四方八面体络离子(MnO_6)~(8-)电子顺磁共振参量的研究

合集下载

电子顺磁共振

电子顺磁共振

电子顺磁共振电子顺磁共振是一种重要的物理现象,用于研究电子顺磁能量谱和电子对对称断裂态中的自旋关联现象。

它是一种多体强相互作用的效应,可以被用于研究多体超导态的电子结构,以及量子计算等方面的物理学研究。

电子顺磁共振的基本原理是由于空间梯度的作用,一个磁场能够在电子云中产生一个振荡的场,使得电子能量等级发生改变,从而导致电子的偶极转动和三重态转变,并形成电子顺磁能量谱。

电子顺磁共振实验中,由一定的磁场和温度,使电子云产生振荡,以观察电子谱带结构和混沌分布,并且可以模拟多体强相互作用的稀疏物理效应。

电子顺磁共振实验方法主要包括:用电容式仪器(如透射电子显微镜或透射电子探测器)测量固体中电子对对称断裂态的自旋关联强度;用高磁场量子器件探测器测量高磁场下的电子谱结构变化;以及模拟多体强相互作用的稀疏物理效应,注意观察物理系统的电子结构变化。

近年来,电子顺磁共振技术也被用于研究电子对对称的断裂态的相干性和非平衡态的涨落特性,以及新型多重自旋超导效应。

电子顺磁共振技术还可用于其它方面的研究,如量子计算、分子信息学、生物物理学和精密测量等,都可以从电子顺磁共振实验中获得有价值的信息。

电子顺磁共振技术也作为电子超导态的研究工具,用于研究量子对对称态和磁性结构的调整,以及电子非平衡态的准自旋关联动力学等问题。

电子顺磁共振非常重要,它可以用来研究多体系统、量子计算、分子物理学等物理学问题,也可以用来研究电子顺磁能量谱和电子对对称断裂态中的自旋关联现象。

未来,电子顺磁共振将为许多物理学问题的研究提供有价值的信息,从而更好地进行理论和实验研究。

电子顺磁共振是一种复杂的物理现象,其中的原理和效应是一个持续发展的领域,还有大量的未解决的问题,也有许多未知的物理效应,为后续的研究提供了广阔的发展空间。

《电子顺磁共振》课件

《电子顺磁共振》课件

根据样品的属性和需求,选择合适的测量 参数,如磁场强度、射频频率等。
六、实验步骤
1
样品制备
将样品制备成薄片或粉末,保证样品的纯度和适合的形态。
2
设置仪器参数
根据实验要求设置仪器的磁场强度、射频波功率等参数。
3
获取光谱
使用适当的实验方法获取样品的电子顺磁共振光谱。
4
数据处理
对实验得到的数据进行处理和解析,提取有用的谱学信息。
发掘新在更 多领域发挥重要作用。
九、结语
1 总结
电子顺磁共振是一种重要的谱学技术,为材料科学和生命科学研究提供了关键的实验手 段。
2 感谢
感谢各位的聆听和关注,祝愿大家在电子顺磁共振领域有所收获。
3 参考文献
1. Smith, J. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Wiley, 2018. 2. Johnson, R. L. Electron Paramagnetic Resonance: Basic Principles and Practical Applications. Springer, 2017.
控制系统
用于控制脉冲导引磁铁和检 测器,调节样品参数和记录 实验数据。
四、实验方法与技术
简介
电子顺磁共振实验方法包括X波段和Q波段等多 种光谱法。
与核磁共振的比较
电子顺磁共振与核磁共振是两种不同的谱学技术, 具有不同的原理和应用领域。
五、样品制备和测量参数的选择
1 样品制备方法
2 选择测量参数
样品制备是电子顺磁共振实验的关键步骤, 包括样品纯化、制备成薄片或粉末等。

第八章 电子顺磁共振波谱 (EPR)

第八章  电子顺磁共振波谱 (EPR)

2021/10/10
6
现代分析测试技术—电子顺磁共振波谱
2)、一组等价磁性核的超精细耦合作用
当未成对电子同时受到几个相同的磁性核作用时,谱线的裂分数为: 2nI+1, 其强度比符合二项式展开。
例如,甲基自由基H3C,因受到3个等价氢的作用而呈现4条裂分谱线。 苯自由基阴离子则为7条谱线。
2021/10/10
现代分析测试技术
2021/10/10
1
现代分析测试技术—电子顺磁共振波谱
第八章 电子顺磁共振波谱 (EPR)
Electron Paramagnetic Resonance Spectroscopy
2021/10/10
2
现代分析测试技术—电子顺磁共振波谱
基本原理
电子和原子核一样是带电粒子,自旋的电子 因而产生磁场,具有磁矩 s
E = g H = h
一般在微波区(9.5-35千兆) 只有未成对的电子才有电子顺磁共振。 同样电子也存在自旋-晶格 弛豫和自旋-自旋弛豫现象
2021/10/10
4
现代分析测试技术—电子顺磁共振波谱
波谱特性
1. g因子
对于分子中的未成对电子, 除自旋运动外,还有轨道运动。 因此,在外磁场作用下,轨道运动也会产生一个内磁场H’,这样 未成对电子所处的磁场应为:
必然会产生自旋-轨道偶合(相互 作用),使未考虑此作用时的能 级发生能级分裂(对应于内量子
数j的取值j=l+1/2和j=l-1/2
形成双层能级),从而导致光电 子谱峰分裂;此称为自旋-轨道 分裂。
图所示Ag的光电子谱峰图除3S 峰外,其余各峰均发生自旋-轨 道分裂,表现为双峰结构(如 3P1/2与3P3/2)。

顺磁共振实验报告

顺磁共振实验报告

摘要:本次实验旨在通过顺磁共振(EPR)技术,探究物质在恒定磁场和射频场或微波场作用下的电子自旋共振现象。

实验中,我们测量了有机自由基DPPH的g因子值,并分析了微波器件在电子自旋共振中的应用。

通过观察矩形谐振长度的变化,我们进一步理解了谐振腔的驻波特性。

实验结果表明,顺磁共振技术在物质结构和性能研究方面具有重要的应用价值。

关键词:顺磁共振,电子自旋共振,DPPH,g因子,谐振腔一、引言顺磁共振(EPR)技术,又称为电子自旋共振(ESR),是一种研究物质电子自旋状态的实验技术。

该技术基于电子自旋在恒定磁场中受到射频场或微波场作用下的磁能级跃迁现象。

顺磁共振技术在物理、化学、生物及医学等领域有着广泛的应用,特别是在研究材料的反应过程、结构和性能方面具有重要作用。

二、实验原理1. 电子自旋与磁矩原子中的电子不仅具有轨道运动,还具有一定的自旋运动。

电子的自旋磁矩与轨道磁矩的合成,决定了原子的总磁矩。

当原子处于外磁场中时,电子自旋会取向磁场方向,产生磁能级分裂。

通过射频场或微波场的作用,电子自旋可以在磁能级之间发生跃迁,从而产生EPR信号。

2. 顺磁共振信号EPR信号具有以下特点:(1)具有明显的吸收峰,峰形尖锐;(2)吸收峰的位置与外磁场强度有关,可用于测量物质的g因子;(3)EPR信号的强度与物质的顺磁性质有关。

三、实验装置与材料1. 实验装置:顺磁共振仪、微波源、射频放大器、探头、计算机等;2. 实验材料:DPPH自由基、样品管、搅拌器等。

四、实验步骤1. 准备样品:将DPPH自由基溶解在适当的溶剂中,配制成一定浓度的溶液;2. 将溶液置于样品管中,置于顺磁共振仪的探头中;3. 设置实验参数:选择合适的磁场强度、射频频率和功率;4. 进行EPR信号采集:启动顺磁共振仪,采集DPPH自由基的EPR信号;5. 分析EPR信号:利用计算机软件对EPR信号进行分析,测量DPPH自由基的g因子值。

五、实验结果与分析1. DPPH自由基的EPR信号实验中,我们成功采集到了DPPH自由基的EPR信号。

《电子顺磁共振》课件

《电子顺磁共振》课件

水质监测
通过电子顺磁共振技术可以检测 水体中的重金属离子、有机污染 物等有害物质,为水质监测和治 理提供技术支持。
土壤污染修复
电子顺磁共振技术可以用于土壤 污染修复过程中的自由基监测, 有助于了解土壤污染的修复机制 和效果评估。
05
电子顺磁共振的未来发展与 挑战
技术创新与突破
检测方法的改进
01
提高检测灵敏度、分辨率和稳定性,实现更快速、准确和自动
样品固定
采用适当的固定方法将样 品固定在实验装置中,以 便进行实验操作。
实验操的电子顺磁共振实验装 置。
参数设置
根据实验样品的特点,设置合适的实验参数,如 磁场强度、微波频率等。
实验操作
按照实验步骤进行操作,记录实验数据。
数据处理与分析
数据整理
整理实验获得的数据,确保数据的准确性和完整性。
通过电子顺磁共振技术可以研究催化剂的活性中心和反应过程中电 子结构的改变,有助于优化催化剂的性能。
化学键断裂与形成
电子顺磁共振可以检测化学键的断裂和形成过程中自由基的变化, 有助于理解化学键的本质和化学反应的动力学过程。
在生物学研究中的应用
自由基生物学
电子顺磁共振技术可以用于研究自由基生物学,探索自由 基在生物体内的生成、代谢和作用机制,以及自由基对生 物体的影响。
现状
目前,EPR已经成为一种重要的物理表征手段,广泛应用于 各个学科领域。
应用领域
物理
EPR在物理领域中主要用于研究物质 的电子结构和磁性性质,如铁电体、 超导体等。
生物学
EPR在医学领域中用于研究生物组织 的结构和功能,如肿瘤、心血管疾病 等。
化学
EPR在化学领域中用于研究分子的电 子结构和反应机理,如自由基反应、 化学键断裂等。

微波顺磁共振铁磁共振

微波顺磁共振铁磁共振

微波顺磁共振实验报告物理072 07180217 陈焕摘要:本文对顺磁共振做了相关介绍,主要介绍了顺磁共振的原理,微波顺磁共振的实验仪器,最后介绍了微波顺磁共振的实验过程和实验结果。

关键词:顺磁共振;原理;实验仪器;实验过程;实验结果引言:由不配对电子的磁矩发源的一种磁共振技术,可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。

对自由基而言,轨道磁矩几乎不起作用,总磁矩的绝大部分(99%以上)的贡献来自电子自旋,所以电子顺磁共振亦称“电子自旋共振”(ESR)。

EPR现象首先是由苏联物理学家Е.К.扎沃伊斯基于1944年从MnCl2、CuCl2等顺磁性盐类发现的。

物理学家最初用这种技术研究某些复杂原子的电子结构、晶体结构、偶极矩及分子结构等问题。

以后化学家根据 EPR测量结果,阐明了复杂的有机化合物中的化学键和电子密度分布以及与反应机理有关的许多问题。

美国的B.康芒纳等人于1954年首次将EPR技术引入生物学的领域之中,他们在一些植物与动物材料中观察到有自由基存在。

60年代以来,由于仪器不断改进和技术不断创新,EPR技术至今已在物理学、半导体、有机化学、络合物化学、辐射化学、化工、海洋化学、催化剂、生物学、生物化学、医学、环境科学、地质探矿等许多领域内得到广泛的应用。

1、实验原理原子的的磁性来源于原子磁距.由于原子核的磁矩很小,可以略去不计,所以原子的磁距由原子中各电子的轨道磁矩和自旋磁矩所决定.按照量子理论,电子的L-S耦合结果,朗德g=1+[J (J+1)+S(S+1)-L(L+1)]?2J(J+1)由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L=0,J=S),则g=2.反之,若磁距完全由电子的轨道磁矩所贡献(S=0,J=L),则g=1.若自旋和轨道磁矩两者都有贡献,则g的值介乎1和2之间.因此,精确测定g的数值便可判断电子运动的影响,从而有助于了解原子的结构.在顺磁物质中,由于电子受到原子外部电荷的作用,使电子轨道平面发生旋进,电子的轨道角动量量子数L的平均值为0.当作一级近似时,可以认为电子轨道角动量近似为零,因此顺磁物质中的磁矩主要是电子自旋磁矩的贡献。

电子顺磁共振-实验报告

电子顺磁共振-实验报告

电子顺磁共振实验报告一、实验目的1. 学习电子顺磁共振的基本原理和实验方法;;2. 了解、掌握电子顺磁共振谱仪的调节与使用;3.测定DMPO-OH的EPR 信号。

二、实验原理1.电子顺磁共振(电子自旋共振)电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。

1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2、MnCl2等顺磁性盐类发现。

电子自旋共振(顺磁共振)研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、线宽、弛豫时间、超精细结构参数等),可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。

由于这种方法不改变或破坏被研究对象本身的性质,因而对寿命短、化学活性高又很不稳定的自由基或三重态分子显得特别有用。

近年来,一种新的高时间分辨ESR技术,被用来研究激光光解所产生的瞬态顺磁物质(光解自由基)的电子自旋极化机制,以获得分子激发态和自由基反应动力学信息,成为光物理与光化学研究中了解光与分子相互作的一种重要手段。

电子自旋共振技术的这种独特作用,已经在物理学、化学、生物学、医学、考古等领域得到了广泛的应用。

基本原理EPR 是把电子的自旋磁矩作为探针,从电子自旋磁矩与物质中其它部分的相互作用导致EPR 谱的变化来研究物质结构的,所以只有具有电子自旋未完全配对,电子壳层只被部分填充(即分子轨道中有单个排列的电子或几个平行排列的电子)的物质,才适合作EPR 的研究。

不成对电子有自旋运动,自旋运动产生自旋磁矩, 外加磁场后,自旋磁矩将平行或反平行磁场方向排列。

经典电磁学可知,将磁矩为μ的小磁体放在外磁场H 中,它们的相互作用能为:E=-μ· H = -μH cosθ这里θ为μ与H之间的夹角,当θ= 0 时,E = -μH, 能量最低,体系最稳定。

《电子顺磁共振EPR》课件

《电子顺磁共振EPR》课件
电子顺磁共振(EPR) PPT课件
contents
目录
• 电子顺磁共振(EPR)简介 • EPR的基本技术 • EPR在来发展与挑战
01
电子顺磁共振(EPR)简介
定义与原理
定义
电子顺磁共振(EPR)是一种研究物质与辐射相互作用的物理方法,通过测量物 质中未成对电子在磁场中的共振吸收来获取物质内部结构和电子状态信息。
数据分析
根据EPR谱图的特征峰位置、形状和 强度,解析物质内部未成对电子的分 布和取向,从而推断出物质的结构和 性质。
03
EPR在科学研究中的应用
分子结构和化学环境研究
总结词
EPR技术可以提供分子结构和化学环境的信息,有助于深入了解分子的电子结 构和化学键的性质。
详细描述
EPR通过测量电子自旋共振信号的频率和强度,可以推断出分子中电子的分布 和跃迁情况,从而揭示分子的结构和化学环境。这对于理解化学反应机理、分 子识别和分子设计等领域具有重要意义。
医学研究
EPR用于研究生物组织中的 自由基、血红蛋白、肌红蛋 白等生物分子的结构和功能 ,以及与疾病相关的变化。
环境科学
EPR用于研究环境污染物的 电子结构和环境因素对其影 响。
02
EPR的基本技术
实验设置与设备
实验原理
电子顺磁共振是研究物质中未成 对电子的共振现象,通过测量样 品在特定频率电磁辐射下的吸收 和发射,可以获得关于物质内部
固体材料中的缺陷和掺杂研究
总结词
EPR技术可以用于研究固体材料中的缺陷和掺杂情况,有助于深入了解材料的物理和化学性质。
详细描述
EPR可以检测固体材料中的自由电子和缺陷态电子,通过测量这些电子的自旋共振信号,可以推断出 固体材料的结构和性质。这对于研究材料的物理和化学性质、新型材料的设计和开发等领域具有重要 意义。

顺磁共振实验报告

顺磁共振实验报告

近代物理实验报告顺磁共振实验学院班级姓名学号时间2014年5月10日顺磁共振实验实验报告【摘要】电子顺磁共振又称电子自旋共振。

由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。

简称“EPR”或“ESR”。

由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。

在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。

【关键词】顺磁共振,自旋g因子,检波【引言】顺磁共振(EPR)又称为电子自旋共振(ESR),这是因为物质的顺磁性主要来自电子的自旋。

电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。

顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。

电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演变,以及材料的性能具有重要的意义。

研究了解电子自旋共振现象,测量有机自由基DPPH的g因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。

【正文】一、实验原理(1)电子的自旋轨道磁矩与自旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为:2l l e e P m μ=-,负号表示方向同l P 相反。

在量子力学中l P =,因而(2l B e l l m μ==+,其中2B e e m μ=称为玻尔磁子。

电子除了轨道运动外还具有自旋运动,因此还具有自旋磁矩,其数值表示为:s s e e P m m μ=-=由于原子核的磁矩可以忽略不计,原子中电子的轨道磁矩和自旋磁矩合成原子的总磁矩:2j j e e g P m μ=-,其中g 是朗德因子:(1)(1)(1)12(1)j j l l s s g j j +-+++=++。

材料物理实验方法-电子顺磁共振-2013-3

材料物理实验方法-电子顺磁共振-2013-3

过渡金属和稀土元素的EPR谱线特点: 谱线复杂且谱线大多很宽,理论处理也较困难。 原因:
1、电子处在离子的d壳层中,它们的自旋运动 和轨运动间有很强的“自旋—轨道偶合作用”; 2、离子并非以自由形式存在,处在由配位体 组成的晶场中。
EPR—研究对象
—— 半导体中的空穴或电子
可用EPR来作定量研究。
EPR—研究对象
丙二酸
EPR—研究对象
EPR—研究对象
再如:萘分子它本身是逆磁性分子
A + K (真空无水条件) A + H2SO4 (98%)
A- + K +
(用dimethoxyethane作溶剂)
A+
EPR—研究对象
EPR—研究对象
二萘嵌苯阳离子 Perylene cation radical 共125条线
TEMPO
EPR—研究对象
Black line: Zn+ Red line:
O2
Green line: intermediate state
EPR—研究对象
② ① ①

EPR—研究对象
“Surface Facet of Palladium Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen for Organic Catalysis and Cancer Treatment”
EPR—共振波谱
对过度金属离子而言,其自旋—轨道偶合作用一般
很强,t很短(小),从而导致谱线线宽很宽。 因此,要尽可能减少自旋—晶格作用,如:使用降
温方法。
EPR—共振波谱
b、久期增宽 (Secular broadening)

电子顺磁共振

电子顺磁共振

电子顺磁共振引言电子顺磁共振(Electron Paramagnetic Resonance,EPR),也被称为电子自旋共振(Electron Spin Resonance,ESR),是一种用于研究具有未成对电子的物质的方法。

在电子顺磁共振实验中,通过射频辐射使未成对电子从低能级跃迁至高能级,然后测量能级差并得到相关的信息。

在本文中,我们将介绍电子顺磁共振的原理、实验方法和应用领域。

1. 电子顺磁共振原理电子顺磁共振是基于未成对电子自旋的共振现象展开研究的。

未成对电子由于其自旋角动量的存在,会在外磁场作用下分裂成不同的能级。

当外磁场的大小与特定的能级分裂相匹配时,电子将吸收特定频率的辐射并跃迁到更高能级上。

电子顺磁共振的核心原理可以用以下方程表示:ΔE = gβB其中,ΔE代表能级差,g为电子的旋磁比,β为普朗克常量,B为外磁场的大小。

2. 电子顺磁共振实验2.1 仪器设备进行电子顺磁共振实验通常需要以下仪器设备:•电子顺磁共振仪:用于产生恒定的外磁场,并进行射频辐射的发射和接收。

•射频源:用于产生射频辐射。

•微波源:用于产生微波辐射。

•探头:用于与样品接触,将样品放入恒定外磁场中。

2.2 实验步骤电子顺磁共振实验的基本步骤如下:1.准备样品:选择合适的样品进行实验,并将样品放入探头中。

2.确定外磁场:通过调节电子顺磁共振仪中的磁场强度,使其满足能级分裂的共振条件。

3.辐射射频和微波:在满足共振条件的磁场下,分别辐射射频和微波进行激发。

4.记录数据:测量射频和微波辐射的频率以及相应的共振信号强度,记录实验数据。

5.数据处理:对实验数据进行处理和分析,提取出所需的信息和参数。

3. 电子顺磁共振的应用电子顺磁共振广泛应用于物理学、化学和生物学等领域,主要用于以下方面:3.1 材料科学电子顺磁共振可以通过研究材料中的未成对电子状态及其相互作用来了解材料的结构和性质。

它被广泛应用于材料科学中的磁性材料、光纤材料等的研究中,为材料的开发提供了重要的参考。

电子顺磁共振EPR ppt课件

电子顺磁共振EPR  ppt课件
电子自旋即电子的电磁角动量
电子内禀运动或电子内禀运动量子数的简称。
电子具有电荷,同时电子像陀螺一样绕一个 固定轴旋转,形成有南北极的自旋磁矩。
ppt课件
2
EPR—研究对象
一、 电子顺磁共振的研究对象
ppt课件
3
EPR—研究对象
Application Fields of ESR Spectroscopy
(πy*2p)1(πz*2p)1]
ppt课件
31
—— 三重态分子
EPR—研究对象
其分子轨道上有两个未偶电子,但其与双基不同,这两 个电子彼此相距很近,有很强的相互作用。
1、激发三重态; 如:萘激发三重态;
2、基态就是三重态分子 如:氧分子。
ppt课件
32
EPR—研究对象
计算机拟合的三重态ESR谱 一次微分线
ppt课件
29
EPR—研究对象
Stable Free Radicals in Gas Phase
ppt课件
30
EPR—研究对象
O2 分子的顺磁性: 有关分子轨道理论可以解释
2O: [(1S)2 (2S)2 (2P)4] O2 :KK[(σ2s)2(σ*2s)2(σ2p)2(πy2p)2(πz2p)2
共125条线
1500
1000
500
0
-500
-1000
-1500
3220
3230
3240
Magnetic Field (Gs)
3250
ppt课件
10
其它相关的自由基化学:
EPR—研究对象
ppt课件
11
EPR—研究对象
ppt课件
12

顺磁共振电子顺磁共振(ElectronParamagneticResonance简称EPR)或

顺磁共振电子顺磁共振(ElectronParamagneticResonance简称EPR)或

顺磁共振电子顺磁共振(Electron Paramagnetic Resonance 简称EPR )或称电子自旋共振(Electron Spin Resonance 简称ESR )是探测物质中未耦电子以及它们与周围原子相互作用的非常重要的现代分析方法,它具有很高的灵敏度和分辨率,并且具有在测量过程中不破坏样品结构的优点。

自从1944年物理学家扎伏伊斯基(Zavoisky )发现电子顺磁共振现象至今已有五十多年的历史,在半个多世纪中,EPR 理论、实验技术、仪器结构性能等方面都有了很大的发展,尤其是电子计算机技术和固体器件的使用,使EPR 谱仪的灵敏度、分辨率均有了数量级的提高,从而进一步拓展了EPR 的研究和应用范围。

这一现代分析方法在物理学、化学、生物学、医学、生命科学、材料学、地矿学和年代学等领域内获得了越来越广泛的应用。

本实验的目的是在了解电子自旋共振原理的基础上,学习用射频或微波频段检测电子自旋共振信号的检测方法,并测定DPPH 中电子的g 因子和共振线宽。

一 实验原理原子的磁性来源于原子磁矩。

由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中个电子的轨道磁矩和自旋磁矩所决定。

在本单元的基础知识中已经谈到,原子的总磁矩μJ 与P J 总角动量之间满足如下关系:J J BJ P P g γμμ=-= (1-6-1) 式中μB 为波尔磁子,ћ为约化普朗克常量。

由上式可知,回磁比Bg μγ-= (1-6-2) 按照量子理论,电子的L -S 耦合结果,朗得因子)1(2)1()1()1(1++-++++=J J L L S S J J g (1-6-3) 由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L =0,J =S ),则g =2。

反之,若磁矩完全由电子的轨道磁矩所贡献(S=0,J=1),则g =1。

若自旋和轨道磁矩两者都有贡献,则g 的值介乎1与2之间。

因此,精确测定g 的值便可判断电子运动的影响,从而有助于了解原子的结构。

电子顺磁共振谱ESR

电子顺磁共振谱ESR
扫场法,后者还可以恒定磁场,采取扫频法。
EPR应用
• 有机自由基的研究:不但能证明自由基的存在,而且能 得到分子结构,化学反应机理和反应动力学方面的重要 信息。
• 催化剂的研究:能获得催化剂表面的性质及反应机理。 • 生物、医学研究:证明了细胞的代谢过程、酶反应的机
理都离不开自由基。除此之外,许多病理的过程如衰老、 癌变过程也都离不开自由基。其中很重要的原因就是氧 自由基的作用。 • 物理方面:利用EPR对半导体掺杂的研究,可指导采用 不同的掺杂技术获取不同性质的半导体。
电子顺磁共振的研究对象
• 过渡金属离子和稀土离子:这类分子在原子轨道中出现 未 成 对 电 子 , 如 常 见 的 过 渡 金 属 离 子 有 Ti3+(3d1) , V3+(3d7)等。
• 固体中的晶格缺陷,一个或多个电子或空穴陷落在缺陷 中或其附近,形成了一个具有单电子的物质,如面心、 体心等。

+½ Selection Rule DMS = ±1 (electron) DMI = 0 (nuclear)
a
B
“doublet”
DE1 = gbB + a/2 DE2 = gbB - a/2 DE1 – DE2 = a
Electron
S (½)
Hyperfine Coupling
Nucleus
How does EPR work? DE = gb H
DE
hn
Energy
microwave source
gbH0 = hn
H1
H0
H2
External magnetic field
电子顺磁共振
• 在垂直于B0的方向上施加频率为hn的电磁 波,当满足hn =g b B0 时,处于两能级间的 电子发生受激跃迁,导致部分处于低能级 中的电子吸收电磁波的能量跃迁到高能级 中,这就是顺磁共振现象。受激跃迁产生 的吸收信号经电子学系统处理可得到EPR 吸谱线。 (g 因子, g e =2.0023; b波尔磁子)

电子顺磁共振技术应用及进展

电子顺磁共振技术应用及进展

第32卷第5期2013年5月实验室研究与探索RESEARCH AND EXPLORATION IN LABORATORYVol.32No.5May 2013·实验技术·电子顺磁共振技术应用及进展王翠平,叶柳,谢安建,李广,李爱侠,张子云,张惠(安徽大学物理与材料科学学院,安徽省信息材料与器件重点实验室,安徽合肥230039)摘要:电子顺磁共振(EPR )波谱技术是一种新的检测方法,用于检测顺磁性离子、自由基及顺磁性配合物分子的结构。

近几年又发展成为一种操控自旋电子材料内部原子核外单电子自旋状态手段,用于单电子自旋相干态的制备,实现量子运算和信息传输。

目前文献中报道EPR 在化学、物理、生物和医药领域的应用很多。

针对当前EPR 在不同领域的应用,综述了EPR 技术的应用原理和进展,为更好地将EPR 技术应用在量子物理、配合物化学、自由基生物学、医学、药学等领域提供参考和借鉴。

关键词:电子顺磁共振;电子自旋相干态;自由基捕捉;自选标记中图分类号:O 4-33文献标志码:A 文章编号:1006-7167(2013)05-0005-03Progress and Applications of Electron ParamagneticResonance SpectroscopyWANG Cui-ping ,YE Liu ,XIE An-jian ,LI Guang ,LI Ai-xia ,ZHANG Zi-yun ,ZHANG Hui(School of Physics and Materials Science ,Anhui University ,Hefei 230039,China )Abstract :In this paper ,in view of the technical application of electron paramagnetic resonance (EPR ),the application principle and development of EPR technology were summarized to provide reference for its applications in quantum physics ,chemistry ,free radicals-biology ,medicine ,and archaeological and materials science fields.Key words :electron paramagnetic resonance ;electron spin coherence ;free radical trap ;spin label收稿日期:2012-10-09基金项目:国家自然科学基金资助项目(50973001,2117300);安徽大学2012校级教学研究项目资助(JYXM201238,JYXM201231)作者简介:王翠平(1971-),女,安徽蒙城人,博士,高级实验师,主要研究方向为有机/无机复合材料制备和磁共振波谱研究。

电子顺磁实验报告

电子顺磁实验报告

一、实验目的1. 理解电子顺磁共振(ESR)的基本原理和实验方法;2. 掌握电子顺磁共振仪的使用方法;3. 通过实验,了解顺磁性物质的特性;4. 培养实验操作能力和数据分析能力。

二、实验原理电子顺磁共振是指含有未成对电子的原子或分子在外加微波场的作用下,其未成对电子自旋能级发生跃迁的现象。

电子顺磁共振实验主要用于研究物质的电子结构和磁性质。

三、实验仪器与材料1. 电子顺磁共振仪;2. 顺磁性物质样品;3. 微波发生器;4. 数字信号发生器;5. 数字示波器;6. 温度控制器;7. 数据采集系统;8. 样品管;9. 实验用线缆等。

四、实验步骤1. 样品准备:将顺磁性物质样品放入样品管中,用实验用线缆连接样品管和电子顺磁共振仪。

2. 实验参数设置:根据实验要求,设置微波频率、微波功率、扫描速度等参数。

3. 样品测试:开启电子顺磁共振仪,调整温度控制器,使样品温度达到实验要求。

开启微波发生器,进行电子顺磁共振实验。

4. 数据采集:利用数字信号发生器和数字示波器采集实验数据,并利用数据采集系统进行数据处理。

5. 数据分析:根据实验数据,分析样品的电子结构和磁性质。

五、实验结果与分析1. 实验数据:通过实验,采集到顺磁性物质的电子顺磁共振信号,包括共振吸收峰的位置、形状、强度等。

2. 结果分析:根据实验数据,分析样品的电子结构和磁性质。

通过对比理论计算结果,验证实验数据的准确性。

(以下为具体分析内容,根据实际实验结果填写)(1)共振吸收峰的位置:实验测得的共振吸收峰位置与理论计算结果基本一致,说明样品的未成对电子自旋能级符合理论模型。

(2)共振吸收峰的形状:实验测得的共振吸收峰为单峰,说明样品中未成对电子自旋能级只有一个。

(3)共振吸收峰的强度:实验测得的共振吸收峰强度与样品浓度成正比,符合朗之万-爱因斯坦定律。

(4)样品的磁性质:根据实验数据,分析样品的磁矩、自旋轨道耦合等磁性质,并与理论模型进行对比。

电子顺磁共振实验报告(参考)

电子顺磁共振实验报告(参考)

电子顺磁共振实验报告【实验简介】电子顺磁共振谱仪是根据电子自旋磁矩在磁场中的运动与外部高频电磁场相互作用,对电磁波共振吸收的原理而设计的。

因为电子本身运动受物质微观结构的影响,所以电子自旋共振成为观察物质结构及其运动状态的一种手段。

又因为电子顺磁共振谱仪具有极高的灵敏度,并且观测时对样品没有破坏作用,所以电子顺磁共振谱仪被广泛应用于物理、化学、生物和医学生命领域。

【实验原理】具有未成对电子的物质置于静磁场B 中,由于电子的自旋磁矩与外部磁场相互作用,导致电子的基态发生塞曼能级分裂,当在垂直于静磁场方向上所加横向电磁波的量子能量等于塞曼分裂所需要的能量,即满足共振条件B ⋅=γω,此时未成对电子发生能级跃迁。

Bloch 根据经典理论力学和部分量子力学的概念推导出Bloch 方程。

Feynman 、Vernon 、Hellwarth 在推导二能级原子系统与电磁场作用时,从基本的薛定谔方程出发得到与Bloch 方程完全相同的结果,从而得出Bloch 方程适用于一切能级跃迁的理论,这种理论被称之为FVH 表象。

原子核具有磁矩:L⋅=γμ; (1) γ称为回旋比,是一个参数;L 表示自旋的角动量;原子核在磁场中受到力矩:B M ⋅=μ; (2) 根据力学原理M dtL d =,可以得到: B dtd ⨯⋅=μγμ; (3) 考虑到弛豫作用其分量式为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--=--=--=122)()()(T B B dt d T B B dtd T B B dt d z x y y x z y z x x z y x y z z y x μμμγμμμμγμμμμγμ (4) 其稳态解为:⎪⎪⎩⎪⎪⎨⎧⋅⋅⋅+⋅-⋅+⋅⋅=''⋅⋅⋅+⋅-⋅+-⋅⋅⋅='21212222011212122220021)(1)(1)(T T B T B T B T T B T B B T B Z Z Z γωγγχγωγωγγχ (5) 如图1所示:实验中,通过示波器可以观察到共振信号,李萨如图形及色散图,又因为共振信号发生的条件为B ⋅=γω,所以知道磁场及共振频率,就可以求出旋磁比,进而由:e m e g 2⋅-=γ (6) 可以求出朗德g 因子。

电子顺磁共振实验报告

电子顺磁共振实验报告

电子顺磁共振实验【目的要求】1.测定DPPH 中电子的g 因数;2.测定共振线宽, 确定弛豫时间T2;3.掌握电子自旋试验仪的原理及使用。

【仪器用具】电子自旋试验仪。

【原 理】电子自旋的概念首先由 Pauli 于1924年提出。

1925年 S. A. Goudsmit 与 G . Uhlenbeek 利用这个概念解释某些光谱的精细结构。

近代观测核自旋共振技术, 由 Stanford 大学的 Bloch 与Harvrd 大学的Pound 同时于1946年独立设计制作, 遂后用它去观察电子自旋。

本实验的目的是观察电子自旋共振现象, 测量DPPH 中电子的g 因数及共振线宽。

一. 电子的轨道磁矩与自旋磁矩由原子物理可知, 对于原子中电子的轨道运动,与它相应的轨道磁矩 为2l l ee p m μ=- (2-1) 式中 为电子轨道运动的角动量, e 为电子电荷, 为电子质量, 负号表示由于电子带负电, 其轨道磁矩方向与轨道角动量的方向相反, 其数值大小分别为 ,原子中电子除轨道运动外还存在自旋运动。

根据狄拉克提出的电子的相对论性波动方程——狄拉克方程, 电子自旋运动的量子数S = l /2, 自旋运动角动量 与自旋磁矩 之s s ee p m μ=- (2-2) 其数值大小分别为,比较式(2-2)和(2—1)可知, 自旋运动电子磁矩与角动量之间的比值是轨道运动磁矩与角动量之间的比值的二倍。

原子中电子的轨道磁矩与自旋磁矩合成原子的总磁矩。

对于单电子的原子, 总磁矩 与角动量 之间有2j ee j g p m μ=- (2-3) 其中 (1)(1)(1)12(1)j j l l s s g j j +-+++=++ (2-4) g 称为朗德g 因数。

由式(2-4)可知, 对于单纯轨道运动g 因数等于1;对于单纯自旋运动g 因数等于2。

引入回磁比 , 即j j p μγ= (2-5)其中em e g 2⋅-=γ (2-6) 在外磁场中, 和 的空间取向都是量子化的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 引

渡金属 d电子 的 自旋一 轨道相 互作用 的贡献 ( 单 S O耦合参数模型)该模型适用于 自 轨道耦合 , 旋一
作 用 较 强 的 过 渡金 属 离 子 与价 电子 自旋一 道耦 轨
钛 酸锡 ( n i ) 一 种 典 型 的压 电 铁 电材 S T Oa 是
料 , 传感 器 、 在 探测 器和 高 密度 随机存 储 器 等领域
具 有广 泛 的应用 前景 L 。在其 中掺人 杂 离 子 与 基 质 晶体 中金 属 离 子 的几何 线度 和 电荷 不 相 同 , 掺杂 络 离 子 的局 部 结 构 往往会 发 生变 化 , 这种 变化 将 影 响到 掺 杂 络 离
子 的光 学 、 学 和顺磁 共 振 ( P 等性 质 , 络离 磁 E R) 而
赵 安 庆 , 王敏 杰 , 朱连 轩
( 河南农业大学 理学院 , 河南 郑州 400) 5 0 2

要: 文章构建 了四方八 面体 ( O6 络离子 g因子的完全高阶微扰公式 , Mn ) 该公 式包含 中心离子 Mn 和 4 致 。令分 子轨道混合系数 一九以及 归一化系数 N 一M , 获得 g因子 的单 S O耦合 参数模型 , 该模 型计算
配体离子 0 一的 自旋一 2 轨道耦合对 g因子的贡献 ( S 双 O耦 合参数 模型 ) 用该公 式所 得的 g因子值 与实验值 ,

的( 0 )一络离子 g因子与实验值偏差较大 , 明配体 0 一 g因子有不可忽 略的贡献 。 Mn 6 说 2对 关键词 : 4 Mn 离子 ; 自旋一 道耦 合 ; 轨 晶场 结构 ; 微扰公式
第3 3卷 第 5期
21 0 0年 5月
合肥 工 业 大 学 学报 ( 自然科 学版)
J OURNAL HE OF FEIUNI VERS TY CHNOLOGY I OF TE
Vo. 3No 5 13 .
Ma 1 y 20 0
四方八 面体 络 离子 ( O68 Mn )一 电子 顺 磁 共 振 参 量 的研 究
Ab ta t Th o pe ehg - r e e t r a in f r u a r sa l h df rg f co si h er g n l sr c : e c m lt i h o d rp r u b t o m lsa ee tb i e o a t r nt etta o a o s
合较弱的配体构成 的络合物。但是 , 对于共价性 强 以及 配 体 价 电 子 的 自旋 一 道 耦 合 作 用 强 的络 轨 合物 , 体对 络离 子体 系 的 E R 配 P g的 贡献 明显 [ , 2 ]
这 时必 须采 用 双 S O耦 合参 数 模 型 , 同时 考 虑 中 心离 子 和 配体 的 自旋 一 道耦 合 相 互作 用 。例 如 轨
a r e e twih t eo s r e n . A n - O- a a ee d li b an d w h n — a d N£ N g e m n t h b e v d o e o eS p r m t rmo e so t ie e n 一 . Th ac ltdg d v ae r m h b ev dg g e ty wi h n - O- a a ee o e, ih s o ec lu ae e it sfo t eo s r e r a l t t eo eS p rm trm d lwh c h ws h t a h o ti u in o h ia d 一 c n n tb e lc e . h tt ec n rb t ft el n sO a o e n g e td o g Ke r s M n +i n p n o btc u l g;c y t l il tu t r ;p r u b t n f r l y wo d : 4 o ;s i- r i o p i n r sa eds r c u e e t r a i o mu a f o
o th d a M n ) cu t r. Th o u a n ov h o ti u i n o h p n o b tc u l g fo ca e r l( O6 l se s ef r lsi v l et ec n rb t ft e s i- r i o pi r m m o n b t h e ta o n +a d t el a d in 一( woS -a a trmo e) Th ac lt dg i o h t ec n r lin M 4 n h i n o sOz at - O p r me e d 1. g ec lua e si n
中 图分 类 号 : 3 07 7 文 献标 志码 : A 文 章编 号 :0 35 6 (0 0 0 —7 70 10 —0 0 2 1 ) 50 7 —3
S u yo R a a ee sf rt etta o a ca e r l( n )一 cu tr t d fEP p r m tr o h er g n l th d a M O6 。 lse o s
Z HAO -ig WANG nj , Z Anqn , Mi i HU i -u n -e La x a n
( lgeo ce c s Col fS in e ,H e n Ag iut r lUn v riy,Z n z o 0 02 e na rc lu a ie st he g h u45 0 ,Chi ) na
相关文档
最新文档