陕西省西安八十三中2017届高考数学二模试卷(解析版)(理科)
【陕西省师大附中】2017年高三年级第二次模考试题数学(理科)试卷(附答案)
P Q =( C .{1,0,1,2,3}-B .2-C .已知向量(1,1)a =,2(4,2)a b +=,则向量,a b 的夹角的余弦值为(B .310-C 8.执行如下图所示的程序框图(算法流程图),输出的结果是( )2y-的最大值为(1C.A B,则tan32i i1nnT b==∑,求n T .18.如图,在ABC △中,已知点D E 、分别在边AB BC 、上,且3AB AD =,2BC BE =. (1)用向量AB 、AC 表示DE ;(2)设6AB =,4AC =,60A =︒,求线段DE 的长.19.如图,AC 是圆O 的直径,点B 在圆O 上,30BAC ο∠=,BM AC ⊥交AC 于点M ,EA ⊥平面ABC ,FC EA ∥,4AC =,3EA =,1FC =.(1)证明:EM BF ⊥;(2)求平面BEF 与平面ABC 所成的锐二面角的余弦值.20.已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足||||PQ PA =.(1)求实数a b 、间满足的等量关系; (2)求线段PQ 长的最小值;(3)若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程.2,),在(2题中任选一题做答,如果多做,则按所做的第一题记分|||OB 的最大值.:不等式选讲. |1|x -+1(n n ++-)由题意可得:21DE DB BE AB BC =+=+21()AB AC AB =+-11AB AC =+ )由1162DE AB AC =+可得: 2222211111||()624DE DE AB AC AB AB AC AC==+=++664cos60473664=⨯+⨯⨯⨯︒+⨯=. )EA ⊥平面.又BM AC ⊥EA AC A =,BM ∴⊥平面.而EM ⊂平面AC 是圆O 的直径,∴ABC ∠又BAC ∠=EA ⊥平面EAM △与△EMF ∴∠MF BM M =而BF MBF ⊂平面(2)(理)如图,以∴(3,3,3),(3,1,1)BE BF =--=-设平面BEF 的法向量为(,,)n x y z =由0n BE =,0n BF =,得⎧-⎪⎨3x =得1y =,2z =,=(3,1,2)n ∴,所以取面ABC 的法向量为(0,0,3)AE =3,|n AE 〈〉=,Q为切点,22-OP OQ2+∞)(,2 <.OB=|||2cosπθ+∈2],4∴2sin(2陕西省2017年师大附中高三年级第二次模考试题数学(理科)试卷解析1.考点:1复数的运算;2复数与复平面内的点一一对应.2.【解析】因为,,所以;故选D.3.4.【解析】命题对任意的,都有的否定为;故选D.5.【解析】由题意,得,因为数列也是等比数列,所以,即,解得;故选C.点睛:本题若直接套用等比数列的求和公式进行求解,一是计算量较大,二是往往忽视“”的特殊情况,而采用数列的前三项进行求解,大大降低了计算量,也节省的时间,这是处理选择题或填空题常用的方法.6.【解析】因为向量,,所以,则向量的夹角的余弦值为;故选C.7.【解析】函数是偶函数,等价于,即;故选A.8.考点:程序框图.9.【解析】已知双曲线的离心率是2,故2===,解得=,所以==a+≥,当且仅当a2=时等号成立,故最小值是.故选A.10.11.【解析】因为函数为偶函数,所以,即函数的图象关于直线对称,即,又因为当时,,所以函数在上单调递增,在上单调递减,因为,所以,即;故选D.点睛:本题的难点是由函数为偶函数得到函数的图象关于直线对称,也是学生易错点,特别要强调为偶函数.12.点睛:在利用两角和与差公式或二倍角公式进行恒等变形时,记住一些常见变形可起到事半功倍的效果,如:;等.13.【解析】14.点睛:本题主要考查分段函数的图像与性质,其中分段函数的分段点是含有参数的,考查两个函数图像的交点,这是数形结合的数学思想,还考查了动态函数的观点.由于分段函数的分段点是含有参数的,所以需要将两个部分函数图像先行画出,并且画出的图像,然后平移,查看交点的个数,由此判断的取值范围.15.略16.考点:1、三棱锥的外接球;2、球面的表面积.17.18.【解析】试题分析:(1)现将转换为,然后利用题目给定的比例,将其转化为以为起点的向量的形式.(2)由(1)将向量两边平方,利用向量的数量积的概念,可求得.19.20.略21.【解析】试题分析:(1)求导,利用导函数的零点,研究导函数的符号变化,进而确定函数的极值点;(2)求导、作差、分离常数,将问题转化为,,再转化为求函数的最值问题;(3)利用数学归纳法进行证明22.考点:1.参数方程与普通方程互化;2.三角函数的最值.23.。
陕西省西安市第八十三中学2017届高三下学期第二次模拟考试理科综合试题(附答案)$774896
西安市第八十三中学2016~2017学年度第二学期高三年级第二次模拟考试(理综)试题命题人:任重枝黄平光李占旗注意事项:1.本试卷分第一部分(选择题)和第二部分(非选择题)两部分,共300分。
考试时间150分钟。
2.请将各题答案填涂在答题卡上。
3.可能用到的相对原子质量:H-1,C-12,O-16,Na-23,S-32,Cu-64第一部分(选择题,共126分)一、选择题(本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关于细胞结构和功能的叙述,正确的是A.原核生物的细胞中没有线粒体,只能通过厌氧呼吸获得能量B.细胞分化、衰老和癌变都会导致细胞形态、结构和功能发生变化C.核糖体是细胞内蛋白质的“装配机器”,主要由蛋白质和tRNA组成D.蓝藻有丝分裂前后,染色体数目一般不发生改变2.图甲表示人和植物的淀粉酶在不同pH条件下的活性,图乙表示a、b、c三种酶的活性受温度的影响的情况。
下列说法正确的是①植物和人的淀粉酶活性相同时,pH也可以相同②若环境由中性变成酸性,人淀粉酶的活性逐渐升高③a、b酶活性相同时,温度对酶的影响相同④c酶的最适温度应等于或大于40°CA.①②B.①④C.②③D.②④3.下列有关高中生物实验中实验材料、试剂的使用及实验现象的描述,正确的是A.用甲基绿染液单独对洋葱鳞片叶内表皮细胞染色,观察细胞内DNA的分布B.用蒸馏水对猪血细胞稀释处理后,再进行细胞膜制备实验C.用苏丹Ⅲ染液对花生组织切片进行染色,冲洗后可观察到橘黄色的脂肪颗粒D.用卡诺氏液对低温处理的根尖进行固定后,可直接制作临时装片4.下图表示细胞分裂和受精作用过程中核DNA含量和染色体数目的变化。
据图分析,下列叙述正确的是A.图中a、c表示有丝分裂,b表示减数分裂B. AC段和NO段形成的原因是DNA的复制C. 基因的分离发生在GH段,基因的自由组合发生在LM段D.GH段和OP段含有的染色体数目相同,且都含有同源染色体5.下列有关免疫细胞和免疫功能的叙述,错误的是A.机体内衰老、破损的细胞以及癌变细胞的识别和清除属于免疫系统的防卫功能B.记忆b细胞在相同抗原的再次刺激下能快速增殖分化为浆细胞,由浆细胞产生抗体C.对被病原体侵入的细胞、异体移植器官的细胞起免疫作用的主要是效应T细胞D.在特异性免疫过程中吞噬细胞与T细胞、T细胞与B细胞之间存在信息交流6.可可西里国家级自然保护区有高等植物约202种,以矮小的草本和垫状植物为主,木本植物极少;另外,还生活着藏羚羊、岩羊、野驴、白唇鹿、狼、雪豹、棕熊、秃鹫、猎隼、细菌、真菌等。
2017届高考模拟系列(二)数学(理)试题word版含解析
2017届高考模拟系列试卷(二) 数学试题【新课标版】(理科)注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的 1、设集合{}21,M x x x =-≤∈R ,{}21,02N y y x x ==-+≤≤,则()R M N ⋂ð等于 ( )A .RB .{}|1x x R x ∈≠且C .{}1D .∅ 2、在复平面内,复数2013ii 1iz =+-表示的点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限3、若sin 601233,log cos 60,log tan 30a b c ===,则( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>4、设数列{}n a 是公差不为零的等差数列,它的前n 项和为n S ,且1S 、2S 、4S 成等比数列,则41a a 等于( ) A .6B .7C .4D .35、已知点()1,0A -和圆222x y +=上一动点P ,动点M 满足2MA AP =,则点M 的轨迹方程是( )A .()2231x y -+=B .223()12x y -+=C .2231()22x y -+=D .223122x y ⎛⎫+-= ⎪⎝⎭6、命题“存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-”的否定为( )A .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-B .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<-C .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<-D .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≤-7、设a b <,函数()()2y x a x b =--的图象可能是( )8、程序框图如下:如果上述程序运行的结果S 的值比2013小,若使输出的S 最大,那么判断框中应填入( ) A .10k ≤ B .10k ≥ C .9k ≤ D .9k ≥9、图为一个空间几何体的三视图,其中俯视图是下边一个等边三角形,其内切圆的半径是1,正视图和侧视图是上边两个图形,数据如图,则此几何体的体积是( )A.3πB.23π C.3π D.43π10、在9212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .5376-B .5376C .84-D .8411、如果点P 在平面区域220140x y x x y -+≤⎧⎪≥-⎨⎪+-≤⎩上,点Q 在曲线(x -1)2+(y -1)2=1上,那么|PQ |的最小值为( )A1BC1- D.31 12、已知椭圆C :22221(0)x y a b a b+=>>的左右焦点为12,F F ,过2F 的直线与圆222()()x a y b b -+-=相切于点A ,并与椭圆C 交与不同的两点P ,Q ,如图,若A 为线段PQ 的靠近P 的三等分点,则椭圆的离心率为 ( )A .3B C D 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上 13、由曲线23y x =-和直线2y x =所围成的面积为 。
2017年陕西省高考数学试卷(理科)(全国新课标ⅱ)(解析版)
2017年陕西省高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2B.C.D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2B.﹣C.﹣D.﹣1二、填空题:本题共4小题,每小题5分,共20分。
2017年高考理科数学全国2卷-含答案.doc
2017 年普通高等学校招生全国统一考试理科数学( 全国2 卷)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
3 i 1.()1 iA . 1 2iB . 1 2iC . 2 iD . 2 i 2.设集合 1,2,4 ,x x 2 4x m 0 .若I1 ,则()A .1,3B . 1,0C . 1,3D . 1,53.我国古代数学名着《算法统宗》中有如下问题: “远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯” 意思是:一座 7 层塔共挂了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的2 倍,则塔的顶层共有灯()A .1 盏B .3 盏C .5 盏D .9 盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A . 90B . 63C . 42D . 362x 3y 3 05.设 x , y 满足约束条件2x 3y 3 0 ,则 z 2xy 的最小值是()y 3 0A . 15B . 9C . 1D . 96.安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由 1 人完成,则不同的安排方式共有()开始A .12 种B .18 种C .24 种D .36 种输入 a7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有 2 位优秀, 2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的 S=0,K=1成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩K ≤6 否C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩是8.执行右面的程序框图,如果输入的a1 ,则输出的 S ()S=S+a?KA .2B . 3C . 4D . 5222a= aC:a 2b 2a 0b9.若双曲线1( , )的一条渐近线被圆 x2y24 所截xyK=K+ 1得的弦长为 2,则 C 的离心率为()A .2B . 3C . 22 3输出 SD .3结束10.已知直三棱柱C1 1C1中,C 120o ,2 , C CC 11,则异面直线1与C 1 所成角的余弦值为()A. 3 B.15 C.10D. 32 5 5 311.若x 2 是函数 f (x) ( x2 ax 1)e x 1`的极值点,则 f (x) 的极小值为()A. 1B. 2e 3C.5e3uuur uuur uuur12.已知ABC 是边长为2的等边三角形,P为平面ABC内一点,则PA (PB PC ) 的最小值是()A. 2B. 3C.4D. 12 3二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2017年陕西省西安八十三中高考数学二模试卷(理科)
2017年陕西省西安八十三中高考数学二模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设集合A={x|x>1},集合B={a+2},若A∩B=∅,则实数a的取值范围是()A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)【答案】A【解析】解:∵A={x|x>1},集合B={a+2},若A∩B=∅,∴a+2≤1,即a≤-1,则实数a的范围为(-∞,-1],故选:A.由A与B,以及两集合的交集为空集,确定出a的范围即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.复数z1=cosx-isinx,z2=sinx-icosx,则|z1•z2|=()A.1B.2C.3D.4【答案】A【解析】解:复数z1=cosx-isinx,z2=sinx-icosx,则z1•z2=cosxsinx-cosxsinx+i(-cos2x-sin2x)=-i.则|z1•z2|=1.故选:A.直接利用复数的乘法以及三角函数的运算法则化简复数,然后求解复数的模.本题考查复数的代数形式混合运算,复数的模的求法,考查计算能力.3.已知a>0且a≠1,则log a b>0是(a-1)(b-1)>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】解:a>0且a≠1,则log a b>0⇔ ,或.(a-1)(b-1)>0⇔ ,或.故选:A.a>0且a≠1,则log a b>0⇔ ,或.(a-1)(b-1)>0⇔ ,或.即可判断出结论.本题考查了对数函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.某长方体的三视图如图,长度为的体对角线在正视图中的投影长度为,在侧视图中的投影长度为,则该长方体的全面积为()A.3+2B.6+4C.6D.10【答案】B【解析】解:设长方体的长,宽,高分别为x,y,z,由题意得:,解得:,故该长方体的表面积S=2(xy+xz+yz)=6+4,故选:B.设长方体的长,宽,高分别为x,y,z,根据已知求出长宽高,代入长方体表面积公式,可得答案.本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.5.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n},若a3=8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是()A.13,12B.13,13C.12,13D.13,14【答案】B【解析】解:设公差为d,由a3=8,且a1,a3,a7成等比数列,可得64=(8-2d)(8+4d)=64+16d-8d2,即,0=16d-8d2,又公差不为0,解得d=2此数列的各项分别为4,6,8,10,12,14,16,18,20,22,故样本的中位数是13,平均数是13故答案为B由题设条件,一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n},若a3=8,且a1,a3,a7成等比数列,设出公差为d,用公差与a3=8表示出a1,a7再由等比数列的性质建立方程求出公差,即可得到样本数据,再由公式求出样本的平均数和中位数本题考查等差数列与等比数列的综合,解题的关键是根据题设中数列的性质建立方程求出数列的各项,即求出样本数据,再由平均数与中位数的求法求出即可.6.x、y满足约束条件,若z=y-ax取得最大值的最优解不唯一,则实数a的值为()A.或-1B.2或C.2或1D.2或-1【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y-ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y-ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x-y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y-ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y-2=0,平行,此时a=-1,综上a=-1或a=2,故选:D作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论,同时需要弄清楚最优解的定义.7.已知向量=(x-1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2B.C.6D.9【答案】C【解析】解:∵⊥,∴(x-1,2)•(4,y)=0,化为4(x-1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.本题考查了⊥⇔=0、基本不等式的性质,属于基础题.8.已知三角形△ABC的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为()A.15B.18C.21D.24【答案】A【解析】解:根据题意设△ABC的三边长为a,a+2,a+4,且a+4所对的角为最大角α,∵sinα=,∴cosα=或-,当cosα=时,α=60°,不合题意,舍去;当cosα=-时,α=120°,由余弦定理得:cosα=cos120°==-,解得:a=3或a=-2(不合题意,舍去),则这个三角形周长为a+a+2+a+4=3a+6=9+6=15.故选:A.根据三角形ABC三边构成公差为2的等差数列,设出三边为a,a+2,a+4,根据最大角的正弦值求出余弦值,利用余弦定理求出a的值,即可确定出三角形的周长.此题考查了余弦定理,等差数列的性质,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.9.已知双曲线mx2-ny2=1(m>0,n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为()A. B. C. D.【答案】C【解析】解:双曲线mx2-ny2=1化为标准方程为:∵双曲线mx2-ny2=1(m>0,n>0)的离心率为2,∴∴m=3n椭圆mx2+ny2=1化为标准方程为:∴椭圆mx2+ny2=1的离心率的平方为=∴椭圆mx2+ny2=1的离心率为故选C.双曲线、椭圆方程分别化为标准方程,利用双曲线mx2-ny2=1(m>0,n>0)的离心率为2,可得m=3n,从而可求椭圆mx2+ny2=1的离心率.本题考查椭圆、双曲线的离心率,考查学生分析解决问题的能力,属于中档题.10.如图,矩形ABCD的四个顶点的坐标分别为A(0,-1),B(π,-1),C(π,1),D(0,1),正弦曲线f(x)=sinx和余弦曲线g(x)=cosx在矩形ABCD内交于点F,向矩形ABCD区域内随机投掷一点,则该点落在阴影区域内的概率是()A. B. C. D.【答案】B【解析】解根据题意,可得曲线y=sinx与y=cosx围成的区域,其面积为(sinx-cosx)dx=(-cosx-sinx)|=1-(-)=1+;又矩形ABCD的面积为2π,由几何概型概率公式得该点落在阴影区域内的概率是;故选B.利用定积分计算公式,算出曲线y=sinx与y=cosx围成的区域包含在区域D内的图形面积为S=2π,再由定积分求出阴影部分的面积,利用几何概型公式加以计算即可得到所求概率.本题给出区域和正余弦曲线围成的区域,求点落入指定区域的概率.着重考查了定积分计算公式、定积分的几何意义和几何概型计算公式等知识,属于中档题.11.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为()A. B. C. D.1【答案】C【解析】解:由题意可得F(,0),设P(,y0),显然当y0<0,k OM<0;当y0>0,k OM>0.要求k OM的最大值,设y0>0,则=+=+=+(-)=+=(+,),可得k OM==≤=,当且仅当y02=2p2,取得等号.故选:C.由题意可得F(,0),设P(,y0),要求k OM的最大值,设y0>0,运用向量的加减运算可得=+=(+,),再由直线的斜率公式,结合基本不等式,可得最大值.本题考查抛物线的方程及运用,考查直线的斜率的最大值,注意运用基本不等式和向量的加减运算,考查运算能力,属于中档题.12.定义域为R的偶函数f(x)满足对任意x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-log a(x+1)在(0,+∞)上至少有三个零点,则a的取值范围是()A.(0,)B.(0,)C.(0,)D.(0,)【答案】A【解析】解:∵f(x+2)=f(x)-f(1),令x=-1,则f(1)=f(-1)-f(1),∵f(x)是定义在R上的偶函数,∴f(1)=0.∴f(x)=f(x+2),则函数f(x)是定义在R上的,周期为2的偶函数,又∵当x∈[2,3]时,f(x)=-2x2+12x-18,令g(x)=log a(x+1),则f(x)与g(x)在[0,+∞)的部分图象如下图y=f(x)-log a(x+1)在(0,+∞)上至少有三个零点可化为f(x)与g(x)的图象在(0,+∞)上至少有三个交点,g(x)在(0,+∞)上单调递减,则,解得:0<a<,故选A.由题意可判断函数f(x)是定义在R上的,周期为2的偶函数,令g(x)=log a(x+1),画出f(x)与g(x)在[0,+∞)的部分图象如下图,将y=f(x)-log a(x+1)在(0,+∞)上至少有三个零点可化为f(x)与g(x)的图象在(0,+∞)上至少有三个交点,从而解出a的取值范围.本题考查了数形结合的思想,同时考查了学生的作图能力与转化能力,属于基础题.二、填空题(本大题共4小题,共20.0分)13.已知抛物线y=ax2的准线方程是y=-,则实数a的值为______ .【答案】1【解析】解:∵抛物线y=ax2化成标准方程为x2=y,∴2p=,可得=,焦点坐标为F(0,),准线方程:y=-再根据题意,准线方程为,∴-=-,可得a=1故答案为:1先化抛物线y=ax2为标准方程:x2=y,得到焦点坐标为F(0,),准线方程:y=-,再结合题意准线方程为,比较系数可得a=1.本题给出含有字母参数的抛物线方程,在已知准线的情况下求参数的值,着重考查了抛物线的标准方程与简单几何性质,属于基础题.14.在等比数列{a n}中,如果a1+a2=40,a3+a4=60,则a7+a8= ______ .【答案】135【解析】解:等比数列{a n}中,∵a1+a2=40,a3+a4=60,∴a5+a6=60×=90,a7+a8=90×=135.故答案为:135.等比数列{a n}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,由此利用a1+a2=40,a3+a4=60,能求出a7+a8.本题考查等比数列的通项公式的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.15.(x+y+z)8的展开式中项x3yz4的系数等于______ .(用数值作答)【答案】280【解析】解:(x+y+z)8的展开式表示8个因式(x+y+z)的积,故展开式中项x3yz4,即这8个因式中任意选出3个取x,从剩下的5个中任意选4个取z,最后的一个取y,即可得到含项x3yz4的项,故x3yz4的系数为等于••=280,故答案为:280.由条件利用二项式的意义以及组合的知识,求得展开式中x3yz4的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题16.已知函数,,>,若实数a、b、c互不相等,且满足f(a)=f(b)=f(c),则a+b+c的取值范围是______ .【答案】(8,23)【解析】解:作出f(x)的函数图象,如图:令log(x-3)+1=1,解得x=4.令log(x-3)+1=-1,解得x=19.设a<b<c,则a+b=4,4<c<19.∴8<a+b+c<23.故答案为(8,23).作出函数f(x)的图象,根据f(a)=f(b)=f(c),确定a,b,c的范围,即可得出a+b+c的取值范围.本题以三角函数和对数函数为例,考查了函数的零点与方程根个数讨论等知识点,利用数形结合,观察图象的变化,从而得出变量的取值范围是解决本题的关键.三、解答题(本大题共7小题,共82.0分)17.设函数f(x)=•,其中向量=(2cosx,1),=(cosx,sin2x),x∈R.(1)求f(x)的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC 的面积为,求的值.【答案】解:(1).∴函数的最小正周期.---------------(2分)令,,解得.∴函数的单调递减区间是,,.--------------(4分)(2)由,得,即,在中,∵0<A <π,∴<<.∴,解得.-(6分)又,解得,∴在△ABC中,由余弦定理得:a2=b2+c2-2bccos A=3,∴.---------8由得,,∴.--(10分)【解析】(1)利用向量的数量积通过二倍角公式,两角和的正弦函数化简函数的表达式,然后求f(x)的最小正周期,借助正弦函数的单调减区间求出函数的单调递减区间;(2)通过f(A)=2,利用三角形的内角,求出A的值,利用△ABC的面积为,求出的值,通过正弦定理求的值即可.本题是中档题,通过向量数量积考查三角函数的化简求值,三角函数的单调性,正弦定理的应用三角形的面积公式的应用,考查计算能力,常考题型.18.如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF∥CE且AF=2CE,G是线段BF上一点,AB=AF=BC=2.(Ⅰ)当GB=GF时,求证:EG∥平面ABC;(Ⅱ)求二面角E-BF-A的余弦值;(Ⅲ)是否存在点G,满足BF⊥平面AEG?并说明理由.【答案】(Ⅰ)证明:取AB中点D,连接GD,CD,又GB=GF,所以AF=2GD.因为AF∥CE且AF=2CE,所以GD平行且等于CE,四边形GDCE是平行四边形,所以CD∥EG因为EG⊄平面ABC,CD⊂平面ABC所以EG∥平面ABC.(Ⅱ)解:因为平面ABC⊥平面ACEF,平面ABC∩平面ACEF=AC,且AF⊥AC,所以AF⊥平面ABC,所以AF⊥AB,AF⊥BC因为BC⊥AB,所以BC⊥平面ABF.如图,以A为原点,建立空间直角坐标系A-xyz.则F(0,0,2),B(2,0,0),C(2,2,0),E(2,2,1),=(0,2,0)是平面ABF的一个法向量.设平面BEF的法向量=(x,y,z),则令y=1,则z=-2,x=-2,所以=(-2,1,-2),所以cos<,>==,由题知二面角E-BF-A为钝角,所以二面角E-BF-A的余弦值为-.(Ⅲ)解:因为=(-2,0,2)•(2,2,1)=-20≠0,所以BF与AE不垂直,所以不存在点G满足BF⊥平面AEG.【解析】(Ⅰ)当GB=GF时,根据线面平行的判定定理即可证明EG∥平面ABC;(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角E-BF-A的余弦值;(Ⅲ)根据线面垂直的判定定理和性质定理,建立条件关系即可得到结论.本题主要考查线面平行的判定以及空间二面角的计算,建立空间直角坐标系,利用向量法是解决本题的关键.19.一个盒子装有六张卡片,上面分别写着如下六个函数:f1(x)=x3,f2(x)=5|x|,f3(x)=2,f4(x)=,f5(x)=sin(-x),f6(x)=xcosx.(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.【答案】解:(Ⅰ)f1(x)=x3为奇函数,f2(x)=5|x|,为偶函数,f3(x)=2为偶函数,f4(x)=为奇函数,f5(x)=sin(-x)=cosx为偶函数,f6(x)=xcosx为奇函数.所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;故基本事件总数为+=12.满足条件的基本事件为两张卡片上写的函数均为奇函数,故满足条件的基本事件个数为.故所求概率为P==.(Ⅱ)ξ可取1,2,3,4.P(ξ=1)==,P(ξ=2)=•=,P(ξ=3)=••=,P(ξ=4)=•••=.故ξ的分布列为Eξ=++4×=.∴ξ的数学期望为.【解析】(Ⅰ)老远函数的奇偶性的定义先判定函数的奇偶性.所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;可得基本事件总数.再利用古典概率计算公式即可得出.(II)老远古典概率计算公式、相互独立事件的概率计算公式可得概率,分布列及其数学期望.本题考查了相互独立事件的概率计算公式、随机变量的分布列及其数学期望计算公式、函数的奇偶性,考查了推理能力与计算能力,属于中档题.20.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足=′,当P 在圆C上运动时,点M的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.【答案】解:(I)设M(x,y),∵P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足=′,当P在圆C上运动时,点M的轨迹为曲线E.∴P(x,2y)在圆C:x2+y2=4上,∴x2+4y2=4,即曲线E的方程为:=1,…(4分)(II)经检验,当直线l⊥x轴时,题目条件不成立,∴直线l存在斜率.设直线l:y=kx+2.设C(x1,y1),D(x2,y2),则,∴(1+4k2)x2+16kx+12=0.…(6分)由△=(16k)2-4(1+4k2)-12>0,得k2>.,….①,,…②.…(8分)又由=,得,将它代入①,②得k2=1,k=±1(满足k2>).所以直线l的斜率为k=±1.所以直线l的方程为y=±x+2.…(12分)【解析】(I)设M(x,y),则P(x,2y)在圆C:x2+y2=4上,由此能求出曲线E的方程.(II)设直线l:y=kx+2,联立,得(1+4k2)x2+16kx+12=0,由此利用根的判别式、韦达定理、向量,结合已知条件能求出直线l的方程.本题考查曲线方程、直线方程的求法,考查椭圆、射影、圆、直线方程、根的判别式、韦达定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.21.设函数f(x)=x2-mlnx,h(x)=x2-x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.【答案】解:(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2-mlnx≥x2-x,mlnx≤x,即:m≤在(1,+∞)上恒成立,因为在(1,+∞)上的最小值为:e,∴m≤e.实数m的取值范围:m≤e(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,即:k(x)=x-2lnx-a,设y1=x-2lnx,y2=a,分别画出它们的图象,由图得:实数a的取值范围(2-2ln2,3-2ln3];(3)假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2-mlnx在x=处取得极小值即可.∵f(x)=x2-mlnx∴f′(x)=2x-m×,将x=代入得:1-2m=0,∴m=故存在实数m=,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性.【解析】(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2-mlnx≥x2-x,转化为即:m≤在(1,+∞)上恒成立,从而得出实数m的取值范围.(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,即:k (x)=x-2lnx-a,设y1=x-2lnx,y2=a,分别画出它们的图象,由图得实数a的取值范围.(3)先假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2-mlnx在x=处取得极小值即可.数形结合思想是解析函数图象交点个数、函数零点个数中最常用的方法,即画出满足条件的图象,然后根据图象直观的分析出答案,但数形结合的前提是熟练掌握各种基本初等函数的图象和性质.22.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.【答案】解:(I)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,∴曲线C的直角坐标方程为y2=4x.(II)将代入y2=4x,得sin2α•t2+(2sinα-4cosα)t-7=0,所以,所以,或,即或.【解析】(I)对极坐标方程两边同乘ρ,得到直角坐标方程;(II)将l的参数方程代入曲线C的普通方程,利用参数意义和根与系数的关系列出方程解出α.本题考查了极坐标方程与直角坐标方程的转化,桉树方程的几何意义,属于基础题.23.已知函数f(x)=log2(|x+1|+|x-2|-a).(Ⅰ)当a=7时,求函数f(x)的定义域;(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.【答案】解:(Ⅰ)由题设知:|x+1|+|x-2|>7;①当x>2时,得x+1+x-2>7,解得x>4;②当1≤x≤2时,得x+1+2-x>7,无解;③当x<-1时,得-x-1-x+2>7,解得x<-3;∴函数f(x)的定义域为(-∞,-3)∪(4,+∞);(Ⅱ)解:不等式f(x)≥3,即|x+1|+|x-2|≥a+8;∵x∈R时,恒有|x+1|+|x-2|≥|(x+1)-(x-2)|=3;又不等式|x+1|+|x-2|≥a+8解集是R;∴a+8≤3,即a≤-5;∴a的最大值为-5.【解析】(Ⅰ)a=7时便可得出x满足:|x+1|+|x-2|>7,讨论x,从而去掉绝对值符号,这样便可求出每种情况x的范围,求并集即可得出函数f(x)的定义域;(Ⅱ)由f(x)≥3即可得出|x+1|+|x-2|≥a+8恒成立,而可求出|x+1|+|x-2|≥3,这样便可得出3≥a+8,解出该不等式即可得出实数a的最大值.本题考查对数的真数大于0,函数定义域的定义及求法,不等式的性质,以及含绝对值不等式的解法,恒成立问题的处理方法.。
2017年陕西省高考数学试卷与解析PDF(理科)(全国新课标ⅱ)
2017年陕西省高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1二、填空题:本题共4小题,每小题5分,共20分。
2020届陕西省西安市2017级高三下学期第二次教学质量检测数学(理)试卷及解析
2020届陕西省西安市2017级高三下学期第二次教学质量检测数学(理)试卷★祝考试顺利★(解析版)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知R 是实数集,集合{}|2A x Z x =∈<,{}|210B x x =-≥,则()R AC B =( ) A. 1,12⎡⎤⎢⎥⎣⎦ B. {}1 C. {}1,0- D. 1,2⎛⎫-∞ ⎪⎝⎭ 【答案】C【解析】先求得的集合{}1,0,1A =-,1|2B x x ⎧⎫=≥⎨⎬⎩⎭,进而得到R C B ,再根据集合的交集的运算,即可求解.【详解】由题意,集合{}{}|21,0,1A x Z x =∈<=-,{}1|210|2B x x x x ⎧⎫=-≥=≥⎨⎬⎩⎭, 所以1|2R C B x x ⎧⎫=<⎨⎬⎩⎭,所以(){}1,0R A C B =-.故选:C . 2. 已知i 是虚数单位,复数31i z i +=+,则复数z 的共扼复数为( ) A. 12i +B. 12i -C. 2i +D. 2i -【答案】C【解析】由复数的除法运算求出z 后,根据共轭复数概念得结论. 【详解】∵()()()()3134221112i i i i z i i i i +-+-====-++-,∴z 的共轭复数为2z i =+. 故选:C .3. 已知向量()5,a m =,()2,2b =-,若()a b b -⊥,则实数m = ( )A. -1B. 1C. 2D. -2【答案】B【解析】 根据向量坐标的线性运算得到a b -,再根据向量垂直的坐标表示,得到关于m 的方程,解出m 的值,得到答案.【详解】因为向量()5,a m =,()2,2b =-所以()3,2a b m +=+,因为()a b b -⊥,所以()0a b b -⋅= 所以()6220m -+=解得1m =.故选:B.4. 62x ⎫⎪⎭的展开式中常数项为( ) A. 60B. 60-C. 192-D. 192【答案】A【解析】 利用二项式定理的通项公式,通过赋值法则问题得解.【详解】二项式62x ⎫⎪⎭的展开式的通项公式为()33162r r r x r T C x -+=⋅-⋅, 令3302r -=,求得2r .可得展开式中常数项为()226260C -=. 故选:A . 5. 某公司生产A ,B ,C 三种不同型号轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,若样本中A 种型号的轿车比B 种型号的轿车少8辆,则n =( )A. 96B. 72C. 48D. 36。
2017届高三第二次模拟考试 数学理 (含答案)word版
2017年高考考前适应性训练数学(理工农医类)本试卷共4页,分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数ii ++113的虚部是A.i -B.1-C.iD.12.设集合⎭⎬⎫⎩⎨⎧=+=143422y x x A ,{}2x y y B ==,则B A ⋂=A.[]2,2-B.[]2,0C.0.4D.0.83.在某项测量中,测量结果ξ服从正态分布()(σσ2,1N >)0,若ξ在(0.2)内取值的概率为0.8,则ξ在()1,0内取值的概率为 A.0.1B.0.2C.0.4D.0.84. 已知两条直线 a ,b 与两个平面α、αβ⊥b ,,则下列命题中正确的是 ①若,//αa 则b a ⊥;②若b a ⊥,则a//α;③若β⊥b ,则βα// ; ④若βα⊥,则b//β. A. ①③B.②④C.①④D.②③5.已知点P 在圆522=+y x 上,点Q (0,—1),则线段PQ 的中点的轨迹方程是 A.022=-+x y xB.0122=-++y y x C.0222=--+y y xD.022=+-+y x y x6.已知a x x p ≥-+-910:的解集为R ,aq 1:<1,则⌝p 是q 的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表: 附:参考公式及数据: (1)卡方统计量()()()()()22122111222112112211222112n n n n n n n n n n n n n x ++++-=(其中)22211211n n n n n +++=;(2)独立性检验的临界值表:则下列说法正确的是A.有99%的把握认为环保知识测试成绩与专业有关B.有99%的把握认为环保知识测试成绩与专业无关C.有95%的把握认为环保知识测试成绩与专业有关D.有95%的把握认为环保知识测试成绩与专业无关8.函数()(()⎩⎨⎧≤++-=0142ln 2x x x x x x x f 的零点个数为A.0B.1C.2D.39.如图为某个几何体的三视图,则该几何体的侧面积为 A.π416+ B.π412+ C.π816+ D.π812+10.已知函数()x f 的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,()()[]()1212x x x f x f --<0恒成立,设()()3,2,21f c f b f a ==⎪⎭⎫ ⎝⎛-=,则a 、b 、c 的大小关系为 A.c >a >bB.c >b >aC.a >c >bD.b >a >c11.已知双曲线154:22=-y x C 的左、右焦点分别为F 1、F 2,P 为C 的右支上一点,且212F F PF =,则21PF ⋅等于A.24B.48C.50D.5612.对于定义域为D 的函数()x f ,若存在区间[](a D b a M ⊆=,<)b ,使得(){}M M x x f y y =∈=,,则称区间M 为函数()x f 的“等值区间”.给出下列四个函数:①();2xx f =②();3x x f =③();sin x x f =④().1log 2+=x x f则存在“等值区间”的函数的个数是A.1个B.2个C.3个D.4个>)0第II 卷(非选择题 共90分)注意事项:1.将第II 卷答案用0.5mm 的黑字签字笔答在答题纸的相应位置上。
2017届高三第二次教学质量检测数学理试题(12页有答案)
-1012}012}01}-101}-1012} 23B.5A.4C.D.3[+高三年级第二次教学质量检测试题理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,,,,,B={x|-2<x≤2},则A B=A.{-1,,,B.{-1,,C.{-2,,,D.{-2,,,,2.复数2-i1+i对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量a=(2,-1),b=(3,x),若a⋅b=3,则x=A.3B.4C.5D.64.已知双曲线x2y2-a b23=1的一条渐近线方程为y=x,则此双曲线的离心率为457445.已知条件p:x-4≤6;条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是A.(-∞,-1]B.(-∞,9]C.1,9]D.[9,∞)6.运行如图所示的程序框图,输出的结果S=A.14B.30C.62D.1268.已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题不正确的是A.πA.332D.27.(x-1)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数是xA.56B.35C.-56D.-35...A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l//m,l⊂/α,m⊂α,则l//αC.若α⊥β,αβ=l,m⊂α,m⊥l,则m⊥βD.若α⊥β,m⊥α,n⊥β,,则m⊥n9.已知f(x)=sin x+3cos x(x∈R),函数y=f(x+ϕ)的图象关于直线x=0对称,则ϕ的值可以是πππB.C.D.263410.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为1528,则其中女生人数是A.2人B.3人C.2人或3人D.4人11.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B(点A在x轴下方),点A与1点A关于x轴对称,若直线AB斜率为1,则直线A B的斜率为12B.3C.12.下列结论中,正确的有①不存在实数k,使得方程x ln x-1x2+k=0有两个不等实根;2②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为π6;③函数y=ln与y=ln tan x2是同一函数;④在椭圆x2y2+a2b2=1(a>b>0),左右顶点分别为A,B,若P为椭圆上任意一点(不同于A,B),则直线PA与直线PB斜率之积为定值.A.①④B.①③C.①②D.②④13.已知等比数列{a}的前n项和为S,且a+a=5n2414.已知实数x、y满足约束条件⎨y≥2,则z=2x+4y的最大值为______.⎪x+y≤6②若a∈(0,1),则a<a1+11-x是奇函数(第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题~21题为必考题,每个试题考生都必须做答.第22题、第23题为选考题,考生根据要求做答.二.填空题:本大题共4小题;每小题5分,共20分.5,a+a=,则S=__________.n13246⎧x≥2⎪⎩15.一个几何体的三视图如图所示,则这个几何体的外接球的半径为__________.16.下列命题正确是.(写出所有正确命题的序号)①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;③函数f(x)=ln;三.解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC中,角A、B、C的对边分别为a,b,c,且a=3,b=4,B=A+高三理科数学试题和答案第3页共6页π2., 20 40 60 80 ,(1)求 cos B 的值;(2)求 sin 2 A + sin C 的值.18.(本小题满分 12 分)如图,三棱柱 ABC - A B C 中,侧棱 AA ⊥ 平面 ABC , ∆ABC 为等腰直角三角形,1 1 1 1∠BAC = 90 ,且 AA = AB , E , F 分别是 C C , BC 的中点.1 1(1)求证:平面 AB F ⊥ 平面 AEF ;1(2)求二面角 B - AE - F 的余弦值.119.(本小题满分 12 分)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0 100],样本数据分组为第一组[0, ),第二组[20, ),第 三组 [40, ),第四组 [60, ),第五组 [80 100].(1)求直方图中 x 的值;(2)如果年上缴税收不少于 60 万元的企业可申请政策优惠,若共抽取企业 1200 家,试估计有多少企业可以申请政策优惠;(3)从所抽取的企业中任选 4 家,这 4 家企业年上缴税收少于 20 万元的家数记为 X ,求 X 的分布列和数学期望.(以直方图中的频率作为概率)= 1(a > b > 0) 经过点 P (2, 2) ,离心率 e = ,直线 l 的方程为 220.(本小题满分 12 分)已知椭圆 C : x 2 y 2+ a 2 b 22 2x = 4 .(1)求椭圆 C 的方程;(2)经过椭圆右焦点 F 的任一直线(不经过点 P )与椭圆交于两点 A , B ,设直线 AB 与l 相交于点 M ,记 P A , PB , PM 的斜率分别为 k , k , k ,问:是否存在常数 λ ,使得1 2 3k + k = λ k ?若存在,求出 λ 的值,若不存在,说明理由.12321.(本小题满分 12 分)已知函数 f ( x ) = ax + ln x ,其中 a 为常数,设 e 为自然对数的底数.(1)当 a = -1 时,求 f ( x ) 的最大值;(2)若 f ( x ) 在区间 (0, e ] 上的最大值为 -3 ,求 a 的值;(3)设 g ( x ) = xf ( x ), 若 a > 0, 对于任意的两个正实数 x , x ( x ≠ x ) ,1 2 1 2证明: 2 g ( x 1 + x 2) < g ( x ) + g ( x ) .1 2请考生在第 22、23 二题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用⎪⎪ 5⎩17.解:(1)∵ B = A + , ∴ A = B -, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1 分 ==2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分 10 分)选修 4-4:坐标系与参数方程⎧3 x =- t + 2 在直角坐标系 xOy 中,直线 l 的参数方程为 ⎨ ( t 为参数),以原点 O 为极点, x⎪ y = 4 t ⎪5轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为 ρ = a sin θ .(1)若 a = 2 ,求圆 C 的直角坐标方程与直线 l 的普通方程;(2)设直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,求 a 的值.23.(本小题满分 10 分)选修 4-5:不等式选讲已知函数 f ( x ) = 2x -1 + 2x + 5 ,且 f ( x ) ≥ m 恒成立.(1)求 m 的取值范围;(2)当 m 取最大值时,解关于 x 的不等式: x - 3 - 2x ≤ 2m - 8 .高三第二次质量检测理科数学答案一.ADABD CCABC CA二.13.631614.20 15. 61 16.①③ππ2 23 4 又 a = 3, b = 4 ,所以由正弦定理得 ,sin Asin B34所以, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3 分- cos B sin B所以 -3sin B = 4cos B ,两边平方得 9sin 2 B = 16cos 2 B ,3又 sin 2 B + cos 2 B = 1 ,所以 cos B = ± , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分5π 3而 B > ,所以 cos B = - . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 53 4(2)∵ cos B = - ,∴ sin B = , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分5 5∴面 ABC ⊥ 面 BB C C..........2 分+ = 则 F (0,0,0) , A ( 22 2 2 2 2 1 ∵ B = A +π2,∴ 2 A = 2 B - π ,∴ sin 2 A = sin(2 B - π ) = - sin 2 B ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分4 3 24= -2sin B cos B = -2 ⨯ ⨯ (- ) = ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分5 5 25又 A + B + C = π ,∴ C = 3π 2- 2 B ,7 24 7 31∴ sin C = - cos 2 B = 1 - cos 2 B = .∴ sin 2 A + sin C = . (12)25 25 25 25分18.解答: (1)证明:∵ F 是等腰直角三角形 ∆ABC 斜边 BC 的中点,∴ AF ⊥ BC .又∵侧棱 AA ⊥ 平面ABC ,11 1∴ AF ⊥ 面 BB 1C 1C , AF ⊥ B 1F .…3 分设 AB = AA = 1 ,则1,EF= , .∴ B F 2 + EF 2 = B E 2 ,∴ B F ⊥ EF ........... 4 分1 11又 AF ⋂ EF = F ,∴ B F ⊥平面 AEF .…1而 B F ⊂ 面 AB F ,故:平面 AB F ⊥ 平面 AEF . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5 分1 11(2)解:以 F 为坐标原点, FA , FB 分别为 x , y 轴建立空间直角坐标系如图,设 AB = AA = 1 ,12 2 1,0,0) , B (0, - ,1) , E (0, - , ) ,12 2 1 2 2AE = (- , - , ) , AB = (- , ,1) .… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 2 2 2 2由(1)知, B F ⊥平面 AEF ,取平面 AEF 的法向量:12m = FB = (0, ,1) . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分14 4 256 4 4 4 644 4 64 4 4 64设平面 B AE 的法向量为 n = ( x , y , z ) ,1由取 x = 3 ,得 n = (3, -1,2 2) (10),分设二面角 B - AE - F 的大小为θ ,1则 cos θ=|cos <>|=| |= .由图可知θ 为锐角,∴所求二面角 B - AE - F 的余弦值为.… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分119.解答: 解:(I )由直方图可得: 20 ⨯ (x + 0.025 + 0.0065 + 0.003 ⨯ 2) = 1解得 x = 0.0125 .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分(II )企业缴税收不少于 60 万元的频率 = 0.003 ⨯ 2 ⨯ 20 = 0.12 , ∴1200 ⨯ 0.12 = 144 .∴1200 个企业中有144 个企业可以申请政策优惠.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(III ) X 的可能取值为 0,1,2,3,4 .由(I )可得:某个企业缴税少于 20 万元的概率 = 0.0125 ⨯ 20 = 0.25 =分1 3 81 1 3 27P ( X = 0) = C 0 ( )0 ( )4 = P ( X = 1) = C 1 ( )1 ( )3 = 41 3 27 1 3 3P ( X = 2) = C 2 ( )2 ( )2 = P ( X = 3) = C 3 ( )3 ( )1 =4 4 14 (5)X0 1 2 3 44 4 256∴ E ( X ) = 0 ⨯ 81+ = 1 ① 又e = , 所以 = = 4, a = 8,b 1 + 2k 2 1 + 2k 2, x x = x - 2 x - 22, k = k = 2k - 2 4 - 2 2P8125627 64 27 64 3 64 1 2561 3 1P ( X = 4) = C 4 ( )4 ( )0 =4...................................... 10 分............. 11 分27 27 3 1+ 1⨯ + 2 ⨯ + 3 ⨯ + 4 ⨯= 1. ....12 分25664 64 64 25620.解:(1)由点 P (2, 2) 在椭圆上得, 4 2 2 c 2 a 2 b 2 2 a 2②由 ①②得 c 2 2 2 = 4 ,故椭圆 C 的方程为 x 2 y 2+ = 1 ……………………..4 分 8 4(2)假设存在常数 λ ,使得 k + k = λ k .1 23由题意可设 AB 的斜率为k , 则直线AB 的方程为 y = k ( x - 2) ③代入椭圆方程x 2 y 2+ = 1 并整理得 (1+ 2k 2 ) x 2 - 8k 2 x + 8k 2 - 8 = 0 8 48k 2 8k 2 - 8设 A ( x , y ), B ( x , y ) ,则有 x + x = ④ ……………6 分 1 1 2 2 1 2 1 2在方程③中,令 x = 4 得, M (4,2 k ) ,从而 k = y 1 - 2 y 2 - 21 2 1,3 2= k - .又因为 A 、F 、B 共线,则有 k = k AF = k BF ,即有y当 a = -1 时, f ( x ) = - x + ln x , f ' ( x ) = -1 + 1①若 a ≥ - ,则 f ' ( x ) ≥ 0 ,从而 f ( x ) 在 (0, e ] 上是增函数,y1=2= k ……………8 分x - 2x - 21 2所以 k + k = 1 2 y - 2 y - 2 1 + 2 x - 2 x - 21 2= y y 1 11 +2 - 2( + )x - 2 x - 2 x - 2 x - 2 1 2 1 2= 2k - 2x 1 + x 2 - 4x x - 2( x + x ) + 41 212⑤ ……………10 分将④代入⑤得 k + k = 2k - 2 1 2 8k 2- 41 + 2k2 8k 2 - 8 8k 2- 2 + 41 + 2k2 1 + 2k 2= 2k - 2 ,又 k = k - 32 2 ,所以 k + k = 2k 1 2 3 . 故存在常数 λ = 2 符合题意…………12 分21.【解答】解:(1)易知 f ( x ) 定义域为 (0, +∞) ,1 - x= ,x x令 f ' ( x ) = 0 ,得 x = 1 .当 0 < x < 1 时, f ' ( x ) > 0 ;当 x > 1 时, f ' ( x ) < 0 . (2)分∴ f ( x ) 在 (0,1) 上是增函数,在 (1,+∞) 上是减函数.f ( x )max= f (1) = -1.∴函数 f ( x ) 在 (0, +∞) 上的最大值为 -1 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(2)∵ f '( x ) = a + 1 1 1, x ∈ (0, e ], ∈ [ , +∞) .x x e1e∴ f ( x )max= f (e ) = ae + 1 ≥ 0 ,不合题意. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分11② 若 a < - ,则由 f ' ( x ) > 0 ⇒ a +ex> 0 ,即 0 < x < -1a11由 f ' ( x ) < 0 ⇒ a +< 0 ,即 - < x ≤ e . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分xa从而 f ( x ) 在 (0, - ) 上增函数,在 (- (3)法一:即证 2a ( x + x 2) + 2( 12 )ln( 222 2 x 2 x21 1a a, e ) 为减函数∴ f ( x ) max 1 1 = f (- ) = -1 + ln(- ) a a1 1令 -1 + ln(- ) = -3 ,则 ln(- ) = -2a a∴- 11= e -2 -e 2 < -a ,即 a = -e 2.∵ e ,∴ a = -e 2 为所求 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分1 1 x + x x + x2 2 22 ) ≤ ax 2 + ax 2 + x ln x + x ln x 1 2 1 1 222a ( x + x ( x + x )21 2 )2 - ax 2 - ax 2 = a ⋅[ 1 21 2- x 2 - x 2 ]1 2( x - x )2= -a 1 2 2< 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 9 分另一方面,不妨设 x < x ,构造函数1 2k ( x ) = ( x + x )ln(1x + x12) - x ln x - x ln x ( x > x )1 1 1x + xx + x则 k ( x ) = 0 ,而 k ' ( x ) = ln 1 - ln x = ln 1 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分1x + x由 0 < x < x 易知 0 < 11< 1 , 即 k ' ( x ) < 0 , k ( x ) 在 ( x , +∞) 上为单调递减且连续, 1x + x故 k ( x ) < 0 ,即 ( x + x )ln( 11) < x ln x + x ln x 1 1相加即得证⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分1法二: g ' ( x ) = 2ax + 1 + ln x , g '' ( x ) = 2a + > 0.........9 分x故 g ' ( x ) 为增函数,不妨令 x > x 21令 h ( x ) = g ( x ) + g ( x ) - 2 g (1x + x12)( x > x )1h ' ( x ) = g '(x ) - g ' (x + x12) ......... 10 分易知 x > x + x x + x1 , 故h ' ( x ) = g '(x ) - g ' ( 12 2) > 0 (11)分而 h ( x ) = 0 , 知 x > x 时, h ( x ) > 0112(2)圆 C : x 2 + y - a ⎫2∴圆心 C 到直线的距离 d = 2- 8 得 a = 32 或 a = 32 ⎪ -4 x - 4, x < - 523.解 (1) f (x) = ⎨6, - 5⎩ 4 x + 4, x > 22 ≤ x ≤ ⎩3 - x - 2 x ≤4 ⎧ 3 ≤ x < 3 .所以,原不等式的解集为 ⎨⎧x x ≥ - ⎬ .故 h ( x ) > 0 , 即 2 g ( x 1 + x 2) < g ( x ) + g ( x )21 2 (12)分22.解 (1) a = 2 时,圆 C 的直角坐标方程为 x 2 + (y -1)2 = 1 ;直线 l 的普通方程为 4 x + 3 y - 8 = 0 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分⎛⎪ = ⎝ 2 ⎭a 2 4 ,直线 l : 4 x + 3 y - 8 = 0 ,∵直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,3a1 a5 = 2 ⨯ 2 ,11 .⎧2 ⎪1 ⎪2 ≤ x ≤ 2 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分⎪1 ⎪ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分当 - 5 12 时,函数有最小值 6 ,所以 m ≤ 6 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分另解:∵ 2x -1 + 2x + 5 ≥ (2x -1) - (2x + 5) = -6 = 6 .∴ m ≤ 6 .(2)当 m 取最大值 6 时,原不等式等价于 x - 3 - 2x ≤ 4 ,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分等价于 ⎨ x ≥ 3 ⎩ x - 3 - 2x ≤ 4 ⎧ x < 3 ,或 ⎨,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分可得 x ≥ 3 或 - 11 ⎫ ⎩ 3 ⎭⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分。
2017年高三年级第二次模考试题数学(理科)试卷
8.执行如下图所示的程序框图(算法流程图),输出的结果是()9.双曲线22221(0,0)x y a b a b -=>>的离心率为2,则213b a+的最小值为( )A .233B .33C .2D .110.如果实数x 、y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么z 42x y-=g 的最大值为( )A .1B .2C .12D .1411.已知偶函数π()2f x +,当ππ(,)22x ∈-时,13()sin f x x x =+.设(1)a f =,(2)b f =,(3)c f =,则( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<12.已知ABC △中,a b c ,,分别为角A B C ,,所对的边,且4a =,5b c +=,tan tan 33A B ++=tan tan A B g ,则ABC △的面积为( )A .32B .33C .332D .32第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷中相应的横线上.) 13.设n S 是等差数列{}n a 的前n 项和,已知,,则7S =________.14.直线y x =与函数22,()42,x mf x x x x m >⎧=⎨++≤⎩的图像恰有三个公共点,则实数m 的取值范围是________.15.设F 为抛物线214y x =-的焦点,与抛物线相切于点(4,4)P --的直线l 与x 轴交于点Q ,则PQF ∠=________.16.如右图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.设等差数列{}n a 的前n 项和为n S ,若1n n b S =,且3312a b =,5321S S +=,记23a =611a =i i1nnT b==∑,求n T .18.如图,在ABC △中,已知点D E 、分别在边AB BC 、上,且3AB AD =,2BC BE =. (1)用向量AB u u u r 、AC uuu r 表示DE u u u r;(2)设6AB =,4AC =,60A =︒,求线段DE 的长.19.如图,AC 是圆O 的直径,点B 在圆O 上,30BAC ο∠=,BM AC ⊥交AC 于点M ,EA ⊥平面ABC ,FC EA ∥,4AC =,3EA =,1FC =.(1)证明:EM BF ⊥;(2)求平面BEF 与平面ABC 所成的锐二面角的余弦值.20.已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足||||PQ PA =.(1)求实数a b 、间满足的等量关系; (2)求线段PQ 长的最小值;(3)若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程.。
2017年高三年级第二次模考试题数学(理科)试卷-答案
【解析】(Ⅰ)当2=a 时,)1ln(2)(2++-=x x x x f ,2121()2211x f x x x x -'=-+=++. 令()0f x '=得:22±=x . 又1->x ,且22(1,)(,)22x ∈--+∞U 时,()0f x '>, )22,22(-∈x 时,()0f x '<. 所以,函数)(x f 的极大值点为22-=x ,极小值点为22=x .(Ⅱ)因为1()21f x x a x '=-++,由()f x x '>,得x x a x >++-112, 即11++<x x a ,(01)x <<. 又1111111y x x x x =+=++->++(∵11x +>),∴1a <.(Ⅲ)(理)①当1=n 时,21111()21c f c c a c '==-++,又Θ01>c ,∴111>+c ,且1a <, ∴111112++-=-c a c c c )1(11111+-+++=a c c 2(1)10a a >-+=->.陕西省2017年师大附中高三年级第二次模考试题数学(理科)试卷解析1.考点:1复数的运算;2复数与复平面内的点一一对应.2.【解析】因为,,所以;故选D.3.4.【解析】命题对任意的,都有的否定为;故选D.5.【解析】由题意,得,因为数列也是等比数列,所以,即,解得;故选C.点睛:本题若直接套用等比数列的求和公式进行求解,一是计算量较大,二是往往忽视“”的特殊情况,而采用数列的前三项进行求解,大大降低了计算量,也节省的时间,这是处理选择题或填空题常用的方法.6.【解析】因为向向向向所以,向向向向向向向向向向向;故选C.7.【解析】函数是偶函数,等价于,即;故选A.8.考点:程序框图.9.【解析】已知双曲线的离心率是2,故2===,解得=,所以==a+≥,当且仅当a2=时等号成立,故最小值是.故选A.10.11.【解析】因为函数为偶函数,所以,即函数的图象关于直线对称,即,又因为当时,,所以函数在上单调递增,在上单调递减,因为,所以,即;故选D.点睛:本题的难点是由函数为偶函数得到函数的图象关于直线对称,也是学生易错点,特别要强调为偶函数.12.点睛:在利用两角和与差公式或二倍角公式进行恒等变形时,记住一些常见变形可起到事半功倍的效果,如:;等.13.【解析】14.点睛:本题主要考查分段函数的图像与性质,其中分段函数的分段点是含有参数的,考查两个函数图像的交点,这是数形结合的数学思想,还考查了动态函数的观点.由于分段函数的分段点是含有参数的,所以需要将两个部分函数图像先行画出,并且画出的图像,然后平移,查看交点的个数,由此判断的取值范围.15.略16.考点:1、三棱锥的外接球;2、球面的表面积.17.18.【解析】试题分析:(1)现将转换为,然后利用题目给定的比例,将其转化为以为起点的向量的形式.(2)由(1)将向量两边平方,利用向量的数量积的概念,可求得.19.20.略21.【解析】试题分析:(1)求导,利用导函数的零点,研究导函数的符号变化,进而确定函数的极值点;(2)求导、作差、分离常数,将问题转化为,,再转化为求函数的最值问题;(3)利用数学归纳法进行证明22.考点:1.参数方程与普通方程互化;2.三角函数的最值.23.11/ 11。
2017年陕西省西安八十三中高三理科二模数学试卷
2017年陕西省西安八十三中高三理科二模数学试卷一、选择题(共12小题;共60分)1. 若曲线在点处的切线平行于直线,则点的坐标为A. B. C. D.2. 复数,,则A. B. C. D.3. 已知且,则是的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4. 某长方体的三视图如图,长度为的体对角线在正视图中的投影长度为,在侧视图中的投影长度为A. B. C. D.5. 一组样本容量为的样本数据,它们组成一个公差不为的等差数列,若,且,,成等比数列,则此样本的平均数和中位数分别是A. ,B. ,C. ,D. ,6. 实数,满足约束条件若取得最大值的最优解不唯一,则实数的值为A. 或B. 或C. 或D. 或7. 已知向量,,若,则的最小值为A. B. C. D.8. 已知的三边长构成公差为的等差数列,且最大角的正弦值为,则这个三角形的周长为A. B. C. D.9. 已知双曲线的离心率为,则椭圆的离心率为A. B. C. D.10. 如图,矩形的四个顶点的坐标分别为,,,,正弦曲线和余弦曲线在矩形内交于点,向矩形区域内随机投掷一点,则该点落在阴影区域内的概率是A. B. C. D.11. 设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为A. B. C. D.12. 定义域为的偶函数满足对,有,且当时,.若函数在上至少有三个零点,则的取值范围是A. B. C. D.二、填空题(共4小题;共20分)13. 已知抛物线的准线方程是,则实数的值为.14. 在等比数列中,如果,,则.15. 的展开式中项的系数等于.(用数值作答)16. 已知函数,若实数,,互不相等,且满足,则的取值范围是.三、解答题(共6小题;共78分)17. 设函数,其中向量,,.(1)求的最小正周期与单调递减区间;(2)在中,、、分别是角、、的对边,已知,,的面积为,求的值.18. 如图,三角形和梯形所在的平面互相垂直,,,,且,是线段上一点,.(1)当时,求证: 平面;(2)求二面角的余弦值;(3)是否存在点满足平面?并说明理由.19. 一个盒子装有六张卡片,上面分别写着如下六个函数:,,,,,.(1)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(2)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.20. 已知是圆上的动点,在轴上的射影为,点满足,当在圆上运动时,点的轨迹为曲线.(1)求曲线的方程;(2)经过点的直线与曲线相交于点,,并且,求直线的方程.21. 设函数,.(1)当时,在上恒成立,求实数的取值范围;(2)当时,若函数在上恰有两个不同零点,求实数的取值范围;(3)是否存在实数,使函数和函数在公共定义域上具有相同的单调性?若存在,求出的值,若不存在,说明理由.22. 以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为为参数,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的直角坐标为,直线与曲线相交于,两点,并且,求的值.四、填空题(共1小题;共5分)23. 若函数对其定义域内的任意,,当时总有,则称为紧密函数,例如函数是紧密函数.下列命题:①紧密函数必是单调函数;②函数在时是紧密函数;③函数是紧密函数;④若函数为定义域内的紧密函数,,则;⑤若函数是紧密函数且在定义域内存在导数,则其导函数在定义域内的值一定不为零.其中的真命题是.答案第一部分1. D2. A 【解析】复数,,则.则.3. A4. B 【解析】设长方体的长,宽,高分别为,,,由题意得:解得:故该长方体的表面积.5. B【解析】设等差数列的公差为.由解得所以.样本的平均数为.中位数为.6. D 【解析】方法一:画出可行域,如图中阴影部分所示,可知点,,,则,,.要使对应最大值的最优解有无数组,只要或或,解得或.方法二:画出可行域,如图中阴影部分所示, 可变为 ,令 ,则由题意知 或 ,故 或 . 7. C【解析】因为, 所以 ,化为 ,即 .所以 ,当且仅当 时取等号. 8. A9. C【解析】双曲线 化为标准方程为:,因为双曲线 的离心率为 , 所以.所以 ,椭圆化为标准方程为:, 所以椭圆 的离心率的平方为.所以椭圆 的离心率为. 10. B【解析】根据题意,可得曲线 与 围成的区域, 其面积为又矩形 的面积为 ,由几何概型概率公式得该点落在阴影区域内的概率是.11. C 【解析】如图所示,设 ,则,即.设 ,由 ,得化简可得所以直线 的斜率为(当且仅当时取等号).12. A 【解析】在方程中,令得,再根据函数是偶函数可得.由此得,由此可得函数是周期为的周期函数,且其图象关于直线对称.又当时,,所以当时,,根据对称性可知函数在上的解析式也是,故函数在上的解析式是.根据其周期性画出函数在上的部分图象(如图).结合函数图象,只要实数满足且即可满足题意,故且,即.第二部分13.14.15.【解析】的展开式表示个因式的积,故展开式中项,即这个因式中任意选出个取,从剩下的个中任意选个取,最后的一个取,即可得到含项的项,故的系数为等于.16.【解析】作出的函数图象,如图:令,解得.令,解得.设,则,.所以.第三部分17. (1)由题意,得于是由得所以单调递减区间为.(2)由得,,于是或又因为,所以.由得,由余弦定理得,又由,得18. (1)取中点,连接,,如图一,又,所以,且.因为,且,所以,且,四边形是平行四边形,所以.因为平面,平面,所以 平面.(2)因为平面平面,平面平面,且,所以平面,所以,.因为,所以平面.如图二,以为原点,建立空间直角坐标系.则,,,,是平面的一个法向量.设平面的法向量,则即令,则,,所以,所以,由题知二面角为钝角,所以二面角的余弦值为.(3)因为,所以与不垂直,所以不存在点满足平面.19. (1)为奇函数,为偶函数,为偶函数,为奇函数,为偶函数,为奇函数.所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;故基本事件总数为.满足条件的基本事件为两张卡片上写的函数均为奇函数,故满足条件的基本事件个数为.故所求概率为.(2)可取,,,.,,,.故的分布列为.所以的数学期望为.20. (1)设,因为是圆上的动点,在轴上的射影为,点满足,当在圆上运动时,点的轨迹为曲线.所以在圆上,所以,即曲线的方程为:.(2)经检验,当直线轴时,题目条件不成立,所以直线存在斜率.设直线.设,,则所以.由,得.又由,得,将它代入,得,(满足).所以直线的斜率为.所以直线的方程为.21. (1)当时,在上恒成立,即:,,即:在上恒成立,因为在上的最小值为:,所以.实数的取值范围:,即:.(2)当时,若函数在上恰有两个不同零点,即:,设,,分别画出它们的图象,由图得:实数的取值范围;(3)假设存在实数,使函数和函数在公共定义域上具有相同的单调性,由图可知,只须函数在处取得极小值即可.因为,所以,将代入得:,所以,故存在实数,使函数和函数在公共定义域上具有相同的单调性.22. (1)因为,所以,所以曲线的直角坐标方程为.(2)将代入,得,所以,所以,或,即或.第四部分23. ②④【解析】因为函数对其定义域内的任意,,当时总有,则称为紧密函数,所以紧密函数的自变量与函数值是一一映射.单调函数一定是紧密函数,但紧密函数不一定是单调的,故①错误.在时是单调递增函数,故一定是紧密函数,故②正确.函数不是一一映射,不是紧密函数,故③错误.若函数为定义域内的紧密函数,,则,故④正确.函数是紧密函数且在定义域内存在导数,则其导函数在定义域内的值可以为零,故⑤错误.。
2020届陕西省西安中学2017级高三上学期二模考试数学(理)试卷无答案
陕西省西安中学高2020届高三第二次模拟考试理科数学试题注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1、设全集U R =,,则()R C A B = ( )A 、B 、C 、D 、2、已知数列{}n a 为等差数列,且,则的值为( )A...3.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布()()2105,0N σσ>,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( )A .150B .200C .300D .4004、给出下列四个结论:①若命题2000:R,10p x x x ∃∈++<,则2:R,10p x x x ⌝∀∈++≥;②集合A 满足:{}{},,,,a b A a b c d ⊆⊆ ,则符合条件的集合A 的个数为3;③命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则m ≤0”;④设复数z 满足2z i i ⋅=-,i 为虚数单位,复数z 在复平面内对应的点在第三象限; 其中正确结论的个数为( )A .1 B.2 C. 3 D.4{,A x y =={}2,x B y y x R ==∈{}0x x <{}01x x <≤{}12x x ≤<{}2x x >17134a a a π++=212tan()a a +5.直线0x y m -+=与圆22210x y x +--=有两个不同交点的一个充分不必要条件是( ) A .01m <<B .1m <C .41m -<<D .31m -<<6.函数4cos xy x e =-的图象可能是( )7.设0.130log 2,log 2a b == ;则( ).42()3A ab a b ab >+> .42()3B ab a b ab <+< .23()4C ab a b ab <+< .23()4D ab a b ab >+>8.已知等比数列{}n a 的前n 项和()131n n S R λλ-=⋅-∈ ,则872(1)S a += ( ) A .13B .3C . 6D . 9 9.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视 图,则该几何体的体积为( ).A.10B.43C.83D.16310.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF = ,则双曲线C 的离心率为( ).11.若函数()()2sin 22cos 02f x x x πθθ⎛⎫=+⋅<<⎪⎝⎭的图象过点()0,2,在下列结论中: (1) 函数()y f x =是周期函数 (2) 函数()y f x =关于直线x π= 对称 (3) 函数()y f x =关于点,02π⎛⎫⎪⎝⎭对称中心 (4). 函数()y f x =则正确结论的个数( )A . 1 B. 2 C. 3 D. 412、若函数2()ln (ln )()f x x x ax ax a R =+-∈ 有三个不同的零点,则实数a 的取值范围( )A . 21,1e e ⎛⎫⎪-⎝⎭ B .210,e e ⎛⎫ ⎪-⎝⎭ C . 22110,1e e e e ⎛⎫⎛⎫ ⎪ ⎪--⎝⎭⎝⎭ , D . 21,e e ⎛⎫+∞ ⎪-⎝⎭第Ⅱ卷(90分)本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上的相应位置.13、在三棱锥D ABC -中,CD ⊥底面ABC ,AC BC ⊥,5AB BD ==,4BC =,则此三棱锥的外接球的表面积为______.14.若非零向量 a b ,满足()2a a b ⊥+,则a b b +=.15、直线4y x =与曲线3y x = 在第一象限围成封闭图形的面积为a ,则5a x ⎛- ⎝的展开式中,x 的系数为16.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下: 甲说:“我或乙能中奖”;乙说:“丁能中奖”’; 丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的 同学是_____.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为,,a b c ,点D 为AC 的中点,已知22sin 1,42A BC a b +===. (1)求角C 的大小和BD 的长;(2)设ACB ∠的角平分线交BD 于E ,求CED ∆的面积.18.(本小题满分12分)在四棱锥P ABCD -中,BC BD DC ===,2AD AB PD PB ====.(Ⅰ)若点E 为PC 的中点,求证:BE ∥平面PAD ;(Ⅱ)当平面PBD ⊥平面ABCD 时,求二面角C PD B --的余弦值.19.(本小题满分12分)某学校为了解该校高三年级学生数学科学习情况,对广一模考试数学成绩进行分析,从中抽取了n 名学生的成绩作为样本进行统计,该校全体学生的成绩均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分组作出频率分布直方图如图(a )所示,样本中分数在[70,90)内的所有数据的茎叶图如图(b )所示.根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表(c ).(1)求n 和频率分布直方图中的x ,y 的值;(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3人,求至少有一人是可能录取为重本层次院校的概率;(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3名学生进行调研,用ξ表示所抽取的3名学生中为重本的人数,求随机变量ξ的分布列和数学期望.20.(本小题满分12分)已知函数()()ln 1x f x e x =-+(e 为自然对数的底数). (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若()()g x f x ax =-,a R ∈,试求函数()g x 极小值的最大值.BDPCEA21.(本小题满分12分)设椭圆2222:1x y C a b+=(0a b >>)圆22:2O x y +=与x 轴正半轴交于点A ,圆O 在点A处的切线被椭圆C 截得的弦长为.(Ⅰ)求椭圆C 的方程;(Ⅱ)设圆O 上任意一点P 处的切线交椭圆C 于点M N ,,试判断PM PN ⋅是否为定值?若为定值,求出该定值;若不是定值,请说明理由.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 1:x +y =1与曲线C 2:⎩⎨⎧x =2+2cos φ,y =2sin φ(φ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)写出曲线C 1,C 2的极坐标方程;(2)在极坐标系中,已知l :θ=α(ρ>0)与C 1,C 2的公共点分别为A ,B ,α∈⎝ ⎛⎭⎪⎫0,π2,当|OB ||OA |=4时,求α的值.23.(本小题满分10分)选修4-5:不等式选讲 设函数()1f x x =+.(Ⅰ)若()22f x x +>,求实数x 的取值范围;(Ⅱ)设()()()g x f x f ax =+(1a >),若()g x 的最小值为12,求a 的值.。
西安八十三中2016-2017学年高二下学期期中数学试卷(理科) 含解析
2016—2017学年陕西省西安八十三中高二(下)期中数学试卷(理科)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数z=﹣2+i,则复数z在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.n个连续自然数按规律排成表:根据规律,从2016到2018,箭头的方向依次为()A.↓→B.→↑C.↑→D.→↓3.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a >24.由直线x=1,x=2,曲线y=x2及x轴所围图形的面积为()A.3 B.7 C. D.5.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是()A. B.C.D.6.用数学归纳法证明“当n 为正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是( )A.假设n=k(k∈N*),证明n=k+1命题成立B.假设n=k(k为正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N*),证明n=k+1命题成立D.假设n=k(k为正奇数),证明n=k+2命题成立7.观察(x2)′=2x,(x4)′=4x3,(cosx)′=﹣sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(﹣x)=f(x),记g(x)为f(x)的导函数,则g(﹣x)=()A.﹣g(x) B.f(x) C.﹣f(x)D.g(x)8.函数f(x)=3x﹣4x3(x∈[0,1])的最大值是()A.1 B. C.0 D.﹣19.曲线y=ln(2x﹣1)上的点到直线2x﹣y+3=0的最短距离是()A.B.2C.3D.010.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B. C.2 D.二、填空题(本大题共5小题,每小题4分,共20分.请将答案写在答题卡相应位置)11.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= .12.已知函数f(x)=x3+ax2+bx+c在x=﹣2处取得极值,并且它的图象与直线y=﹣3x+3在点(1,0)处相切,则函数f(x)的表达式为.13.下列是关于复数的类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2;③已知a,b∈R,若a﹣b>0,则a>b.类比得已知z1,z2∈C,若z1﹣z2>0,则z1>z2;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中推理结论正确的是.14.= .15.在如下数表中,已知每行、每列中的数都成等差数列,那么,位于下表中的第n行第n+1列的数是.第1列第2列第3列…第1行123…第2行246…第3行369………………三、解答题(本大题共4小题,每小题10分,共40分.请将答案写在答题卡相应位置)16.已知复数z=m(m﹣1)+(m2+2m﹣3)i;当实数m取什么值时,复数z是:(1)实数(2)虚数(3)纯虚数(4)零.17.已知函数f(x)=x3﹣ax2﹣3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.(2)若x=3是f(x)的极值点,求f(x)的单调区间及极值.18.已知a,b,c是互不相等的实数,求证:由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.19.已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.2016—2017学年陕西省西安八十三中高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数z=﹣2+i,则复数z在复平面内对应的点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】A4:复数的代数表示法及其几何意义.【分析】本题考查复数代数表示的几何意义,由几何意义找出复数z=﹣2+i对应的点的坐标,即可选出正确答案【解答】解:由复数的几何意义知复数z=﹣2+i对应的复平面中的点的坐标是(﹣2,1),是第二象限中的点故选B2.n个连续自然数按规律排成表:根据规律,从2016到2018,箭头的方向依次为()A.↓→B.→↑C.↑→D.→↓【考点】F1:归纳推理.【分析】由题意,图中数字所处的位置呈周期性变化,可以观察出位置变化以4为周期,可选定1为开始位置,由周期性即可计算出2016所处的位置,即可选出正确选项【解答】解:选定1作为起始点,由图看出,位置变化规律是以4为周期,由于2016=4×504,可知第2016个数和4的位置相同,所以从2016到2018,箭头方向依次是↓→故选:A3.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a 的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a >2【考点】6D:利用导数研究函数的极值.【分析】题目中条件:“函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值”告诉我们其导数有两个不等的实根,利用二次方程根的判别式可解决.【解答】解:由于f(x)=x3+ax2+(a+6)x+1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选C.4.由直线x=1,x=2,曲线y=x2及x轴所围图形的面积为()A.3 B.7 C. D.【考点】6G:定积分在求面积中的应用.【分析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,曲线y=x2,直线x=1,x=2及x轴所围成的曲边梯形的面积为:S=∫12(x2)dx而∫12(x2)dx=()|12=﹣=∴曲边梯形的面积是故选C.5.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f (x)的导函数),下面四个图象中,y=f(x)的图象大致是()A. B.C.D.【考点】6A:函数的单调性与导数的关系.【分析】通过观察函数y=xf′(x)的图象即可判断f′(x)的符号以及对应的x的所在区间,从而判断出函数f(x)的单调性及单调区间,所以观察选项中的图象,找出符合条件的即可.【解答】解:由图象看出,﹣1<x<0,和x>1时xf′(x)>0;x ≤﹣1,和0≤x≤1时xf′(x)≤0;∴﹣1<x≤1时,f′(x)≤0;x>1,或x≤﹣1时,f′(x)≥0;∴f(x)在(﹣1,1]上单调递减,在(﹣∞,﹣1],(1,+∞)上单调递增;∴f(x)的大致图象应是B.故选B.6.用数学归纳法证明“当n 为正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是( )A.假设n=k(k∈N*),证明n=k+1命题成立B.假设n=k(k为正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N*),证明n=k+1命题成立D.假设n=k(k为正奇数),证明n=k+2命题成立【考点】RG:数学归纳法.【分析】根据数学归纳法证明数学命题的步骤,在第二步,假设n=k 时,命题成立,在此基础上推证n=k+2时,命题也成立.【解答】解:由于相邻的两个奇数相差2,根据数学归纳法证明数学命题的步骤,在第二步时,假设n=k(k为正奇数)时,x n+y n能被x+y整除,证明n=k+2时,x n+y n也能被x+y整除,故选D.7.观察(x2)′=2x,(x4)′=4x3,(cosx)′=﹣sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(﹣x)=f(x),记g(x)为f(x)的导函数,则g(﹣x)=()A.﹣g(x) B.f(x) C.﹣f(x)D.g(x)【考点】F1:归纳推理.【分析】由已知中(x2)’=2x,(x4)'=4x3,(cosx)'=﹣sinx,…分析其规律,我们可以归纳推断出,偶函数的导函数为奇函数,再结合函数奇偶性的性质,即可得到答案.【解答】解:由(x2)'=2x中,原函数为偶函数,导函数为奇函数;(x4)’=4x3中,原函数为偶函数,导函数为奇函数;(cosx)'=﹣sinx中,原函数为偶函数,导函数为奇函数;…我们可以推断,偶函数的导函数为奇函数.若定义在R上的函数f(x)满足f(﹣x)=f(x),则函数f(x)为偶函数,又∵g(x)为f(x)的导函数,则g(x)奇函数故g(﹣x)+g(x)=0,即g(﹣x)=﹣g(x),故选A.8.函数f(x)=3x﹣4x3(x∈[0,1])的最大值是()A.1 B. C.0 D.﹣1【考点】6E:利用导数求闭区间上函数的最值.【分析】先求导数,根据函数的单调性研究出函数的极值点,连续函数f(x)在区间(0,1)内只有一个极值,那么极大值就是最大值,从而求出所求.【解答】解:f’(x)=3﹣12x2=3(1﹣2x)(1+2x)令f'(x)=0,解得:x=或(舍去)当x∈(0,)时,f'(x)>0,当x∈(,1)时,f’(x)<0,∴当x=时f(x)(x∈[0,1])的最大值是f()=1故选A.9.曲线y=ln(2x﹣1)上的点到直线2x﹣y+3=0的最短距离是()A.B.2C.3D.0【考点】6H:利用导数研究曲线上某点切线方程.【分析】设与曲线y=ln(2x﹣1)相切且与直线2x﹣y+3=0平行的直线方程为:2x﹣y+m=0,设切点为(x0,y0),利用导数的几何意义可求出切点坐标,再利用点到直线的距离公式即可得出.【解答】解:y=ln(2x﹣1)的导函数为y′=,设与曲线y=ln(2x﹣1)相切且与直线2x﹣y+3=0平行的直线方程为:2x﹣y+m=0,设切点为(x0,y0)∴=2,解得x0=1,∴y0=ln(2x0﹣1)=ln1=0,∴切点为(1,0)∴切点(1,0)到直线2x﹣y+3=0的距离为=.即曲线y=ln(2x﹣1)上的点到直线2x﹣y+3=0的最短距离是.故选:A.10.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B. C.2 D.【考点】63:导数的运算.【分析】先求导,由f′(0)>0可得b>0,因为对于任意实数x都有f(x)≥0,所以结合二次函数的图象可得a>0且b2﹣4ac≤0,又因为,利用均值不等式即可求解.【解答】解:∵f’(x)=2ax+b,∴f’(0)=b>0;∵对于任意实数x都有f(x)≥0,∴a>0且b2﹣4ac≤0,∴b2≤4ac,∴c>0;∴,当a=c时取等号.故选C.二、填空题(本大题共5小题,每小题4分,共20分.请将答案写在答题卡相应位置)11.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= R (S1+S2+S3+S4) .【考点】F3:类比推理;LF:棱柱、棱锥、棱台的体积.【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故答案为:R(S1+S2+S3+S4).12.已知函数f(x)=x3+ax2+bx+c在x=﹣2处取得极值,并且它的图象与直线y=﹣3x+3在点(1,0)处相切,则函数f(x)的表达式为f(x)=x3+x2﹣8x+6 .【考点】6H:利用导数研究曲线上某点切线方程;6C:函数在某点取得极值的条件.【分析】求出f′(x),由函数在x=﹣2处取得极值得到f′(﹣2)=0,又∵函数与直线在点(1,0 )处相切,∴f′(1)=﹣3,联立两个关于a、b的二元一次方程,求出a和b,又由函数过点(1,0),代入求出c的值,则函数f(x)的表达式可求.【解答】解:∵f′(x)=3x2+2ax+b,∴f′(﹣2)=3×(﹣2)2+2a×(﹣2)+b=0,化简得:12﹣4a+b=0 ①又f′(1)=3+2a+b=﹣3 ②联立①②得:a=1,b=﹣8又f(x)过点(1,0)∴13+a×12+b×1+c=0,∴c=6.∴f(x)=x3+x2﹣8x+6.故答案为:f(x)=x3+x2﹣8x+6.13.下列是关于复数的类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2;③已知a,b∈R,若a﹣b>0,则a>b.类比得已知z1,z2∈C,若z1﹣z2>0,则z1>z2;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中推理结论正确的是①④.【考点】F3:类比推理.【分析】复数的加减法运算可以类比多项式的加减法运算法则,由向量加法的几何意义可以类比得到复数加法的几何意义,但是向量的模长和复数的模长不是通过列举法得到,还有两个复数不能比较大小.【解答】解:复数的加减法运算可以类比多项式的加减法运算法则,①正确由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2,这两个长度的求法不是通过类比得到的.故②不正确,对于③:已知z1,z2∈C,若z1﹣z2>0,则z1>z2;因两个复数不能比较大小,故③错;由向量加法的几何意义可以类比得到复数加法的几何意义.故④正确.故答案为:①④14.= .【考点】67:定积分.【分析】利用定积分的运算法则,找出被积函数的原函数,同时注意取绝对值符号简化计算.【解答】解:=8﹣+9﹣12﹣+8=故答案为:15.在如下数表中,已知每行、每列中的数都成等差数列,那么,位于下表中的第n行第n+1列的数是n2+n .第1列第2列第3列…第1行123…第2行246…第3行369………………【考点】83:等差数列;84:等差数列的通项公式.【分析】由表格可以看出第n行第一列的数为n,观察得第n行的公差为n,这样可以写出各行的通项公式,本题要的是第n行第n+1列的数字,写出通项求出即可.【解答】解:由表格可以看出第n行第一列的数为n,观察得第n行的公差为n,∴第n0行的通项公式为a n=n0+(n﹣1)n0,∵为第n+1列,∴可得答案为n2+n.故答案为:n2+n三、解答题(本大题共4小题,每小题10分,共40分.请将答案写在答题卡相应位置)16.已知复数z=m(m﹣1)+(m2+2m﹣3)i;当实数m取什么值时,复数z是:(1)实数(2)虚数(3)纯虚数(4)零.【考点】A2:复数的基本概念.【分析】对于复数z=a+bi (a,b∈R),(1)当且仅当虚部为0时是实数;(2)虚部不为0时是虚数;(3)当且仅当a=0,b≠0时,复数z是纯虚数;(4)当且仅当a=b=0时,复数z=0.【解答】解:(1)当且仅当m2+2m﹣3=0,解得:m=3或m=﹣1,即m=3或m=﹣1时复数是实数;(2)当且仅当m2+2m﹣3≠0,解得:m≠3且m≠﹣1,即m≠3且m≠﹣1时复数是虚数;(3)当且仅当,解得m=0,即m=0时,复数z=﹣3i为纯虚数;(4)当且仅当,解得m=1,即m=1时,复数z=0.17.已知函数f(x)=x3﹣ax2﹣3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.(2)若x=3是f(x)的极值点,求f(x)的单调区间及极值.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)对函数f(x)=x3﹣ax2﹣3x进行求导,转化成f′(x)在[1,+∞)上恒有f′(x)≥0,求出参数a的取值范围.(2)先求导,再根据f′(3)=0,求得a=5,再根据导数求出函数极值即可.【解答】解:(1)f′(x)=3x2﹣2ax﹣3,∵f(x)在[1,+∞)上是增函数,∴f′(x)在[1,+∞)上恒有f′(x)≥0,即3x2﹣2ax﹣3≥0在[1,+∞)上恒成立.则必有≤1且f′(1)=﹣2a≥0,∴a≤0;实数a的取值范围是(﹣∞,0].(2)∵f(x)=x3﹣ax2+3x.∴f′(x)=3x2﹣2ax+3.由题意有f′(3)=0,解得a=5,故f(x)=x3﹣5x2+3x,∴f′(x)=3x2﹣10x+3=(3x﹣1)(x﹣3)令f′(x)>0,解得:x>3或x<,令f′(x)<0,解得:<x<3,故f(x)在(﹣∞,)递增,在(,3)递减,在(3,+∞)递增,故f(x)极大值=f()=,f(x)极小值=f(3)=﹣9.18.已知a,b,c是互不相等的实数,求证:由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.【考点】FD:反证法的应用.【分析】本题是一个至少性问题,可以利用反证法证明,其步骤为:①否定命题的结论,即假设“任何一条抛物线与x轴没有两个不同的交点”成立→②根据函数的性质可以得到三个函数对应方程的△≤0均成立→③利用不等式的性质,同向不等式求和→④得到的式子与实数的性质相矛盾→⑤故假设不成立,原结论成立.【解答】解:假设题设中的函数确定的三条抛物线都不与x有两个不同的交点(即任何一条抛物线与x轴没有两个不同的交点),由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b得△1=(2b)2﹣4ac≤0,△2=(2c)2﹣4ab≤0,△3=(2a)2﹣4bc≤0.同向不等式求和得,4b2+4c2+4a2﹣4ac﹣4ab﹣4bc≤0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac≤0,∴(a﹣b)2+(b﹣c)2+(c﹣a)2≤0,∴a=b=c,这与题设a,b,c互不相等矛盾,因此假设不成立,从而命题得证.19.已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6K:导数在最大值、最小值问题中的应用;6B:利用导数研究函数的单调性.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f’(1)e x﹣1﹣f(0)x+⇒f’(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f’(1)e﹣1=1解得f’(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g’(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f’(x)>f’(0)=0;当x<0时,有f’(x)<f’(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h’(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F’(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为。
2017年高三第二次模拟考试 数学理(含答案)word版
辽宁省大连市2017年高三第二次模拟考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22题~第24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效,考试结束后,将本试卷和答题卡一并交回.参考公式:锥体体积公式13V Sh =,其中S 为底面面积,h 为高.用最小二乘法求线性回归方程系数公式12211ˆ,.ni ii ni x ynx y ba y bx xnx==-==--∑∑第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U=Z ,集合A={x ∈U|31x +≤1),则C u A= A .{1,0} B .{0,1}C .{一1,0,1)D .{一1,0,1,2}2.复数z 满足1(z i i i ⋅=+是虚数单位),则|z|=A .lB 2C .2D .43.若13sin cos (0,),tan αααπα-+=∈则=A 3B 3C .33D .-334.x ,y 的取值如右表,从散点图分析,y 与x 线性相关,且回归方程为 3.5 1.3y x =-,则m= A .15 B .16 C .16.2D .175.已知圆222:(2)(2)(0,0)C x p y p r r p -+-=>>过抛物线22y px =的焦点,则抛物线A .相切B .相交 c .相离 D .无法确定6.已知实数z 、y 满足不等式组2303270,210x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则x —y 的最小值为A .-3B .-2C .-1D .47.函数()f x 定义域为(a ,b ),则“()0f x '>在(a ,b )上恒成立”是“()f x 在(a ,b )上为增函数”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 8.已知程序框图如右图所示,则输出的s 为 A .22013—2 B .22013—1 C .22014 -2 D .22014—19.5个人排成一排,甲和乙不相邻,甲和丙也不相邻的不同排法种数为 A .24 B .36 C .48 D .6010.已知函数f (r )定义域为{x ∈R|x ≠0),对于定义域内任意x 、y , 都有()()(,).1f x f y f x y x +=>且时,f (x )>0,则 A .()f x 是偶函数且在(一∞,0)上单调递减 B .()f x 是偶函数且在(一∞,0)上单调递增 C .()f x 是奇函数且在(一∞,0)上单调递增D .()f x 是奇函数且在(一∞,0)上单调递减11.若关于x 2(0)ax a x m x x-=++>对给定的正数口有解,则实数m 的取值范围是A .0<m aB a ≤m<0C .0<m ≤aD .一a m<012.△ABC 中,已知AB 一77,AC=7.D 是边AC 上一点,将△ABD 沿BD 折起,得到三棱锥A-BCD .若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上'设BM=x ,则x 的取值范围为 A .(7) B .(0,7) C .7,7) D .(7,7)第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,满分20分.13.已知非零向量a ,b 满足+|a+b|一|a-b|,则<a , b>= .14.若函数141log (1)(0)1(),()22(0)x x x f x f x x -+≥⎧⎪=≤-⎨⎪<⎩则的 解集为 .15.某几何体的三视图如图所示,根据图中尺寸(单位:m ),可得该几何体的体积为____m 3. 16.已知数列{n a )满足10a =,对任意k ∈N*,有212,k k a a -,21k a +成公差为k 的等差数列,数列221(21),n n n n b a ++=则{b }的前n 项和S n .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满贫12分)三分球大赛是NBA 全明星周末的比赛项目之一,比赛一共有5个投篮点:底脚对称有两个,45度角对称有两个,另一个在弧顶.每个投篮点有5个球,其中4个橘色球投中了各得1分,最后1个花球投中了得2分,满分为30分.若某球员在任意一个投篮点的5次投篮中,每次投中的概率均为35. (I )求该球员在一个投篮点得分为4分的概率;(Ⅱ)该球员在五个投篮点投篮结束后,得分为4分的投篮点的个数为X 求EX .18.(本小题满分12分)已知向量a ,b 满足a=(-2 sinx ,33sinx ),b=(cosx ,cosx - sinx ),函数,()f x =a b ⋅ (x ∈R ). (I )将()f x 化成Asin ((x ωϕ+)(A>0,0,||ωϕπ><的形式; (Ⅱ)已知数列211()(*),224n n a n f n N ππ=-∈求{}n a 的前2n 项和S 2n .19.(本小题满分12分)如图,三棱柱ABC-A'B'C',cc'=2,BC'=2,BC=2,△ABC 是以BC 为底边的等腰三角形,平面AB C ⊥平面BCC'B',E 、F 分别为棱AB 、CC'的中点. (I )求证:EF ∥平面A'BC';(Ⅱ)若AC ≤2,且EF 与平面ACC'A'所成的角的余弦为73,求二面角C-AA'-B 的大小.20.(本小题满分12分)已知椭圆2234x y +=左顶点为A ,点B 、C 在椭圆上,且AB ⊥AC 。
(完整版)2017年高考理科数学全国卷2试题及答案
2017年普通高等学校招生全国统一考试理科数学(Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .23输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始10.已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( ) A.2 B.5 C.5D.3 11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( ) A.2- B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年陕西省西安八十三中高考数学二模试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的)1.设集合A={x|x>1},集合B={a+2},若A∩B=∅,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣∞,1]C.[﹣1,+∞)D.[1,+∞)2.复数z1=cosx﹣isinx,z2=sinx﹣icosx,则|z1•z2|=()A.1 B.2 C.3 D.43.已知a>0且a≠1,则log a b>0是(a﹣1)(b﹣1)>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.某长方体的三视图如图,长度为的体对角线在正视图中的投影长度为,在侧视图中的投影长度为,则该长方体的全面积为()A.3+2 B.6+4 C.6 D.105.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n},若a3=8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是()A.13,12 B.13,13 C.12,13 D.13,146.x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣17.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B.C.6 D.98.已知三角形△ABC的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为()A.15 B.18 C.21 D.249.已知双曲线mx2﹣ny2=1(m>0,n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为()A.B.C.D.10.如图,矩形ABCD的四个顶点的坐标分别为A(0,﹣1),B(π,﹣1),C (π,1),D(0,1),正弦曲线f(x)=sinx和余弦曲线g(x)=cosx在矩形ABCD 内交于点F,向矩形ABCD区域内随机投掷一点,则该点落在阴影区域内的概率是()A.B.C.D.11.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M 是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为()A.B.C.D.112.定义域为R的偶函数f(x)满足对任意x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(x+1)在(0,+∞)上至少有三个零点,则a的取值范围是()A.(0,)B.(0,)C.(0,)D.(0,)二、填空题:(本大题共4小题,每小题5分,共20分)13.已知抛物线y=ax2的准线方程是y=﹣,则实数a的值为.14.在等比数列{a n}中,如果a1+a2=40,a3+a4=60,则a7+a8=.15.8的展开式中项x3yz4的系数等于.(用数值作答)16.已知函数,若实数a、b、c互不相等,且满足f (a)=f(b)=f(c),则a+b+c的取值范围是.三、解答题:(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(12分)设函数f(x)=•,其中向量=(2cosx,1),=(cosx,sin2x),x∈R.(1)求f(x)的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为,求的值.18.(12分)如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF∥CE且AF=2CE,G是线段BF上一点,AB=AF=BC=2.(Ⅰ)当GB=GF时,求证:EG∥平面ABC;(Ⅱ)求二面角E﹣BF﹣A的余弦值;(Ⅲ)是否存在点G,满足BF⊥平面AEG?并说明理由.19.(12分)一个盒子装有六张卡片,上面分别写着如下六个函数:f1(x)=x3,f2(x)=5|x|,f3(x)=2,f4(x)=,f5(x)=sin(﹣x),f6(x)=xcosx.(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.20.(12分)已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足=,当P在圆C上运动时,点M的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.21.(12分)设函数f(x)=x2﹣mlnx,h(x)=x2﹣x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框[选修4-4:坐标系与参数方程]22.(10分)以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求ta nα的值.[选修4-5:不等式选讲]23.已知函数f(x)=log2(|x+1|+|x﹣2|﹣a).(Ⅰ)当a=7时,求函数f(x)的定义域;(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.2017年陕西省西安八十三中高考数学二模试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的)1.设集合A={x|x>1},集合B={a+2},若A∩B=∅,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣∞,1]C.[﹣1,+∞)D.[1,+∞)【考点】1E:交集及其运算.【分析】由A与B,以及两集合的交集为空集,确定出a的范围即可.【解答】解:∵A={x|x>1},集合B={a+2},若A∩B=∅,∴a+2≤1,即a≤﹣1,则实数a的范围为(﹣∞,﹣1],故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.复数z1=cosx﹣isinx,z2=sinx﹣icosx,则|z1•z2|=()A.1 B.2 C.3 D.4【考点】A5:复数代数形式的乘除运算.【分析】直接利用复数的乘法以及三角函数的运算法则化简复数,然后求解复数的模.【解答】解:复数z1=cosx﹣isinx,z2=sinx﹣icosx,则z1•z2=cosxsinx﹣cosxsinx+i (﹣cos2x﹣sin2x)=﹣i.则|z1•z2|=1.故选:A.【点评】本题考查复数的代数形式混合运算,复数的模的求法,考查计算能力.3.已知a>0且a≠1,则log a b>0是(a﹣1)(b﹣1)>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】a>0且a≠1,则log a b>0⇔,或.(a﹣1)(b﹣1)>0⇔,或.即可判断出结论.【解答】解:a>0且a≠1,则log a b>0⇔,或.(a﹣1)(b﹣1)>0⇔,或.故选:A.【点评】本题考查了对数函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.某长方体的三视图如图,长度为的体对角线在正视图中的投影长度为,在侧视图中的投影长度为,则该长方体的全面积为()A.3+2 B.6+4 C.6 D.10【考点】L!:由三视图求面积、体积.【分析】设长方体的长,宽,高分别为x,y,z,根据已知求出长宽高,代入长方体表面积公式,可得答案.【解答】解:设长方体的长,宽,高分别为x,y,z,由题意得:,解得:,故该长方体的表面积S=2(xy+xz+yz)=6+4,故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.5.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n},若a3=8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是()A.13,12 B.13,13 C.12,13 D.13,14【考点】8M:等差数列与等比数列的综合;BB:众数、中位数、平均数.【分析】由题设条件,一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n},若a3=8,且a1,a3,a7成等比数列,设出公差为d,用公差与a3=8表示出a1,a7再由等比数列的性质建立方程求出公差,即可得到样本数据,再由公式求出样本的平均数和中位数【解答】解:设公差为d,由a3=8,且a1,a3,a7成等比数列,可得64=(8﹣2d)(8+4d)=64+16d﹣8d2,即,0=16d﹣8d2,又公差不为0,解得d=2此数列的各项分别为4,6,8,10,12,14,16,18,20,22,故样本的中位数是13,平均数是13故答案为B【点评】本题考查等差数列与等比数列的综合,解题的关键是根据题设中数列的性质建立方程求出数列的各项,即求出样本数据,再由平均数与中位数的求法求出即可.6.x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论,同时需要弄清楚最优解的定义.7.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B.C.6 D.9【考点】7F:基本不等式;9T:数量积判断两个平面向量的垂直关系.【分析】由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.【解答】解:∵⊥,∴(x﹣1,2)•(4,y)=0,化为4(x﹣1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.【点评】本题考查了⊥⇔=0、基本不等式的性质,属于基础题.8.已知三角形△ABC的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为()A.15 B.18 C.21 D.24【考点】HR:余弦定理.【分析】根据三角形ABC三边构成公差为2的等差数列,设出三边为a,a+2,a+4,根据最大角的正弦值求出余弦值,利用余弦定理求出a的值,即可确定出三角形的周长.【解答】解:根据题意设△ABC的三边长为a,a+2,a+4,且a+4所对的角为最大角α,∵sinα=,∴cosα=或﹣,当cosα=时,α=60°,不合题意,舍去;当cosα=﹣时,α=120°,由余弦定理得:cosα=cos120°==﹣,解得:a=3或a=﹣2(不合题意,舍去),则这个三角形周长为a+a+2+a+4=3a+6=9+6=15.故选:A.【点评】此题考查了余弦定理,等差数列的性质,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.9.已知双曲线mx2﹣ny2=1(m>0,n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为()A.B.C.D.【考点】K4:椭圆的简单性质;KC:双曲线的简单性质.【分析】双曲线、椭圆方程分别化为标准方程,利用双曲线mx2﹣ny2=1(m>0,n>0)的离心率为2,可得m=3n,从而可求椭圆mx2+ny2=1的离心率.【解答】解:双曲线mx2﹣ny2=1化为标准方程为:∵双曲线mx2﹣ny2=1(m>0,n>0)的离心率为2,∴∴m=3n椭圆mx2+ny2=1化为标准方程为:∴椭圆mx2+ny2=1的离心率的平方为=∴椭圆mx2+ny2=1的离心率为故选C.【点评】本题考查椭圆、双曲线的离心率,考查学生分析解决问题的能力,属于中档题.10.如图,矩形ABCD的四个顶点的坐标分别为A(0,﹣1),B(π,﹣1),C (π,1),D(0,1),正弦曲线f(x)=sinx和余弦曲线g(x)=cosx在矩形ABCD 内交于点F,向矩形ABCD区域内随机投掷一点,则该点落在阴影区域内的概率是()A.B.C.D.【考点】CF:几何概型.【分析】利用定积分计算公式,算出曲线y=sinx与y=cosx围成的区域包含在区域D内的图形面积为S=2π,再由定积分求出阴影部分的面积,利用几何概型公式加以计算即可得到所求概率.【解答】解根据题意,可得曲线y=sinx与y=cosx围成的区域,其面积为(sinx﹣cosx)dx=(﹣cosx﹣sinx)|=1﹣(﹣)=1+;又矩形ABCD的面积为2π,由几何概型概率公式得该点落在阴影区域内的概率是;故选B.【点评】本题给出区域和正余弦曲线围成的区域,求点落入指定区域的概率.着重考查了定积分计算公式、定积分的几何意义和几何概型计算公式等知识,属于中档题.11.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M 是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为()A.B.C.D.1【考点】K8:抛物线的简单性质.【分析】由题意可得F(,0),设P(,y0),要求k OM的最大值,设y0>0,运用向量的加减运算可得=+=(+,),再由直线的斜率公式,结合基本不等式,可得最大值.【解答】解:由题意可得F(,0),设P(,y0),显然当y0<0,k OM<0;当y0>0,k OM>0.要求k OM的最大值,设y0>0,则=+=+=+(﹣)=+=(+,),可得k OM==≤=,当且仅当y02=2p2,取得等号.故选:C.【点评】本题考查抛物线的方程及运用,考查直线的斜率的最大值,注意运用基本不等式和向量的加减运算,考查运算能力,属于中档题.12.定义域为R的偶函数f(x)满足对任意x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(x+1)在(0,+∞)上至少有三个零点,则a的取值范围是()A.(0,)B.(0,)C.(0,)D.(0,)【考点】54:根的存在性及根的个数判断.【分析】由题意可判断函数f(x)是定义在R上的,周期为2的偶函数,令g(x)=log a(x+1),画出f(x)与g(x)在[0,+∞)的部分图象如下图,将y=f(x)﹣log a(x+1)在(0,+∞)上至少有三个零点可化为f(x)与g(x)的图象在(0,+∞)上至少有三个交点,从而解出a的取值范围.【解答】解:∵f(x+2)=f(x)﹣f(1),令x=﹣1,则f(1)=f(﹣1)﹣f(1),∵f(x)是定义在R上的偶函数,∴f(1)=0.∴f(x)=f(x+2),则函数f(x)是定义在R上的,周期为2的偶函数,又∵当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,令g(x)=log a(x+1),则f(x)与g(x)在[0,+∞)的部分图象如下图y=f(x)﹣log a(x+1)在(0,+∞)上至少有三个零点可化为f(x)与g(x)的图象在(0,+∞)上至少有三个交点,g(x)在(0,+∞)上单调递减,则,解得:0<a<,故选A.【点评】本题考查了数形结合的思想,同时考查了学生的作图能力与转化能力,属于基础题.二、填空题:(本大题共4小题,每小题5分,共20分)13.已知抛物线y=ax2的准线方程是y=﹣,则实数a的值为1.【考点】K8:抛物线的简单性质.【分析】先化抛物线y=ax2为标准方程:x2=y,得到焦点坐标为F(0,),准线方程:y=﹣,再结合题意准线方程为,比较系数可得a=1.【解答】解:∵抛物线y=ax2化成标准方程为x2=y,∴2p=,可得=,焦点坐标为F(0,),准线方程:y=﹣再根据题意,准线方程为,∴﹣=﹣,可得a=1故答案为:1【点评】本题给出含有字母参数的抛物线方程,在已知准线的情况下求参数的值,着重考查了抛物线的标准方程与简单几何性质,属于基础题.14.在等比数列{a n}中,如果a1+a2=40,a3+a4=60,则a7+a8=135.【考点】88:等比数列的通项公式.【分析】等比数列{a n}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,由此利用a1+a2=40,a3+a4=60,能求出a7+a8.【解答】解:等比数列{a n}中,∵a1+a2=40,a3+a4=60,∴a5+a6=60×=90,a7+a8=90×=135.故答案为:135.【点评】本题考查等比数列的通项公式的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.15.(x+y+z)8的展开式中项x3yz4的系数等于280.(用数值作答)【考点】DC:二项式定理的应用.【分析】由条件利用二项式的意义以及组合的知识,求得展开式中x3yz4的系数.【解答】解:(x+y+z)8的展开式表示8个因式(x+y+z)的积,故展开式中项x3yz4,即这8个因式中任意选出3个取x,从剩下的5个中任意选4个取z,最后的一个取y,即可得到含项x3yz4的项,故x3yz4的系数为等于••=280,故答案为:280.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题16.已知函数,若实数a、b、c互不相等,且满足f(a)=f(b)=f(c),则a+b+c的取值范围是(8,23).【考点】HB:余弦函数的对称性;5B:分段函数的应用.【分析】作出函数f(x)的图象,根据f(a)=f(b)=f(c),确定a,b,c的范围,即可得出a+b+c的取值范围.【解答】解:作出f(x)的函数图象,如图:令log(x﹣3)+1=1,解得x=4.令log(x﹣3)+1=﹣1,解得x=19.设a<b<c,则a+b=4,4<c<19.∴8<a+b+c<23.故答案为(8,23).【点评】本题以三角函数和对数函数为例,考查了函数的零点与方程根个数讨论等知识点,利用数形结合,观察图象的变化,从而得出变量的取值范围是解决本题的关键.三、解答题:(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(12分)(2013•湖北校级模拟)设函数f(x)=•,其中向量=(2cosx,1),=(cosx,sin2x),x∈R.(1)求f(x)的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为,求的值.【考点】HS:余弦定理的应用;GL:三角函数中的恒等变换应用;H1:三角函数的周期性及其求法;H5:正弦函数的单调性;HQ:正弦定理的应用.【分析】(1)利用向量的数量积通过二倍角公式,两角和的正弦函数化简函数的表达式,然后求f(x)的最小正周期,借助正弦函数的单调减区间求出函数的单调递减区间;(2)通过f(A)=2,利用三角形的内角,求出A的值,利用△ABC的面积为.【解答】解:(1).∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)令.∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)由,,∵0<A<π,∴.∴.﹣(6分),∴在△ABC中,由余弦定理得:a2=b2+c2﹣2bccosA=3,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣8由,∴.﹣﹣(10分)【点评】本题是中档题,通过向量数量积考查三角函数的化简求值,三角函数的单调性,正弦定理的应用三角形的面积公式的应用,考查计算能力,常考题型.18.(12分)(2017•新城区校级二模)如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF∥CE且AF=2CE,G是线段BF上一点,AB=AF=BC=2.(Ⅰ)当GB=GF时,求证:EG∥平面ABC;(Ⅱ)求二面角E﹣BF﹣A的余弦值;(Ⅲ)是否存在点G,满足BF⊥平面AEG?并说明理由.【考点】LS:直线与平面平行的判定;MT:二面角的平面角及求法.【分析】(Ⅰ)当GB=GF时,根据线面平行的判定定理即可证明EG∥平面ABC;(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角E﹣BF﹣A的余弦值;(Ⅲ)根据线面垂直的判定定理和性质定理,建立条件关系即可得到结论.【解答】(Ⅰ)证明:取AB中点D,连接GD,CD,又GB=GF,所以AF=2GD.因为AF∥CE且AF=2CE,所以GD平行且等于CE,四边形GDCE是平行四边形,所以CD∥EG因为EG⊄平面ABC,CD⊂平面ABC所以EG∥平面ABC.(Ⅱ)解:因为平面ABC⊥平面ACEF,平面ABC∩平面ACEF=AC,且AF⊥AC,所以AF⊥平面ABC,所以AF⊥AB,AF⊥BC因为BC⊥AB,所以BC⊥平面ABF.如图,以A为原点,建立空间直角坐标系A﹣xyz.则F(0,0,2),B(2,0,0),C(2,2,0),E(2,2,1),=(0,2,0)是平面ABF的一个法向量.设平面BEF的法向量=(x,y,z),则令y=1,则z=﹣2,x=﹣2,所以=(﹣2,1,﹣2),所以cos<,>==,由题知二面角E﹣BF﹣A为钝角,所以二面角E﹣BF﹣A的余弦值为﹣.(Ⅲ)解:因为=(﹣2,0,2)•(2,2,1)=﹣20≠0,所以BF与AE 不垂直,所以不存在点G满足BF⊥平面AEG.【点评】本题主要考查线面平行的判定以及空间二面角的计算,建立空间直角坐标系,利用向量法是解决本题的关键.19.(12分)(2017•新城区校级二模)一个盒子装有六张卡片,上面分别写着如下六个函数:f1(x)=x3,f2(x)=5|x|,f3(x)=2,f4(x)=,f5(x)=sin(﹣x),f6(x)=xcosx.(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(Ⅰ)老远函数的奇偶性的定义先判定函数的奇偶性.所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;可得基本事件总数.再利用古典概率计算公式即可得出.(II)老远古典概率计算公式、相互独立事件的概率计算公式可得概率,分布列及其数学期望.【解答】解:(Ⅰ)f1(x)=x3为奇函数,f2(x)=5|x|,为偶函数,f3(x)=2为偶函数,f4(x)=为奇函数,f5(x)=sin(﹣x)=cosx为偶函数,f6(x)=xcosx 为奇函数.所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;故基本事件总数为+=12.满足条件的基本事件为两张卡片上写的函数均为奇函数,故满足条件的基本事件个数为.故所求概率为P==.(Ⅱ)ξ可取1,2,3,4.P(ξ=1)==,P(ξ=2)=•=,P(ξ=3)=••=,P(ξ=4)=•••=.故ξ的分布列为Eξ=++4×=.∴ξ的数学期望为.【点评】本题考查了相互独立事件的概率计算公式、随机变量的分布列及其数学期望计算公式、函数的奇偶性,考查了推理能力与计算能力,属于中档题.20.(12分)(2017•新城区校级二模)已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足=,当P在圆C上运动时,点M的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.【考点】KL:直线与椭圆的位置关系.【分析】(I)设M(x,y),则P(x,2y)在圆C:x2+y2=4上,由此能求出曲线E的方程.(II)设直线l:y=kx+2,联立,得(1+4k2)x2+16kx+12=0,由此利用根的判别式、韦达定理、向量,结合已知条件能求出直线l的方程.【解答】解:(I)设M(x,y),∵P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足=,当P在圆C上运动时,点M的轨迹为曲线E.∴P(x,2y)在圆C:x2+y2=4上,∴x2+4y2=4,即曲线E的方程为:=1,…(4分)(II)经检验,当直线l⊥x轴时,题目条件不成立,∴直线l存在斜率.设直线l:y=kx+2.设C(x1,y1),D(x2,y2),则,∴(1+4k2)x2+16kx+12=0.…(6分)由△=(16k)2﹣4(1+4k2)﹣12>0,得k2>.,….①,,…②.…(8分)又由=,得,将它代入①,②得k2=1,k=±1(满足k2>).所以直线l的斜率为k=±1.所以直线l的方程为y=±x+2.…(12分)【点评】本题考查曲线方程、直线方程的求法,考查椭圆、射影、圆、直线方程、根的判别式、韦达定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.21.(12分)(2015•新余二模)设函数f(x)=x2﹣mlnx,h(x)=x2﹣x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.【考点】3R:函数恒成立问题;3F:函数单调性的性质;53:函数的零点与方程根的关系.【分析】(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2﹣mlnx≥x2﹣x,转化为即:m≤在(1,+∞)上恒成立,从而得出实数m的取值范围.(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,即:k(x)=x﹣2lnx﹣a,设y1=x﹣2lnx,y2=a,分别画出它们的图象,由图得实数a的取值范围.(3)先假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2﹣mlnx在x=处取得极小值即可.【解答】解:(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2﹣mlnx≥x2﹣x,mlnx≤x,即:m≤在(1,+∞)上恒成立,因为在(1,+∞)上的最小值为:e,∴m≤e.实数m的取值范围:m≤e(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,即:k(x)=x﹣2lnx﹣a,设y1=x﹣2lnx,y2=a,分别画出它们的图象,由图得:实数a的取值范围(2﹣2ln2,3﹣2ln3];(3)假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2﹣mlnx在x=处取得极小值即可.∵f(x)=x2﹣mlnx∴f′(x)=2x﹣m×,将x=代入得:1﹣2m=0,∴m=故存在实数m=,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性.【点评】数形结合思想是解析函数图象交点个数、函数零点个数中最常用的方法,即画出满足条件的图象,然后根据图象直观的分析出答案,但数形结合的前提是熟练掌握各种基本初等函数的图象和性质.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框[选修4-4:坐标系与参数方程]22.(10分)(2016•池州二模)以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(I)对极坐标方程两边同乘ρ,得到直角坐标方程;(II)将l的参数方程代入曲线C的普通方程,利用参数意义和根与系数的关系列出方程解出α.【解答】解:(I)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,∴曲线C的直角坐标方程为y2=4x.(II)将代入y2=4x,得sin2α•t2+(2sinα﹣4cosα)t﹣7=0,所以,所以,或,即或.【点评】本题考查了极坐标方程与直角坐标方程的转化,桉树方程的几何意义,属于基础题.[选修4-5:不等式选讲]23.(2016•广州二模)已知函数f(x)=log2(|x+1|+|x﹣2|﹣a).(Ⅰ)当a=7时,求函数f(x)的定义域;(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.【考点】4N:对数函数的图象与性质;7E:其他不等式的解法.【分析】(Ⅰ)a=7时便可得出x满足:|x+1|+|x﹣2|>7,讨论x,从而去掉绝对值符号,这样便可求出每种情况x的范围,求并集即可得出函数f(x)的定义域;(Ⅱ)由f(x)≥3即可得出|x+1|+|x﹣2|≥a+8恒成立,而可求出|x+1|+|x﹣2|≥3,这样便可得出3≥a+8,解出该不等式即可得出实数a的最大值.【解答】解:(Ⅰ)由题设知:|x+1|+|x﹣2|>7;①当x>2时,得x+1+x﹣2>7,解得x>4;②当1≤x≤2时,得x+1+2﹣x>7,无解;③当x<﹣1时,得﹣x﹣1﹣x+2>7,解得x<﹣3;∴函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞);(Ⅱ)解:不等式f(x)≥3,即|x+1|+|x﹣2|≥a+8;∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3;又不等式|x+1|+|x﹣2|≥a+8解集是R;∴a+8≤3,即a≤﹣5;∴a的最大值为﹣5.【点评】本题考查对数的真数大于0,函数定义域的定义及求法,不等式的性质,以及含绝对值不等式的解法,恒成立问题的处理方法.。