D、E.若BE=2AE,AD=3,tan∠BCE=,则CE=.18.(3分)如图,以等边△ABC的边BC为直径画半圆,分别交边AB、AC于点E,D,DF是半圆的切线,交AB于点F,若AF的长为1,则△FBC的面积为.三、解答题:本大题共7小题,共66分,写出必要的运算、推理过程.19.(7分)如图是某工件的三视图,求此工件的全面积.20.(8分)一位摊主在休闲广场组织“摸球游戏”,摊主把分别标有数字1,2,3的三个白球和标有数字4,5,6的三个黑球放在同一个不透明的口袋里(球除颜色外,完全相同).摸球规则为:每付5元就可以玩一局,每局连续摸两次,每次只能摸一个球,第一次摸完后,要把球放回口袋搅匀后再摸第二次.若前、后两次摸得的都是白球,摊主就送一件纪念品作为奖品.(1)用列表法列举出摸出的两个球可能会出现的所有结果;(2)求出能获得奖品的概率.21.(8分)如图,某人在山坡坡脚A处测得电视塔BC塔尖B的仰角为60°,沿山坡AM走到D处测得塔尖B的仰角为30°,已知AC为100米,山坡坡度i=1:3,C、A、E三点在同一直线上.求此人所在位置点D的铅直高度DE.(结果保留根号形式)22.(9分)销售公司购进2000千克的某种商品,购进价格为50元/千克,物价部门规定其销售单价不得高于80元/千克,也不得低于50元/千克,公司经过市场调查发现:销售单价定为80元/千克时,每天可销售200千克;单价每降低1元,每天可多销售20千克.设销售单价为x元,每天可获利润为y元.(1)求y与x间的函数关系式;(2)单价定为多少元时商场每天可获得最高利润?最高利润是多少?23.(10分)如图,在Rt△ABC中,∠ACB=90°,O是AB边上的一点,以OB为半径的⊙O与边AC相切于点E,与AB和BC交于点D、H.连接EH、DE,延长DE,BC交于点F.求证:DE=EH=EF.24.(11分)如图,一次函数y=﹣2x﹣2的图象分别交x轴、y轴于点B、A,与反比例函数y=(m≠0)的图象在第二象限交于点M,△OBM的面积是1.(1)求反比例函数的解析式;(2)若x轴上的点P与点A,M是以AM为直角边的直角三角形的三个顶点,求点P的坐标.25.(13分)如图,抛物线y=a(x﹣1)2+k与x轴交于A、C两点,与y轴交于点B,点A、B的坐标分别为(﹣1,0)和(0,3).(1)求抛物线的解析式;(2)点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D.①若直线DM经过线段BC的中点,求点D的坐标;②是否存在点M,使得以M、D、O、B为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.四、星号题:共1小题,共10分,写出必要的运算、推理或分析过程.26.(10分)抛物线y=ax2+bx+c(a≠0)的顶点在直线y=x上,将该抛物线沿直线y=x方向平移一定的距离后,再绕顶点旋转180°,最终得到的抛物线y=﹣3x2﹣12x﹣14与原抛物线关于原点中心对称.(1)求原抛物线的解析式及平移的距离;(2)若1≤x≤5,求代数式的最小值.2016-2017学年山东省威海市乳山市初三上学期期末数学试卷(五四学制)参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.1.(3分)在函数y=中,自变量x的取值范围是()A.x≠﹣4B.x>﹣4C.x≥﹣4D.x>﹣4且x≠0【解答】解:由题意得,x+4>0,解得x>﹣4.故选:B.2.(3分)有一实物模型如图所示,它的主视图是()A.B.C.D.【解答】解:从正面看图形的左右两边是弧线,中间是虚线的矩形,故选:C.3.(3分)在同一时刻,身高1.8m的小强影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22.5m B.24m C.20.5m D.10m【解答】解:设旗杆高为xm,由题意得,=,解得x=22.5m,所以,旗杆高为22.5m.故选:A.4.(3分)如图,某厂房人字架屋顶的上弦AB=AC=10米,∠β=α,则该屋顶的跨度BC为()A.10sinα米B.10c osα米C.20sinα米D.20cosα米【解答】解:如图,作AD⊥BC于点D,∵AB=AC=10米,∴BC=2BD=2CD,∵在Rt△ABD中,∠B=α,∴BD=ABcosB=10cosα,则BC=2BD=20cosα,故选:D.5.(3分)如图,△ABC内接于⊙O,∠OAB=45°,则∠ACB的度数为()A.135°B.130°C.120°D.140°【解答】解:连接OB,在圆周上取一点D,连接AD,BD,∵OA=OB,∠OAB=45°,∴∠OBA=∠OAB=45°,∴∠AOB=90°,∴∠ADB=45°,∴∠ACB=180°﹣∠ADB=135°,故选:A.6.(3分)二次函数y=ax2+bx和反比例函数y=在同一直角坐标系中的大致图象是()A.B.C.D.【解答】解:A、由反比例函数得:b>0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b<0,∴选项A不正确;B、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b>0,∴选项B正确;C、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b<0,∴选项C不正确;D、由反比例函数得:b<0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b>0,∴选项D不正确;故选:B.7.(3分)若关于x的方程x2﹣x+cosα=0有两个相等实数根,则锐角α的度数为()A.60°B.45°C.30°D.22.5°【解答】解:根据题意得△=(﹣)2﹣4×1×cosα=0,解得:cosα=,∴锐角α的度数为60°,故选:A.8.(3分)x取任意实数,二次函数y=ax2﹣2x+c的值必定为正数的条件是()A.a<0,ac>1B.a<0,ac<1C.a>0,ac>1D.a>0,ac<1【解答】解:根据题意得当a>0,△=b2﹣4ac<0时,抛物线在x轴上方,∴4﹣4ac<0,∴ac>1,且a>0,故选:C.9.(3分)如图,等边△ABO的顶点O与原点重合,点A的坐标是(﹣4,0),点B在第二象限,反比例函数y=的图象经过点B,则k的值是()A.2B.﹣2C.4D.﹣4【解答】解:∵△ABO为等边三角形,且点A的坐标是(﹣4,0),∴点B的坐标为(﹣2,2),∵反比例函数y=的图象经过点B,∴k=﹣2×2=﹣4.故选:D.10.(3分)抛物线y=x2﹣bx+9的顶点在坐标轴上,则b的值为()A.6B.±6C.±6或0D.0【解答】解:∵y=x2﹣bx+9=(x﹣)2+9﹣,∴抛物线顶点坐标为(,9﹣),∵抛物线顶点在坐标轴上,∴=0或9﹣=0,解得b=0或b=±6,故选:C.11.(3分)如图,点M是⊙O内接正n边形ABCDE…边AB的中点,连接OM、OC,则∠MOC的度数为()A.180°﹣B.C.D.【解答】解:连接OB,如图所示:则∠BOC=,∵点M是⊙O内接正n边形ABCDE…边AB的中点,∴OM⊥AB,∴∠MOB=×=,∴∠MOC=+=;故选:C.12.(3分)一副三角板如图摆放,AC、DF在同一条直线上且点C、D重合,将三角板DEF沿CA方向以1cm/s的速度运动,当点D与点A重合时运动停止,已知AC=3cm,DF=4cm,设运动的时间为t(s),两三角板重合部分的面积为S(cm2),下列图象能大致反映S(cm2)与t(s)间函数关系的是()A.B.C.D.【解答】解:当0<t≤2时,如图1,DC=t,CG=t,∴S=t2,当2<t<3时,如图2,BF=BG=4﹣t,∴S=4﹣(4﹣t)2=﹣t2+8t﹣12,故选:D.二、填空题:本大题共6小题,每小题3分,共18分,只要求填出最后结果.13.(3分)小颖同学设置了六位数的手机开机密码,每个数位上的数字都是0﹣9这10个数字中的一个,粗心的小颖有一次忘记了密码的后三位数字,她尝试一次就能打开手机的概率是.【解答】解:1÷(10×10×10)=1÷1000=∴她尝试一次就能打开手机的概率是.故答案为:.14.(3分)如图,点D是△ABC的外心,若∠DBC=40°,∠DBA=23°,则∠DCA 的度数为27°.【解答】解:∵点D是△ABC的外心,∴DB=DC,∴∠DCB=∠DBC=40°,∴∠BDC=100°,∴∠A=∠BDC=50°,∴∠DCA=180°﹣40°﹣40°﹣50°﹣23°=27°,故答案为:27°.15.(3分)如图,正方体纸盒的棱长为4,点M、N分别在CD、HE上,CM=CD,点N是HE的中点,将纸盒展开,若HC与NM的延长线交于点Q,则tan∠QNH=4.【解答】解:如图,延长HC、NM交于点Q,∵正方体的棱长为4,点M,N分别在CD,HE上,CM=CD,点N是HE的中点,∴CM=1,HN=NE=2,∴==,∵HC=4,∴QC=4,∴QH=8,∴tan∠QNH===4,故答案为:4.16.(3分)若A(5,y1),B(﹣5,y2)是抛物线y=(x+3)2+k图象上两点,则y1>y2(填“>”、“<”或“=”).【解答】解:由y=(x+3)2+k可知抛物线的对称轴为直线x=﹣3,∵抛物线开口向上,而点A(5,y1)到对称轴的距离比B(﹣5,y2)远,∴y1>y2.故答案为>.17.(3分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D、E.若BE=2AE,AD=3,tan∠BCE=,则CE=4.【解答】解:∵tan∠BCE=∴∠BCE=30°∴∠B=60°又∵在Rt△ABD中,AD=3,∴BD=,AB=2,∵BE=2AE∴BE=,AE=,在Rt△BEC中,BE=,∠BCE=30°,故答案为:4.18.(3分)如图,以等边△ABC的边BC为直径画半圆,分别交边AB、AC于点E,D,DF是半圆的切线,交AB于点F,若AF的长为1,则△FBC的面积为3.【解答】解:如图,连接OD,过点F作FG⊥BC,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠ACB=60°,∵OD=OC,∴△OCD为等边三角形,∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=1,∴AD=2AF=2,∴AC=4,即:BC=AC=4,∴FB=AB﹣AF=4﹣1=3,在Rt△BFG中,∠BFG=30°,∴cos∠BFG==,∴FG=BF=.∴S△FBC=BC×FG=×4×=3,故答案为:3.三、解答题:本大题共7小题,共66分,写出必要的运算、推理过程.19.(7分)如图是某工件的三视图,求此工件的全面积.【解答】解:由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥体,这圆锥的母线长为=(cm),圆锥的侧面积为s=πrl==100π(cm2),圆锥的底面积为102π=100πcm2,圆锥的全面积为π=π(cm2).20.(8分)一位摊主在休闲广场组织“摸球游戏”,摊主把分别标有数字1,2,3的三个白球和标有数字4,5,6的三个黑球放在同一个不透明的口袋里(球除颜色外,完全相同).摸球规则为:每付5元就可以玩一局,每局连续摸两次,每次只能摸一个球,第一次摸完后,要把球放回口袋搅匀后再摸第二次.若前、后两次摸得的都是白球,摊主就送一件纪念品作为奖品.(1)用列表法列举出摸出的两个球可能会出现的所有结果;(2)求出能获得奖品的概率.【解答】解:(1)列表如下:白白白黑黑黑白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)所有等可能的情况有36种;(2)摸出两次都为白球的情况有9种,则P(两次都为白球)==.21.(8分)如图,某人在山坡坡脚A处测得电视塔BC塔尖B的仰角为60°,沿山坡AM走到D处测得塔尖B的仰角为30°,已知AC为100米,山坡坡度i=1:3,C、A、E三点在同一直线上.求此人所在位置点D的铅直高度DE.(结果保留根号形式)【解答】解:作DH⊥BC于H,在Rt△ACB中,tan∠BAC=,则BC=AC•tan60°=100,设DE=x,则AE=3x,CE=100+3x,在Rt△BHD中,tan∠BDH=,∴BH=(100+3x)•,∴100﹣x=(100+3x)•,解得,x=,答:此人所在位置点D的铅直高度DE为米.22.(9分)销售公司购进2000千克的某种商品,购进价格为50元/千克,物价部门规定其销售单价不得高于80元/千克,也不得低于50元/千克,公司经过市场调查发现:销售单价定为80元/千克时,每天可销售200千克;单价每降低1元,每天可多销售20千克.设销售单价为x元,每天可获利润为y元.(1)求y与x间的函数关系式;(2)单价定为多少元时商场每天可获得最高利润?最高利润是多少?【解答】解:(1)根据题意知,y=(x﹣50)[200+20(80﹣x)]=﹣20x2+2800x ﹣90000;(2)∵y=﹣20x2+2800x﹣90000=﹣20(x﹣70)2+8000,且50≤x≤80,∴当x=70时,y最大=8000,答:单价定为70元时商场每天可获得最高利润,最高利润是8000.23.(10分)如图,在Rt△ABC中,∠ACB=90°,O是AB边上的一点,以OB为半径的⊙O与边AC相切于点E,与AB和BC交于点D、H.连接EH、DE,延长DE,BC交于点F.求证:DE=EH=EF.【解答】解:连接OE,BE.∵CA是⊙O的切线,∴∠OEA=90°,∵∠ACB=90°,∴OE∥BF,∴∠DOE=∠DBF,∠DEO=∠DFB,∴△ODE∽△BDF,∴==,∴DE=EF,∵BD是⊙O的直径,∴∠DEB=90°,∴BE垂直平分DF,∴BD=BF,∴∠BDF=∠BFD,∵四边形BDEH是⊙O的内接四边形,∴∠EHF=∠BDF,∠EHF=∠BFD,∴EH=EF,∴DE=EH=EF.24.(11分)如图,一次函数y=﹣2x﹣2的图象分别交x轴、y轴于点B、A,与反比例函数y=(m≠0)的图象在第二象限交于点M,△OBM的面积是1.(1)求反比例函数的解析式;(2)若x轴上的点P与点A,M是以AM为直角边的直角三角形的三个顶点,求点P的坐标.【解答】解:(1)令x=0,y=﹣2x﹣2=﹣2,∴点A的坐标为(0,﹣2);令y=﹣2x﹣2=0,解得:x=﹣1,∴点B的坐标为(﹣1,0).=OB•y M=y M=1,∵S△OBM∴y M=2,当y=﹣2x﹣2=2时,x=﹣2,∴点M的坐标为(﹣2,2).∵点M在反比例函数y=(m≠0)的图象上,∴m=﹣2×2=﹣4,∴反比例函数的解析式为y=﹣.(2)依照题意找出点P并过点M作MC⊥x轴于点C,如图所示.当∠BMP1=90°时,∵∠BMP1=∠BCM,∠MBP1=∠CBM,∴△BMP1∽△BCM,∴.∵点B(﹣1,0),点M(﹣2,2),∴点C(﹣2,0),∴BC=1,BM=,∴BP1=5,∴点P1的坐标为(﹣6,0);当∠BAP2=90°时,同理可由△BAP2∽△BCM求出点P2的坐标为(4,0).综上所述:点P的坐标为(﹣6,0)或(4,0).25.(13分)如图,抛物线y=a(x﹣1)2+k与x轴交于A、C两点,与y轴交于点B,点A、B的坐标分别为(﹣1,0)和(0,3).(1)求抛物线的解析式;(2)点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D.①若直线DM经过线段BC的中点,求点D的坐标;②是否存在点M,使得以M、D、O、B为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(0,﹣3)代入y=a(x﹣1)2+k中,得:,解得:,∴抛物线的解析式为:y=(x﹣1)2﹣4;(2)由(x﹣1)2﹣4=0,解得x1=﹣1,x2=3,∴点C的坐标为(3,0),设直线BC的解析式为:y=kx+b,将C(3,0),B(0,﹣3)代入,得:,解得:,∴直线BC的解析式为:y=x﹣3;①又EM∥BO,可求得△CEM∽△COB,∵直线DM经过BC的中点,∴,解得:OE=,∴点M的坐标为(,),点D的横坐标为,将x=代入y=(x﹣1)2﹣4,解得:y=,∴点D的坐标为(,);②存在点M,设点M的坐标为(m,m﹣3),点D的坐标为(m,m2﹣2m﹣3),∴DM=m﹣3﹣(m2﹣2m﹣3)=m﹣3﹣m2+2m+3=﹣m2+3m,或DM=m2﹣2m﹣3﹣(m﹣3)=m2﹣2m﹣3﹣m+3=m2﹣3m,若以M、D、O、B为顶点的四边形为平行四边形,则DM=3,即﹣m2+3m=3,或m2﹣3m=3,对于方程﹣m2+3m=3,△=b2﹣4ac=﹣3<0,方程无解,即点M不存在;对于方程m2﹣3m=3,解得m1=,m2=,∴点M的坐标为(,)或(,),综上所述,点M的坐标为(,)或(,).四、星号题:共1小题,共10分,写出必要的运算、推理或分析过程.26.(10分)抛物线y=ax2+bx+c(a≠0)的顶点在直线y=x上,将该抛物线沿直线y=x方向平移一定的距离后,再绕顶点旋转180°,最终得到的抛物线y=﹣3x2﹣12x﹣14与原抛物线关于原点中心对称.(1)求原抛物线的解析式及平移的距离;(2)若1≤x≤5,求代数式的最小值.【解答】解:(1)∵y=﹣3x2﹣12x﹣14=﹣3(x+2)2﹣2,∴顶点为(﹣2,﹣2),∵抛物线y=﹣3x2﹣12x﹣14与原抛物线关于原点中心对称,∴原抛物线的顶点为(2,2),∴原抛物线的解析式为y=3(x﹣2)2+2,即y=3x 2﹣12x +14.由顶点坐标可知,顶点沿x 轴的正方向平移2个单位,沿y 轴的正方向平移2个单位,∴沿直线y=x 方向平移了4个单位.(2)把x=1代入y=3x 2﹣12x +14得,y=5, 把x=5代入y=3x 2﹣12x +14得,y=29,∴1≤x ≤5时,函数y=3x 2﹣12x +14的最大值为29, ∴代数式的最小值为.附加:初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档