Shock excited far-infrared molecular emission around T Tau
复旦大学生物医学研究院科学家首次发现人体生理状态下存在大量非细胞核蛋白的乙酰化修饰
癌细胞 的增殖为方 向。
法 、 意科学家揭示细菌低温存活之谜 德、 据 中国军 网 2 1 0 0年 1月 1 日援 引新 华社 巴黎 1 1 7 月 6
日电 , 国国家科研 中心 、 法 意大利 卡梅里 诺大 学和 德国杜塞 尔多夫大学 的研究人员通 过合作研究 发现 , 一种名 为“ 冷休
皮层区域。“ 这说明人们在听到别人正 面评价的时候非常关 注 自我。也就 是说 , 如果 家长 和教师 多夸 奖和表扬 孩子 , 将 会十分有利于孩子 形成积 极的 自我概 念。如果 领导也这 样 对待下属 , 将会十分有利于激发下属 的的积极性 。 ” 潘晓红也对实验对 象进 行了绩效反馈实验 。结果显示 ,
饰特性与各种疾病 的关 系 , 指导相关药物 的有效开发 。
中科 院上海生 命科学研 究院科学家
揭 秘 D A 甲 基化 发 生 机 制 N
克蛋 白” 的信使 核糖核酸具有 感知冷 暖的特殊 能力 , 使其 只
有在低温时才会表现稳定 , 就是说 , 低温 下这 种信使核 也 在 糖核酸反而能 更有效 地复 制细 菌 的遗 传信 息 , 助细 菌繁 帮 衍。长期 以来 , 冷休克 蛋 白” “ 帮助 细菌 在低 温 下生存 的机
癫痫是一种较常见的神 经疾病 , 发病 者 占人 口的 I %左 右, 通常认为癫痫 由神经 细胞异 常兴奋 所致 , 具体病 因 尚 但 未完全清楚 , 也未有根本 的治疗方法 。 日美科 学家的研究结 果有望为癫痫 的治疗研 究打开新 的思 路。该项 研究 的相关 论文发表于美 国《 国家科学院学报》 网络版 上。
D A甲基化具有不 可或 缺 的作 用 , 且辅 助 因子能 与组蛋 N 而 白 H 发生相互作用并引 发起始性 的 D A甲基化 。这一研 ] N 究首次从功能上揭示 了组蛋 白 H 3与 D A甲基化 之间的联 N 系, 加深了对 D A甲基化发生机制 的认识 。 N
LettertotheEditor-Springer
Astron.Astrophys.322,L33–L36(1997)ASTRONOMYANDASTROPHYSICS Letter to the EditorDetection of[O I]63µm in absorption toward Sgr B2J.-P.Baluteau1,P.Cox2,J.Cernicharo3,D.P´e quignot4,E.Caux5,T.Lim6,B.Swinyard7,G.White8,M.Kessler9,T.Prusti9, M.Barlow10,P.E.Clegg8,R.J.Emery7,I.Furniss10,W.Glencross10,C.Gry1,6,M.Joubert1,R.Liseau11,B.Nisini11,P. Saraceno11,G.Serra5,C.Armand6,M.Burgdorf6,A.DiGiorgio6,S.Molinari6,M.Price6,D.Texier6,S.Sidher6,and N.Trams61Laboratoire d’Astronomie Spatiale,LP CNRS,BP8,F-13376Marseille Cedex12,France2Institut d’Astrophysique Spatiale,Bˆa t.120,Universit´e Paris XI,F-91405Orsay Cedex,France3CSIC.IEM.Dpto.Fisica Molecular,Serrano123,E-28006Madrid,Spain&OAN,Ap1143,E-28800A.de Henares,Spain4DAEC,Observatoire de Paris–Meudon,F-92195Meudon Cedex,France5Centre d’Etude Spatiale des Rayonnements,CESR/CNRS-UPS,BP4346,F-31028Toulouse Cedex04,France6The LWS Instrument Dedicated Team,ISO Science Operations Centre,PO Box50727,E-28080Madrid,Spain7Rutherford Appleton Lab.,Chilton,Didcot,Oxon OX110QX,UK8Queen Mary and Westfield College,University of London,Mile End Road,London E14NS,UK9ISO Science Operations Centre,Astrophysics Division of ESA,PO Box50727,E-28080Madrid,Spain10Department of Physics and Astronomy,University College London,Gower Street,London WC1E6BT,UK11CNR-Instituto di Fisica dello Spazio Interplanetario,Casella Postale27,I-00044Frascati,ItalyReceived17December1996/Accepted9January1997Abstract.A high signal-to-noise52–90µm spectrum is pre-sented for the central part of the Sagittarius B2complex.The data were obtained with the Long Wavelength Spectrometer on board the Infrared Space Observatory(ISO).The[O I]63µm line is detected in absorption even at the grating spectral resolu-tion of0.29µm.A lower limit for the column density of atomic oxygen of the order of1019cm−2is derived.This implies that more than40%of the interstellar oxygen must be in atomic form along the line of sight toward the Sgr B2molecular cloud. Key words:ISM:abundances–(ISM:)dust,extinction–(ISM:) H II regions–ISM:individual objects:Sgr B2–Infrared:ISM: continuum–Infrared:ISM:lines and bands1.IntroductionThe main form in which oxygen,the third most abundant ele-ment in the Universe,is present in the cold component of the interstellar medium remains one of the major unresolved issues Send offprint requests to:J.–P.Baluteau(**********************)Based on observations with ISO,an ESA project with instruments funded by ESA Member States(especially the PI countries:France, Germany,the Netherlands and the United Kingdom)and with the par-ticipation of ISAS and NASA of astrochemistry.Oxygen is supposed to reside mostly in the gas phase of molecular clouds,presumably as atomic oxygen or simple molecules,such as O2,CO,H2O and OH.Depletion of oxygen onto dust grains is not expected to exceed∼25%(van Dishoeck et al.1993)most of the oxygen being incorporated into silicate grains.This estimate does not include the solid CO2 which is found to be ubiquitous in the interstellar medium(de Graauw et al.1996)or the solid O2which may be an important grain mantle constituent(Ehrenfreund et al.1992).From chemical models the atomic oxygen is expected to account for10–30%of the gas-phase oxygen within molecular clouds(e.g.Bergin et al.1995and references therein).Although the abundance of O2in dark clouds is predicted to be similar to that of atomic oxygen(Black&Smith1984),the search for this molecule has so far been unsuccessful.The best limit has been obtained toward extragalactic dense molecular clouds by Combes&Wiklind(1995)who report an upper limit on the O2/CO abundance ratio of1.410−2,more than an order of magnitude lower than what is predicted by chemical models. Among other O-bearing molecules,the most commonly ob-served is CO which only contains∼10%of the total oxygen abundance(Lacy et al.1994).Recent estimates of the gas-phase H2O abundance which are based on ISO results indicate that water vapour can account for only a few percent of the total oxygen abundance(van Dishoeck&Helmich1996,Cernicharo et al.1997).Finally,the OH fractional abundance is even smallerL34J.-P.Baluteau et al.:[O I]in absorption toward SagittariusB2Fig.1.The LWS grating spectrum of Sgr B2from52to90µm.This spectrum was taken atα1950=17h44m12.0s,δ1950=−28o22 12 .The insert displays the line to continuum ratioaround the[O I]63µm line which is seen inabsorptionwith OH/O less than0.7%(Viscuso et al.1985).In conclusion,none of the above molecules can account for the bulk of thegas-phase oxygen.Recent observations have suggested that in the interstellarmedium most of the gas-phase oxygen might be in atomic form.Afirst suggestion was made by Schulz et al.(1991)in order tointerpret their HDO observations.From HST ultraviolet spec-troscopy,Sofia et al.(1994)derived in two molecular clouds[O]/[H]values as high as1/3of the cosmic abundance of oxy-gen.Poglitsch et al.(1996)reported a possible detection of the[O I]63µmfine structure line in absorption toward DR21.They derived a relative abundance of atomic oxygen[O]/[H]∼6×10−4,implying that,in the foreground absorbing cloud,most of the oxygen is in atomic form.In this Letter,we report the detection of[O I]63µm in ab-sorption toward the main core of Sgr B2,a highly obscured H IIregion complex close to the galactic center.The data are basedon grating spectra obtained with the Long Wavelength Spec-trometer(LWS)on board of ISO.They provide afirst estimateof the atomic oxygen content along the line of sight to Sgr B2.Higher spectral resolution data of the[O I]63µm taken withthe LWS Fabry-Perot will be published as part of a general ISOstudy of[O I]absorption in molecular clouds by Phillips et al.(1997).2.Observations and resultsFull LWS grating scans from43to196µm were obtained to-ward Sgr B2during Revolution287(30August1996)usingAOT L01as part of the ISO guaranteed time program ISM V.The LWS capabilities and the calibration procedure are de-scribed by Clegg et al.(1996)and Swinyard et al.(1996),re-spectively.Sixteen full grating scans were taken with0.5sec in-tegration time per grating step.The spectra were sampled at1/4of the spectral resolution element,being0.29µm for the short-wavelength detectors.The total on-target time was3047sec.The data have been processed through the LWS Pipeline Ver-sion6.0.Fig.1displays the spectrum between52and90µm ob-tained toward Sgr B2after combining the results of detectorsSW2to SW5.Small scaling factors(a few%)have been appliedto the individual spectra so that they join smoothly.The spec-trum consists of a strong dust continuum(at80µm,thefluxdensity is34,000Jy)with a series of lines all seen in absorp-tion.The signal-to-noise ratio being very high(∼200)most ofthe features seen in Fig.1are probably real.The OH absorptionlines which are labelled in Fig.1will be discussed in a forth-coming paper.A major aspect of the Sgr B2spectrum is thepresence of the[O I]63µm line which is seen in absorption-see insert in Fig.1.The absorption-line depth is3.0±0.5%at the LWS grating resolution.A further important point is theabsence of emission in the[O III]88µm and[N III]57µmatomicfine structure lines normally detected toward compactH II regions.A LWS grating raster map of Sgr B2was also obtained dur-ing Revolution287as part of an open time program(see Cer-nicharo et al.1997for details).Fig.2displays the data aroundthe[O I]63µm line along two cuts oriented N-S and E-Wthrough Sgr B2.The[O I]63µm line intensity varies drasti-cally over the cut.The[O I]is seen in emission in most of thepositions,with a maximum180 south of Sgr B2.Around theposition of Sgr B2,the[O I]line gradually changes from anemission line into a line in absorption.3.DiscussionSgr B2,one of the most luminous star-forming regions in theGalaxy,consists of several compact H II regions(Gaume et al.1995)which are embedded in a massive molecular cloud.Thehydrogen column densities have been estimated to be a few1024cm−2in the2 core diameter(Scoville et al.1975).Sgr B2is optically thick even at far-infrared wavelengths where theJ.-P.Baluteau et al.:[O I]in absorption toward Sagittarius B2L35 opacity at100µm is estimated to be unity(Harvey et al.1977).In Sgr B2,the warm gas seen,e.g.,in the radio observations,is thus obscured completely by the associated molecular cloud.These high far-infrared opacities explain why the[O III]88µm(Dain et al.1978)and[O I]63µm(Lester et al.1981)lines werenot detected in the spectrum of SgrB2.The present ISO/LWSdata confirm these early measurements(Fig.1)and the qualityof the data allows to detect the[O I]line in absorption.Although the spectral resolution of the grating is limited,useful conclusions can be derived from the present data con-cerning the abundance of atomic oxygen.Clearly,higher spec-tral resolution measurements such as obtained by Phillips et al.(1997)will permit a more detailed analysis including the studyof the velocity structure in the[O I]absorption line.The mean photoabsorption cross section of the[O I]63µmline isσ=5.093×10−18/(∆V kms−1)cm2where∆V is theline width in km s−1(e.g.,Allen1973-radiative lifetime fromBaluja&Zeippen1988).At a spectral resolution of0.29µm(∼1380km s−1),the measured3.0±0.5%absorption-linedepth of[O I]corresponds to a line equivalent width∆V ew=(41.4±7)km s−1.Assuming uniform absorption over a velocityrange∆V will result in a line optical depthτ=−ln(1−∆V ew/∆V)and a column density N O=1.963×1017×τ×∆V cm−2.In order to estimate the atomic oxygen abundance impliedby the[O I]63µm absorption,we consider two simple cases.First,we assume that the[O I]absorption is dominated by a lowdensity medium distributed uniformly in velocity along the lineof sight toward SgrB2.Adopting a typical density of1cm−3,the hydrogen column density is2.5×1022cm−2for a distance of8.5kpc to Sgr B2.Since there is no gas in the direction of Sgr B2at velocities smaller than−110or larger than+80km s−1(Scoville et al.1975),we will assume that∆V is less than∆V max=200km s−1.With∆V=∆V max,wefindτ=0.23and N O=9.1×1018cm−2,yielding N O/N H=3.6×10−4.In this simple approximation,the derived atomic oxygen abun-dance is half cosmic,suggesting that(1)atomic oxygen is thedominant form of gaseous oxygen and(2)the mean depletionof oxygen onto dust grains is,as expected,moderate.Sinceτis significantly less than unity,these conclusions do not dependcritically on the exact value of∆V;using∆V=100insteadof200km s−1would increase N O by15%only.Similarly,theydo not depend much on the presence of clumping along the lineof sight provided that the[O I]optical depth does not exceedunity at any velocity.In the second case,we suppose that the[O I]absorptionis restricted to the most prominent molecular clouds.The ve-locity structure toward Sgr B2,as revealed by molecular lineabsorption,is complex(e.g.,Stacey et al.1987).Four main lay-ers contribute to the absorption,namely:(1)A very massivemolecular cloud associated with the Sgr B2complex itself at+63km s−1with N H2∼5×1023cm−2,(2)the expandingmolecular ring at–105km s−1with N H2∼4×1021cm−2,(3)the3-kpc arm(–43km s−1and N H2∼3×1021cm−2),and(4)the local gas at∼0km s−1with N H2roughly as in the two lattercomponents.The velocity widths of these components,deter-Fig.2.The spectra around[O I]63µm toward several directions alongN-S and E-W cuts in Sgr B2.The separation between successive posi-tions is90 .The central position(0,0)corresponds to SgrB2(Main)-α1950=17h44m10.6s,δ1950=−28o22 29 .Offset positions are givenin arcsec in the upper left corner of each panel.The source Sgr B2(North)is located at offset(0,90)in the North-South cutmined from radio absorption line studies,depend on the angularresolution of the observations.With a2 beam,the line widthsare8,11,15and20km s−1for the absorbing layers at–105,–43,+2and+63km s−1,respectively(Scoville et al.1975).Ata∼15”resolution,the widths are3,8,and12km s−1for thelast three components(Mehringer et al.1995).The ISO/LWSbeam being close to1.5 ,we adopt∆V SgrB2=20km s−1forthe Sgr B2cloud and∆V fore=30km s−1for the sum of thethree main foreground clouds.Altogether,the column densityof the three latter clouds is N H2∼1.1×1022cm−2.Assuming uniform absorption over the full velocity range ∆V molec=∆V SgrB2+∆V fore leads toτ=1.76and N O=1.7×1019cm−2.Considering30/50of this N O,the atomicoxygen abundance in the foreground clouds is N O/N H=4.6×10−4.We note,however,that∆V molec is not very sig-nificantly larger than∆V ew.With the quoted uncertainties,N O/N H is thus estimated to vary from3.1to9.2×10−4,tobe compared to the cosmic abundance of oxygen[O]/[H]=8.5×10−4(Anders&Grevesse1989).In the relatively unlikelycase of a complete absorption over∆V SgrB2,N O/N H woulddecrease by30%.Conversely no solution exists if the absorp-LEL36J.-P.Baluteau et al.:[O I]in absorption toward Sagittarius B2tion is restricted to the range∆V fore:absorption by the Sgr B2cloud(over∆V SgrB2)should be at least50%,unless othersources of absorption are considered.Finally,τmay be muchlarger than the average value over restricted velocity ranges,also increasing N O/N H.The column density of atomic oxygen obtained in the foreground molecular clouds is thus consistentwith40to100%of oxygen being in atomic form.We note that the gigantic column density of the molecularcloud associated with Sgr B2is not directly relevant in the ab-sorption budget since only the envelope of the cloud(its”pho-tosphere”)is seen at far-infrared wavelengths due to the ob-scuration.Both the absorption and emission in the continuumshould be taken into account.Depending on whether a tempera-ture gradient is present and whether the population of the upperlevel of[O I]63µm differs from the Boltzmann population,theline may or may not appear in absorption.It is quite probablethat line scattering in the outskirts of the cloud willfinally leadto absorption,although this absorption may not be particularlydeep given that the scattering layer is nearly spatially coincidentwith the source of radiation and the LWS beam encompasses alarge fraction of the whole cloud.4.ConclusionThis Letter reports the detection in the ISO/LWS grating spec-trum of the[O I]63µm line in absorption toward Sgr B2.Atthe grating resolution of300,the depth of the line is∼3%ofthe continuum.This measurement implies a minimum columndensity of atomic oxygen along the line of sight toward SgrB2of1019cm−2.Although the Sgr B2molecular cloud must con-tribute to the absorption,no conclusions can be drawn concern-ing its atomic oxygen content.The abundance of atomic oxygen is thus at least40%of thecosmic abundance,implying that atomic oxygen is the dominantform of oxygen in the interstellar medium in the direction ofSgr B2.This conclusion agrees with the results of Poglitsch etal.(1996)who studied the line of sight toward DR21.In orderto analyse in more detail the contributions to the[O I]63µmabsorption of the molecular clouds distributed along the line ofsight toward SgrB2,higher spectral resolution observations arerequired.ReferencesAnders E.,&Grevesse J.-P.1989,Geochim.Cosmochim.Acta53,197Allen C.W.1973,Astrophysical Quantities,3rd edition,The AthlonePress(London)Baluja K.L.,&Zeippen C.J.1988,J.Phys.B.21,1455Bergin E.A.,Langer W.D.,&Goldsmith P.F.1995,ApJ441,222Black J.H.,&Smith P.L.1984,ApJ277,562Cernicharo J.et al.1997,A&A in pressClegg P.E.et al.1996,A&A315,L38Combes F.,&Wiklind T.1995,A&A303,L61Dain F.W.,Gull G.E.,Melnick G.,Harwit M.,&Ward D.B.1978,ApJ221,L17de Graauw et al.1996,A&A,315,L345Ehrenfreund,P.,Breukers,R.,d’Hendecourt,L.,&Greenberg,J.M.1992,A&A,260,431Gaume R.A.,Claussen M.J.,De Pree C.G.,Goss W.M.,&MehringerD.M.1995,ApJ449,663Harvey P.M.,Campbell M.F.,&Hoffman W.F.1977,ApJ211,786 Lacy,J.H.,Knacke,R.,Geballe,T.R.,&Tokunaga,A.T.1994,ApJ, 428,L69Lester D.F.,Werner M.W.,Storey J.W.V.,Watson D.M.,&TownesC.H.1981,ApJ248,L109Mehringer D.M.,Palmer P.,&Goss W.M.1995,ApJS97,497 Phillips,T.G.,Keene,J.B.,Lis,D.C.,Schilke,P.,Werner,M.W.,& Zmuidzinas,J.1997,in preparationPoglitsch A.,Herrmann F.,Genzel R.,Madden S.C.,Nikola T.,Tim-mermann R.,Geis N.,&Stacey G.J.1996,ApJ462,L43 Schulz A.,G¨u sten R.,Serabyn E.,&Walmsley C.M.1991,A&A246, L55Scoville N.Z.,Solomon P.M.,Penzias A.A.,1975,ApJ201,352Sofia U.J.,Cardelli J.A.,&Savage B.D.1994,ApJ430,650 Stacey G.J.,Lugten J.B.,&Genzel R.1987,ApJ313,859 Swinyard B.M.et al.1996,A&A315,L43van Dishoeck E.F.,Blake G.A.,Draine B.T.,&Lunine J.I.1993,in Protostars and Planets III,ed.E.H.Levy&J.I.Lunine(Tucson, Univ.Arizona Press)p.163van Dishoeck,E.F.,&Helmich,F.P.1996,A&A,315,L177 Viscuso P.J.,Stacey G.J.,Fuller C.E.,Kurtz N.T.,&Harwit M.1985, ApJ296,142This article was processed by the author using Springer-Verlag L a T E X A&A stylefile L-AA version3.。
雅思阅读分类最全词汇
第1 类自然与科技1. 1 如何减少闪电危害Reduce the Harm of Lightningantenna n. 天线breathing n. 呼吸cardiac arrest 向博[动]停止conductive adj. 传导的conductivity n. 传导性conductor of electricity 电导体conductor n. 导体confusion n. ,混乱,混淆connector n. 连接器crush vt. 压碎,碾碎,(使)变形cumulus n. 积云,堆积current n. 电流dangerous adj. 危险的disassociate v. (使)分离discontinue v. 停止,废止dwelling n. 住处electric power 电力,电功率electrical appliance 电器electrical potential 电能electrocution n. 电死evaporation n. 蒸发(作用)extinguisher n. 熄灭者,灭火器eyesignt n. 视力,目力fickle adj. 变幻无常的first aid (对伤患者的)急救forecast vt. 预测,预报,预兆;n. 预报fracture n. 破裂,骨折;v.(使)破碎,(使)破裂fuse box 保险丝盒,熔断器盒guide n. 领路人,引导者;vt. 操纵humid adj. 潮湿,湿润的,多湿气的indirect adj. 间接的,迂回的injure vt. 损害,伤害;vt. 伤害injury n. 伤害,侮辱insulating adj. 绝缘的isolated adj. 隔离的,孤立的lightning n. 闪电lightning protection 防雷法lightning storm 雷雨lightning target 闪电的目标Lightening proof adj. 防闪电的livestock n. 家畜,牲畜loss of hearing 听力丧失memory loss 记忆丧失moist adj. 潮湿的;n. 潮湿moisture-laden air 潮湿的空气mouth-to-mouth adj. 嘴对嘴的outdoors n. 户外;adv. 在户外,在野外pole n. 棒,柱,磁极,电极prompt medical attention 及时的医药治疗pulse n. 脉搏,脉冲resistance n. 阻力,电阻,阻抗resuscitation n. 复生,复兴rod n. 杆,棒shelter n. 掩蔽处,掩蔽,保护;v. 掩蔽,躲避shock n. 打击,震动,休克;vt. 使休克,使受电击Side flash n. 侧向闪光spread out 展开stoppage n. 中断stoppage of breathing 呼吸中断strike n. 打击take protective action 采取保护性措施take refuge 避难the positive and negative charges 正负电荷thunderstorm n. 雷雨,雷暴雨tingle vi. 造成麻刺的感觉;vt. 使感到刺痛unconscious adj. 不省人事的,未发觉的,无意识的unexpected adj. 想不到,意外的,未预料到的unplug v. 拔去(塞子、插头等)victim n. 受害人,牺牲品voltage n. [电工]电压,伏特数without proper protection 缺乏恰当的保护1.2 探索太空生命Life in the Outer Space abode n. 住所,住处absence n. 缺席,缺乏acceptor n. 接受者access v. 接近advanced civilization 先进的文明aerobic adj. 依靠氧气的,与需氧菌有关的agent n. 作用剂algae n. 藻类,海藻alteration n. 变更,改造alternative adj. 选择性的anaerobic adj. [ 微]没有空气而能生活的,厌氧性的analogous adj. 类似的,相似的analysis n. 分析antarctic adj. 南极的,南极地带的anticipated adj. 预先考虑到的antiquity n. 古代aquifer n. 蓄水层array n. 大批astronomer n. 天文学家atmosphere n. 大气,大气层,空气atmospheric water vapor 大气水蒸气attenuate v. 削弱avalanche n.&v. 雪崩bacteria n. 细菌biological adj. 生物学的bleak adj. 寒冷的,荒凉的carbon dioxide [化]二氧化碳catalyze vt. 催化cellular adj. 细菌的chamber n. 室chromatograph n. 套色复制clay n. 粘土,泥土clement adj. 宽厚的comment n.&v. 评论compact adj. 紧密的compelling adj. 引人注目的composition n. 成分compound n. 化合物concentrated adj. 集中的concentration n. 浓度conclusively adv. 最后的conduct n.&v. 进行confined adj. 被限制的confinement n. ( 被)限制,(被)禁闭conservatively adv. 适当的consistent adj. 一致的constituent n. 要素constraint n. 约束ncontradict vt. 同……矛盾controversy n. 论争crack n. 裂缝crater n. 坑cretaceous adj. [ 地]白垩纪的dam n. 水坝,障碍data n. 资料,数据debris n. 碎片,残骸decompose v. 分解demonstrate v. 证明deplete vt. 耗尽depletion n. 损耗deposit n. 堆积物desiccated adj. 干的,粉状的diffuse v. 扩散disassociate v. (使)分离disaster n. 灾难,灾祸discount n. 打折扣dissolve v. 溶解distributed adj. 分布的distribution n. 分布状态dweller n. 居住者,居民ecosystem n. 生态系统embedded adj. 内含的emission n. 散发,喷射enhance n. 提高envision n.想象equatorial region 中纬区,赤道区equator n. 赤道eruption n. 爆发essentially adv. 本质上evaporate v. (使)蒸发evolution n. 演变,进化existence of life 生命的存在exposed adj. 暴露的extract vt.& n. 析取fascination n. 吸引力Fe-rich clay 含丰富铁质的黏土flash adj. 突发的flow n. &v. 流动flux n. [ 物]流量,通量formation n. 形成,构成fossil adj. 化石的freeze v.(使)结冰,冻结fuel vt. 激化functional adj. 功能的gas chromatograph 气相色谱仪generating n.发生,产生geological adj. 地质学的,地质的geothermal adj. 地热的geyser n.间歇泉guarantee n.保证gully n.冲沟,溪谷habitable adj. 可居住的harsh adj. 荒芜的,苛刻的headquarters n.总部hemisphere n.半球high spatial resolution 高空间分辨率high resolution photograph 高辨析率/清晰度的相片hostility n.敌对,对抗humidity n.湿气,湿度hydration n.水合,水合作用hydrogen n.氢hydrothermal adj. 热水的hypothesize v.假设imaging n.成像inconsistent adj. 不一致的,矛盾的incorporated adj. 组成公司的,合成一体的incubation period (接种后的微生物)保温培养期incubation n.培养期indicate vt. 显示indicative adj. 指示的,预示的indigenous adj. 本土的infrared imaging system 红外线成像系统infrared adj. 红外线的inhospitable adj.(地带、气候等)不适合居住的inorganic adj. 无机的interaction n.交互作用internal adj. 内在的interpretation n.解释intriguing adj. 引起兴趣(或好奇心)的investigation n.调查,研究investigator n.调查人involve vt. 包括ionize vt. 使离子化isolated adj. 孤立的jurisprudence n. 法学lander n.登陆者latitude n.纬度launch n.& v. 发射(导弹、火箭等)layperson n.外行lichen n.[ 植]青苔,地衣local n.场所LR=laboratory reactor n.实验室反应堆lubricated adj. 润滑了的manned space flight 载人航天飞行mariner n.水手Martian adj. 火星的mass of data 大量数据mass spectrometer 质谱测量仪mechanism n.机制merit n.价值meteorite n.陨星microbe n.微生物microbial adj. 微生物的microbiological life 微生物的microorganism n.[ 微生]微生物migrate vt. 使移居,使移植mimic vt. 摹拟mineral n.矿物,矿石molecular adj. 分子的molecule n.[ 化]分子mount v.增长multi-cellular organism 多细胞生物休National Aeronautis and Space Administration (NASA) (美国)国家航空和宇宙航行局notion n.意见nutrient n.营养物observational date 观测资料[数据]orbiter n.人造卫星organic adj. 有机的organism n.生物体,有机体oxidant n.氧化剂oxidize agent 氧化剂oxygen n.氧paradise n.天堂particulate n.微粒patch n.碎片percolating n.渗透peroxide n.[ 化]过氧化物,过氧化氢pervasive adj. 普遍深入的planetary adj. 行星的plateau n.(上升后的)稳定水平(或时期、状态)plug n.塞子pockmarked adj. 有麻点的polar adj. 两极的pole n.极porous adj. 多孔渗水的portable adj. 轻便的pose v.形成postulate n.& v. 假定precipitate n.沉淀物predominance n.优势preponderance n.优势primitive microbe 简单微生物principal adj. 主要的,首要的prior to 在前,居先prior adj. 在前的problematic adj. 有疑问的prospect n.前景radioactive carbon 放射性碳radioactive adj. 放射性的,有辐射能的ravine n.沟壑,峡谷reactant n.反应物reconcile with 与……和解regolith n.[ 地质]风化层,土被reinforce n.加强release n.& vt. 释放remote sensing instrument 遥感仪器remote sensing 遥感,遥测,远距离读出reproduce v.再生reside in 居住residual adj. 剩余的,残留的respiration n.呼吸作用respire v.呼吸retrieve v.找回revive v.(使)复活,回想rift n.裂口,长狭谷rule out 排除sample n.标本,样品sediment n.沉淀物seepage n.渗流simulate vt. 模拟slope n.斜坡,斜面solar adj. 太阳的,日光的solfatara n.[ 地]硫质喷气孔solubility n.溶度sophisticated adj. 高级的,精密的space probes 宇宙探测器spacecraft n.太空船spatial resolution 空间分辨率spectrometer n.[ 物]他光计speculation n.思索startling adj. 令人吃惊的subsequently adv. 随后substantial adj. 大量的subsurface adj. 地下的suffice v.足够sufficient adj. 充分的,足够的sulfide n.< 美>[化]硫化物sulfur n.[ 化]硫磺,硫黄superoxide n.过氧化物,超氧化物surveyor n.检查员survey n.& vt. 调查tag vt. 加标签于terminal n.终端terrestrial adj. 陆地的theological adj. 神学上的theorise v.理论化ultimately adv. 最后ultraviolet radiation 紫外线ultraviolet adj. 紫外线的underground water 地下水unresolved adj. 未解决的uptake n.举起vent n.出口volume n.量,体积wavelength n.[ 物](无线电)波长xenon n.氙(惰性气体的一种,元素符号) xenon-lamp 氙灯1.3 热带雨林Tropical Rainforest abounding adj. 丰富的,大量的accelerate v.加速,促进acre n. 英亩alkaloid n.生物碱angler n.钓鱼者appreciate vt. 赏识,欣赏approximate v.近似,接近aquatic ecosystem 水生态系统avocado n.鳄梨awe-inspiring adj. 令人敬畏的bald eagle [动]秃头鹰basic food supplies 主食的供给be compatible with 与……兼容的,协调的be conquested by a totalitarian government 被极权主义政府征服be perceived as 被视为biochemist n.生物化学家biodiversity n.生物多样性biological and economic treasure 生物和经济的财富biological corridor 生物走廊biological diversity 生物多类状态,生物差异biological heritage 生物遗产biological integrity 生物的完整性biological treasure 生物宝藏biologically diverse 生物多样的bison n.美洲或欧洲的野牛black pepper 黑胡椒blame n.& vt. 谴责,责备bountiful gift 慷慨的礼物bountiful adj. 慷慨的,宽大的branded adj. 打有烙印的buffer zone 缓冲区域bull troutn 鲑鱼的一种bulldozer n.推土机bureaucracy n.官僚,官僚作风,官僚机构by virtue of 依靠,由于cancer-fighting drug 抗癌药物carnivore n.食肉动物,食虫植物cashew n.腰果catastrophe n.大灾难,大祸cayenne n.辣椒chainsaw n.链锯chocolate n.巧克力cinnamon n.肉桂citizenry n.公民,市民clear cutting 清除林木,开垦土地clove n.丁香coconut n.椰子concern n.( 利害)关系,关注congressional mandate 国会委托conifer n.[ 植]松类,针叶树connected habitat 连接成一片的动物栖息地conservation biology 保护生物学consideration n.考虑,需要考虑的事项constituent n.要素core area 核心区域culprit n.罪魁祸首cure n.治疗,疗法decimation n.大批杀害deforestation n.采伐森林deplete vt. 耗尽descendant n.后代designated adj. 指定的,派定的die out 灭绝,逐渐消失dinosaur n.恐龙disperse v.( 使)分散,(使)散开,疏散doomed adj. 命中注定的ecological integrity 生态完整economic collapse 经济崩溃ecosystem n.生态系统elk n.[ 动]麋鹿encompass v.包围,环绕endangered plant and animal 濒危的动植物endangered adj.(生命等)有危险的,有灭绝危险的,将要绝种的energy depletion 能源耗尽entomologist n.昆虫学家entrenched adj. 确立的,(风俗习惯)不容易改的environmental damage 环境损害environmental villain 破坏环境的恶棍eons n.永世,无数的年代equate v.等同于escalate v.逐步增强eviction n.驱逐exploiter n.开拓者,开发者extinction of plants and animals 动植物的灭绝extinction n.消失,消灭extinguish vt. 消灭,熄灭falcon n.[ 动](猎鸟用的)猎鹰fall victim to 成为……的牺牲品far-sighted founder 具有远见的奠基人fig n.无花果firewood n.木柴,柴火fishery n.渔业,水产业flock n.( 禽、畜等的)群forest ecosystem 森林生态系统forgive vt. 宽恕,原谅fossil n.化石fragmentation n.分裂,破碎fragmented adj. 断开的,支离破碎的fresh water 淡水fuel n.燃料fungus n.菌类,蘑菇galaxy n.银河generosity n.慷慨,宽大ginger n.生姜global warming 全球变暖grazing land for cattle 牧场grizzly bear 大灰熊grizzly n.灰熊guava n.番石榴habitat n.( 动植物的)生活环境,栖息地,居留地harbor vt. 为……提供住所;保护hectare n.公顷herds of 成群heritage n.遗产,继承权,传统immense adj. 巨大的imperil vt. 使处于危险,危害in trust 被托管indescribable adj. 难以形容的indigenous Indian tribe 当地的印第安部落industrial raw material 工业原材料inner dynamics 内在动力intact habitat 未被破坏的动植物生活环境intact adj. 完整无缺的interdependent adj. 相互依赖的interlocking network 联锁网络intertwine n.(使)纠缠,(使)缠绕intervention n.干涉intricate and fragile system 复杂脆弱的系统invertebrate adj. 无脊椎的;n.无脊椎动物irreplaceable adj. 不可替代的irresponsible stewardship 不负责任的管理者legacy n.遗赠(物),(祖先传下来的)遗产lemon n.柠檬lifeblood n.生命必须的血液,活力的源泉lobby v.游说议员,对(议员)进行疏通loss of biodiversity 生物多元化的消失loss of genetic and species diversity 基因和物种多样性的消失lucrative market 有利可图的市场lynx n.[ 动]山猫,猞猁magnitude n.巨大,(影响的)重大majesty n.雄伟malaria epidemic 疟疾流行mango n.芒果massive deforestation 大面积的砍伐林木medicinal value 药用价值metabolite n.代谢物microorganism n.微生物multi-national logging company 跨国伐木公司myriad n.无数人或物;adj. 无数的natural habitat 自然栖息地,(动植物的)生活环境natural tropical forest 天然的热带雨林nut n.坚果on a perpetual basis 永久地outcry n.大声疾呼oxygen n.[ 化]氧pacific salmon 大鳞大麻哈鱼属paradise n.天堂peregrine n.隼adj. 外来的,移位的pharmaceutical manufacturer 制药厂商pineapple n.菠萝poacher n.偷猎者pond n.池塘prescription drug 处方药private timber company 私营木材公司profound and devastating 深远和破坏性的public asset 公共财产put an end to 结束,终止quantify v.量化rain forest (热带的)雨林rainforest deforestation 砍伐雨林rainforest ingredient 雨林成分rainforest reserve 雨林保护区rainforest n.雨林ranch n.大牧场recreational from 娱乐形式release n.& vt. 释放renewable and sustainable resource 可恢复的可持续的资源replenish v.补充reproduce v.繁殖,再生resource-dependent industry 依赖于资源的行业restore vt. 恢复,使回复,修复riparian area 河岸salmon n.[ 鱼]鲑鱼,大麻哈鱼sedimentation n.沉淀,沉降self-serving adj. 自私的shamans n.僧人,巫师shelter n.庇护所shoreline n.海岸线short-sighted adj. 短视的short-term utilization 短期利用siltation n.沉积作用,淤积slaughter jaguar, ocelot, caiman and otter 屠杀美洲虎、虎猫、凯门鳄和水獭soil erosion 土壤侵蚀spice n.香料squash n.南瓜staggering adj. 令人惊讶的stake n.木桩,危险store n.& vt. 储藏,存储streamside n.河滨,河边地带stump n.树桩subarctic adj. 亚北极区的subsidize n.资助,津贴sugar cane 蔗糖sustain vt. 维持,支持sustainable adj. 可持续的terrestrial evolution 陆地进化terrestrial n.陆地the brink of ecological meltdown 生态崩溃的边缘the British Isles 大不列颠群岛the rate of destruction 破坏的速率the survival and well-being of man 人类的生存和幸福thrive v.兴旺,繁荣,茁壮成长,旺盛timber production 木材生产timber n.木材timelessness n.永恒tragic consequence 悲剧性的结局tropical rainforest 热带雨林tropical tree 热带树林tropical adj. 热带的,热情的tundra n.苔原,冻土地带unbroken adj. 未破损的,完整的unsustainable adj. 不能证实的,不能成立的,不能支持的vanilla n.香草vincristine n.[ 药]长春新碱(一种抗肿瘤药)virgin forest 原始的、未采伐过的森林wasteland n.荒地,未开垦地watershed n.分水岭western pharmaceutical 西药wilderness recreation recreation 野外娱乐wilderness n.荒野,荒地wildlife n.野生动植物yam n.山药zealot n.狂热者1.3 火山爆发The Eruption of Volcano abundant adj. 丰富的,富余的accretion n.增长accumulation n.积聚,堆积物active volcano 活火山Alaska Volcano Observatory 阿拉斯加州火山观察站aleutian island 阿留申群岛(环布于阿拉斯加半岛尖端的弧形岛屿)alternating layers of lava flows 熔岩流的交互叠层aluminum n.[ 化]铝Archean adj.[ 地质]太古代的archeology n.考古学ascending adj. 上升的,向上的ash particle 灰烬微粒awesome adj. 引起敬畏的,可怕的basaltic lave 玄武岩火山石basin-shaped adj. 盆状的beat out 敲平belated adj. 误期的,迟来的blacksmith n.铁匠blanket n.毯子,覆盖blast n.一股(气流),爆炸,冲击波blob n.一滴,水滴blocky adj. 短而结实的,斑驳的bomb n.火山口喷出的大堆球状熔岩bowl-shaped crater 碗形的火山口bubble n.泡沫bulbous adj. 球根的buoyancy n.浮性,浮力calcium n.[ 化]钙(元素符号Ca)caldera n.[ 地质]喷火山口,凹陷处。
物理学2007-2009年4区SCI分区及影响因子
PHASE TRANSIT PHASE TRANSITIONS 0141-1594物理 4 晶体学 0.935 1.201 Z KRISTALLOGR ZEITSCHRIFT 0044-2968 FUR KRISTALLOGRAPHIE 物理 4 晶体学 1.006 0.708 Z KRIST-NEW ZEITSCHRIFT CRYST ST 1433-7266 FUR KRISTALLOGRAPHIE-NEW 物理 4 晶体学 CRYSTAL STRUCTURES 0.221 0.302 PHYS PERSPECT PHYSICS IN 1422-6944 PERSPECTIVE 物理 4 科学史与科学哲学 0.5 0.44 STUD HISTSTUDIES PHILOS M IN 1355-2198 PHISTORY物理 AND PHILOSOPHY OF 4 科学史与科学哲学 MODERN PHYSICS 0.783 0.562 ACTA MECHACTA MECHANICA 0001-5970物理 4 力学 1.137 1.297 ARCH APPLARCHIVE MECH OF 0939-1533 APPLIED物理 MECHANICS 4 力学 0.993 0.825 CR MECANIQUE COMPTES RENDUS 1631-0721 MECANIQUE 物理 4 力学 0.667 0.538 CONTINUUMCONTINUUM MECH THERM 0935-1175 MECHANICS 物理 AND THERMODYNAMICS 4 力学 1.483 1.552 DOKL PHYSDOKLADY PHYSICS 1028-3358物理 4 力学 0.195 0.289 DYNAM SYST DYNAMICAL1468-9367 SYSTEMS-AN 物理 INTERNATIONAL 4JOURNAL 力学 0.653 0.458 EUR J MECH EUROPEAN B-FLUID0997-7546 JOURNAL OF 物理 MECHANICS B-FLUIDS 4 力学 1.34 1.379 FLUID DYNFLUID RES DYNAMICS 0169-5983 RESEARCH 物理 4 力学 0.897 1.012 INT J COMPUT INTERNATIONAL FLUID1061-8562 D JOURNAL 物理OF COMPUTATIONAL 4 力学 FLUID DYNAMICS 0.571 0.43 INT J NONLIN INTERNATIONAL MECH 0020-7462 JOURNAL 物理OF NON-LINEAR 4 MECHANICS 力学 1.461 1.296 INT J THERMOPHYS INTERNATIONAL 0195-928X JOURNAL 物理OF THERMOPHYSICS 4 力学 0.702 0.889 J APPL MECH Journal TECH PHY of 0021-8944 Applied物理 Mechanics and Technical 4 力学 Physics 0.286 0 J APPL MECH-T JOURNAL ASME OF 0021-8936 APPLIED物理 MECHANICS-TRANSACTIONS 4 力学 OF THE 0.915 ASME 1.065 J MATH FLUID Journal MECHof 1422-6928 Mathematical 物理 Fluid Mechanics 4 力学 1.214 0.94 J MECH JOURNAL OF 1727-7191 MECHANICS 物理 4 力学 0.61 0.644 J NON-EQUIL JOURNAL THERMODY OF 0340-0204 NON-EQUILIBRIUM 物理 THERMODYNAMICS 4 力学 1.227 1.085 J THEOR APP Journal MECH-POL of 1429-2955 Theoretical 物理 and Applied 4Mechanics 力学 0.178 0 MAGNETOHYDRODYNAMICS Magnetohydrodynamics 0024-998X物理 4 力学 0.457 0 MECCANICAMECCANICA0025-6455物理 4 力学 0.892 0.604 MECH BASED MECHANICS DES STRUC 1539-7734 BASED DESIGN 物理 OF STRUCTURES 4 力学 AND MACHINES 0.54 0.354 MECH RES COMMUN MECHANICS0093-6413 RESEARCH物理 COMMUNICATIONS 4 力学 1.085 1.077 MECHANIKAMechanika 1392-1207物理 4 力学 0.78 0 MULTIBODYMULTIBODY SYST DYN1384-5640 SYSTEM DYNAMICS 物理 4 力学 1.802 0.988 PMM-J APPL PMM MATH JOURNAL MEC+ 0021-8928 OF APPLIED 物理 MATHEMATICS 4AND 力学 MECHANICS 0.36 0.348 PROG COMPUT PROGRESS FLUID DY 1468-4349 IN COMPUTATIONAL 物理 FLUID DYNAMICS 4 力学 0.51 0.5 Q J MECH APPL QUARTERLY MATH0033-5614 JOURNAL OF 物理 MECHANICS AND 4APPLIED 力学 MATHEMATICS 1.073 1.125 REGUL CHAOTIC REGULAR DYN&1560-3547 CHAOTIC DYNAMICS 物理 4 力学 0.725 0.568 SHOCK WAVES SHOCK WAVES 0938-1287物理 4 力学 0.442 0.547 WAVE MOTION WAVE MOTION 0165-2125物理 4 力学 1.379 1.391 PHYSICA EPHYSICA E1386-9477物理 4 纳米科技 1.177 1.23 INT J EXERGY International 1742-8297 Journal 物理of Exergy 4 能源与燃料 0.896 0.648 CRYOGENICS CRYOGENICS 0011-2275物理 4 热力学 0.987 0.915 J THERM SCI Journal TECH-JPN of 1880-5566 Thermal物理 Science and Technology 4 热力学 0.2 0 ACOUST PHYS+ ACOUSTICAL 1063-7710 PHYSICS物理 4 声学 0.534 0.622 ACOUST AUST Acoustics0814-6039 Australia 物理 4 声学 0.2 0 ACTA ACUST ACTA UNITED ACUSTICA AC 1610-1928 UNITED 物理 WITH ACUSTICA 4 声学 0.637 0.538 APPL ACOUST APPLIED ACOUSTICS 0003-682X物理 4 声学 0.784 0.789 ARCH ACOUST Archives 0137-5075 of Acoustics 物理 4 声学 0.313 0 J COMPUT ACOUST JOURNAL OF 0218-396X COMPUTATIONAL 物理 ACOUSTICS 4 声学 0.421 0.585 J LOW FREQ JOURNAL NOISE V OF 0263-0923 ALOW FREQUENCY 物理 NOISE VIBRATION 4 声学 AND ACTIVE 0.279 CONTROL 0.227 PHONETICAPHONETICA0031-8388物理 4 声学 0.591 0.55 CR PHYS COMPTES RENDUS 1631-0705 PHYSIQUE 物理 4 天文与天体物理 1.384 1.164 NUKLEONIKA NUKLEONIKA 0029-5922物理 4 无机化学与核化学 0.159 0.267 CHINESE PHYS Chinese C Physics 1674-1137 C 物理 4 物理:核物理 0.251 0 HIGH ENERG HIGH PHYS ENERGY NUC 0254-3052 PHYSICS 物理 AND NUCLEAR PHYSICS-CHINESE 4 物理:核物理EDITION 0.233 0.26 INT J MODINTERNATIONAL PHYS A 0217-751X JOURNAL 物理OF MODERN PHYSICS 4 物理:核物理 A 0.941 0.982 INT J MODINTERNATIONAL PHYS E 0218-3013 JOURNAL 物理OF MODERN PHYSICS 4 物理:核物理 E-NUCLEAR 0.643 PHYSICS 0.492 MOD PHYS LETT MODERN A PHYSICS 0217-7323 LETTERS 物理 A 4 物理:核物理 1.075 1.334 PHYS ATOMPHYSICS NUCL+ OF 1063-7788 ATOMIC NUCLEI 物理 4 物理:核物理 0.539 0.491
化学专业英语常用词5
Analytical chemistry 分析化学Qualitative ['kwɔlitətiv] adj 定性的Quantitative ['kwɔnti,tətiv; -,teitiv] adj 定量的Qualitative analysis 定性分析Quantitative analysis 定量分析Separation [sepə'reiʃ(ə)n] n 分离Classical method 经典方法/ wet chemistry method 湿化学法Precipitation [pri,sipi'teiʃ(ə)n] n 沉淀Extraction [ik'strækʃ(ə)n; ek-] n 萃取Distillation [,disti'leiʃn] n 蒸馏Color ['kʌlə(r)] n 颜色Odor 气味Melting point 熔点Weight [weit] n 质量V olume ['vɔljuːm] n 体积Instrumental method 仪器法Light absorption 光吸收Fluorescence [fluə'res(ə)ns; flɔː-] n 荧光Conductivity [kɔndʌk'tiviti] n 导电性Chromatography [,krəumə'tɔgrəfi] n 色谱分析Electrophoresis [i,lektrə(u)fə'riːsis] n 电泳Sampling ['sɑːmpliŋ] n 取样Reagent Grade 试剂级别Primary Standard Grade 初级标准级Analytical Reagent Grade 分析纯Guaranteed Reagent Grade 保证试剂级Organic Reagent Grade 有机试剂级Chemically Pure Grade 化学纯Technical Grade 工业级Analytical balance 分析天平Desiccator ['desikeitə] n 干燥器Desiccant ['desik(ə)nt] n 干燥剂Hygroscopic [haigrə(u)'skɔpik] adj 吸湿的Crucible ['kruːsib(ə)l] n 坩埚Beaker ['biːkə] n 烧杯Dropping pipet 滴定管Graduated cylinder 量筒Pipet [pi'pɛt] / pipette [pi'pet] n 移液管Buret [bju'rɛt] / burette [bju'ret] n 滴管V olumetric flask 容量瓶Automatic [ɔːtə'mætik] adj 自动的Tap P199Stopcock ['stɔpkɔk] n 活塞Error ['erə] n 误差Uncertainty [ʌn'sɜːt(ə)nti; -tinti] n 不确定Mean [miːn] n 平均值Arithmetic mean 算数平均值Media ['miːdiə] n 中间数Accuracy ['ækjurəsi] n 精确度Precision [pri'siʒ(ə)n] n 准确度Absolute error 绝对误差Percent relative error 相对误差百分数Spread [spred] n 扩展度、分布Range [rein(d)ʒ] n值域、范围Standard deviation 标准偏差Variance ['veəriəns] n 方差Coefficient of variation 方差系数Deviation from the mean 与平均值间的差P201Deviation [diːvi'eiʃ(ə)n] n 偏差Absolute standard deviation 绝对标准偏差Relative standard deviation 相对标准偏差Percent relative standard deviation 相对标准偏差百分数Systematic [sistə'mætik] adj 系统的/ determinate [di'tɜːminət] adj 确定的Sampling error 取样误差Method error 方法误差Measurement error 操作误差Personal error 个人误差Random ['rændəm] adj 随机的/ indeterminate [,indi'tɜːminət] adj 不确定的True value 真实值Bia 偏差P201Sample ['sɑːmp(ə)l] n 样品Population [pɔpju'leiʃ(ə)n] n 总体Probability distribution 分布几率Gaussian ['ɡausiən] adj 高斯的Normal didtribution 正态分布Population’ s centralTrue mean valuePopulation standard deviation 总体标准偏差Confidence interval 置信区间Confidence level 置信水平Confidence limit 置信限度t-test t检验F-test F检验Q-test Q检验Detection limit 检出限Gravimetric analysis 质量分析Precipitation method 沉淀法V olatilization method 挥发法Titrimetric method 滴定法V olumetric analysis 体积分析Primary standard 初级标准Secondary standard 二级标准Standard solution 标准溶液Direct method 直接方法Standardization 标定Secondary standard solution 二级标准溶液Titration [tai'treiʃən] n 滴定Equivalence point 等当点,等效点,当量点Back titration 反滴定End point 终点Titration error 滴定偏差Indicator ['indikeitə] n 指示剂Titration curve 滴定曲线Litmus ['litməs] n 石蕊Phenolphthalein [,fiːnɔl'(f)θæliːn; -'(f)θe il-] n 酚酞Bromothymol blue 溴百里酚蓝Acid-base titration 酸碱滴定Complexometric titration 络合滴定Redox titration 氧化还原滴定Precipitation titration 沉淀滴定Potentiometric [pəu,tenʃiə'metrik] adj 电势测定的V oltammetry [vəul'tæmitri] n 伏安法Coulometry [ku'lɑmitri] n 库伦发Conductometry [kən'dʌktəmetri] n 电导测定法Dielectrometry 介电滴定Potentiometric method 电势测定方法Potentiometry 电势测定法Potentiometer 电位计Reference electrode 参考电极Indicator electrode 指示电极Junction potential 接界电势Coulometric method 库伦法Controlled-potential coulometry 控制电位电势法Potential coulometry 恒电位库伦法Controlled-current coulometry 控制电流库伦法Amperostatic coulometry 恒电流库伦法Electroanalysis [i,lektrəuə'næləsis] n 电分析Coulometric titration 库伦滴定Potentiostat [pəu'tenʃiəstæt] n 稳压器Coulometer [ku'lɑmitɚ] n 库伦计Galvanostat / amperostat 恒流器Coulomb ['kuːlɔm] n 库伦V oltammetry [vəul'tæmitri] n 伏安法V oltammogram 伏安图Working electrode 工作电极Reference electrode 参考电极Auxiliary electrode 辅助电极Saturated calomel electrode 饱和甘汞电极Linear-scan voltammetry 线性扫描伏安法Hydrodynamic voltammetry 流体动力学伏安法Polarography [,pəulə'rɔgrəfi] n 极谱法Amperometry 电流滴定法Stripping voltammetry 溶出伏安法Anodic [æn'ɑdik] adj 阳极的Cathodic [kə'θɔdik] adj 阴极的Adsorptive [æd'sɔrptiv] adj 吸附的Cyclic voltammetry 循环伏安法Alternating current 交替电流Chrono-conductometrySpectroscopy [spek'trɔskəpi] n 光谱学Emission [i'miʃ(ə)n] n 发射Scattering ['skætəriŋ] n 散射Spectrometer [spek'trɔmitə] n 分光仪Prism ['priz(ə)m] n 棱镜Diffraction grating 衍射光栅Monochromatic [mɔnə(u)krə'mætik] adj 单色的Half-mirrored 半透明反射的Sample beam 样品光束Reference 参比Electronic excitation 电子激发Transition [træn'ziʃ(ə)n; trɑːn-; -'siʃ-] n 跃迁Molar absorptivity / molar extinction coefficient 摩尔吸光/消光系数Hypsochromic / blue shift 蓝移Bathochromic / red shift 红移Beer-Lam-bert law朗伯比耳定律Absorbance [əb'zɔːb(ə)ns; -'sɔːb(ə)ns] n 吸光度Transmittance [trænz'mit(ə)ns; trɑːnz-; -ns-] n 透射比Infrared spectrophotometer 红外分光光度计Far-infrared 远红外Rotational 振动的Mid-infrared 中红外Rotational-vibrational 旋转振动的Overtone / harmonic vibration 谐振Resonant frequency 共振频率Vibrational mode 振动模式Vibrational degree of freedom 振动自由度Stretching ['stretʃiŋ] n伸缩、拉伸、伸长Bending ['bendiŋ] n 弯曲Scissoring ['sizəriŋ] n剪刀式摆动、剪,剪切Rocking ['rɔkiŋ] n左右摇摆,摇摆, 摇动Wagging [wæg] n上下摇摆,推移,摇摆Twisting ['twistiŋ] n扭摆,扭曲Symmetric [si'metrik] adj 对称的Antisymmetric stretching 反对称伸缩Fourier transform 傅立叶转换Functional group region 官能团区Fingerprint region 指纹区Fourier transform infrared (FTIR)spectroscopy 傅立叶转换红外光谱Inter ferometer 干涉仪Inter ferogram 干涉图Atomic absorption spectroscopy (AAS) 原子吸收光谱Atomization [,ætomi'zeʃən] n 原子化Flame atomization 火焰原子化Furnace ( electrothermal) atomization 炉子原子化Atomic emission 原子发射Inductively coupled plasma (ICP) 感应耦合等离子体Emission line 发射线Flame photometry火焰光谱Atomic fluorescence 原子荧光Nuclear magnetic resonance (NMR) 核磁共振Nuclear magnetic resonance spectroscope 核磁共振光谱Intrinsic magnetic moment固有磁矩Angular moment角动量Nonzero spin 非零自旋P219Resonant frequency 共振频率Nuclear shielding 核屏蔽Chemical shift 化学位移Tetramethylsilane 四甲基硅J-coupling J耦合Scalar coupling标量耦合Spin-spin coupling 自旋耦合Splitting ['splitiŋ] n 分裂Pascal’ s triangle帕斯卡三角Doublet ['dʌblit] n 双重峰Triplet ['triplit] n 三重峰Quartet [kwɔː'tet] n 四重峰One-dimensional technique 一维技术Two-dimensional technique 二维技术Time domain NMR spectroscopic technique 时域核磁共振光谱技术Solid state NMR spectroscopy 固态核磁共振光谱法Mass spectrometry (MS) 质谱学Mass-to-charge ratio 质荷比Molecular ion 分子离子Fragment ion 碎片离子Mass spectrum 质谱Base peak 基峰Mass spectrometer 质谱仪Ion source 离子源Mass analyzer 质量分析器Ion detector 离子检测器Electron impact ( EI ) ionization 电子轰击离子化Chemical ionization 化学电离Electrospray ionization ( ESI) 电喷射离子化Matrix-assisted laser desorption / ionization ( MALDI) 基质辅助激光解吸/电离Inductively coupled plasma (ICP)Sector field mass analyzer扇形磁场质谱分析仪Time-of-flight (TOF) analyzer 飞行时间分析仪Quadrupole mass analyzer 四级杆质量分析器Tandem mass spectrometry 串联质谱法Chromatography [,krəumə'tɔgrəfi] n 色谱分析法Mobile phase 流动相Differential partitioning 差动分隔Stationary phase 稳定相Partition coefficient 分配系数Retention [ri'tenʃ(ə)n] n 保留Elution [i'lju:ʃən] n 洗出液Elute [i'l(j)uːt] v 洗提Eluent['ɛljuənt] n 洗脱液Eluotropic series洗脱序(洗脱液洗脱能力大小的次序)Chromatogram 色谱图Distribution constant 分配常数Retention time 保留时间Retention volume 保留体积Dead time 死时间V oid time 空隙时间V oid volume 空隙体积Baseline width 基线宽度Band broadening 谱带增宽Resolution 分辨率Capacity factor 容量因数,容量因子Selectivity factor选择系数,选择因子Theoretical plate 理论塔板Peak capacity 最高容量Column chromatography 柱层析(法), 柱色谱(法)Planar chromatography平面色谱法Paper chromatography 纸色谱法Thin layer chromatography 薄层色谱Retention factor 保留因子Gas chromatography 气相色谱gas-liquid chromatography 气液色谱Capillary column 毛细管柱Packed column 填料柱,填充柱,填料塔Liquid chromatography (LC) 液相色谱法High performance liquid chromatography (HPLC) 高效液体色谱Normal phase 正相Reverse phase 反相Affinity chromatography (AC) 亲合色谱法Supercritical fluid chromatography 超临界流体色谱法Ion exchange chromatography 离子交换色谱法Ion exchange resin 离子交换树脂Fast protein liquid chromatography (FPLC) 快速蛋白质液相层析Size-exclusion chromatography (SEC) 体积排除色谱法Gel permeation chromatography (GPC) 凝胶渗透色谱法Hydrodynamic diameter 流体力学半径Hydrodynamic volume 流体力学体积Electrophoresis [i,lektrə(u)fə'riːsis] n 电泳Capillary zone electrophoresis 毛细管电泳Electroosmotic flow 电渗透流Micellar electrokinetic capillary chromatography 胶束电动毛细管色谱p226 Capillary gel electrophoresis 毛细管凝胶电泳Capillary electrochromatography 毛细管电色谱Optical microscopy 光学显微镜Electron microscopy 电子显微镜Scanning electron microscopy (SEM) 扫描电子显微术Transmission electron microscopy (TEM) 透射电子显微镜法Scanning probe microscopy (SPM) 扫描探针显微术Atomic force microscopy (AFM) 原子力显微镜Thermogravimetry (TG) 热重分析法Differential thermal analysis (DTA) 热分析Differential scanning calorimetry (DSC) 差热扫描量热计Dynamic mechanical analysis (DMA) 动态力学分析Raman spectroscopy (RS) 拉曼光谱Auger electron spectroscopy (AES) 俄歇电子能谱学Photoelectron spectroscopy (PES) 光电子能谱Electron spectroscopy for chemical analysis (ESCA) 化学分析用电子能谱学X-ray photoelectron spectroscopy (XPS) X射线光电子能谱学X-ray fluorescence (XRF) X射线荧光X-ray powder diffractometry (XRD) x射线粉末衍射Electrochemiluminescence (ECL) 电致化学发光。
2012-7-6-物理学概论之七-原子与分子物理.ppt [修复的]
(1)分子定向(orientation): 容器中大量分子的特征矢量(如:角动量、电偶极 矩、分子轴等)方向沿着(或者大体上沿着)空间 某一方向分布。
Z
Z
J
J
(a)正方向
(b)负方向
图4.1. 分子角动量的定向
(2)分子取向(alignment) 容器中大量分子的特征矢量方向沿着(或者大体上 沿着)空间某一方向及其相反方向等几率分布。
研究分子在飞秒强激光场中激发、解离、 电离动力学是原子分子物理的主要研究方向 之一。 下面介绍几个热点研究课题: 1.研究小分子在飞秒和亚飞秒脉冲强激光场 中超阈值解离和超阈值电离动力学。
(1) 研究极性分子NaK的超阈值电离
[核磁共振讲义]第一章—核磁共振基础知识
第一章核磁共振基础知识核磁共振(NMR)是指核磁矩不为零的核,在外磁场的作用下,核自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。
核磁共振是波谱学的一个分支,研究核磁共振现象与原子所处环境如分子结构,构象,分子运动的关系及其应用。
生物化学,分子生物学的发展对生物大分子空间结构的测定提出越来越高的要求,而逐渐形成一门新兴的交叉学科即结构生物学。
结构生物学已成为生命科学研究的前沿领域和热点。
核磁共振波谱学是结构生物学的一种重要的研究手段,核磁共振波谱学各种最新技术的出现和发展往往与结构生物学密切相关。
如3D,4DNMR。
简史:1924 Pauli从光谱的超精细结构推测某些原子核有核磁距,能级裂分,共振吸收1936 Gorter试图观察LiF中7Li的吸收,未能成功,因样品弛豫时间太长1945-1946 F.Bloch(Stanford), H2O 感应法E.M.Purcell(Harvard), 石蜡吸收法1946-1948 奠定了理论基础1952年共得诺贝尔物理奖1951 Arnold et al 乙醇1H化学位移精细结构1957 Saunders et al 核糖核酸酶40 MHz的1H谱(1965 Cooley, Tukey FTT)1966 R.R. Ernst 脉冲NMR理论1971 Jeener 2DNMR原理1984 K. Wuethrich用NMR解蛋白质溶液结构1945-1951 奠定理论和实验基础1951-1965 CW-NMR发展,双共振技术1965-1970~PFT-NMR发展1970~--- 2D-NMR,MQT-NMR,SOLID-NMR,自旋成象技术核磁共振可以用于研究有机分子的化学结构,代谢途径,酶反应的立体化学信息,生物大分子的溶液构象,分子间相互作用的细节,化学反应速率,平衡常数,还可用来研究分子动力学,包括分子内的基团运动,以及生物膜的流动性。
细胞和活组织中化学成分的分布及交换过程,等等。
propane
Quasiclassical trajectory calculations of collisional energy transfer in propane systemsApichart Linhananta and Kieran F.Lim*¤Centre for Chiral and Molecular T echnologies,School of Biological and Chemical Sciences,Deakin University,Geelong,V ictoria3217,Australia.E-mail:lim=.auRecei v ed6th December1999,Accepted27th January2000Published on the Web9th March2000Quasiclassical trajectory calculations of collisional energy transfer(CET)and rotational energy transfer from highly vibrationally excited propane to rare bath gases are reported.The calculations employed atomÈatom pairwise-additive Lennard-Jones,Buckingham exponential and hard-sphere intermolecular potentials to examine the dependence of CET on the intermolecular potential and to establish a protocol for future work on larger alkane systems.The role of the torsional(internal)and molecular(external)rotors in the energy-transfer mechanism were parison of the results with our earlier work on ethane]neon systems(A. Linhananta and K.F.Lim,Phys.Chem.Chem.Phys.,1999,1,3467)suggests that the internal and external rotors play a signiÐcant role in the deactivation mechanism for highly vibrationally excited alkanes.I.IntroductionGas-phase chemical reaction rates are strongly dependent on intermolecular collisional energy transfer(CET).CET is a vital component in any combustion-model and atmospheric-model systems.The only experimental CET quantities for hydrocarbon fuel molecules have been inferred““indirectlyÏÏfrom measurements of pressure-dependent reaction rates.1h3 Despite this,there have been no systematic theoretical dynamics studies of CET of hydrocarbon and halogenated hydrocarbons.In fact,most theoretical studies have been on small molecules.3h14The exceptions are the quasiclassical tra-jectory(QCT)calculations of azulene,toluene,benzene and hexaÑuorobenzene systems.15h23We have recently reported QCT calculations for highly vibrationally excited ethane in neon bath gas.24This and the recent work by Svedung et al. are,to our knowledge,theÐrst theoretical CET studies of an alkane with internal rotors.24,25Comparisons of theoretical and experimental studies of CET show that many of the dominant energy transfer mecha-nisms in small molecules are also present in large mol-ecules.3h6However,there are several di†erences between large-substrate and small-substrate behaviours.A notable example is that in the CET from a““smallÏÏsubstrate to a rare gas collider the trend He[Ne[Ar is observed,26h28 whereas the opposite trend of He\Ne\Ar is observed for ““largeÏÏsubstrates.29h39Theoretical studies of CET on small molecules employing various techniquesÈquantum,semi-classical and classical dynamicsÈall have correctly predicted the small-substrate behaviour.40,41This is not the case for large-substrate systems where QCT simulations incorrectly found the same smallsubstrate trend.15h18The discrepancy may be due to the lack of reliable data on the intermolecular potential surface involving large molecules and is most likely to be manifested in systems with the small collider helium bath gas.42,43¤Lim Pak Kwan.The aforementioned QCT calculations of large-substrate molecules have been on aromatic hydrocarbons because they have been most amenable to experimental studies using spec-troscopic probes.There have been fewer studies28,44h47on alkanes and branched-alkanes,which are the main com-ponents of common combustion fuels,and their halogenated analogues,which are important in ozone and““greenhouseÏÏchemistry.TheÐrst most obvious di†erences between alkanes and aromatics are their shapes,which are expected to a†ect the rotational energy transfer(RET).Since rotation to trans-lation(R]T)energy transfer and vibration to rotation (V]R)energy transfer are often more efficient than vibration to translation(V]T)energy transfer,this can have a strong inÑuence on the overall CET.Another crucial aspect is theÑexibility of alkanes.QCT simulations of alkanes would require the development of an efficient algorithm for sampling conformer space.Related to theÑexibility,as well as to RET,is the role of internal rotors in the CET mechanism.QCT calculations of highly vibra-tionally excited ethane in neon bath gas show that there is an interrelationship between the internal methyl rotors and the external rotation giving rise to V]torsion,R energyÑow in theÐrst collision,resulting in an““enhancedÏÏCET in sub-sequent collisions.24The same e†ect is also observed in experiments on the deactivation of highly vibrationally excited benzene and toluene,where toluene has much larger CET values than benzene.37This e†ect suggests that the torsional rotors in alkanes are important.Since the use of intramolecular torsional potential terms (nine such terms for each additional methylene unit)24plus a sampling of the conformational space may prove to be cost-prohibitive for large(r)alkane systems,there is a need to establish an e†ective protocol for QCT alkane simulations. Use of a hard-sphere potential will reduce a substrateÈcollider collision into a sequence of““sudden-impactÏÏatomÈatom encounters.Furthermore,there is no need to calculate molec-ular interactions at medium-to-large atomic separations.This paper““benchmarksÏÏCET using a hard-sphere potential against the more-commonly used Lennard-Jones andDOI:10.1039/a909614k Phys.Chem.Chem.Phys.,2000,2,1385È13921385This journal is The Owner Societies2000(Buckingham-type exponential-6models,by performing QCT calculations on the propane ]monatomic collider systems.The role of the torsional (internal)and molecular (external)rotors in the energy-transfer mechanism are reported.II.Quasiclassical trajectory calculationsA.Intermolecular potentialThe lack of knowledge of the detailed form of intermolecular potentials has always been a hindrance to quasiclassical mod-elling of CET.This is especially true for large-substrate systems,where there is a paucity of reliable theoretical and experimental data.Previous trajectory calculations of large molecules usually modelled the intermolecular potential by pairwise-additive atom Èatom potentials:7h 24,48h 50the inter-action parameters were usually obtained by semiempirical methods.Collins and coworkers have ““builtÏÏintermolecular potentials by interpolation of ab initio data:51h 53thus far they have only applied their method to relatively small polyato-mics whereas we wish to use a protocol that can be consistent-ly and easily ““scaled upÏÏfor larger alkane systems.Hence in this work three pairwise-additive atom Èatom intermolecular potentials were employed.The Ðrst intermolecular potential was the pairwise-additive Lennard-Jones (LJ)potential with atom Èatom terms given by V ij \4e ijCA p ij r ij B 12[A p ij r ijB 6D,(1)(i \C,H;j \rare gas),where is the atom Èatom centre-of-r ijmass separation,and and are the Lennard-Jones radiusp ij e ijand well depth,respectively.The LJ parameters were chosen by the method of Lim to match empirical values.16,29,54The second intermolecular potential was the pairwise-additive Buckingham exponential (exp-6)potential with atom Èatom terms given byV ij \A ij exp([c ij r ij )[C ij r ij~6,(2)where the parameter determines the repulsive steepness ofc ijthe potential.55The parameters and were chosen toA ij C ijmatch empirical values.16,29,54The last intermolecular potential was a pairwise-additive hard-sphere (HS)potentialV ij \GO ,0,r ij O r ij vdW ,r ij [r ijvdW ,(3)where is the van der Waals radius 56between atoms i andr ijvdW j .This potential is in the spirit of the e†ective mass theory.57The HS potential is tested here to determine if it can be used to derive useful qualitative information:if so then it would be a useful model for simulations of larger alkanes.The intermolecular parameters for propane ]Rg (Rg \rare gases He,Ne and Ar)potentials are given in Table 1.B.Intramolecular potentialA simple harmonic valence force Ðeld,consisting of harmonic stretches,bends and torsions,was used to describe the propane substrate:V intra\;i V stretch,i ];i V bend,i ];iV torsion,i .(4)The Ðrst two terms have been deÐned previously.15,58,59The harmonic stretching and bending force constants were obtained by the empirical prescription of Lindner:60k str,CC\4.705]102J m ~2,J m ~2,k str,CH \4.702]102k bend,CCH\6.67]10~17J rad ~2,and J rad ~2.k bend,HCH\5.61]10~17The Ðnal term in eqn.(4)is a 3-fold methyl torsional potential,which was assumed to be:V torsion,i \V 0n ;j /1n cos 2A 3qij 2B.(5)The torsional angles are the nine H ÈC ÈC ÈH or H ÈC ÈC ÈCq ijdihedral angles for each of the i th C ÈC bonds.Each carbon centre was assumed to have perfect tetrahedral geometry with C ÈC and C ÈH bond lengths of 0.1543nm and 0.1093nm,respectively.To study the e†ect of the torsion,the torsional barrier parameter was taken to be 0(free rotors)and 13.8V 0kJ mol ~1(experimental barriers).61The direction of the bond vectors was deÐned so that the staggered conformer has the lowest-energy geometry.The free-rotor model has apparent harmonic torsional ““vibrationalÏÏfrequencies of 9.2and 9.3cm ~1while the hindered-rotor model has apparent harmonic torsional ““vibrationalÏÏfrequencies of 167.4and 186.3cm ~1.These fre-quencies arise from the numerical normal mode analysis and are used in the selection of initial conditions.58,59,62The other 25vibrational frequencies compare favourably with experi-mental group frequencies of putational detailsTrajectory calculations were performed using program MARINER 58which is a customised version of VENUS96.59The LJ and exp-6potential models,selection of initial condi-tions,and general methodology are standard options in program MARINER/VENUS96.58,59,62The initial impact energy was chosen from a 300K thermal distribution.InE transthe majority of cases,the initial rotational angular momentum of propane was chosen from a thermal distribution at 300K.The rotational temperature was varied from 100to 1500K to investigate the RET of propane ]argon by the HS model.The initial vibrational phases and displacements were chosen from microcanonical ensembles at E @\41000,30000or 15000cm ~1,where E @is the rovibrational energy above the zero-point energy.These initial conditions are appropriate for comparison with the Ðrst few collisions in time-resolved infra-red Ñuorescence and ultraviolet absorption experi-ments.3h 6,29h 38,64Note that experiments measure the CET values of a cascade of collisions.The rovibrational energy dis-tribution of subsequent collisions will not be microcanonical,Table 1Intermolecular potential parametersLJ model exp-6model HS model p (e /k B )Aij Cij c ij r vdW /nm/K /kJ mol ~1/10~6kJ mol ~1nm 6/nm 1/nm H ÉÉÉHe 0.28258.0882294712479.945.50.325C ÉÉÉHe 0.291517.6931859254179745.60.345H ÉÉÉNe 0.293817.00103476168.5345.70.305C ÉÉÉNe 0.302034.156********.6945.90.325H ÉÉÉAr 0.306628.87140033519.240.80.335C ÉÉÉAr0.321658.025809650187641.00.3551386Phys .Chem .Chem .Phys .,2000,2,1385È1392but the CET behaviour of these subsequent collisions can be inferred 18,65,66from the microcanonical values.For the models employing the LJ and exp-6intermolecular potentials,trajectories were initialised with a centre-of-mass separation of 1.2nm and the classical equations of motion were integrated by the Adams ÈMoulton algorithm 58,59,62until the distance between the monatomic collider and the closest hydrogen exceeded a critical value of 1.0nm,at which point the trajectory was terminated.The initial impact param-eter b was chosen with importance sampling 16,17,58,59,62for values between 0nm and nm (He and Ne)or 0.9nmb m\0.8(Ar).These initial and Ðnal conditions were chosen by per-forming preliminary runs which showed that an insigniÐcant amount of energy was transferred at larger distances.For the HS interaction model,there is no intermolecular interaction until the point of impact,when the propane sub-strate is still described by a (near)microcanonical putationally,this is achieved by initialising trajectories as above,but translating the colliders to the point of initial contact without altering the rovibrational phases and orienta-tion.The translation was performed using an algorithm devel-oped by Alder and Wainwright 67,68to model hard-sphere Ñuid systems.After this initial point of contact,the trajectory was propagated normally.At each time step,the interatomic distances between the rare gas collider and every propane atom were checked for overlap.If an atom Èatom encounter occurred,the trajectory was projected back to the point of impact and the impulsive momentum transfer was calcu-lated.68The process was repeated until another encounter occurred or until the distance between the monatomic collider and the closest hydrogen exceeded a critical value,at which point the trajectory was terminated.Program MARINER 58was altered to implement the HS potential and trajectory-propagation algorithms.The short-ranged HS interaction per-mitted critical values as low as 0.4nm.Since the equations of motion are integrated for a comparatively short period,the HS model required much less computing time than the LJ and exp-6models.For E @\15000and 30000cm ~1,the integration time step was chosen to be 0.085fs,which is sufficient to conserve total energy to within 0.5cm ~1.This is approximately four times larger than the time step used in our previous ethane trajec-tory calculations.24Propane has less excitation per vibra-tional mode and hence energy can be conserved by larger time steps.For E @\41000cm ~1,it was necessary to employ a time step of 0.075fs to conserve energy.The numerical insta-bilities associated with the inversion of the methyl group(s)previously observed in simulations of ethane 24and toluene 16,17were not observed here.The calculations were performed on a DEC Alpha 3000/300LX workstation and an SGI Power Challenge Super-computer.In calculations that employed the LJ or exp-6intermolecular potentials,batches of 3000trajectories required approximately 60CPU hours for He collider and 100CPU hours for Ar on the workstation.The HS model decreased the required CPU time by a factor of 10:this reduction will be very signiÐcant in the study of larger alkanes.CPU time was reduced by a factor of about 4on the supercomputer.D.Rotation energy and torsional angular momentum It is well documented that rotational energy transfer is an effi-cient pathway for CET.3,24,65,66,69However,while angular momenta are well-deÐned,rovibrational coupling gives rise to an ambiguity in the deÐnition of rotational energy.Previous quasiclassical simulations employed several di†erent methods to decouple the rotational and vibrational energies.One method 11deÐnes the rotational energy asE rot \1(JI ~1J ),(6)where I and J are,respectively,the instantaneous moment of inertia and angular momentum.In a second method isE rotapproximated by the instantaneous angular momentum,but the moment of inertia is taken to be the equilibrium geometry value.11Both deÐnitions give rotational energies that oscillate with time.There is an alternative deÐnition that is valid for symmetrical top rotors:65E rot \1B effJ 2,(7)where J is the magnitude of the rotational angular momentum and is an e†ective rotational constant.This deÐnitionB effdecoupled the rovibrational energy so that the rotational energy includes only the ““adiabatic partÏÏ,whereas the ““activeÏÏpart is included with the vibrational energyE V \E [E rot,(8)where and E are,respectively,the vibrational and totalE Vinternal energies.Eqn.(7)is a valid approximation for sym-metrical top molecules.70The main advantage of this deÐni-tion is that,classically,it is a conserved quantity.The equilibrium Cartesian principal moments of inertia of propane are kg m 2,kgI xx \1.11]10~45I yy\9.7]10~46m 2and kg m 2.Hence,propane is a goodI zz\2.97]10~46approximation of a symmetrical top and it is possible to deÐne the rotational energy by eqn.(7),with the approx-imationB eff \12hc (I xx I yy I zz)~1@3.(9)It was shown in our previous work on ethane 24that the coupling between external and internal rotors enhances the overall CET.Hence the torsional angular momentum of propane was also monitored in this work.Whereas ethane has only one torsional rotor which lies along its molecular axis,propane has two distinct and unparallel torsional rotors.The deÐnition of the torsional angular momentum introduced for ethane is generalised by calculating the rotational angular momentum of the methyl group and the associated ethyl groupJ methyl \;i /H,H,Hr i ]p iJ ethyl\;i /C,H,Hr i ]p i,(10)where is the angular momentum of the methyl groupJ methyland is the angular momentum of the associated ethylJ ethylrotor.Note that for consistency with eqn.(5),only the six atoms directly bonded to each torsional C ÈC bond have been included in the summation in eqn.(10).The torsional angular momentum is then deÐned asJ tor \o (J methyl [J ethyl)Éa o ,(11)where is a unit vector parallel to the CC torsional axis.The a CET to/from the torsional rotors was monitored by calcu-lating the average torsional angular momentum change*J tor \J tor (Ðnal)[J tor(initial).(12)E.Data analysisTrajectory data were analysed by a bootstrap algorithm 71,72in program PEERAN.16,73Some 3000È5000trajectories were performed for each potential model.This was sufficient to obtain average energy-transfer quantities with statistical uncertainties of about 10%.However,the uncertainties for the average rotational energy transfer were about 20%,due to the initial rotational-energy Boltzmann distribution (rather than an initial microcanonical distribution).Trajectory averagesPhys .Chem .Chem .Phys .,2000,2,1385È13921387deÐned by (for both overall CET and RET)S*E n TtrajS*E n T traj \1N ;i /1N bi bm(*E i )n(13)are related to experimentally obtained quantities S*E n T by ratio of collision cross-sectionsS*E n T \p b m 2p p LJ2X (2,2)RS*E n T traj (14)where is the LJ collision cross-section and is thep LJ 2X (2,2)R b mmaximum impact parameter in the trajectory simulation.This normalisation removes the ambiguity related to the elastic scattering at high impact parameter.74The input LJ param-eters were obtained from ref.29.At 300K,the LJ collision cross-section values of nm 2,0.4834nm 2p LJ2X (2,2)R \0.3976and 0.6945nm 2for propane ]He,propane ]Ne and propane ]Ar,respectively,were obtained using the program COLRATE.75This corresponds to the LJ collision frequencies of m 3s ~1,328.58]10~18m 3s ~1Z LJ,coll\523.29]10~18and 382.37]10~18m 3s ~1,respectively.In this paper,we have reported both the Ðrst and second moments of the trajectory data since the Ðrst moment is usually more useful for comparison with experiment,but the QCT second moment is statistically more reliable.74Some experiments can determine both the Ðrst and second moments of the CET probability.3,5III.Results and discussionA.The e†ect of the torsional barrierFigs.1and 2show the CET values,[S*E T and S*E 2T 1@2,and the RET values,as functions of energy E @aboveS*E RT ,zero-point energy for propane ]neon.One set of results areFig.1Dependence of energy-transfer quantities on torsional barrier for deactivation of vibrationally excited propane by neon bath gas:)Hindered-rotor (LJ);Free-rotor (LJ);Hindered-rotor (exp-6);L +…Free-rotor (exp-6).Fig.2Dependence of rotational energy transfer on torsional barrier for deactivation of vibrationally excited propane by neon bath gas:)Hindered-rotor (LJ);Free-rotor (LJ);Hindered-rotor (exp-6);L +…Free-rotor (exp-6).for the free-rotor model the other for the hindered-(V 0\0),rotor model kJ mol ~1).These results are for the LJ(V 0\13.8and exp-6intermolecular potentials.The overall deactivation,[S*E T and S*E 2T 1@2,is larger for the hindered-rotor model,similar to results for ethane ]neon.24The torsional angular momentum transfer is shownS*J torT in Fig.3.Note that for the hindered-rotor modelsS*J torT with both LJ and exp-6intermolecular potentials are virtually identical:the reason for this is unclear.Overall,S*J torTdecreases,but remains positive,with the presence of a barrier In contrast,for ethane ]neon changes from posi-V 0.S*J torT tive to negative over a similar range of values.24This di†er-V 0ence is probably due to the higher torsional moment of inertia for propane torsion compared to ethane(CH 3ÈCCH 2)This means that propane torsion has higher(CH 3ÈCH 3).density of states and can more readily gain torsional excita-tion than ethane torsion,explaining why is positiveS*J torT for propane,but negative for ethane.In ethane,the torsion acts like a vibration providing an efficient torsion ]T pathway.24The increase in [S*E T and S*E 2T 1@2(Fig.1)for the hindered-rotor model suggests that propane torsions play the same role in the CET mechanism.The RET is smaller for the propane free-rotor modelS*E RT than the hindered-rotor model (Fig.2),contrary to the ethane results.24For ethane,the torsion is aligned along the molecu-lar axis,hence any increase in methyl-rotor angular momen-tum contributes to both (internal)torsional excitation S*J torTand (external)rotational excitation The propane free-S*E RT .rotor model has Ðve (three external and two internal)indepen-Fig.3Dependence of torsional angular momentum change on tor-sional barrier for deactivation of vibrationally excited propane by neon bath gas:Hindered-rotor (LJ);Free-rotor (LJ);)L +Hindered-rotor (exp-6);Free-rotor (exp-6).Note that the two sets …of hindered-rotor results are almost identical.1388Phys .Chem .Chem .Phys .,2000,2,1385È1392dent rotors,none of which have coincident axes.The extra rotors mean that there is less energy available to the external rotors in any V ]torsion,R energy redistribution.Noteworthy is the fact that the di†erences between the free-rotor and hindered-rotor models persist up to E @\41000cm ~1.For ethane ]neon,there is an onset of near-free-rotor behaviour at E @\30000cm ~1:at E @\41000cm ~1there is no signiÐcant di†erence between the free-and hindered-rotor models.However,the larger number of vibrational modes in propane,which decreases the excitation per torsional mode,ensures that the di†erences remain even at very high excita-tion.Hence correct theoretical treatments of internal rotors become even more essential for larger molecules.B.Trajectory results for LJ and exp-6modelsThe CET results for the deactivation of highly excited propane by helium,neon and argon are shown in Fig.4,where the intermolecular interactions have been modelled by the LJ and exp-6potentials.Three important features are:(1)Energy transfer increases with increasing E @and is in accord with theoretical and experimental studies on the deac-tivation of highly vibrationally excited molecules.(2)The LJ potential results in larger CET values than the exp-6model,since the LJ potential has a much harder repul-sive part than the exp-6potential.There are numerous works which concluded that CET depends mainly on the repulsive part of the intermolecular potential and that,in general,a harder repulsive part results in larger energy transfers.9,16,17(3)The deactivator efficiency shows the trend He [Ne [Ar which,unfortunately,is in discord with experi-mental trends for Ñuorinated alkane systems.28To our knowledge,there has been no experimental study of CET in propane ]rare gas systems.““IndirectÏÏstudies of related systems include 2-bromopropane ]Ne ([S*E T \130cm ~1for E @\17000È21000cm ~1)76andFig.4Energy-transfer quantities for deactivation of vibrationally excited propane by rare gases:Helium (LJ);Neon (LJ);)K |Argon (LJ);Helium (exp-6);Neon (exp-6);Argon (exp-6).+=>isotopically-substituted cyclopropane ]He (S*E 2T 1@2\200È400cm ~1for E @D 22000cm ~1).2These CET quantities were not directly measured,but were inferred from pressure-dependent thermal reaction rates at elevated temperatures.Some more recent studies using time-resolved optoacoustic spectroscopy include ([S*E T \114cm ~1atC 3F 8]Ar E @\15000cm ~1and [S*E T \300cm ~1at E @\40000cm ~1).46These studies reveal no information about RET nor the role of torsional modes.These experimental CET quan-tities correlate well with our present calculations (Fig.4)but also indicate a need for fresh experimental studies.The decreasing trend with collider He [Ne [Ar has been observed in many other QCT studies.9,15,18,77Although the lack of qualitative agreement with experiment is disappoint-ing,these studies and the present work have used very crude intermolecular potential models.Given the lack of detailed information about polyatomic intermolecular potential sur-faces,the intention in the present and other studies has been to use a set of consistent and transferable potentials,16much in the spirit of molecular mechanics force Ðelds.Experience with simulations on other systems would suggest that the exp-6model potentials predict ““betterÏÏCET values than the LJ potentials.17Fig.5plots the RET of propane ]rare gas systems.For Ne and Ar,monotonically increases with E @,whereas forS*E RT He,it initially increases but decreases at higher excitation energy.In all cases,RET is larger for the LJ model which is in accord with the CET behaviour.Clary and Kroes 78and others 16,17,40have observed that RET is larger for heavier colliders because the collision duration is closer to the rota-tional period of the molecular substrate.Fig.6plots the torsional angular momentum transfer as a function of E @.is largest for He and smal-S*J tor T S*J torT lest for Ar,which is the same trend as for CET.This implies that,in addition to the external rotor gateway,the torsional rotor is a gateway for facile CET via V,torsion ]torsion,T.24An interesting feature of Fig.6is that seems to beS*J torT Fig.5Rotational energy transfer for deactivation of vibrationally excited propane by rare gases:Helium (LJ);Neon (LJ);)K |Argon (LJ);Helium (exp-6);Neon (exp-6);Argon (exp-6).+=>Phys .Chem .Chem .Phys .,2000,2,1385È13921389Fig.6Torsional angular momentum change for deactivation ofvibrationally excited propane by rare gases:Helium(LJ);Neon)K(LJ);Argon(LJ);Helium(exp-6);Neon(exp-6);Argon|+=>(exp-6).insensitive to the intermolecular potential.However,the factthat it depends on the type of bath gas indicates a dependenceon the mass of the deactivator.This suggests that isS*JtorTinsensitive to theÐne details of the intermolecular potentialand can be modelled by either LJ or exp-6potentials.C.Trajectory results for hard-sphere modelLJ and exp-6potentials have long-range attractive terms andare computationally expensive.Since HS is a short-rangepotential,it is computationally cheaper in terms of computertime than other potential models by an order of magnitude.Inthis section we compare the results of the short-range HS withthe longer-range potentials.Fig.7shows S*E T and S*E2T1@2for the HS model.Fig.8shows the RET for the HS model.The qualitative behavioursare the same as for the LJ and exp-6models but the energy-transfer values are several times larger than for the LJ andexp-6model.This is not surprising in view of the““hardnessÏÏof the HS potential.9,16,17Another important feature is thatS*E T and S*E2T1@2for He are several times larger than forNe and Ar.This is also true for the LJ model(Fig.3)whichindicates that the HS and LJ models tend to give CET valuesthat are much too high for helium colliders.Table2lists the average number of encounters per collision,for He,Ne and Ar colliders.This average includes onlyNC,trajectories in which collisions have occurred.As expected NCTable2Average number of atomÈatom encounters NcE@/cm~1150003000041000Propane]He 1.967 1.884 1.847Propane]Ne 3.145 2.952 2.852Propane]Ar 3.753 3.501 3.400Fig.7Energy-transfer quantities for deactivation of vibrationallyexcited propane by rare gases for the HS model:Helium;Neon;+=Argon.>is largest for Ar and smallest for He due to their reducedmasses.also decreases with increasing E@which suggestsNCthat a more highly excited substrate imparts more energy perencounter to the deactivator,reducing the collision duration.Fig.9shows S*E T,and for propane]argonS*EVT S*ERTsystems at rotational temperatures300,1000andTROT\100,1500K.In these simulations,initial excitation wasÐxed atE@\15000cm~1and the initial translational temperaturewas K.It can also be seen that RETTtrans\300S*ERTdecreases with increasing the magnitude of the vibra-TROT;tional energy transfer also decreases with increasingS*EVTThis implies that rotationally cold systems exhibitTROT.V]R,T energy transfer,whereas rotationally hot systemsexhibit V,R]R,T.It can be seen that the overall[S*E T islarger for larger which agrees with the hypothesis thatTROTthe external rotation is a facile CET path.This behaviour hasFig.8Rotational energy transfer for deactivation of vibrationallyexcited propane by rare gases for the HS model.Helium;Neon;+=Argon.>1390Phys.Chem.Chem.Phys.,2000,2,1385È1392。
体外冲击波治疗脑卒中后功能障碍的研究进展
- 167 -*基金项目:江西省中医优势病种(中风)防治中心项目(赣中医药医政字〔2021〕8号)①江西中医药大学附属医院康复科 江西 南昌 330006通信作者:张衍辉体外冲击波治疗脑卒中后功能障碍的研究进展*曾宝瑶① 张衍辉① 施凤飞① 洪恩四① 王鹏① 【摘要】 体外冲击波疗法(ESWT)由于其安全、无创、方便及疗效好等特点,一直以来被广泛应用于康复医学中,特别是肌肉骨骼康复的骨科术后或外伤炎症康复当中,而相比之下,ESWT 在神经康复中的应用较少。
神经系统疾患中的脑卒中,已成为我国居民的第一位死亡原因,具有高发病率、高死亡率和高致残率等特点。
脑卒中后遗留的功能障碍,给无数患者及其家庭造成了极大的困扰。
近些年来,越来越多的研究者开始尝试把体外冲击波应用在脑卒中后功能障碍的康复治疗中,本文对其近十年的相关临床应用进行统合、对比及分析,希望能为未来的脑卒中康复提供新的思路与应用依据。
【关键词】 体外冲击波疗法 脑卒中 功能障碍 综述 Research Progress of Extracorporeal Shock Wave Therapy for Post-stroke Dysfunction/ZENG Baoyao, ZHANG Yanhui, SHI Fengfei, HONG Ensi, WANG Peng. //Medical Innovation of China, 2024, 21(11): 167-175 [Abstract] Extracorporeal shock wave therapy (ESWT) has been widely used in rehabilitation therapy, especially in orthopedic surgery or traumatic inflammation rehabilitation for musculoskeletal rehabilitation, due to its characteristics of safety, non-invasive, convenience and good curative effect. In contrast, ESWT has less application in neurological rehabilitation. Stroke, one of the neurological diseases, has become the first cause of death in China, with high incidence rate, high mortality and high disability rate. The post-stroke dysfunction has caused great distress to countless patients and their families. In recent years, more and more researchers have begun to apply extracorporeal shock wave to the rehabilitation treatment of post-stroke dysfunction. This article reviews its clinical application in the past decade to provide new ideas and evidence for future clinical rehabilitation treatment. [Key words] Extracorporeal shock wave therapy Stroke Dysfunction Review First-author's address: Department of Rehabilitation, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China doi:10.3969/j.issn.1674-4985.2024.11.037 脑卒中又称中风,是我国常见的一种中枢神经系统疾病,分为缺血性脑卒中和出血性脑卒中,其高致残率和高死亡率是危害国民生命和健康的两大特征。
霍夫梅斯特效应 超分子水凝胶的机械强度
霍夫梅斯特效应超分子水凝胶的机械强度下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!霍夫梅斯特效应是一种基于超分子化学的现象,它在许多领域中展现出重要的应用价值。
细胞质中存在信号纳米架构,可按需打开
细胞质中存在信号纳米架构,可按需打开细胞同时处理多个信号的原因找到了!来源:科技日报2022-03-18 09:18科技日报柏林3月16日电(记者李山)近日,德国分子医学研究中心(MDC)的研究人员发现,纳米结构域构成独立的信号单元是单个细胞可同时处理成百上千个信号的原因。
研究人员认为,该研究成果将开辟一个全新的细胞生物学研究领域。
相关研究成果发表在最近一期《细胞》杂志上。
活细胞暴露于各种刺激之中。
无数信使物质停靠在它们的表面并触发细胞内的信号级联。
这是细胞表面受体接受外界信号做出应答并将信号逐级在细胞内传递、放大和增强的过程。
其中,G蛋白偶联受体(GPCR)属于“第一信使”,负责将细胞外刺激传递给特定的细胞功能。
尽管有许多不同的GPCR,但所有这些GPCR仅向少数“第二信使”发出信号,例如环磷酸腺苷(cAMP)。
现在,德国亥姆霍兹协会马克斯·德尔布吕克分子医学中心的安德烈亚斯·博克教授领导的研究团队发现,单个GPCR通过与受体相关的独立cAMP纳米结构域(RAIN)发出信号,这些结构域构成自给自足的独立细胞信号单元,不受来自其他受体和细胞区室的cAMP的影响。
研究人员使用荧光显微镜观察分离的单细胞,研究来自两个不同受体的cAMP信号如何在一个细胞中平行出现并进行处理。
其中一种受体对胰岛素分泌很重要,另一种则影响心肺功能。
科学家们发现,激活的受体直接形成一个半径在30到60纳米的微小区域。
博克教授将这个纳米空间比喻成弹出式工厂,当“命令”到来时,它会出现在细胞膜上并立即开始工作。
“当一个这样的纳米空间被填满时,cAMP会溢出到下一个,触发信号级联到细胞内部。
”纳米结构域的发现使得细胞中信号通道的复杂性增加很多倍。
受体产生的信号开始只会影响附近的酶。
细胞中的其他区域不会受影响。
这允许非常精确地打开和关闭信号路径。
研究人员认为,细胞质中存在信号纳米架构,可按需打开。
这样的凝胶状结构会阻止cAMP从微小空间中扩散出来。
大肠埃希菌严谨反应蛋白RelA的表达载体构建及生物信息学分析
中国病原生物学杂志2020年12月第15卷第12期Journal of Pathogen Biology Dec.2020.Vol.15,No.12・1427・DOI:10.13350/j.cjpb.201212•论著*大肠埃希菌严谨反应蛋白RelA的表达载体构建及生物信息学分析*徐本锦…,刘玲,宋彬裕,杜淼,宣炭,寇妍祺(山西医科大学汾阳学院医学检验系.山西汾阳032200)目的构建大肠埃希菌严谨反应蛋白编码基因relA的原核表达载体.通过生物信息学方法分析RelA蛋白的结构和功能,为阐明RelA介导细菌严谨反应的分子机制奠定基础。
方法利用分子克隆技术得到relA的CDS序列,利用基因工程手段将CDS序列连接到原核表达载体pET-22b中,通过抗性基因筛选和双向测序验证,得到重组表达载体pET-22b-relA…采用Protparam、TMHMM、ProtScale ExPASy>PSORT II、SignalP、InterPro、UniProt、NetPhos 3.NGlyc 1.0、Net()Glyc4.0,Blast等生物信息学软件和数据库对大肠埃希菌RelA蛋白的理化性质、功能位点、翻译后修饰、三维结构及蛋白相互作用网络等生物学特性进行系统分析;利用Clustal X2和MEGA7.0软件对RelA蛋白进行基于氨基酸序列的同源性分析和系统进化分析。
结果成功构建relA基因的原核表达载体pET-22b-relA o生物信息学分析RelA蛋白由744个氨基酸组成.相对分子质量84X103Da,等电点6.29,有两个卷曲螺旋结构,无跨膜螺旋区.为亲水性蛋白。
RelA的N-末端结构域包括PH和SYNTH,C末端结构域包括TGS、a螺旋区、CC及ACT亚结构域;该蛋白主要在细胞质发挥功能.含有10个NTP结合位点,2个金属离子结合位点,16个合成酶活性位点,53个潜在的磷酸化位点和8个可能的糖基化位点;RelA在细菌之间高度保守,与大肠埃希菌RelA亲缘关系最近的是福氏志贺菌,其次是柯氏柠檬酸杆菌。
医学院硕士研究生入学考试试卷-模拟考_生物化学_含参考答案_dta
医学院硕士研究生入学考试_生物化学-模拟考考生须知:•1、答案必须写在答题纸上,写在试题上无效•2、考试时间3小时选择题:每题1分,合计100分1、疯牛病发病的生化机制是A:α-螺旋变成了β-螺旋B:α-螺旋变成了β-转角C:α-螺旋变成了β-折叠D:β-折叠变成了α-螺旋2、自身具有酪氨酸蛋白激酶活性的受体是A:胰岛素受体B:表皮生长因子受体C:血小板衍生生长因子受体D:生长激素受体3、糖尿病时会出现A:酸的酯化增强B:血浆中与清蛋白结合的游离脂肪酸增多C:禁食12小时后,血浆中有多量的乳糜微粒D:血浆高密度脂蛋白(HDL)减少4、关于蛋白质结构的叙述正确的有A:链内二硫键不是蛋白质分子构象的决定因素B:只有极少数氨基酸的疏水侧链埋藏在分子的内部C:带电荷的氨基酸侧链伸向蛋白质分子的表面,暴露在溶剂中D:蛋白质的一级结构是决定高级结构的重要因素5、tRNA最主要的分子结构特征是含B:反密码环C:DHU环D:TψC环6、下列关于血红蛋白的描述,正确的是A:血红蛋白是含铁卟啉的单亚基球蛋白B:血红蛋白氧离曲线为S状C:血红蛋白不属于变构蛋白D:1个血红蛋白分子可与1个氧分子可逆结合7、蛋白质分子各亚基间的空间排布属于A:一级结构B:二级结构C:三级结构D:四级结构8、关于蛋白质二级结构,正确的描述是A:整条多肽链中全部氨基酸的位置B:多肽链主链构象由每个肽键的两个二面角所确定C:蛋白质局部或某一段肽链有规则的重复构象D:二级结构仅指主链的空间构象9、DNA序列测定的应用有A:分析基因序列B:分析基因组核苷酸排列序列C:基因定点诱变的基础D:基因工程载体构建中DNA序列定位和排序的基础10、蛋白质四级结构形成时出现A:构象改变B:亚基聚合D:蛋白质聚集11、自然界游离核苷酸中的磷酸最常位于A:戊糖的C-2′及C-3′上B:戊糖的C-2′上C:戊糖的C-3′上D:戊糖的C-5′上12、糖酵解途径中,第一个产能反应是A:G-6-P→F-6-PB:葡萄糖→G-6-PC:1,3-=磷酸甘油酸→3-磷酸甘油酸D:3-磷酸甘油醛→1,3-二磷酸甘油酸13、关于层析的叙述,下列哪些是错误的?A:带电荷的蛋白质最先洗脱下来B:可用于蛋白质的分离纯化C:不带电荷的蛋白质最先洗脱下来D:小分子蛋白质最先洗脱下来14、既含有内含子又含有外显子的RNA是A:hnRNAB:mRNAC:tRNAD:rRNA15、下列哪个酶是糖酵解途径中的限速酶A:己糖激酶B:6-磷酸果糖激酶-1C:丙酮酸激酶D:3-磷酸甘油醛脱氢酶16、抑制CDP→dCDP的是A:阿糖胞苷B:5-氟尿嘧啶C:6-巯基嘌呤D:氮杂丝氨酸17、PCR反应体系的基本成分包括A:dNTPB:模板DNAC:特异性引物D:TaqDNA聚合酶18、脂肪动员的关键酶是A:肝脂肪酶B:辅脂酶C:脂蛋白脂肪酶D:激素敏感性脂肪酶19、TPP中所含的维生素是A:维生素BB:维生素BC:维生素PPD:泛酸20、人体合成及供应全身胆固醇能力最强的组织是A:肾上腺与脑B:肝与脑C:小肠与肾上腺D:肝与小肠21、280nm波长处有吸收峰的氨基酸为A:丝氨酸C:色氨酸D:蛋氨酸22、有关酶与温度的关系,错误的论述是A:酶的最适温度与反应时间有关B:最适温度不是酶的特征性常数C:酶是蛋白质,即使反应的时间很短也不能提高反应温度D:酶制剂应在低温下保存23、磷酸化酶的变构抑制剂是A:ATPB:cAMPC:AMPD:乙酰CoA24、不参与组成琥珀酸氧化呼吸链的成分是A:FADB:FMNC:CytclD:CoQ25、催化可产生1,4,5-三磷酸肌醇(IP)的酶A:乙酰CoA羧化酶B:葡萄糖-6-磷酸脱氢酶C:HMG-CoA还原酶D:磷脂酶C26、既是糖分解代谢的产物又是糖异生原料的物质是A:乳酸B:乙酰CoAC:谷氨酸27、成熟HDL中含量最多的物质是A:甘油三酯B:磷脂C:蛋白质D:胆固醇酯28、钙调蛋白参与多种酶作用的调控,它属于A:跨膜信息转导的G蛋白家族B:钙结合蛋白家族C:免疫球蛋白家族D:蛋白质激素家族29、只有在磷酸戊糖途径中生成的物质是A:α-酮戊二酸B:5-磷酸核糖C:二磷酸尿苷葡萄糖D:琥珀酰CoA30、原核生物能识别转录终止的是A:α亚基B:β亚基C:σ亚基D:ρ因子31、1分子葡萄糖酵解可生成A:1分子ATPB:2分子ATPC:3分子ATPD:4分子ATP32、对调节经常性血糖波动作用不大的激素是B:胰岛素C:胰高血糖素D:糖皮质激素33、无密码子的氨基酸是A:异亮氨酸B:羟脯氨酸C:鸟氨酸D:精氨酸34、糖原的1个葡萄糖残基酵解可净生成A:1分子ATPB:2分子ATPC:3分子ATPD:4分子ATP35、能直接识别、结合TATA盒的基本转录因子是A:TFIIAB:TFIIBC:TFIIDD:TFIIE36、半胱氨酸代谢能生成具有重要生理功能的物质是A:牛碘酸B:5-羟色胺C:谷胱甘肽D:γ氨基丁酸37、翻译的特点是A:沿mRNA的5'→3'方向进行B:起始密码子位于mRNA可译框架的5'-端C:终止密码子位于mRNA可译框架的3'-端D:多肽链合成方向是从C-端→N-端进行38、丙氨酸氨基转移酶的辅酶为A:维生素BB:维生素BC:维生素BD:维生素B39、当细菌通过菌毛相互接触时,质粒DNA可从一个细菌转移至另一个细菌,这种类型的DNA转移称为A:转化作用B:转导作用C:转座D:接合作用40、谷氨酸可转变生成A:谷氨酰胺B:γ-氨基丁酸C:α-酮戊二酸D:谷胱甘肽41、tRNA转录后对核苷或碱基的修饰中不包括A:甲基化B:还原反应C:酯化反应D:脱氨反应42、蛋白质变性是A:氢键的破坏B:氨基酸组成的改变C:蛋白质的水解D:肽键的断裂43、细胞内含量最多的RNA是A:snRNAB:snoRNAC:tRNAD:rRNA44、血红素生物合成的限速酶是A:ALA合酶B:ALA脱水酶C:胆色素原脱氨酶D:原卟啉原Ⅸ氧化酶45、下列有关核酸分子杂交的叙述,不正确的是A:杂交可发生在碱基序列完全互补的核酸分子之间B:杂交可发生在碱基序列部分互补的核酸分子之间C:具有双螺旋结构的核酸分子之间才能杂交D:RNA与DNA分子之间可以杂交46、6-磷酸果酸激酶-1的最强别构激活剂是A:2,6-二磷酸果糖B:AMPC:1,6-二磷酸果糖D:ADP47、1分子葡萄糖酵解可净生成A:1分子ATPB:2分子ATPC:3分子ATPD:4分子ATP48、真核生物体内具有解螺旋酶活性的是A:DNA-polαB:DNA-polβC:DNA-polεD:DNA-p0lδ49、非竞争性抑制剂对酶促反应速度的影响是A:K不变,V↓B:K↓,V不变C:K↓,V↑D:K↓,V↓50、丙酮酸激酶的变构激活剂是下列哪种物质A:1,6-二磷酸果糖B:柠檬C:乙酰CoAD:1,3-二磷酸甘油酸51、蛋白质的空间构象主要取决于A:a-螺旋和ß-折叠的数量B:肽链中二硫键的位置C:肽链氨基酸的序列D:肽链中氨基酸侧链的方位52、通常既不见于DNA又不见于RNA的碱基是A:腺嘌呤B:尿嘧啶C:胸腺嘧啶D:黄嘌呤53、多胺包括A:精脒B:精胺C:腐胺D:鸟氨酸54、集生糖氨基酸、必需氨基酸和支链氨基酸于一身的氨基酸是A:缬氨酸B:胱氨酸C:甲硫氨酸D:亮氨酸55、寡核苷酸芯片主要采用A:原位合成法制备B:DNA微阵列的制作方法C:显微光蚀刻技术D:探针固化技术56、经转氨基作用能直接转变成常见氨基酸的α-酮酸是A:草酰乙酸B:α-酮戊二酸C:α-酮丁酸D:丙酮酸57、基因治疗中目的基因的转移方法有A:电穿孔法B:DNA-磷酸钙共沉淀C:脂质体法D:病毒载体58、别嘌醇治疗痛风的机制主要是A:抑制黄嘌呤氧化酶B:抑制二氢叶酸还原酶C:抑制核糖核苷酸还原酶D:抑制胸苷酸合酶59、下列哪种物质的合成需要谷氨酰胺分子上的酰胺基A:嘧啶环上的两个氮原子B:TMP上的两个氮原子C:嘌呤环上的两个氮原子D:UMP上的两个氮原子60、DNA复制需要A:拓扑异构酶B:DNA模板C:单链结合蛋白D:解链酶61、维生素K缺乏时合成不受影响的凝血因子是A:FⅡB:FⅨC:FⅦD:FⅢ62、可作为血红素合成原料的物质是A:α-酮戊二酸B:5-磷酸核糖C:二磷酸尿苷葡萄糖D:琥珀酰CoA63、含维生素泛酸的辅酶是A:NADB:FADC:磷酸吡哆醛D:HS-CoA64、5-氟尿嘧啶的抗癌作用机制是A:抑制胸苷酸的合成B:抑制尿嘧啶的合成C:抑制二氢叶酸还原酶D:抑制胞嘧啶的合成65、酶的辅助因子可以是A:某些小分子有机化合物B:维生素C:各种有机和无机化合物D:金属离子66、酶催化作用所必需的基团是指A:维持酶一级结构所必需的基团B:维持分子构象所必需的基团C:酶的亚基结合所必需的基团D:位于活性中心以内或以外的、维持酶活性所必需的基团67、脂酸β-氧化多酶复合体中的辅酶包括A:NAD+B:NADPC:FADD:FMN68、能使丙酮酸激酶活性增高的因素是A:1,6-双磷酸果糖B:ATPC:丙氨酸D:胰高血糖索69、别嘌呤醇治疗痛风的机理主要是A:抑制黄嘌呤氧化酶B:抑制二氢叶酸还原酶C:抑制HGPRTD:抑制胸苷酸合酶70、合成IMP和UMP的共同原料是A:谷氨酸B:磷酸核糖焦磷酸C:HCOD:天冬酰胺71、从葡萄糖合成糖原需要下列哪些核苷酸参与A:ATPB:CTPC:UTPD:GTP72、肌糖原合成不存在三碳途径的原因是A:肌己糖激酶Km太高B:肌通过经典途径合成糖原C:肌不能进行糖异生D:肌不能合成糖原73、含有两个高能磷酸键的是A:1,3-二磷酸甘油酸B:琥珀酸CoAC:ATPD:AMP74、重组DNA技术中,不常用到的酶是A:限制性内切酶B:DNA聚合酶C:DNA连接酶D:拓扑异构酶75、Rb基因是一种A:细胞原癌基因B:抑癌基因C:病毒癌基因D:操纵子调节基因76、和一般催化剂相比,酶的催化高效性是因为酶A:更能有效地降低反应的活化能B:更能有效地升高反应的活化能C:对底物具有更高的选择性D:更能启动热力学可发生的反应77、下列哪种物质是直接胆红素A:胆红素-Y蛋白B:胆红素-清蛋白C:胆红素-Z蛋白D:双葡萄糖醛酸胆红素78、sis基因是一种A:细胞原癌基因B:抑癌基因C:病毒癌基因D:操纵子调节基因79、三羧酸循环每循环1次A:其代谢产物是CO和HOB:有2次底物水平磷酸化反应C:生成4分子还原当量D:可生成3分子NADPHH80、下列情况可引起框移突变的是DNA链中A:A的缺失B:G转换为IC:U转换为CD:C转换为T81、正常情况下血糖最主要的来源为A:糖异生作用B:肝糖原分解C:食物消化吸收而来D:肌糖原酵解后经糖异生补充血糖82、含两个氨基的氨基酸的是A:GluB:LysC:ProD:Trp83、决定PCR扩增的DNA分子大小的是A:模板B:DNA聚合酶C:循环次数D:引物84、含稀有碱基最多的RNA是A:hnRNAB:mRNAC:tRNAD:rRNA85、核酸分子杂交可发生在DNA与DNA之间、DNA与RNA之间,那么对于单链DNA5′-CG GTA-3′,能够与其发生杂交的RNA是A:5′-UACCG-3′B:5′-GCCAU-3′C:5′-UAGGC-3′D:5′-GCCUU-3′86、有关非竞争性抑制作用,正确的是A:酶与底物、抑制剂可同时结合,但不影响其释放出产物B:不改变酶促反应的最大速度C:抑制剂与酶结合后,不影响酶与底物的结合D:改变表观K值87、DNA复制时辨认复制起始点主要靠A:拓扑异构酶B:解螺旋酶C:引物酶D:DnaA蛋白88、脂肪酸在肝脏进行脂酸β-氧化的产物是A:丙酰CoA+HOB:丙酰CoA+FADH+NADH+HC:丙酰CoA+FADH+NADPH+HD:乙酰CoA+FADH+NADH+H89、糖酵解的反应部位在细胞的A:胞核B:胞液C:线粒体D:内质网90、一氧化碳阻断氧化磷酸化电子传递过程的机制为A:抑制CytbB:抑制CytcC:抑制氧化型CytaD:抑制还原型Cyta91、合成酮体的原料是A:胆碱B:ADPC:乙酰CoAD:鞘氨醇92、在下列哪种情况下,蛋白质溶液的稳定性最差?A:溶液pH=pIB:溶液pH>pIC:溶液pH=7.4D:溶液pH<pI93、糖有氧氧化途径中催化不可逆反应的酶有A:苹果酸脱氢酶B:异柠檬酸脱氢酶C:丙酮酸激酶D:6-磷酸果糖激酶-l94、蛋白质分子中的次级键有A:疏水键B:离子键C:肽键D:范德华力95、决定糖代谢时产生的丙酮酸代谢去向的是A:6-磷酸果糖激酶-1活性B:FADH的去路C:NADPHH的去路D:NADHH的去路96、关于pH对酶促反应速度影响的论述,错误的是A:pH过高或过低会使酶发生变性B:pH影响酶、底物或辅助因子的解离程度,从而影响酶促反应速度C:最适pH是酶促反应速度最大时的环境pHD:最适pH是酶的特征性常数97、PCR反应中,所设计引物的长度一般为A:5~10个核苷酸B:15~30个核苷酸C:<50个核苷酸D:长度任意98、肌肉的能量储存形式是A:ATPB:2,3-二磷酸甘油酸C:磷酸肌酸D:糖原99、氧化磷酸化解偶联时A:机体产热量增加B:线粒体能利用氧.但不能生成ATPC:电子传递照样进行D:底物水平磷酸化不能进行100、关于RNA的生物合成,下列哪项叙述是错误的A:配对碱基与复制时的不同B:不需要RNA引物C:转录生成的RNA都是翻译模板D:合成方向是5'→3'参考答案:序号参考答案1 C2 ABC3 A4 CD5 B6 B7 D8 BCD9 ABCD10 B11 D12 C13 ACD14 A15 B16 A17 ABCD18 D19 A20 D21 C22 C23 A24 B25 D26 AD27 C28 B29 B30 D31 D32 A33 BC34 C35 C36 AC37 ABC38 C39 D40 ABCD41 C43 D44 A45 C46 A47 B48 D49 A50 A51 C52 D53 ABC54 A55 A56 ABD57 ABCD58 A59 C60 ABCD61 D62 D63 D64 A65 ABD66 D67 BD68 A69 A70 B71 AC72 C73 C74 D75 B76 A77 D79 C80 A81 C82 B83 D84 C85 A86 C87 D88 D89 B90 D91 C92 A93 BCD94 ABD95 D96 D97 B98 D99 ABC 100 C。
丙烯酰胺超分子激励响应水凝胶
丙烯酰胺超分子激励响应水凝胶
丙烯酰胺超分子激励响应水凝胶是一种具有响应性的材料,其特点是可以在外界刺激下发生可逆的体积变化。
这种水凝胶的材料基质是由丙烯酰胺单体和交联剂组成的网络结构,其中夹杂着一些超分子结构单元。
这些超分子结构单元可以通过特定的刺激来发生结构变化,从而引起整个凝胶的体积变化。
丙烯酰胺超分子激励响应水凝胶的响应性主要来源于凝胶中的超分子结构单元。
这些超分子结构单元包括氢键、范德华力和π-π堆积等相互作用。
当这些超分子结构单元受到一定的刺激时,会发生结构变化,从而引起整个凝胶的体积变化。
这种响应性材料可以通过光、温度、pH值、电场等多种方式来激励。
丙烯酰胺超分子激励响应水凝胶具有广泛的应用前景。
它可以用于制备智能药物释放系统、传感器、生物传递系统等领域。
此外,它还可以应用于人工肌肉、智能机械臂等领域,具有重要的科研和应用价值。
Keap1
非小细胞肺癌(non-small cell lung cancer,NSCLC)发病率占据肺癌的75%~80%。
肿瘤细胞进展快且易扩散转移,临床常采用手术、放化疗等进行治疗,但5年生存率低于60%[1-2]。
氧化应激是由活性氧(ROS)生成量增加所致,ROS积累可诱导肺癌细胞凋亡,清除ROS 可阻止癌细胞凋亡,即肺癌细胞存活依赖于癌细胞自身抗氧化能力[3]。
Kelch样环氧氯丙烷相关蛋白-1 (kelch-like epichlorohydrin-associated protein-1,Keap1)/核因子E2相关因子2(nuclear factor E2related factor 2,Nrf2)信号通路在癌症中发挥重要调控作用,氧化应激可激活Keap1,促使Keap1-Nrf2复合物裂解,Nrf2转移至细胞核内,可激活下游靶基因表达,参与肺癌发生发展过程[4]。
Nrf2可维持氧化还原稳态,ROS侵袭细胞时,Nrf2可进入细胞核,结合抗氧化反应元件(ARE)转录编码各种抗氧化蛋白、代谢酶基因,抑制氧化应激反应[5-6]。
目前氧化应激、Keap1/Nrf2信号通路在NSCLC发生过程中的机制尚未明确。
基于此,本研究尝试分析Keap1/Nrf2信号通路与临床病理参数、氧化应激指标的相关性,探讨其在NSCLC氧化应激机制中的作用,为临床研制新药提供参考依据。
1资料与方法1.1一般资料选取2017年4月至2020年4月郑州市第三人民医院收治的100例NSCLC患者为研究对象。
纳入标准:符合NSCLC诊断标准[7];术前未接受放化疗、免疫治疗者;预计生存期≥6个月;符合手术适应证、禁忌证;Karnofsky功能状态评分≥70分;签署知情同意书。
排除标准:合并凝血功能障碍、肝肾功能障碍、其他恶性肿瘤者;伴有急/慢性感染者;伴有精神疾病者;既往腹部相关外科手术史者。
所有患者均行肺癌根治性切除术,术中收集癌组织、癌旁组织(距离癌组织5cm范围内正常组织),其中男性63例,女性37例;年龄46~67岁,平均(56.32±3.16)岁;体质量指数(BMI)17~30kg/m2,平均(23.16±2.03)kg/m2;病理类型:鳞癌58例、腺癌42例;病理分级[8]:Ⅰ~Ⅱ级51例、Ⅲ级49例;T分期[9]:T1~T253例、T3~T447例;N分期:N055例、N1~N245例。
盐酸雷诺希芬的核磁共振谱研究
盐酸雷诺希芬的核磁共振谱研究
韩海;李章万;张强;郑虎;翁玲玲
【期刊名称】《波谱学杂志》
【年(卷),期】2003(020)004
【摘要】盐酸雷诺希芬是一种用于治疗骨质疏松症的药物,文中采用多种核磁共振技术,特别是1H-1H COSY、HMQC、HMBC等2D NMR技术, 分别指认了其氢谱和碳谱的各个信号, 对它的结构进行了分析.
【总页数】6页(P403-408)
【作者】韩海;李章万;张强;郑虎;翁玲玲
【作者单位】暨南大学药学院,广州,510632;四川大学华西药学院,四川成
都,610061;四川大学华西药学院,四川成都,610061;四川大学华西药学院,四川成都,610061;四川大学华西药学院,四川成都,610061
【正文语种】中文
【中图分类】O641.13
【相关文献】
1.盐酸雷诺希芬的电子电离质谱和快原子轰击电离(-)质谱研究 [J], 韩海;李章万;张强;郑虎;翁玲玲
2.雷诺昔芬及选择性雌激素受体调节剂的研究进展 [J], 俞汀陶
3.雷诺昔芬的研究进展 [J], 矫杰;孟迅吾
4.盐酸雷诺昔芬治疗绝经后骨质疏松症的临床研究 [J], 吴剑静;周丽芬;张纯武;吴云刚
5.Ⅲ期临床试验结果显示阿佐普芬对绝经期后妇女增加骨密度效果优于盐酸雷诺昔芬 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
物理名词英文缩写
序号缩写英文全称1AFM antiferromagnetic2MIT metal-to-insulator transition3SQUID superconducting quantum interference device 4MPMS Physical Property Measurement System5Shimadzu6XRD X-Ray DiffractionX-Ray Powder Diffraction)7XRPD8FC field-cooled9ZFC zero field-cooled10spin gap systems11spin-Peierls transition12ESR Electron spin resonance13LIESST light induced excited spin state trapping14LITH light induced thermal hysteresis15SCO spin crossover16IR spectrum Infrared Radiation spectrum17TEM transmission electron microscope (TEM)18FTIR Fourier Transform Infrared Spectroscopy19DSC Differential scanning calorimetry20DSC Dynamic Stability Control21MPMS Physical Property Measurement System22MBE Molecular Beam Epitaxy23MOKE magneto-optical Kerr effect24XPS X-ray photoelectron spectroscopy analysis)25TEM Transmission electron microscope26LIBs laser induced breakdown spectroscopy27282930313233343536373839中文意思具体意思反铁磁的金属和绝缘体之间的转换量子扰动超导探测器磁学测量系统分光光度计X射线衍射X射线粉末衍射加场冷却零场冷却自旋能隙系统派尔斯自旋跃迁电子自旋共振光致激发自旋俘获光致热磁滞现象自旋交叉自旋交叉是第一行d—金属(第三周期电子结构为d4-d7过渡金属)配合物在一定条件的作用下由高自旋转换为低自旋,或者由低自旋转换为高自旋。
光电英语词汇(F1)
光电英语词汇(F1)f ratio f数f-band f带f-center lasers 铁离子中心雷射f-factor f因数f-number f数,光圈数f-sum rule f和数定则fabry lens 法布里透镜fabry-parot etalon 法布里-珀罗标准量具fabry-parot fringes 法布里-珀罗干涉条纹fabry-perot amplifier 法布里-珀罗放大器fabry-perot cavity 法布里-珀罗共振器fabry-perot etalon 法布立,拍若标准具fabry-perot fringes 法布立,拍若条纹fabry-perot injection laser 法布里-珀罗注入式激光器fabry-perot interferometer 法布里-珀罗干涉仪fabry-perot interferometers fabry-perot干涉仪fabry-perot laser 法布立,拍若雷射fabry-perot method 法布立,拍若法fabry-perot plates (etalons) fabry-perot标准具fabry-perot recycling spectromether 法布里-珀罗重复分光计fabry-perot resonator 法布里-珀罗共振腔fabry-perot type laser 法布里-珀罗型激光器face (1)正面(2)平面face angle 面角face cam 平面凸轮,端面凸轮face gear 平面齿轮face plate 面板face-centered 面心face-pumped laser 面抽运雷射face-pumped liquid laser device 面抽运液体激光器face-pumping 面抽逸faceplate 面板faceplates 面板facet (1)网格(2)小面facet mirror 网板反射镜,分段镜facetted eye 复眼facetted mirrors 多面体反射facial angle 面角facility (1)设备,装置(2)工具facsimile (1)传真(2)影印本facsimile camera 传真照相机facsimile chart 传真图facsimile lenses 传真机镜头facsimile radio 传真收音机facsimile receiver 传真接受器facsimile signal 传真信号facsimile synchronizing 同光传真facsimile telegraphy 传真电报factor (1)因数,系数(2)因子,因素factor of cooperation 合作系数factor of quality 品质因数factor of safety 安全因素,安全系factorial jump function 阶乘跳跃函数factorization 因子分解factted lens 多面体透镜facula 光斑fade (1)褪色(2)衷减fade-down 渐隐fade-in 渐显fade-out 渐隐fade-up 增亮fader (1)声量控制器(2)光亮调节器fading (1)褪色(2)衷落,衷退fahrenheit 华氏度fahrenheit scale 华氏温标fahrenheit thermometer 华氏温度计fail-safe performance 故障-安全特性failure (1)故障(2)损坏(3)失效failure of oscillation 停振faint haze 薄雾fall time 下降时间falling (1)下降(2)落像falling body 落体false alarm 假警报false color process 错色过程false image 误像false light 杂光false radiation 伪辐射false reflection 伪反射false-color 伪色false-color film 遮色多层彩色片family of curves 曲线族family of ellipses 椭圆族family of half-curves 半曲线族fan (1)扇,扇状物(2)鼓风机fan antenna 扇形天线fan beam 扇形光束fan dial 扇形刻度盘fan filter 扇形滤光器fan geometry mixing laser 扇形结构混合激光器fan in 扇入fan out 扇出fan test object 幻视器fan-shaped laser beam 扇形光栅fanning beam 扇徵射束fanning strip 扇形片fantascope 扇形激光束far field 远场近似far field approximation 远场结构far field construction 远场衍射far field diffraction 远场图far field pattern 远红外的far infrared 远红外far point 远点far sight (1)远视(2)远景far-infrared 远红外电子跃迁far-infrared elelctronic transition 远红外成像far-infrared grating 远红外光栅far-infrared laser pumping 远红外激光抽运far-infrared lasers 远红外线雷射far-infrared masser 远红外美射far-infrared molecular laser 远红外分子激光器far-infrared radiation 远红外辐射far-infrared region 远红外区far-infrared spectrophotomether 远红外分光光度计far-ir interferoemeter 远红外干涉仪far-off-axis anisotropic bragg diffraction 远轴外各向异性布喇格衍射far-ranging 远程的far-red light 远红光far-sightedness 远视眼far-ultraviolet 远紫外的far-ultraviolet radiation 远紫外辐射far-ultraviolet region 远紫外区farad 法拉第扇形测式物faraday cage 法拉第盒faraday cell faraday configuration 远紫外辐射faraday constant 法拉第常数faraday dark space 法拉第配置faraday driver 法拉第驱动faraday effect 法拉第效应faraday isolator 法拉第形绝缘体faraday rotation 法拉第旋体faraday shutter 法拉第快门faraday's law 法拉第定律farady, pockel cells 法拉第电池farsighted (1)远视的(2)远景的fast ethernet network equipment 高速乙太网路设备fast fourier transform (fft)快速傅里叶变换fast image intensifier 快速像增强器fast lens (1)快镜(2)强光透镜fast pulley 固定轮fast response 快速响应fast retardation axis 快速延迟轴fast-fired coatying 快速氧化膜fast-transverse-flow co2 laser 快速横流二氧化碳激光器fastening (1)连接(2)连接物(3)压固fastening screw 紧固螺钉fastie-ebert monochromator 法斯梯-艾伯特单色仪fastie-ebert spectrometer 法斯梯-艾伯特分光计fatigue 疲乏,疲劳fatigue effect 疲乏效应fatigue failure 疲乏失效fatigue fracture 疲乏断裂fatigue limit 疲乏极裂fatty oil 油脂fatty-acid layer 脂肪酸层fature 特徵,特点faucet (1)旋塞(2)龙头fault (1)故障,失效(2)失真faunhofer diffractin 夫琅和费衍射faunhofer holography 夫琅和费息全术faunhofer intensity distribution 夫琅和费光强度分布favorable interference 有利相干fbt fly back transformer 返驰变压器fddi network equipment 光纤分散式资料介面网路设备feather 滑键feathers 羽状裂缝feature extracton 特徵萃取,特徵提取featureexraction 羽饰febetron 冷阴极脉冲,β射线管fechnerratio 特徵挑选feed (1)馈电(2)进料(3)供片feed arrangement 供给装置feed spool 供片轴feedback 反馈feedback amlifier 反馈放大器feedback circuit 反馈电路feedback compensation 反馈补偿feedback control system 反馈控制系统feedback ratio 回授率,反馈比feedback-controlled optics 反馈控制光学feeder (1)馈电线(2)进料器feedthrough 馈入装置feedway 输送装置feeler 测隙规feeler lever 触杆feeler microscope 接触式测微显微镜feeler plug 测孔塞规feet 英尺feldspar 长石felt polisher 毡抛光器felt ring 毡环,毡圈felt seal 毡密封felt washer 毡垫圈felt-ring seal 毡环密封,毡圈密封female thread 阴螺纹,内螺纹femto 飞fermat principle 费马原理fermat's principle 费马原理fermi energy 费密能fermi gas 费密气体fermi level 费密能级fermi level diagram 费密能级图fermi resonance 费密共振fermi temperature 费密温度fermi-dirac distribution law 费密-狄拉克分布律fermi-dirac function 费米-狄拉克函数fermion 费密子fermion field 费密子场fermitron 场射管fermium (fm)镄ferpic (ferroelectric picture)铁电图ferric chloride 氯化铁ferric oxxide 氯化铁ferricyanide 氯铁酸盐,铁氯化物ferrimag 铁磁合金ferrite 铁氧体ferrite garnet 镱铁石榴石ferroalloy 铁合金ferroelastic effect 铁弹性效应ferroelectric 铁电的ferroelectric ceramic 铁电陶瓷ferroelectric crystal 铁电晶体ferroelectric domain 铁电畴ferroelectric film 铁电膜ferroelectric image intensifier 铁电像增强器ferroelectric ir detectro 铁电红外探测器ferroelectric phase transition 铁电相跃迁ferroelectric photoconductor 铁电光导管ferroelectricity 铁电现象ferroelectrics 铁电体,铁电材料ferromagnet 铁矶体ferromagnetic 铁磁的ferromagnetic curie point 铁磁居里点ferromagnetic curie temperature 铁磁居里温度ferromagnetic material 铁磁材料ferromagnetism 铁磁性ferrommagnetic resonance 铁磁共振ferrormagnetic substance 铁磁物质ferrosilicon 硅铁ferrous (1)亚铁的,二价铁的(2)含铁的(3)类铁的ferrous metal 黑色金属ferroxcube 立方结构铁气体ferroxphlana 六角晶格铁氧体ferrule 套管ferry-porter low 费瑞-波特原则fery glass prism 费瑞玻璃棱镜fery prism 费瑞棱镜fery spectrograph 费瑞光谱仪fetron 高压结型场效应管feussner prism 费斯纳尔棱镜fexitron 冷阴极脉冲x射线管fiber bragg grating 光纤光栅fiber channel 光纤通道fiber grating strain sensor 光纤光栅应变感测器fiber optic acoustic sensors 光纤声波感测器fiber optic bundles, non-silica, imaging 多成分影像光纤fiber optic bundles, silica, imaging 石英系影像光纤fiber optic cable 光纤fiber optic cable manufacturing equipment 光缆制造设备fiber optic cable, dispersion-shifted 色散位移光缆fiber optic cable, multimode, silica, 100/140 多模态石英系(100/140)光缆fiber optic cable, multimode, silica, 50/125 多模态石英系(50/125)光缆fiber optic cable, multimode, silica, 62.5/125 多模态石英系(62.5/125)光缆fiber optic cable, plastic 塑胶光缆fiber optic cable, plastic-clad silica 石英系塑胶包覆光缆fiber optic cable, polarization - maintaining 偏振恒持光缆fiber optic cable, single mode, standard, loosely buffered, aerial 单模态标准型松包fiber optic cable, single mode, standard, loosely buffered, direct buried 单模态标准fiber optic cable, single mode, standard, loosely buffered, duct 单模态标准型松包管fiber optic cable, single mode, standard, tightly buffered, multifiber 单模态标准型紧fiber optic cable, single mode, standard, tightly buffered, single fiber 单模态标准型fiber optic closure 光纤接续盒fiber optic color mark photo sensors 光纤式色彩标记感测器fiber optic connectors, multimode, adapter (st,sma,fc/pc)多模态光纤连接器插fiber optic connectors, multimode, d4 多模态d4光纤连接器fiber optic connectors, multimode, fc/pc 多模态fc/pc相容光纤连接器fiber optic connectors, multimode, fddi 多模态fddi光纤连接器fiber optic connectors, multimode, multi-channel 多模态多心光纤连接器fiber optic connectors, multimode, sc 多模态sc光纤连接器fiber optic connectors, multimode, sma 多模态sma光纤连接器fiber optic connectors, multimode, st 多模态st光纤连接器fiber optic connectors, multimode,adapter (st,sma,fc/pc)多模态光纤连接器插座(st,sma,fc/pc)fiber optic connectors, single mode, adapter (st,fc/pc, sc, biconic)单模态光纤连接器fiber optic connectors, single mode, adapter (st,fc/pc,sc,biconic)单模态光纤连接器插座(st,fc/pc,sc,biconic) fiber optic connectors, single mode, apc 单模态apc光纤连接器fiber optic connectors, single mode, biconic 单模态biconic光纤连接器fiber optic connectors, single mode, d4 单模态d4光纤连接器fiber optic connectors, single mode, fc/pc 单模态fc/pc光纤连接器fiber optic connectors, single mode, fddi 单模态fddi光纤连接器fiber optic connectors, single mode, multi-channel/mt 单模态多心光纤连接器fiber optic connectors, single mode, sc 单模态sc光纤连接器fiber optic connectors, single mode, st 单模态st光纤连接器fiber optic connectors, single mode,multi-channel/mt 单模态多心光纤连接器(mt)fiber optic current sensors 光纤电流感测器fiber optic density, constituent sensors 光纤浓度、成份感测器fiber optic density,constituent sensors 光纤浓度、成份感测器fiber optic displacement sensors 光纤移位感测器fiber optic distribution box 光纤终端箱fiber optic distribution panels 光纤分配板fiber optic electric field sensors 光纤电场感测器fiber optic faceplate 光纤面板fiber optic fibers, dispersion - shifted 色散位移光纤fiber optic fibers, plastic 塑胶光纤fiber optic fibers, plastic - clad silica 石英系塑胶包覆光纤fiber optic fibers, polarization - maintaining 偏振恒持光纤fiber optic fibers, silica, multimode, graded index,50/125 石英系多模态渐近式折射fiber optic fibers, silica, multimode, step index 石英系多模态步阶式折射率型光fiber optic fibers, silica, multimode,graded index ,100/140 石英系多模态渐近式折fiber optic fibers, silica, multimode,graded index ,62.5/125 石英系多模态渐近式折fiber optic fibers, silica, single mode,standard 石英系单模态标准型光纤fiber optic fiberscopes 光纤显微镜fiber optic field flattener 光纤场平板fiber optic furnaces, spinning equipment 光纤引线炉,纺丝设备fiber optic fusion splice equipment 光纤融接设备fiber optic gyro sensors 光纤陀螺仪感测器fiber optic gyroscope 光纤回转仪fiber optic illuminators 光纤光源fiber optic light distribution/radiation sensors 光纤光分布/放射线感测器fiber optic light guide 光纤光导fiber optic lightguides 光导管fiber optic liquid surface level sensors 光纤液位感测器fiber optic magnetic field sensors 光纤磁场感测器fiber optic magnetic flux sensors 光纤磁通量感测器fiber optic mark photo sensors 光纤式标记感测器fiber optic materials 光纤材料fiber optic oil film sensors 光纤油膜感测器fiber optic patchcord pigtail 光纤跳接线fiber optic photo sensors, fiber optic photo switches 光纤光电开关,光纤光电感测fiber optic polishing machines 光纤端面研磨设备fiber optic preforms 光纤预型体fiber optic pressure sensors 光纤压力感测器fiber optic probe 光纤探头fiber optic scanner 光纤扫瞄器fiber optic strain sensors 光纤变形感测器fiber optic strippers 光纤剥线夹fiber optic temperature sensors 光纤温度感测器fiber optic velocity sensors 光纤速度感测器fiber optic vibration sensors 光纤振动感测器fiber optic window 光纤窗fiber sensor 光纤感应器fiberscope 光纤视镜fibre (fiber)(1)纤维(2)刚纸,纤维板fibre -optic roamn laser 纤维光学喇激光器fibre abundle 纤维束fibre amplifier 纤维放大器fibre beakage 纤维破损fibre commhnication 纤维通信fibre core 纤维耻fibre coupler 纤维耦合器fibre eigenvalue equation 纤维本徵值方程fibre gastroscope 纤维胃镜fibre laser 纤维激光器fibre lens couple 纤维透镜耦合器fibre light guide 纤维光导fibre optic communication information society 纤维光学通信信息协会fibre optics 纤维光学fibre pipe 纤维光管fibre profile 纤维剖面fibre ring interferometer 纤维环干涉仪fibre splicing technique 纤维连接技术fibre waveguide 纤维波导fibre-optic bundle 纤维光束fibre-optic cable 纤维光缆fibre-optic colorimeter 纤维光学色计fibre-optic communication 纤维光学通信fibre-optic coupling 纤维光学耦合fibre-optic endoscope 纤维光学内窥镜fibre-optic field flatterner 纤维光学平场器fibre-optic flying-spot scanner 纤维光学飞点扫描装置fibre-optic image scramber 纤维光学图保密器fibre-optic interferometer 纤维光学干涉仪fibre-optic light carrier 纤维光学光导管fibre-optic light guide 纤维光导fibre-optic light-transmission system 纤维光学光传输系统fibre-optic link 纤维光连接fibre-optic memory 纤维光学存储器fibre-optic plate 纤维光学板fibre-optic repeater 纤维光中继器fibre-optic scanner 纤维光学扫描装置fibre-optic shape converter 纤维光学形状变换器fibre-optic sheath 纤维光学包皮fibre-optic transmitter 纤维光学发送机fibre-optic-faced vidicon 纤维光学面光导摄像管fibre-optics image dissection camera 纤维光学析像摄象机fibre-optics scan system 纤维光学扫描系统fibre-otpic-faced tube 纤维光学面板显像fibrefrac 铝硅陶瓷鑯维fibreglass 玻璃纤维,玻璃丝fibreglass optics 玻璃纤维光学fibrescope 光学纤维观察镜fibrograph 光学纤维照相fick's law 菲克定律fictitious primary color 虚拟原色fidelity (1)保真度(2)保真性fidelity criterion 保真度判据fidelity defect 保真度不足fiducial line 基准线fiducial mark 基准符号fiducial point 基准点field (1)场(2)视场field angle (1)视场角(2)张角field annealing 场置退火field camera 外景照相机,轻便摄影机field coil 磁场激发线圈field corrector 像场校正镜field curvature 场曲率field deformation 场形变field depth 景深field diaphragm 视场光阑field distortion 场畸变field effect controlled switch 场效应控制开关field effect transistor 场效应晶体管field emission 电场放射field emission microcope 场致发射显微镜field emission microscope 场致发射显微镜field emssion 场致发射field emssion electron microscope 场致发射电子显微镜field flattener 视场致平器,平像场校正器field flattening lens 平场镜头field glass 野外镜,望远镜field glasses 轻便双筒望远镜field induced photomission 场致光发射field intensity 场强field lens 向场镜field lenses 向场透镜field mesh electrode 场网电极field number 视场直径field observation 野外观察field of view 视场field of vision 视场field pattern 场图,场分布field pick-up (1)室外照相(2)实况转播field piece 场镜field quantization 场量子化field range 视场范围field ray 轴外物点光线field repectition rate 场重复频率field repetition rate 场重覆率field scannign sensor 场扫描传感器field stop 视场光阑field sweep 场扫描field theory 场论field tile 场倾斜field view stop 视场光阑field wave 激发波,激磁波field yoke 磁轭field's discontinuity 场不连续性field-biased 场偏置的field-flattended schmidt camera 平像场斯密特照相机field-ion microscope 场离子显微镜field-ion microscopy 场离子显微术fieldistor 场控晶体管fieldtron 场效应器件figure (1)图,图形(2)数字(3)数值(4)位数figure of merit 灵敏值,优值figure tolerance 形状公差figured glass 花纹玻璃figuring 修磨figuring of surface 表面修磨filament (1)丝(2)灯丝filament activity 灯丝激活filament burn-out 灯丝烧断filament emissions 丝极发射,灯丝发射filament lamp 白炽灯filament lief 灯丝寿命filament temperature 灯丝温度filament transformer 灯丝变压器filamentation 灯丝形成filamentray structure (1)灯丝结构(2)丝状结构filametntary (1)细丝的(2)灯丝的(3)纤维丝的filar eyepiece 有刻度目镜filbtercharacteristic (1)滤波器特性(2)滤光片特性file (1)文件(2)文件存储器(3)锉刀file computer 文件计算机file drum 文件磁鼓file memory 文件存储器file processor 文件处理器filer (1)填料,衬垫(2)填充数filer axis 丝缕轴fill factor 填充因素fill optisal sensing device 软片感光装置filled band 满带filled level 满充能级,占满能级filled shell 满充壳层filleted corner 圆角filling 填料,装填filling factor 填充系数fillister (1)凹刨(2)凹槽film adhesion 膜层附着力film advance lever 输片杆film advancing whell 输片轮film badge 胶片式线计量器film base 片基film camera 电影摄影机film cartride chamber 胶片暗盒film cartridge 胶片暗盒film cassette 胶卷暗盒film clip (1)胶片夹子(2)影片剪辑film coating 镀膜film coefficient of heat transfer 薄膜导热系数film compostition 薄膜组成film contiuity 薄膜连续性film cooling 薄膜冷却film counter 照像机用之底片计数器film dosimeter 胶片剂量计film drum 输鼓轮film feed mechanism 输片机构film fogging 胶片灰雾film glass 薄膜玻璃film grain nosie 胶片颗粒噪声film granularity 胶片颗粒度film graph 胶片录声设备film holder 胶片夹film indenticication 胶片鉴定film intensity measureing device 薄膜强度测定仪film load window 装胶片窗film memory 薄膜存储器film of oxide 氧化膜film plane 软片平面film plane indicator 胶片面指示器film pressing plate 胶片压板film projector 电影放映机film radiography 射线照相法film reader 显微胶片阅读器,胶带读出器film recorder 录片机film recording (1)影片录声(2)屏幕录像film reproduceer 影片复制机film response 胶片响应性film rewind button 胶卷倒卷钮film rewind crank 胶卷倒卷手柄film rewind shaft key 胶卷倒卷轴键film ring 胶片环film scanning 软片扫描film setting 照相排字film speed 胶片感光度film speed scale 胶片感光度等级film speed set ring 胶片感光度定环film stack 薄膜叠存储器film storage 薄膜存储器film storage unit 胶片存储单元film strip (1)教育幻灯片(2)片带,片条film supply 供片盒film tansporting system 输片系统film thickness 膜厚film thickness gauge 模厚度量计film thickness measuring 膜厚测量film thickness measuring device 膜厚测定仪film thickness meter 膜计film thickness monitor 膜厚监测仪film velocity 输片速度film weld 软片接头film-metering device 薄膜测定装置film-stress interferometer 薄膜应力千涉仪filmatic bearing 油膜轴承filmentary conpling 丝状耦合filminess 薄膜状态filming (1)生膜,薄膜形成,镀膜(2)摄影filter (1)过滤(2)滤光器,滤光片,滤光镜(3)滤波器(4)过滤器filter action (1)滤光作用(2)滤波作用filter by means of vacuum 真空过滤器filter by suction 吸入过滤器filter capacity 过滤能力filter cartride 过滤盒filter circuit 滤波电路filter deffect (1)滤色效应(2)滤波效应filter discrimination (1)滤波能力(2)滤波器分辨力filter element (1)滤光元件(2)滤波元件filter factor 过滤因素filter fator 滤光系数filter gauze 滤网filter glass 滤色玻璃filter grating 滤色光栅filter ir interference-absorption type 红外干涉-吸收型滤光片filter knob 滤光镜铵钮filter lens 滤光镜,滤色镜filter liquide 过滤液体filter method (1)滤波法(2)滤光法filter mount 滤光套filter paper 过滤纸filter pass band 滤波器通带filter plate 滤光片filter spectrophotometer 滤过分光分度计filter stop band 滤波器阻带filter transformer 滤波变压器filter transmission band 滤波器通带filter wheel 滤光轮filtered air 过滤空气filtered beam 过滤光束filtered image 过滤象filtering (1)滤光(2)滤波filterscan tube 滤光扫描管filtration (1)滤波(2)滤光(3)过滤filtrator 过滤器fin 叶片final amplifier 终端放大器final assembly 总装final control elemnt 最後控制元件final coutoff 最後截止final etching 最後腐史final evaporation 最後蒸发final gettering 最後吸气final mass 最终质量final payload 净有负载final presure 最後压力,极限压强final pump-down 最後抽气final reading 最终读数final stage 末级final vacuum 最後真空度final value theorem 终值定理finder (1)取景器,录像器(2)瞄准器(3)测距仪finder aperture (1)寻像器孔径(2)瞄准器孔径finder circle 导像圈finder frame 取景框finder screen 取景器屏finder telescope (1)寻镜望远镜(2)瞄准望远镜fine 精密的,精细的fine adjustment 微调,精密校正fine balance 精密平衡,精调fine data channel 精确数据通道fine definition 高清晰度fine detail 细节fine dotted line 细虚线fine etching 精密蚀刻fine grain (1)微粒(2)细粒fine grain developer 微粒显影剂fine grating 细光栅fine grinding wheel 细砂轮fine line 细线fine measuring instrument 精密测量仪器fine oil stone 细油石fine particle 细小颗粒fine pitch 小螺距fine pumping 高真空抽气fine structure 精细细构fine thread 细牙螺纹fine thread screw 细牙螺钉fine tuning 精细调谐fine vacuum 高真空fine wheel 细砂轮fine-collimation apparatus 精细准直仪器fine-focusing knob 精调焦旋钮fine-grained 微粒的fine-range scope 精密测距镜finely-honed 精密搪磨的fineness (1)细度(2)钝度(3)光洁度(4)锐度finger (1)测厚规(2)指针(3)手指finger-impu system 键盘输入装置fingerprint 指纹fingerprint cameras 指纹照相机fingerprint indentification 指纹识别fingertip control 按钮控制,键盘控制fining 精细化finish (1)抛光(2)精加工(3)终饰(4)表面光洁度finish surface (1)精加工面(2)抛光面finished prodcut (1)成品(2)光制品finishing allowance 精加工裕量finishing polish 精饰抛光finishing size (1)精加工尺寸(2)完工尺寸finite aperture 有限孔径finite beam source 有限射束源finite linewidth 有限线宽度finite object point 有限远物点finite ray 有限远光线finsen unit 芬生单位fipping frequency 触发频率fir-laser 远红外激光器fire cracks 爆裂纹fire-control optics 射击指挥光学系统,火炮控制光学fire-proof 防火的,耐火的fireproof coating 耐火涂层,耐火敷层first angle projection 第一角投射法first approximation 初步近似,一级近似first electron lens 第一电子透镜,阴极透镜first eye lens 首侧复曲面first harmonic 基波first order aberration 初级像差first order reflection 一级反射first order spectrum 第一级光谱first principal point 第一主点first radiation constant 第一辐射常数first side toric 首侧弯月面first surface mirror 表面镀膜镜first-order 一级,初级first-scattering angle 第一散射角,最初散射角fish tail 鱼尾fish-eye camera 鱼眼照相机,水中照相机fish-eye lens 鱼眼透镜fish-eye of maxwell 麦克斯韦鱼眼fish-eye type objective lens 鱼眼型物镜fish-lens 鱼眼透镜fission 裂变,分裂fissionable fuel 可裂变燃料fissure 裂缆,道子fit 非特fit joint 套筒接合fit key 配合键fit keyway 配合键槽fit quality 配合等级fit tolerance 配合公差fit-up 配合fitting (1)装配(2)配合(3)配件fitting control 装配控制fitting joint 装配连接fitting surface 配合面fitting tight 装配紧密fitting-up 装配fix stopper 固定销,定位销fix-focus lens 定焦透镜fixation (1)固定,安装(2)定影,定像fixation device 固定装置fixed array multielment lidar 固定阵列多元激光雷达fixed axis of rotation 鱼眼透镜fixed base 固定底座fixed beam 固定光束fixed bias circuit 固定转动轴fixed block 固定件fixed condenser 固定偏压电路fixed coupling 固定联轴节fixed encoded theodolite 固定编码经纬仪fixed focus 定焦点fixed focus camera 定焦照相机fixed gauge 固定规fixed guide bar 固定导杆fixed laser bar code scanners 固定式雷射条码扫描器fixed light 固定灯光fixed mirror 固定镜fixed mounting base 固定支承座fixed optical attenuators 光衰减器(固定)fixed pattern noise 固定图形噪声fixed piovt point 固定支承点fixed prism 固定棱镜fixed resister 固定焦点fixed reticle 固定十字标线,固定调制盘fixed slit 固定狭缝fixed view shifter projector 固家影像转换放映机fixed-frequency source 固定率源fixer (1)固定器(2)定影剂fixing bath (1)定影液(2)定影槽fixing salt 定像剂fixing solution 定影液fixning (1)固定(2)定景fixture (1)夹具(2)装置fizeau fringe 斐索干涉条纹fizeau fringes 固定电阻器fizeau interferomenter 斐索干涉仪fizeau interferometer 菲佐条纹fizeau interferometersfizeau 干涉仪fizeau toothed whool 菲佐干涉计flag 菲佐齿轮flake 薄片flame 火焰flame acrc lamp 焰弧灯flame arc 焰弧flame deflector 火焰导向器flame emission deterctor 火焰发射检测器flame emission spectroscopy 旗标flame excitation 火焰激发flame holder 火焰稳定器flame laser 火焰激光器flame photmetry 火焰光度测量计flame photometer 火焰光度计flame photometric analysis 火焰光度分析flame pyrometer 火焰高温计flame shield 火焰屏蔽flame spectrometer 火焰分光计flame spectrometry 火焰光谱光度测量flame spectrophotometry 火焰分光光度学flame spectrum 火焰光谱flame spetrum 火焰光谱flame welding 熔焊,气焊flange (1)凸缘(2)镶边flange focal distance 基面载距flange focal distance (ffd)凸缘焦距flank (1)侧面(2)齿侧flannel 法兰绒flannel disk 法兰绒抛划盘flapping 摇摆运动flare (1)闪光(2)闪烁(3)照明弹flare light 闪光flare spot 耀斑flare-free telescope sight 无闪光望远镜瞄准具flash arc 闪光弧flash barrier 闪光挡板flash cooler 快速冷却器flash desorption spectroscopy 闪光解吸收光谱术flash dryer 快速乾燥器flash duration 闪光持续时间flash evaporation 快速蒸发flash evaporation technique 快速蒸发技术flash exposure 闪光曝光flash gun 闪光枪flash head 闪光灯头flash intensity 闪光强度flash lamp 闪光灯flash lamp pumped dye laser 闪光灯抽运染料激光器flash lamp pumping 闪光灯抽运flash light 闪光灯flash meter 闪光昦曝光表flash photographic density filter 闪光照相密度滤器flash photolysis 闪光光解作用flash point 闪光点flash pumped 闪光抽flash radiography 闪光射线照相术flash ranging 闪光测距flash screen 闪光灯屏flash socket 闪光灯座flash spectroscopy 闪光光谱学flash synchronzed shutter 闪光同步快门flash tube 闪光管flash unit 闪光灯部件flash-photometry 闪光光度学flash-powder 闪光粉flashback voltage 反闪电压flashbulb 闪光灯泡flashcube 闪光灯块flashed glass 闪光玻璃flasher 闪光灯flashlamp 闪光灯flashtabe 闪光管flashtube lamp 闪光灯flask 烧瓶flat (1)平的(2)平面(3)平镜flat angle 平角flat blank 平面胚件flat crts 平面阴极射线管flat inclined mirror 斜面镜flat interferometer 平面干涉仪flat key 平键flat lapping block 精研平台flat machine 平面抛光机flat mirrors 平面镜flat pack 偏平装flat plate 平板flat polisher 平面抛光机flat reflector 平反射器,平反射镜flat saddle key 平鞍形键flat spring 扁簧,片簧flat spring hinge 扁簧铰键flat surface 平面flat tool 平面磨光磨具flat topped pulse 平顶脉冲flat-bed color image scanners 平台式影像扫描器flat-field lens 平场透镜,平扫描场透镜flat-field objective 平场物镜,平扫描场物镜flat-layer powder camera 平层粉末照相机flat-roof mirror 平屋脊镜flatncess of field 像场平度,扫描场平度flatness of image plane 像面平度flatness testers 平面度测定系统flattened field (1)平像场(2)扁平场flattener (1)平像场器(2)矫平机flattening lens 平像场透镜flatter surface 高精平面flatuess 平度,平面度,平直度flatuess and straighness measuring instrument 平直度测量仪flaw 裂纹,瑕疪fleck 斑点,斑影flexibility (1)挠性(2)弹性(3)适应性(4)柔顺性flexibility factor 挠度系数flexible 挠性的flexible cord 软线flexible diagnostic fresnel lens 诊断用弹性fresnel 镜片flexible drive 挠性传动flexible fiber-optic gastroscope 挠性纤光学胃镜flexible imagescope 可弯曲视镜flexible joint 挠性连轴节。
抗菌水凝胶敷料的制备及性能
Vol.27No.32014年9月功 能 高 分 子 学 报Journal of Functional Polymers 收稿日期:2014-03-18基金项目:上海市自然科学基金项目(12ZR1407800)作者简介:程惠蕾(1989-),女,山东烟台人,硕士生,研究方向为抗菌敷料。
E-mail:cheng.huilei@163.com通信联系人:管 涌,E-mail:yguan@ecust.edu.cn抗菌水凝胶敷料的制备及性能程惠蕾, 周雯婷, 郑安呐, 郭吟竹, 李天一, 管 涌(华东理工大学材料科学与工程学院,上海市先进聚合物材料重点实验室,超细材料制备与应用教育部重点实验室,上海200237)摘 要: 以乙二醇二缩水甘油醚(GDE)为偶联剂,将胍盐低聚物(PHMG)接枝到淀粉上,形成淀粉接枝物(Starch-g-PHMG)。
然后,将一定比例的Starch-g-PHMG与淀粉-丙烯酸接枝共聚物共混,制备了抗菌水凝胶敷料(AHD)。
通过红外光谱(FT-IR)、元素分析确定了Starch-g-PHMG的分子结构;通过吸液测试、抗菌测试表征了AHD的理化性能。
结果表明:在反应温度为60°C,反应时间为3h,w(NaOH)=0.4%时,Starch-g-PHMG中PHMG的接枝效率最高,可达37.5%;AHD的吸液率随着Starch-g-PHMG含量的增加而减少;当w(PHMG)>0.33%时,AHD对金黄色葡萄球菌与大肠杆菌的抑菌率可以达到100%。
关键词: 敷料;水凝胶;接枝;抗菌活性中图分类号: O63;O648.17 文献标志码: A 文章编号: 1008-9357(2014)03-0315-06Preparation and Properties of Antimicrobial Hydrogel DressingCHENG Hui-lei, ZHOU Wen-ting, ZHENG An-na, GUO Yin-zhu, LI Tian-yi, GUAN Yong(Shanghai Key Laboratory of Advanced Polymeric Materials,Key Laboratory for UltrafineMaterials of Ministry of Education,School of Materials Science and Engineering,East ChinaUniversity of Science and Technology,Shanghai 200237,China)Abstract: Starch grafted oligoguanidine(Starch-g-PHMG)was synthesized using glycol diglycidyl etheras the coupling agent.Antimicrobial hydrogel dressing(AHD)was further prepared by blending Starch-g-PHMG with acrylic acid grafted starch.The molecular structures,physical and chemical properties of theprepared AHD were characterized via Infrared Spectroscopy(FT-IR),element analysis,fluid absorbencytests,and antimicrobial tests.Results showed that the maximum grafting efficiency(37.5%)could beachieved at the optimal reaction conditions as following:3hof reaction time at 60°C and w(NaOH)=0.4%.The fluid absorbency of AHD decreased with the increasing of Starch-g-PHMG content.Thegrowth inhibition against E.coli and S.aureus reached 100%when w(PHMG)>0.33%.Key words: dressing;hydrogel;grafting;antimicrobial activity 理想的敷料应该具有可吸收伤口渗出液、保持伤口接触面的温度及湿度、良好的透气性、抗菌消炎等优点[1-3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :a s t r o -p h /9909496v 1 29 S e p 1999A&A manuscript no.(will be inserted by hand later)ASTRONOMYANDASTROPHY SICSSend offprint requests to :L.Spinoglio,luigi@r.it ⋆Based on observations with ISO,an ESA project with in-struments funded by ESA Member States (especially the PI countries:France,Germany,the Netherlands and the United Kingdom)with the participation of ISAS and NASAThe estimated relatively high density and compact-ness of the observed emission suggest that it originates from the shocks taking place at the base of the molecu-lar outflow emission,in the region where the action of the stellar winds from the two stars of the binary system is important.Key words:Stars:formation;Stars:individual:T Tau;Stars:pre-main sequence;ISM:individual objects:T Tau;ISM:jets and outflows;Infrared:ISM:lines and bands2L.Spinoglio et al.:The shock excited far-IR molecular spectrum of T Tau mapped by Edwards&Snell(1982)in12CO J=1-0andJ=2-1,who found that95%of the high velocity molec-ular gas is associated with blueshifted material.The di-rection of the detected outflow is roughly parallel to theline of sight,but the emission also shows a region extend-ing2arcmin to the south and east of T Tau N with asecondary peak in the blueshifted wing.Higher resolution maps of the12CO J=3-2,J=6-5and C18O J=1-0,J=2-1 and HCO+emission later showed(Schuster et al.1993, Momose et al.1996,Schuster et al.1997,Hogerheijde et al.1998)a complex outflow system that could originate from the different components of the binary system.The fast stellar winds observed through forbidden opti-cal line emission(B¨o hm&Solf1994),revealedfive distinct kinematic components that suggest that both the primary star and the companion may drive separate bipolar out-flows.A giant Herbig-Haroflow was recently discovered (Reipurth et al.1997)around T Tau and is interpreted as originating several thousand years ago from T Tau S.Strong and extended H2ro-vibrational emission was found quite early around T Tau(Beckwith et al.1978). Recently,high resolution H2imaging(Herbst et al.1996, 1997)indicated that the extended molecular hydrogen emission arises from the impact on the ambient cloud of two outflow systems oriented NW-SE and E-W.These originate from the two stars,each with its circumstellar disk,and the emission is distributed equally over T Tau N and T Tau S.Infrared adaptive optics observations in H2 show instead that the emission is concentrated on T Tau S and is interpreted in terms of shocks occurring as matter accretes onto the circumstellar disk of T Tau S(Quirren-bach&Zinnecker1997).Nofirm conclusion is therefore reached on this problem.T Tau has associated a substantial amount of mass of dust,it is therefore luminous in the millimeter continuum (Adams et al.1990,Beckwith et al.1990).A circumstellar disk has been detected both with CO interferometry and infrared scattered light(Weintraub et al.1989,Momose et al.1996).Later,millimeter continuum interferometry at0.9and3mm(Hogerheijde et al.1997,Akeson et al. 1998,respectively)was used to derive a total mass of0.04 M⊙for the circumstellar disk around T Tau N and at least10times smaller for that associated to T Tau S.A circumbinary envelope would also be required tofit the continuum energy distribution.Far-infrared spectroscopy provides powerful diagnostic lines from abundant molecular species like CO,H2O and OH,that can be used to clarify the physical processes at work in the complex T Tau system.In this paper we present the far-infrared spectrum observed from the Long Wavelength Spectrometer(LWS,Clegg et al.1996)on-board the Infrared Space Observatory(ISO,Kessler et al. 1996).Additional data from the Short Wavelength Spec-trometer(SWS,de Graauw et al.1996)are also used for discussing the molecular emission properties.The main results of the SWS are presented by van den Anckeret Fig.1.The complete ISO LWS and SWS spectrum of T Tau.The IRAS data are also shown for comparisonal.(1999).The continuum far-infrared spectrum of T Tau will be discussed in a forthcoming paper(Pezzuto et al.in preparation).2.ObservationsT Tau has been observed with ISO(Infrared Space Ob-servatory)using the LWS(Long Wavelength Spectrome-ter,Clegg et al.1996).A full low resolution(R∼200) spectrum of the source from45to197µm was obtained during revolution680,corresponding to September,25, 1997.The beamsize is on average80arcsec,depending on the wavelength.The spectrum was made up of23full grating scans oversampled at1/4of a resolution element, with each spectral sample integrated for11.5sec,with a total integration time of4265sec.Besides the observa-tion on-source,full grating spectra were also collected at four off-source positions.In Table1we present the jour-nal of the LWS observations,which includes source and off-source positions and total observing time(OTT).The raw data were reduced and calibrated using ver-sion7of the LWS pipeline,which achieves an absolute ac-curacy of about30%(Swinyard et al.1998).Post-pipeline processing was carried out with the ISAP package and in-cluded removal of spurious signals due to cosmic ray im-pacts and averaging the grating scans of each detector.Besides the data measured by the LWS,we also discuss in this paper the detection of H2O and OH emission lines observed by the SWS.The details of these observations are reported by van den Ancker et al.(1999).L.Spinoglio et al.:The shock excited far-IR molecular spectrum of T Tau3Fig.2.The ISO-LWS emission line spectrum of T Tau,from which the continuum has been subtracted.3.ResultsThe 2-200µm far-infrared spectrum of T Tau composed by the ISO LWS and SWS spectra is shown in Fig.1.The displacement (of ∼15%)between the flux level of the two instruments at ∼45µm is well within the calibration uncertainties.In the figure,IRAS photometry is also re-ported for comparison.As discussed in van den Ancker et al.(1999),the higher ISO fluxes compared to the IRAS data (30-50%)can be explained by the flare that occurredto the system in 1990-1991(Ghez et al.1991;Kobayashi et al.1994),after which the infrared luminosity of T Tau did not return to the pre-outburst value.The line spectrum (Fig.2)is very rich in molecu-lar emission lines from the rotational spectra of carbon monoxide,water and hydroxyl.The line fluxes,computed by fitting gaussian profiles to the lines,are listed in Tables 2-5.All of the CO transitions with J up =14-25appear in the spectrum.However,we cannot assign a flux,but only4L.Spinoglio et al.:The shock excited far-IR molecular spectrum of T Tau Table1.Journal of the ISO-LWS observations of T TauT Tau on4:21:59.4+19:32:06.54265 T Tau offN4:21:59.4+19:33:46.51345 T Tau offS4:21:59.3+19:30:26.51345 T Tau offW4:22:06.4+19:32:06.01345 T Tau offE4:21:52.4+19:32:07.01345λobs Line id.λvac F∆F(µm)(µm)(10−20W cm−2)Notes:†:wavelength wasfixed for deblending.⋆:this line is blended with the o-H2O414-303(see text),the totalflux has a1σuncertainty of0.5·10−20W cm−2.3.1.CO emissionFor the CO model,we computed the collisional downward rates for levels with J up<60and T>100K using theγJ0 coefficients taken from McKee et al.(1982),while the up-ward rates were computed using the principle of detailed balance.Radiative decay rates were taken from Chacke-rian&Tipping(1983).The distribution of the observed CO linefluxes as a function of the rotational quantum number is shown in Fig.3.Because the CO lines are optically thin,their emis-sion,in the LVG model considered,does not depend on the velocity gradient and thus on the assumed line-width. We have considered for ourfit only the transitions with J up less than22.Our data are consistent with gas tem-peratures ranging from T=300to900K and molecular hydrogen densities of n=105−6cm−3.The two extreme models consistent with the data have:T=300K and n H2=4·106cm−3;T=900K and n H2=2·105cm−3.Fig.3shows that the transitions with J up=24and25 have aflux level which is too high to be explained by the same gas component of the other lines and may indicate the presence of a warmer gas emission.This warmer com-ponent,which cannot easily be constrained by the higher J up transitions observed,could also affect the J up=21 and22lines.Howeverfitting the component covering the lines14≤J up≤20,results in the same parameters as the low temperature model above.L.Spinoglio et al.:The shock excited far-IR molecular spectrum of T Tau5 Fig.3.Modelfits through the observed CO lines.Therange of temperatures and densities compatible with theobservations are indicated.The higher observed J lines(J=24,25and26)havefluxes too high to befitted bythe same parameters as the other lines,suggesting thepresence of a second component.3.2.H2O emissionAs outlined in the previous Sect.,we adopted the temper-ature and density as derived from the CO lines models tofit the observed H2O linefluxes.We considered in the computation45levels for boththe ortho and para species(i.e.excitation energies up to∼2000K):radiative rates are taken from Chandra et al.(1984)while the H2O-H2collision rates are derived fromGreen et al.(1993).We assumed an ortho/para abundanceratio of3,equal to the ratio of the statistical weigths oftheir nuclear spins.The other parameters that enter in the model are thevelocity gradient in the region(dV/dr)and the projectedarea of the emission region.The optical depth in thelines is directly proportional to the water column den-sity(N(H2O)).Since the ratios of different lines dependon their relative optical depths,we can use them to con-strain dV/N(H2O).On the other hand,the absolute lineintensity depends on both the column density and theprojected area of the emission region,and therefore if weassume a velocity linewidth dV,we can estimate both thecolumn density and the emission region size.The results of the modelfitting are shown in Fig.4and Fig.5for ortho-and para-H2O respectively.Almostall the lines in the LWS wavelength interval are well re-produced by the model.The differences in thefluxlevelparison of the modeled ortho-H2O linefluxes(filled triangles)with those observed(open circles)for thetwo modelsconsidered.parison of the modeled para-H2O linefluxes(filled triangles)with those observed(open circles)for thetwo models considered.predicted in the two extreme models are quite small,indi-cating that the H2O emission is not very sensitive to theexact value of temperature and density in the range.Onthe other hand,we note that the ortho-H2O lines short-ward of50µm are notfitted by our models.These lines,6L.Spinoglio et al.:The shock excited far-IR molecular spectrum of T TauTable3.Measured water linefluxes from the SWS(up-per list)and LWS(lower list)grating spectrum,with1σuncertainties.Upper limits are at3σ.25.940o-H2O541-41425.940 2.40.629.838o-H2O725-61629.836 4.9 1.1o-H2O441-31231.771<3.040.342o-H2O643-53240.337 5.7 1.340.688o-H2O432-30340.68814.1 2.643.894†o-H2O541-43243.8947.8 1.545.116o-H2O432-30345.111 5.8 1.9 Notes:†:wavelength wasfixed for deblending.⋆:this line is blended with the CO23-22line(see text),the totalflux has a1σuncertainty of0.5·10−20W cm−2. originated by levels at energies higher than500K,are brighter than our predictions,indicating that a warmer component might be required,as also suggested from thehigher J CO lines.An estimate of the intrinsic linewidth dV can be given if we relate the observed emission with the outflow/wind activity taking place in the close environment of the T Tau binary system.The molecular outflow has been traced by different lines at near infrared and millimeter wave-lengths(H2,CO,HCO+),showing linewidths of a few km s−1.Adopting a velocity of10km s−1,close to the out-flow velocities of7.9km s−1(red lobe)and9.7km s−1(blue lobe)measured by Levrault(1988)and those measured by Hogerheijde et al.(1998)in13CO3-2(of12.and15.6km s−1for the red and blue lobes,respectively),we derive a water column density of(2-5)1017cm−2,while the pro-jected area is(4-9)arcsec2.This corresponds to a diameter of only300-400AU,assuming spherical simmetry.The compactness of this emission region will enable us to put constraints on the physical mechanisms responsible of the observed emission(see Sect.4)parison of the modeled OH linefluxes(filled triangles)with those observed(open circles).Using this emission area,the CO column density that we derive from the observed CO absolute linefluxes is N(CO)=(0.7-2.0)1018cm−2and therefore an H2O/CO abundance ratio of∼0.1-0.7.Assuming a standard CO abundance of10−4,the water abundance with respect to H2is∼(1-7)·10−5.This value implies an enhancement with respect to the expected abundance in the ambient gas of at least a factor of10(e.g.Bergin et al.1998).High H2O abundances are common in young stellar objects:the ISO spectrometers have in fact found strong emission from gas-phase H2O from massive young stars (Harwit et al.1998,Gonz´a lez-Alfonso et al.1998)and from low mass outflow driving sources(Liseau et al.1996, Saraceno et al.in preparation,Ceccarelli et al.1998)with abundances in the range1-5·10−5,rising to values as high as∼5·10−4in L1448mm(Nisini et al.1999b)and Orion (Harwit et al.1998).3.3.OH emissionFor the OH models,we have considered20levels.The collisional downward rates are from Offer&van Dishoeck (1992)and the radiative decay rates are from the HITRAN catalogue(Rothman et al.1987).If we adopt the same parameters as derived from the above analysis also for the OH,wefind that a better agree-ment between data and models is achieved with the lower temperature model(T=300K).The estimated OH col-umn density is N(OH)∼4·1017cm−2and therefore a X(OH)∼2.7·10−5.The results of the OH modelfittingL.Spinoglio et al.:The shock excited far-IR molecular spectrum of T Tau7 Table 4.Measured OH linefluxes from the SWS(upper list)and LWS(lower list)grating spectrum,with1σuncertainties.Upper limits are at3σ.28.9310.020OH2Π1/27/2-2Π3/25/228.939 2.70.9OH2Π1/25/2-2Π3/23/234.603/34.629<6.443.950†0.045†OH2Π1/27/2-2Π3/27/243.950 5.2 1.5Notes:†:wavelength wasfixed for deblending.are shown in Fig.6.As can be seen from thisfigure,not all the lines can be reproduced by the models,in particular both the163µm line and those shortward of60µm.Because T Tau is relatively bright in the continuum at the far infrared wavelengths(see Fig.1),such a discrep-ancy could be due to the pumping from the local ther-mal radiationfield.To test this possibility we also com-puted models for the OH transitions including thefield originated from dust at a temperature of300K,using the model of Cesaroni&Wamsley(1991).We found that the inclusion of the local infrared radiationfield increases the emission in the lines withλless than100µm and the 163µm line.3.4.Atomic emissionThe detection of[CII]158µm in the four off-source posi-tions around T Tau(see Table5)clearly shows that most of the ionized carbon emission(∼80%)is from an ex-tended region and not originated in the vicinity of T Tau. The intrinsic emission in the LWS beam centered on T Tau is about2·10−20W cm−2.This implies a ratio [OI]63µm/[CII]158µm of115,greatly in excess of that expected from photodissociation region models(Kaufman et al.1999;Burton et al.1990).Finally the ratio of[OI]63µm/145µm=28.3is such that no oxygen self-absorption should occur,as it often appears to be the case towards pre-main sequence sources(Sara-ceno et al.1998).This suggests that there is no cold gas in front of the source,in accordance with the geometry of the outflow directed towards the observer.As outlined in van den Ancker et al.(1999),based on a larger set offine-structure lines detected at shorter wave-lengths,we argue that the atomic line emission observed is consistent with the presence of J-type dissociative shocks. On the other hand,the excess[CII]158µm emission on-source could also be due to a local photodissociation region (PDR),possibly originated from the far-UVfield of T Tau (see Sect.4).3.5.Total coolingTable6summarises the physical quantities derived from the observed molecular spectra of CO,H2O and OH, adopting the two models considered:the column densi-ties and the total cooling luminosities are given for each molecular species.We also give the observed values of the cooling derived from the sum of all the detectedfluxes.For deriving L H2,we used the linefluxes reported in van den Ancker et al.(1999)and the line H21-0S(1)at2.12µm, given in Carr(1990).A comparison between the observed and modeled cooling shows that the observations of CO, H2O and OH can account for most of the modeled cooling. The underestimate of the OH cooling by the900K model confirms that this latter is probably inadeguate to explain the observed OH emission.The total radiated cooling ob-served from these species,including[OI],sums up to about 0.04L⊙,and has to be considered as a lower limit.Tak-ing the outflow parameters from the literature(Levreault 1988;Mundt1984)we derive a total mechanical luminos-ity of about0.05L⊙(we have taken an average veloc-ity of10kms−1,a total outflow mass of0.22M⊙,and a dynamical timescale of40,000years).The radiative lumi-nosity observed in the far-infrared is therefore comparable to the outflow mechanical luminosity.This is expected if the stellar winds from the stars are driving the outflows and the shocks,traced by the far-infrared lines,accelerate8L.Spinoglio et al.:The shock excited far-IR molecular spectrum of T Tau Table5.Measured atomic linefluxes from the LWS grating spectrum with uncertainties.on63.21[OI]3P1→3P263.18230.6 1.0on145.52†[OI]3P0→3P1145.528.150.78on157.76[CII]2P3/2→2P1/2157.7410.60.5off-N157.80[CII]2P3/2→2P1/2157.747.90.7off-S157.79[CII]2P3/2→2P1/2157.748.8 1.2off-W157.76[CII]2P3/2→2P1/2157.748.80.9off-E157.74[CII]2P3/2→2P1/2157.749.10.7observed⋆“lower T”“higher T”Notes:⋆:The observed cooling is computed by summing allthe detected lines.4.DiscussionOnce the physical conditions of the emitting gas in the vicinity of T Tau have been established,we can now pro-ceed to compare the results with existing models of shock excitation.The far-infrared line emission of young stel-lar objects is mainly originated from two physical pro-cesses:the excitation from photoionized and photodisso-ciated(PDR)regions(Tielens&Hollenbach1985)and the shock excitation produced by the interaction of su-personic winds with the ambient medium.Depending on wind velocity,magneticfield and ion density,two kinds of shocks with different far-infrared spectra are predicted from models:i)high velocity dissociative J shocks(e.g.Hollenbach&McKee1989),in which temperature,density and veloc-ity have a discontinuous jump(J)on the shock front, molecules are dissociated and atomic lines are the dom-inant coolants;ii)low velocity non-dissociative C shocks(e.g.Kaufman &Neufeld1996,Draine et al.1983)in which the ion Alfv´e n velocity is larger than the shock velocity and the magneticfield transmits energy faster than the shock velocity;in this case temperature,density and velocity have a continuous(C)variation and molecules are the dominant coolants.Instead of using intensities of many tens of different lines,we can obtain a better comparison between our data and the shock model predictions using the total cooling from a single species.In Fig.7we show the water cooling as a function of the[OI]63µm cooling,both normalized to the high-J CO cooling.The C-type shock models of Kaufman&Neufeld (1996)are considered.The J-type shock models(Hollen-bach&McKee1989)are also indicated(seefigure caption for details).Together with the position of T Tau,we also show in thisfigure the positions of L1448(Nisini et al. 1999b),IC1396(Saraceno et al.1999),IRAS16293-2422 (Ceccarelli et al.1998),and the Herbig-Haro objects HH54 (Liseau et al.1996),HH25and HH26(Benedettini et al. 1998).T Tau is in a central position,showing that both C-type and J-type shock models could explain the obser-vations.It has to be noted,however,that according to Kaufman&Neufeld models,its position implies a shock velocity between10and15km s−1,in a range where wa-ter production is triggered but it is not at its maximum efficiency.We can see in thefigure that other pre-main sequence sources also cluster in the same region of T Tau, indicating that these shock conditions are fairly common in the environment of young stellar objects(Nisini et al. 1998).Fig.8shows the water cooling as a function of the OH cooling,both normalized to the high-J CO cooling.As before,we consider both J-type and C-type shocks.The position of T Tau in this plot appears to be consistentL.Spinoglio et al.:The shock excited far-IR molecular spectrum of T Tau9 Fig.7.Total cooling from water lines versus[OI]63µm cooling,both normalized to the CO(high-J)cooling in few objects,including T Tau(filled triangles)and according to shock models.The open triangle showsthe position that T Tau would have if the water coolingwere increased by a factor3.C-type shock models ofKaufman&Neufeld(1996)are shown in a grid whereshock velocity increases from the right to the left from10<v s<40km s−1(dashed lines)and density from thebottom to the top from104to106.5cm−3(solid lines).J-type shock models(Hollenbach&McKee1989)are shownfor comparison as large dashed circles,where S is thestandard model,with preshock density of n o=105cm−3,shock velocity of v s=80km s−1and magneticfield ofB=158µG;UV-:the far-ultravioletfield is reduced by afactor of10;B-:the magneticfield is reduced by a factor10;B+:the magneticfield is increased by a factor10;GR-:the grain size distribution is extended down to10˚A;HL:H2formation on grains is equal to zero;HZ:H2formation heating is set to zero.with J-type shocks.The main reason why C-shocks failto reproduce the observed cooling is the overabundance ofOH molecules,by at least a factor10.Only a model whichincludes the effects of the presence of a high UVfield fromT Tau itself can reproduce the observed values.Fig.9shows the water cooling as a function of the H2cooling,both normalized to the high-J CO cooling.T Taulies exactly in the center of the region of C-type shocksand cannot be explained by J-type shocks.As expected,the strong H2emission cannot be accounted for by J-typeshocks.We therefore rule out the hypothesis that the ma-jor responsible of the observed excitation areJ-shocks.Fig.8.Total cooling from water lines versus total coolingfrom OH lines,both normalized to the CO(high-J)cool-ing in few objects,including T Tau(filled triangles)andaccording to shock models.The open triangle shows theposition that T Tau would have if the water cooling wereincreased by a factor3and the OH cooling decreased bya factor10.C-type shock models of Kaufman&Neufeld(1996)are shown in a grid as a function of density andshock velocity.J-type shock models(Hollenbach&Mc-Kee1989)are shown as large dashed circles(see captionof Fig.7).Because photodissociation of water by an UVfield,that is not included in shock models,can convert waterto OH,we suppose that the overabundance of the OHmolecule is due only to the strong far-UV radiationfieldassociated to T Tau(Herbig&Goodrich,1986).The pho-todissociation cross Sect.of water at the Lyαfrequency isin fact ten times larger than the one of OH(van Dishoeck&Dalgarno1984).A similar situation has been found insupernova remnants,where OH1720MHz emission is ex-plained as originated from C-type shocks,allowing thatthe action of an UVfield creates sufficient OH from waterdissociation(Wardle et al.1998;Lockett et al.1999).If this is the case,the far-infrared molecular emissionspectrum of T Tau is primarily due to C-type shocks.Toreconcile the OH observations with C-type shock modelswe need that the OH abundance,and thus its total cooling,were reduced by a factor10in favor of water cooling.FromTable6,if we reduce by a factor10the OH column densityand we increase of the corresponding amount that one ofthe water,passing from2·1017to5.6·1017,we will increasethe total water cooling by a factor of about3.10L.Spinoglio et al.:The shock excited far-IR molecular spectrum of TTauFig.9.Total cooling from water lines versus total cooling from H 2lines,both normalized to the CO (high-J)cooling in T Tau and L1448(Nisini et al.1999b)(filled triangles)and according to shock models.The open triangle shows the position that T Tau would have if the water cooling were increased by a factor 3.C-type shock models of Kauf-man &Neufeld (1996)are shown in a grid where density increases upward and shock velocity from the left to the right.J-type shock models (Hollenbach &McKee 1989)are shown as large dashed circles (see caption of Fig.7).Increasing the water cooling by this factor and de-creasing the OH cooling by a factor 10would move the position of T Tau in the three diagrams of Fig.7,8and 9in positions fully consistent with C-type shock mod-els (see the open triangles in the figures),at pre-shock densities of about 105.5−6cm −3and shock velocities of 10<v s <20km s −paring the pre-shock densities of these models with the densities derived from our LVG models,we found that a moderate compression factor (≤10)would be required.In support of the fact that the molecular emission is due to C-type shocks is the evidence of the presence of strong magnetic fields in the outflow re-gion associated with T Tau S (Ray et al.1997).Our conclusion that the observed far-infrared molec-ular emission from T Tau can be explained by C-type shocks and that the atomic emission is probably origi-nated in J-type shocks is in agreement with the findings of van den Ancker et al.(1999).Their models,based on the near to mid-infrared H 2emission imply two temper-ature components at 440K and 1500K,which again are roughly in agreement with our finding of two components:one ranging from 300K to 900K and another at an higher temperature traced by the higher J up CO transitions.As to the origin of the C-type shocks,responsible for the observed far-infrared molecular emission,we know from the LVG models that the emission region has a size of only few hundreds AU,assuming a spherical geometry.This implies that the shocks occur in a very compact re-gion,presumably very close to the binary system.There are at least three mechanisms not mutually exclusive to explain the origin of the shocks:1.from the interaction region of winds coming from the two stars;2.from disk accretion on the youngest component of the binary system;3.from the interaction of the stellar wind with the molec-ular material in the circumstellar envelope.The first possibility seems the best one for originating fast (v s ∼50km s −1)dissociative J-type shocks,because the wind interaction would occur close to the stars where ve-locities are supposed to be high and the stellar field strong to dissociate molecules.The second possibility has already been suggested by Quirrenbach &Zinnecker (1997)to ex-plain the near-infrared H 2extended emission.The third one is probably at work in any case,because it is needed to explain the strong emission from CO,H 2O,OH,as well as that from H 2(van den Ancker et al.1999).5.ConclusionsTo summarise our results,we list the main findings of this study:1.The far-infrared spectrum associated to the binary system of T Tau shows strong emission from CO,H 2O and OH molecules.2.Optically thin CO emission lines from high-J transi-tions are used to constrain the physical regimes of the gas:T ∼300-900K and n H 2∼105−6cm −3.The detec-tion of CO lines with J up of 24and 25seems to indicate that a warmer component is also needed.3.H 2O and OH emission is consistent with such condi-tions,however the higher excitation lines at the shorter wavelenghs are not well fitted by these models,indicat-ing that higher temperature gas should also be present,in agreement with the CO emission.4.From the assumption that all the far-infrared molecu-lar emission observed originate from the same region a very compact size of 300-400AU of diameter is derived.5.The detection of [CII]158µm off-source at large dis-tances from T Tau shows that most of the ionised car-bon emission (∼80%)is from an extended region and not originated in the vicinity of T Tau.The intrinsic emission in the LWS beam centered on T Tau implies a ratio [OI]63µm/[CII]158µm of 115,much in excess of what is expected from photodissociation region mod-els.This emission is probably due to J-type shocks,。