高考数学(理)总复习高考达标检测(二十) 正、余弦定理的3个应用点——高度、距离和角度
2024年高考数学一轮复习(新高考版) 第4章 正弦定理、余弦定理
§4.8正弦定理、余弦定理考试要求1.掌握正弦定理、余弦定理及其变形.2.理解三角形的面积公式并能应用.3.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容a sin A =bsinB =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R,sin B =b 2R ,sin C =c 2R;(3)a ∶b ∶c =sin A ∶sin B ∶sin Ccos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab 2.三角形解的判断A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论:(1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边.(3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C2;cos A +B 2=sin C 2.(5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .(6)三角形中的面积S =12(a +b +c 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC 中,若sin A >sin B ,则A >B .(√)(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.(×)教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于()A.π6B.π3C.2π3D.5π6答案C解析在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.2.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为4,a =2,B =30°,则c 等于()A .8B .4C .833D .433答案A解析由S △ABC =12ac sin B =12×2c ×12=4,得c =8.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =30°,b =2,c =2,则C =.答案45°或135°解析由正弦定理得sin C =c sin B b =2sin 30°2=22,因为c >b ,B =30°,所以C =45°或C =135°.题型一利用正弦定理、余弦定理解三角形例1(12分)(2022·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B1+cos 2B.(1)若C =2π3,求B ;[切入点:二倍角公式化简](2)求a 2+b 2c2的最小值.[关键点:找到角B 与角C ,A 的关系]思维升华解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.跟踪训练1(2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A -B)=sin B sin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos A=2531,求△ABC的周长.(1)证明方法一由sin C sin(A-B)=sin B sin(C-A),可得sin C sin A cos B-sin C cos A sin B=sin B sin C cos A-sin B cos C sin A,结合正弦定理asin A=bsin B=csin C可得ac cos B-bc cos A=bc cos A-ab cos C,即ac cos B+ab cos C=2bc cos A(*).由余弦定理可得ac cos B=a2+c2-b22,ab cos C=a2+b2-c22,2bc cos A=b2+c2-a2,将上述三式代入(*)式整理,得2a2=b2+c2.方法二因为A+B+C=π,所以sin C sin(A-B)=sin(A+B)sin(A-B)=sin2A cos2B-cos2A sin2B=sin2A(1-sin2B)-(1-sin2A)sin2B=sin2A-sin2B,同理有sin B sin(C-A)=sin(C+A)sin(C-A)=sin2C-sin2A.又sin C sin(A-B)=sin B sin(C-A),所以sin2A-sin2B=sin2C-sin2A,即2sin2A=sin2B+sin2C,故由正弦定理可得2a2=b2+c2.(2)解由(1)及a2=b2+c2-2bc cos A得,a2=2bc cos A,所以2bc=31.因为b2+c2=2a2=50,所以(b+c)2=b2+c2+2bc=81,得b+c=9,所以△ABC的周长l=a+b+c=14.题型二正弦定理、余弦定理的简单应用命题点1三角形的形状判断例2(1)在△ABC中,角A,B,C所对的边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形答案D解析因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰三角形或直角三角形.(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,c -a 2c =sin 2B2,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形答案A解析由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B 2,即cos B =a c .方法一由余弦定理得a 2+c 2-b 22ac=ac ,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,但无法判断两直角边是否相等.方法二由正弦定理得cos B =sin A sin C,又sin A =sin(B +C )=sin B cos C +cos B sin C ,所以cos B sin C =sin B cos C +cos B sin C ,即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为△ABC 的内角,所以C =π2,所以△ABC 为直角三角形,但无法判断两直角边是否相等.延伸探究将本例(2)中的条件“c -a 2c=sin 2B 2”改为“sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解因为sin A sin B =a c ,所以由正弦定理得a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc ,所以由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.思维升华判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.命题点2三角形的面积例3(2022·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解(1)由正弦定理a sin A =c sin C,得sin A =a ·sin Cc.因为cos C =35,所以sin C =45,又a c =54,所以sin A =5sin C 4=55(2)由(1)知sin A =55,因为a =5c 4<c ,所以0<A <π2,所以cos A =255,所以sin B =sin(A +C )=sin A cos C +sin C cos A =55×35+45×255=11525.因为b sin B =csin C,即1111525=c 45,所以c =45,所以S △ABC =12bc sin A =12×11×45×55=22.思维升华三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.命题点3与平面几何有关的问题例4(2023·厦门模拟)如图,已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,b (1+cosC )=3c sin ∠ABC 且△ABC 的外接圆面积为49π3.(1)求边c 的长;(2)若a =5,延长CB 至M ,使得cos ∠AMC =217,求BM .解(1)设△ABC 的外接圆半径为R ,由题意πR 2=49π3,解得R =733.由题意及正弦定理可得sin ∠ABC (1+cos C )=3sin C sin ∠ABC ,因为sin ∠ABC ≠0,所以1+cos C =3sin C ,即1,因为0<C <π,所以C -π6∈-π6,C -π6=π6,即C =π3.故c =2R sin C =2×733×32=7.(2)因为a =5,c =7,C =π3,故cos C =12=25+b 2-492×5×b ,得b 2-5b -24=0,解得b =8(b =-3舍去).在△ABC 中,由余弦定理可得cos ∠ABC =52+72-822×5×7=17,所以sin ∠ABC =437.由cos ∠AMC =217得sin ∠AMC =277.故sin∠BAM=sin(∠ABC-∠AMC)=sin∠ABC cos∠AMC-cos∠ABC sin∠AMC=107 49,在△ABM中,由正弦定理可得BMsin∠BAM=ABsin∠AMB,则BM=7277×10749=5.思维升华在平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题时,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,再解方程即可.若研究最值,常使用函数思想.跟踪训练2(1)(多选)(2023·合肥模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,下列四个命题中正确的是()A.若a cos A=b cos B,则△ABC一定是等腰三角形B.若b cos C+c cos B=b,则△ABC是等腰三角形C.若acos A=bcos B=ccos C,则△ABC一定是等边三角形D.若B=60°,b2=ac,则△ABC是直角三角形答案BC解析对于A,若a cos A=b cos B,则由正弦定理得sin A cos A=sin B cos B,∴sin2A=sin2B,则2A=2B或2A+2B=180°,即A=B或A+B=90°,则△ABC为等腰三角形或直角三角形,故A错误;对于B,若b cos C+c cos B=b,则由正弦定理得sin B cos C+sin C cos B=sin(B+C)=sin A=sin B,即A=B,则△ABC是等腰三角形,故B正确;对于C,若acos A=bcos B=ccos C,则由正弦定理得sin Acos A=sin Bcos B=sin Ccos C,则tan A=tan B=tan C,即A=B=C,即△ABC是等边三角形,故C正确;对于D,由于B=60°,b2=ac,由余弦定理可得b2=ac=a2+c2-ac,可得(a-c)2=0,解得a=c,可得A=C=B,故△ABC是等边三角形,故D错误.(2)在①b2+2ac=a2+c2;②cos B=b cos A;③sin B+cos B=2这三个条件中任选一个填在下面的横线中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,,A=π3,b=2,求△ABC的面积.解若选①,则由b2+2ac=a2+c2,得2ac=a2+c2-b2.由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选②,因为cos B =b cos A ,A =π3,b =2,所以cos B =b cos A =2cos π3=22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选③,则由sin B +cos B =2,得2sin =2,所以 1.因为B ∈(0,π),所以B +π4∈所以B +π4=π2,所以B =π4.由正弦定理得a sin A =bsin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.(3)(2022·重庆八中模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,在①c (sin A -sin C )=(a -b )(sin A +sin B );②2b cos A +a =2c ;③233ac sin B =a 2+c 2-b 2三个条件中任选一个,补充在下面问题中,并解答.①若,求角B 的大小;②求sin A +sin C 的取值范围;③如图所示,当sin A +sin C 取得最大值时,若在△ABC 所在平面内取一点D (D 与B 在AC 两侧),使得线段DC =2,DA =1,求△BCD 面积的最大值.解①若选①,因为c (sin A -sin C )=(a -b )(sin A +sin B ),由正弦定理得c (a -c )=(a -b )(a +b ),整理得a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选②,因为2b cos A +a =2c ,由余弦定理得2b ·b 2+c 2-a 22bc +a =2c ,化简得,a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选③,因为233ac sin B =a 2+c 2-b 2,由余弦定理得233ac sin B =2ac cos B ,化简得tan B =3,又0<B <π,所以B =π3.②由①得,A +C =2π3,则0<A <2π3,sin A +sin C =sin A +=32sin A +32cos A =3sin 又π6<A +π6<5π6,所以12<sin 1,则sin A +sin C ,3.③当sin A +sin C 取得最大值时,A +π6=π2,解得A =π3,又B =π3,所以△ABC 为等边三角形,令∠ACD =θ,∠ADC =α,AB =AC =BC =a ,则由正弦定理可得a sin α=1sin θ,所以sin α=a sin θ.又由余弦定理得,a 2=22+12-2×2×1×cos α,所以a 2cos 2θ=a 2-a 2sin 2θ=cos 2α-4cos α+4,所以a cos θ=2-cos α.S △BCD =12×a ×=32a cos θ+12a sin θ=32(2-cos α)+12sin α=3+≤3+1,当且仅当α=∠ADC =5π6时等号成立,所以△BCD 面积的最大值为3+1.课时精练1.在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于()A.35B.31C .6D .5答案B解析因为sin A =6sin B ,则由正弦定理得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以由余弦定理c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×6×1×12,解得c =31.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(b +c )sin C ,a =7,则△ABC 外接圆的直径为()A .14B .7C.733D.1433答案D 解析已知(a +b )(sin A -sin B )=(b +c )sin C ,由正弦定理可得(a +b )(a -b )=(b +c )c ,化简得b 2+c 2-a 2=-bc ,所以cos A =b 2+c 2-a 22bc =-bc 2bc=-12,又因为A ∈(0,π),所以A =2π3,所以sin A =sin2π3=32,设△ABC 外接圆的半径为R ,由正弦定理可得2R =asin A =732=1433,所以△ABC 外接圆的直径为1433.3.(2022·北京模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若3a sin B =b cos A ,且b =23,c =2,则a 的值为()A .27B .2C .23-2D .1答案B解析由已知及正弦定理得,3sin A sin B =sin B cos A 且sin B ≠0,可得tan A =33,又0<A <π,所以A =π6,又b =23,c =2,所以由余弦定理a 2=b 2+c 2-2bc cos A =16-12=4,解得a =2.4.(2023·枣庄模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C等于()A.2393B.2633C.833D .23答案A解析由三角形的面积公式可得S △ABC =12bc sin A =34c =3,解得c =4,由余弦定理可得a =b 2+c 2-2bc cos A =13,设△ABC 的外接圆半径为r ,由正弦定理得a sin A =b sin B =csin C=2r ,所以a +b +c sin A +sin B +sin C =2r (sin A +sin B +sin C )sin A +sin B +sin C=2r =asin A =1332=2393.5.(2023·马鞍山模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B +sin C )2=sin 2A +(2-2)sin B sin C ,2sin A -2sin B =0,则sin C 等于()A.12B.32C.6-24 D.6+24答案C解析在△ABC 中,由(sin B +sin C )2=sin 2A +(2-2)sin B sin C 及正弦定理得(b +c )2=a 2+(2-2)bc ,即b 2+c 2-a 2=-2bc ,由余弦定理得cos A =b 2+c 2-a 22bc=-22,而0°<A <180°,解得A =135°,由2sin A -2sin B =0得sin B =22sin A =12,显然0°<B <90°,则B =30°,C =15°,所以sin C =sin(60°-45°)=sin 60°cos 45°-cos 60°sin 45°=6-24.6.(2023·衡阳模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos B (a cos C +c cos A )=b ,lg sin C =12lg 3-lg 2,则△ABC 的形状为()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形答案C解析∵2cos B (a cos C +c cos A )=b ,∴根据正弦定理得,2cos B (sin A cos C +cos A sin C )=sin B ,∴2cos B sin(A +C )=sin B ,∴2cos B sin(π-B )=sin B ,即2cos B sin B =sin B ,∵B ∈(0,π),∴sin B ≠0,∴cos B =12,∴B =π3.∵lg sin C =12lg 3-lg 2,∴lg sin C =lg32,∴sin C =32,∵C ∈(0,π),∴C =π3或2π3,∵B =π3,∴C ≠2π3,∴C =π3,∴A =B =C =π3,即△ABC 为等边三角形.7.(2022·全国甲卷)已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =.答案3-1解析设BD =k (k >0),则CD =2k .根据题意作出大致图形,如图.在△ABD 中,由余弦定理得AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =22+k 2-2×2k k 2+2k +4.在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD cos ∠ADC =22+(2k )2-2×2×2k ·12=4k 2-4k +4,则AC 2AB 2=4k 2-4k +4k 2+2k +4=4(k 2+2k +4)-12k -12k 2+2k +4=4-12(k +1)k 2+2k +4=4-12(k +1)(k +1)2+3=4-12k +1+3k +1.∵k +1+3k +1≥23(当且仅当k +1=3k +1,即k =3-1时等号成立),∴AC 2AB 2≥4-1223=4-23=(3-1)2,∴当ACAB取得最小值3-1时,BD =k =3-1.8.(2023·宜春模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +c sin B =4a sinB sinC ,b 2+c 2-a 2=8,则△ABC 的面积为.答案233解析∵b sin C +c sin B =4a sin B sin C ,sin B sin C >0,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,∴sin A =12,∵b 2+c 2-a 2=8,结合余弦定理a 2=b 2+c 2-2bc cos A ,可得2bc cos A =8,∴A 为锐角,且cos A =32,从而求得bc =833,∴△ABC 的面积为S =12bc sin A =12×833×12=233.9.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b cos C =(2a -c )cos B .(1)求B ;(2)若b =3,sin C =2sin A ,求△ABC 的面积.解(1)由正弦定理,得sin B cos C =2sin A cos B -cos B sin C ,即sin B cos C +cos B sin C =2sin A cos B ,∴sin(B +C )=2sin A cos B ,∴sin A =2sin A cos B ,又∵sin A ≠0,∴cos B =12,∵B 为三角形内角,∴B =π3.(2)∵sin C =2sin A ,∴由正弦定理得c =2a ,∴由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+4a 2-2a 2=9,即3a 2=9,∴a =3,c =23,∴△ABC 的面积为S =12ac sin B =12×3×23×32=332.10.(2023·湖州模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知3b a sin B .(1)求角A 的大小;(2)若b ,a ,c 成等比数列,判断△ABC 的形状.解(1)∵3b a sin B ,由诱导公式得3b cos A =a sin B ,由正弦定理得3sin B cos A =sin A sin B ,∵sin B ≠0,∴3cos A =sin A ,即tan A =3,∵A ∈(0,π),∴A =π3.(2)∵b ,a ,c 成等比数列,∴a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=12,即b 2+c 2-bc =bc ,∴(b -c )2=0,∴b =c ,又由(1)知A =π3,∴△ABC 为等边三角形.11.(多选)对于△ABC ,有如下判断,其中正确的是()A .若cos A =cosB ,则△ABC 为等腰三角形B .若A >B ,则sin A >sin BC .若a =8,c =10,B =60°,则符合条件的△ABC 有两个D .若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形答案ABD解析对于A ,若cos A =cos B ,则A =B ,所以△ABC 为等腰三角形,故A 正确;对于B ,若A >B ,则a >b ,由正弦定理a sin A =b sin B=2R ,得2R sin A >2R sin B ,即sin A >sin B 成立,故B 正确;对于C ,由余弦定理可得b =82+102-2×8×10×12=84,只有一解,故C 错误;对于D ,若sin 2A +sin 2B <sin 2C ,则根据正弦定理得a 2+b 2<c 2,cos C =a 2+b 2-c 22ab <0,所以C为钝角,所以△ABC 是钝角三角形,故D 正确.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin A sin B sin C =18,△ABC 的面积为2,则下列选项错误的是()A .abc =162B .若a =2,则A =π3C .△ABC 外接圆的半径R =22D ≥32sin C 答案B解析由题可得12ab sin C =2,则sin C =4ab,代入sin A sin B sin C =18,得4sin A sin B ab =18,即R 2=8,即R =22,C 正确;abc =8R 3sin A sin B sin C =1282×18=162,A 正确;若a =2,则sin A =a 2R =242=14,此时A ≠π3,B 错误;因为sin A >0,sin B >0,所以(sin A +sin B )2≥4sin A sin B ,所以(sin A +sin B )2(sin A sin B )2≥4sin A sin B ,由sin A sin B sin C =18,得4sin A sin B=32sin C ,所以(sin A +sin B )2(sin A sin B )2≥32sin C ,即≥32sin C ,D 正确.13.(2023·嘉兴模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c sin A =3a cos C ,c =23,ab =8,则a +b 的值是.答案6解析∵c sin A =3a cos C ,根据正弦定理得sin C sin A =3sin A cos C ,∵sin A ≠0,故tan C =3,∵C ∈(0,π),∴C =π3,再由余弦定理得cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =12,代入c =23,ab =8,得a +b =6.14.在△ABC 中,已知AB =4,AC =7,BC 边的中线AD =72,那么BC =.答案9解析在△ABD 中,结合余弦定理得cos ∠ADB =BD 2+AD 2-AB 22BD ·AD,在△ACD 中,结合余弦定理得cos ∠ADC =CD 2+AD 2-AC 22CD ·AD,由题意知BD =CD ,∠ADB +∠ADC =π,所以cos ∠ADB +cos ∠ADC =0,所以BD 2+AD 2-AB 22BD ·AD +CD 2+AD 2-AC 22CD ·AD =0,2×72CD 2×72CD 0,解得CD =92,所以BC =9.15.(多选)(2023·珠海模拟)已知△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =332,则下列命题正确的是()A .△ABC 的周长为5+7B .△ABC 的三个内角A ,B ,C 满足关系A +B =2C C .△ABC 的外接圆半径为2213D .△ABC 的中线CD 的长为192答案ABD解析因为△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,所以a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t ,t >0,利用余弦定理cos C =a 2+b 2-c 22ab =4t 2+9t 2-7t 212t 2=12,由于C ∈(0,π),所以C =π3.对于A ,因为S △ABC =332,所以12ab sin C =12·2t ·3t ·32=332,解得t =1.所以a =2,b =3,c =7,所以△ABC 的周长为5+7,故A 正确;对于B ,因为C =π3,所以A +B =2π3,故A +B =2C ,故B 正确;对于C ,利用正弦定理c sin C =732=2213=2R ,解得R =213,所以△ABC 的外接圆半径为213,故C 错误;对于D ,如图所示,在△ABC 中,利用正弦定理732=2sin A ,解得sin A =217,又a <c ,所以cos A =277,在△ACD 中,利用余弦定理CD 2=AC 2+AD 2-2AC ·AD ·cos A =9+74-2×3×72×277=194,解得CD =192,故D 正确.16.如图,△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知a 2+c 2=b 2+ac ,则B =.若线段AC 的垂直平分线交AC 于点D ,交AB 于点E ,且BC =4,DE = 6.则△BCE 的面积为.答案π323解析在△ABC 中,由余弦定理知cos B =a 2+c 2-b 22ac,而a 2+c 2=b 2+ac ,∴cos B =12,又0<B <π,则B =π3,在△BCE 中,设∠CEB =θ,则CE sin π3=BC sin θ,可得CE =23sin θ,又AC 的垂直平分线交AC 于点D ,交AB 于点E ,则∠ECA =∠EAC =θ2,∴sin θ2=DE CE =2sin θ2,可得cos θ2=22,而0<θ<π,故θ2=π4,即θ=π2.∴CE =23,BE =2,故△BCE 的面积为12·CE ·BE =23.。
正弦定理、余弦定理及其应用-高考数学【解析版】
专题24 正弦定理、余弦定理及其应用近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一)正弦、余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 的外接圆半径,则 定理正弦定理余弦定理内容2sin sin sin a b cR A B C=== a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(1)a =2R sin A ,b =2R sin B , c =2R sin C ;(2)a ∶b ∶c =sin A ∶sin B ∶sin C ; (3)a +b +c sin A +sin B +sin C =asin A=2R cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2. 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边、或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B C a A=3.余弦定理的变式应用:公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角 (二)三角形常用面积公式 (1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为内切圆半径).(三)常用结论 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.三角形中的大角对大边在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 5.海伦公式:()()()()1,2S p p a p b p c p a b c =---=++ 6.向量方法:()()2212S a ba b=⋅-⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==- ()()221cos 2S ab ab C ∴=-cos a b ab C ⋅=∴ ()()2212S a b a b =⋅-⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =- 7.三角形内角和A B C π++=(两角可表示另一角).()sin()sin sin A B C C π+=-= ()cos()cos cos A B C C π+=-=-8.三角形的中线定理与角平分线定理(1)三角形中线定理:如图,设AD 为ABC 的一条中线,则()22222AB AC AD BD +=+ (知三求一)证明:在ABD 中2222cos AB AD BD AD BD ADB =+-⋅ ① 2222cos AC AD DC AD DC ADC =+-⋅ ②D 为BC 中点 BD CD ∴=ADB ADC π∠+∠= cos cos ADB ADC ∴=-∴ ①+②可得:()22222AB AC AD BD +=+(2)角平分线定理:如图,设AD 为ABC 中BAC ∠的角平分线,则AB BDAC CD=证明:过D 作DE ∥AC 交AB 于EBD BEDC AE∴= EDA DAC ∠=∠ BBEAD 为BAC ∠的角平分线EAD DAC ∴∠=∠ EDA EAD ∴∠=∠EAD ∴为等腰三角形 EA ED ∴= BD BE BEDC AE ED ∴==而由BED BAC 可得:BE ABED AC=AB BDAC CD ∴=(四)测量中的几个常用术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线(两者在同一铅垂平面内)所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角,方位角θ的范围是[0°,360°)方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡度坡面与水平面所成锐二面角叫坡角(θ为坡角);坡面的垂直高度与水平宽度之比叫坡度(坡比),即i =hl=tan θ135°的始边是指北方向线,始边顺时针方向旋转135°得到终边;方向角南偏西30°的始边是指南方向线,向西旋转30°得到终边.【典型考题解析】热点一 利用正、余弦定理解三角形【典例1】(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1 B 2C 5D .3【答案】D 【解析】 【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.【典例2】(2020·山东·高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos c B A =,则tan A 等于( ) A .3 B .13- C .3或13-D .-3或13【答案】A 【解析】 【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得22sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案; 【详解】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===, 2sin sin cos sin sin cos A B C C B A B ∴⋅⋅+⋅⋅=, 22sin()sin A C B ∴+=⇒=4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A.【典例3】(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ;(2)证明:2222a b c =+ 【答案】(1)5π8; (2)证明见解析. 【解析】 【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出. (1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a c b b c a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.【总结提升】1.解三角形的常用方法:(1)直接法:观察题目中所给的三角形要素,使用正余弦定理求解(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解 2.解三角形的常见题型及求解方法(1)已知两角A ,B 与一边a ,由A +B +C =π及a sin A =b sin B =c sin C ,可先求出角C 及b ,再求出c .(2)已知两边b ,c 及其夹角A ,由a 2=b 2+c 2-2bc cos A ,先求出a ,再求出角B ,C . (3)已知三边a ,b ,c ,由余弦定理可求出角A ,B ,C .(4)已知两边a ,b 及其中一边的对角A ,由正弦定理a sin A =bsin B 可求出另一边b 的对角B ,由C =π-(A +B ),可求出角C ,再由a sin A =c sin C 可求出c ,而通过a sin A =bsin B 求角B 时,可能有一解或两解或无解的情况.热点二 三角形面积问题【典例4】(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】5(2)22. 【解析】 【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及45a c =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积. (1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为45a c =, 由正弦定理知4sin 5A C ,则55sin A C ==(2)因为45a c =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=. 【典例5】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积; (2)若2sin sin A C =,求b .【答案】2 (2)12 【解析】 【分析】(1)先表示出123,,S S S ,再由1233S S S -+=2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.(1)由题意得222212313333,,2S a S S =⋅===,则2221233333S S S -+==即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则2122cos 13B ⎛⎫=- ⎪⎝⎭132cos ac B ==12sin 2ABCS ac B ==(2)由正弦定理得:sin sin sin b a c B A C ==,则223294sin sin sin sin sin 42b a c ac B A C A C =⋅===,则3sin 2b B =,31sin 22b B ==. 【规律方法】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 热点三 三角形的周长问题【典例6】(2022·北京·高考真题)在ABC 中,sin 23C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为3ABC 的周长. 【答案】(1)6π(2)663 【解析】 【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长. (1)解:因为()0,C π∈,则sin 0C >32sin cos C C C =, 可得3cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 6322ABCSab C a ===3a = 由余弦定理可得22232cos 4836243612c a b ab C =+-=+-⨯=,23c ∴= 所以,ABC 的周长为36a b c ++=.【典例7】(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14 【解析】 【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. (1)证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+; (2)解:因为255,cos 31a A ==, 由(1)得2250b c +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=. 【规律方法】求边,就寻求与该边(或两边)有关联的角,利用已知条件列方程求解.【典例7】反映的“整体代换”思想,具有一定的技巧性. 热点四 判断三角形的形状【典例8】(2020·海南·高考真题)在①3ac ①sin 3c A =,①3=c b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 【详解】[方法一]【最优解】:余弦定理 由sin 3sin AB 可得:3ab=()3,0a m b m m ==>, 则:22222232cos 323c a b ab C m m m m m =+-=+-⨯=,即c m =. 若选择条件①:据此可得:2333ac m m m =⨯==1m ∴=,此时1c m ==. 若选择条件②:据此可得:222222231cos 222b c a m m m A bc m +-+-===-, 则:213sin 12A ⎛⎫=-- ⎪⎝⎭3sin 3c A m ==,则:23c m ==若选择条件③: 可得1c mb m==,c b =,与条件3=c b 矛盾,则问题中的三角形不存在. [方法二]:正弦定理 由,6C A B C ππ=++=,得56A B π=-. 由sin 3sin A B ,得5sin 36B B π⎛⎫-= ⎪⎝⎭,即13cos 32B B B =, 得3tan B =.由于0B π<<,得6B π=.所以2,3b c A π==.若选择条件①:由sin sin a c A C=,得2sin sin 36a cππ=,得3a c =. 解得1,3c b a ===.所以,选条件①时问题中的三角形存在,此时1c =. 若选择条件②: 由sin 3c A =,得2sin33c π=,解得3c =23b c == 由sin sin a c A C=,得2sin sin 36a cππ=,得36a c ==. 所以,选条件②时问题中的三角形存在,此时23c =.若选择条件③:由于3c b 与b c =矛盾,所以,问题中的三角形不存在. 【整体点评】方法一:根据正弦定理以及余弦定理可得,,a b c 的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角A ,可求出角B ,从而可得2,,36b c A B C ππ====,再根据选择条件即可解出.【典例9】(2020·全国·高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若3b c -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】 【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出;(2)根据余弦定理可得222b c a bc +-=,将3b c -=代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①, 又3b c -=②, 将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =, 所以3a c =, 故222b a c =+, 即ABC 是直角三角形. 【总结提升】1.判定三角形形状的两种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 3.确定三角形要素的条件: (1)唯一确定的三角形:① 已知三边(SSS ):可利用余弦定理求出剩余的三个角② 已知两边及夹角(SAS ):可利用余弦定理求出第三边,进而用余弦定理(或正弦定理)求出剩余两角 ③ 两角及一边(AAS 或ASA ):利用两角先求出另一个角,然后利用正弦定理确定其它两条边 (2)不唯一确定的三角形① 已知三个角(AAA ):由相似三角形可知,三个角对应相等的三角形有无数多个.由正弦定理可得:已知三个角只能求出三边的比例:::sin :sin :sin a b c A B C =② 已知两边及一边的对角(SSA ):比如已知,,a b A ,所确定的三角形有可能唯一,也有可能是两个.其原因在于当使用正弦定理求B 时,sin sin sin sin a b b A B A B a =⇒=,而0,,22B πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,一个sin B 可能对应两个角(1个锐角,1个钝角),所以三角形可能不唯一.(判定是否唯一可利用三角形大角对大边的特点)热点五 正弦定理、余弦定理实际应用【典例10】(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 【解析】 【分析】利用平面相似的有关知识以及合分比性质即可解出. 【详解】 如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而 DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而 CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A.【典例11】(2021·全国·高考真题(理))2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45ACB ∠'''=︒,60A BC ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''-3 1.732≈)( )A .346B .373C .446D .473【答案】B 【解析】 【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案. 【详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB △为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 30-︒=︒-︒=︒︒-︒︒=, 所以210042''100(31)27362A B ⨯==≈-,所以''''100373AA CC A B -=+≈. 故选:B .【典例12】(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少? (长度精确到0.1m ,面积精确到0.01m²) 【答案】(1)23.3m(2)当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 【解析】 【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD ==,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值. (1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD == 则AE EH =,所以直角ADE 与直角HED △全等 所以20ADE HDE ∠=∠=︒在直角HED △中,tan2015tan20EH DH =︒=︒90250HDF ADE ∠=︒-∠=︒在直角FHD △中,tan5015tan50HF AD =︒=︒()sin 20sin5015tan 20tan5015cos20cos50EF EH HF ︒︒⎛⎫=+=︒+︒=+ ⎪︒︒⎝⎭()sin 2050sin 20cos50cos20sin501515cos20cos50cos20cos50︒+︒︒︒︒+︒︒=⨯=⨯︒︒︒︒sin 70151523.3cos 20cos50cos50︒=⨯=≈︒︒︒(2)设ADE θ∠=,902HDF θ∠=︒-,则15tan AE θ=,()15tan 902FH θ=︒- ()115151515tan 15tan 90215tan 222tan 2EFDS EF DH θθθθ⎛⎫=⨯⨯=⎡+︒-⎤=+ ⎪⎣⎦⎝⎭ 11515tan 22ADESAD AE θ=⨯⨯=⨯ 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADEDEFS S Sθθθθθ⎛⎫-⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭2251225122533tan 23tan 4tan 4tan 2θθθθ⎛⎫=+≥⨯⨯= ⎪⎝⎭ 当且当13tan tan θθ=,即3tan θ=时取得等号,此时315tan 15538.7AE θ===≈ 即当3tan θ=时,梯形AEFD 2253则此时梯形FEBC 的面积有最大值22531530255.14⨯≈ 所以当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 热点五 平面几何中的解三角形问题【典例13】(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,23AM =AC =___________,cos MAC ∠=___________. 【答案】 13239【解析】 【分析】由题意结合余弦定理可得=8BC ,进而可得AC ,再由余弦定理可得cos MAC ∠. 【详解】由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅,即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去),所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=, 所以13AC =在AMC 中,由余弦定理得222239cos 2223213AC AM MC MAC AM AC +-∠=⋅⨯⨯. 故答案为:213239【典例14】(2020·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值. 【答案】(1)5sin C (2)2tan 11DAC ∠=.【解析】 【分析】(1)方法一:利用余弦定理求得b ,利用正弦定理求得sin C .(2)方法一:根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值. 【详解】(1)[方法一]:正余弦定理综合法由余弦定理得22222cos 922325b a c ac B =+-=+-⨯=,所以5b = 由正弦定理得sin 5sin sin sin c b c B C C B b =⇒==. [方法二]【最优解】:几何法过点A 作AE BC ⊥,垂足为E .在Rt ABE △中,由2,45c B,可得1AE BE ==,又3a =,所以2EC =.在Rt ACE 中,225AC AE EC =+5sin 5C ==(2)[方法一]:两角和的正弦公式法由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=.由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin C C =- 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅325452555⎛⎫=-= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin DAC DAC ∠=-∠=所以sin 2tan cos 11DAC DAC DAC ∠∠==∠. [方法二]【最优解】:几何法+两角差的正切公式法在(1)的方法二的图中,由4cos 5ADC ∠=-,可得4cos cos()cos 5ADE ADC ADC π∠=-∠=-∠=,从而4sin 4sin cos ,tan 5cos 3DAE DAE ADE DAE DAE ∠∠=∠=∠==∠.又由(1)可得tan 2EC EAC AE ∠==,所以tan tan 2tan tan()1tan tan 11EAC EAD DAC EAC EAD EAC EAD ∠-∠∠=∠-∠==+∠⋅∠.[方法三]:几何法+正弦定理法在(1)的方法二中可得1,2,5AE CE AC === 在Rt ADE △中,45,cos sin 3AE AD ED AD ADE ADE ===∠=∠,所以23CD CE DE =-=. 在ACD △中,由正弦定理可得25sin sin CD DAC C AD ∠=⋅=, 由此可得2tan 11DAC ∠=. [方法四]:构造直角三角形法如图,作AE BC ⊥,垂足为E ,作DG AC ⊥,垂足为点G .在(1)的方法二中可得1,2,5AE CE AC ===由4cos 5ADC ∠=-,可得243cos ,sin 1cos 55ADE ADE ADE ∠=∠=-∠.在Rt ADE △中,22542,,sin 333AE AD DE AD AE CD CE DE ADE ==-==-=∠.由(1)知5sin C =Rt CDG △中,222545sin DG CD C CG CD DG =⋅==-=,从而115AG AC CG =-=在Rt ADG 中,2tan 11DG DAG AG ∠==. 所以211DAC ∠=. 【整体点评】(1)方法一:使用余弦定理求得5b =sin C ;方法二:抓住45°角的特点,作出辅助线,利用几何方法简单计算即得答案,运算尤其简洁,为最优解;(2)方法一:使用两角和的正弦公式求得DAC ∠的正弦值,进而求解;方法二:适当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得DAC ∠的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有DAC ∠的直角三角形,进而求解,也是很优美的方法. 【典例15】(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长. 条件①:2c b =;条件②:ABC 的周长为423+ 条件③:ABC 33【答案】(1)6π;(2)答案不唯一,具体见解析. 【解析】 【分析】(1)由正弦定理化边为角即可求解; (2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求; 若选择③:由面积公式可求各边长,再由余弦定理可求. 【详解】(1)2cos c b B =,则由正弦定理可得sin 2sin cos C B B =, 23sin 2sin 3B π∴==23C π=,0,3B π⎛⎫∴∈ ⎪⎝⎭,220,3B π⎛⎫∈ ⎪⎝⎭,23B π∴=,解得6B π=;(2)若选择①:由正弦定理结合(1)可得3sin 231sin 2c Cb B=== 与2c b =矛盾,故这样的ABC 不存在; 若选择②:由(1)可得6A π=,设ABC 的外接圆半径为R , 则由正弦定理可得2sin 6a b R R π===,22sin33c R R π=, 则周长23423a b c R R ++==+ 解得2R =,则2,23a c ==由余弦定理可得BC 边上的中线的长度为:()222312231cos76π+-⨯⨯⨯若选择③:由(1)可得6A π=,即a b =,则211333sin 22ABCSab C a ===,解得3a = 则由余弦定理可得BC 边上的中线的长度为:22233212cos 3322342a a b b π⎛⎫+-⨯⨯⨯++⨯= ⎪⎝⎭【总结提升】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系. 具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.【精选精练】一、单选题1.(2022·贵州贵阳·高三开学考试(文))“云楼”是白云区泉湖公园的标志性建筑,也是来到这里必打卡的项目之一,它端坐于公园的礼仪之轴,建筑外形主体木质结构,造型独特精巧,是泉湖公园的“阵眼”和“灵魂”,同时也是泉湖历史与发展变化的资料展示馆.小张同学为测量云楼的高度,如图,选取了与云楼底部D 在同一水平面上的A ,B 两点,在A 点和B 点测得C 点的仰角分别为45°和30°,测得257AB =150ADB ∠=︒,则云楼的高度CD 为( )A .20米B .25米C .7D .257【答案】B【分析】设CD x =,由锐角三角函数得到AD x =,3BD x =,再在ABD △中利用余弦定理求出x ,即可得解.【详解】解:依题意45CAD ︒∠=,30CBD ︒∠=, 设CD x =,在Rt ACD △、Rt BCD 中,tan 1CD CAD AD∠==,3tan 3CD CBD BD ∠==,所以AD x =,3BD x =,在ABD △中由余弦定理2222cos AB AD BD AD BD ADB =+-⋅∠, 即()()22232573232x x x x ⎛⎫=+-⋅⋅- ⎪ ⎪⎝⎭,解得25x =或25x =-(舍去), 所以云楼的高度CD 为25米; 故选:B2.(2022·河南·郑州四中高三阶段练习(文))在ABC 中,角,,A B C 的对边分别为,,a b c ,已知三个向量,cos 2A m a ⎛⎫= ⎪⎝⎭,,cos ,,cos 22B C n b p c ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭共线,则ABC 的形状为( )A .等边三角形B .钝角三角形C .有一个角是6π的直角三角形 D .等腰直角三角形【答案】A【分析】由向量共线的坐标运算可得cos cos 22B Aa b =,利用正弦定理化边为角,再展开二倍角公式整理可得sinsin 22A B=,结合角的范围求得A B =,同理可得B C =,则答案可求. 【详解】向量(,cos )2A m a =,(,cos )2B n b =共线,cos cos 22B A a b ∴=,由正弦定理得:sin cos sin cos 22B A A B =, 2sincos cos 2sin cos cos 222222A A B B B A ∴=,则sin sin 22A B=, 022A π<<,022B π<<,∴22A B =,即A B =.同理可得B C =.ABC ∴形状为等边三角形.故选:A .3.(2022·安徽蚌埠·一模)圭表是我国古代通过观察记录正午时影子长度的长短变化来确定季节变化的一种天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午阳光照射在表上时,影子就会落在圭面上,圭面上影子长度最长的那一天定为冬至,影子长度最短的那一天定为夏至.如图是根据蚌埠市(北纬32.92)的地理位置设计的圭表的示意图,已知蚌埠市冬至正午太阳高度角(即ABC ∠)约为33.65,夏至正午太阳高度角(即ADC ∠)约为80.51.圭面上冬至线和夏至线之间的距离(即BD 的长)为7米,则表高(即AC 的长)约为( )(已知229tan33.65,tan80.5135≈≈)A .4.36米B .4.83米C .5.27米D .5.41米【答案】C【分析】由题意可求出35,229BC AC CD AC ==,再由BD 的长为7米,求出AC ,即可得出答案. 【详解】由图可知229tan33.65,tan80.5135AC AC BC CD =≈=≈, 所以35,229BC AC CD AC ==, 得3577587 5.272295811BD AC AC AC ⎛⎫=-==⇒=≈ ⎪⎝⎭. 故选:C. 二、多选题4.(2022·吉林·延边第一中学高一期中)下列命题错误的是( ) A .三角形中三边之比等于相应的三个内角之比 B .在ABC 中,若sin sin A B >,则A B >C .在ABC 的三边三角共6个量中,知道任意三个,均可求出剩余三个D .当2220b c a +->时,ABC 为锐角三角形;当2220b c a +-=时,ABC 为直角三角形;当2220b c a +-<时,ABC 为钝角三角形 【答案】ACD【分析】对于ACD ,举例判断,对于B ,利用正弦定理结果合三角形的性质判断.【详解】对于A ,等腰直角三角形的三边比为1:1:2,而三个内角的比为1:1:2,所以A 错误, 对于B ,在ABC 中,当sin sin A B >时,由正弦定理可得a b >,因为在三角形中大边对大角,所以A B >,所以B 正确,对于C ,在ABC 中,若三个角,,A B C 确定,则这样的三角形三边无法确定,这样的三角形有无数个,所以C 错误,对于D ,在ABC 中,2220b c a +->时,由余弦定理可知角A 为锐角,而角,B C 的大小无法判断,所以三角形的形状无法判断,所以D 错误, 故选:ACD5.(2021·黑龙江黑河·高二阶段练习)在ABC 中,已知2,3,AB AC AD ==是角A 的平分线,则AD 的长度可能为( ) A .2.1 B .2.2 C .2.3 D .2.4【答案】ABC【分析】过C 作//CE AB 交AD 延长线于E ,由题设可得3AC EC ==且ADB EDC ,进而有23AD ED =,令2AD x =并在ACE 中应用余弦定理求x 范围,即可得AD 范围. 【详解】过C 作//CE AB 交AD 延长线于E ,又AD 是角A 的平分线,得CAE BAE E ∠=∠=∠,故3AC EC ==, 而ADB EDC ,则23AD AB ED EC ==, 令2AD x =,则5AE x =,在ACE 中,22221825cos (1,1)218AC EC AE x ACE AC EC +--∠==∈-⋅, 可得605x <<,则122(0,)5AD x =∈,故A 、B 、C 满足要求.故选:ABC6.(2022·吉林·长春市第二实验中学高一期末)中国南宋时期杰出的数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦S 为三角形的面积,a 、b 、c 为三角形的三边).现有ABC 满足::2:7a b c =ABC 的面积63ABC S =△列结论正确的是( ) A .ABC 的最短边长是2 B .ABC 的三个内角满足2A B C +=C .ABC 221D .ABC 的中线CD 的长为32【答案】BC【分析】依题意设2a t =,3b t =,7c t =(0t >),利用面积公式求出t ,即可求出边长,从而判断A ,再由余弦定理求出C ,即可判断B ,利用正弦定理求出外接圆的半径,即可判断C ,最后由数量积的运算律求出中线CD ,即可判断D.【详解】解:由::2:3:7a b c =,设2a t =,3b t =,7c t =(0t >),因为63ABC S =△,所以2222221749637442t t t t t ⎡⎤⎛⎫+-=+-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,解得2t =,则4a =,6b =,27c =,故A 错误;因为2221636281cos 22462a b c C ab +-+-===⨯⨯,所以π3C =,π2ππ233A B C +=-==,故B 正确; 因为π3C =,所以3sin 2C =,由正弦定理得4212sin 3c R C ==,2213R =,故C 正确; ()12CD CA CB =+,所以()22111361624619442CD CA CB ⎛⎫=+=⨯++⨯⨯⨯= ⎪⎝⎭,故19CD =,故D 错误.故选:BC . 三、填空题7.(2022·贵州·贵阳乐湾国际实验学校高三开学考试(理))在ABC 中,角A ,B ,C 所对的边分别为,,a b c ,且42c =B =4π,若ABC 的面积S =2,则b =___________. 【答案】5【分析】先由面积公式计算1a =,再利用余弦定理计算5b =. 【详解】由三角形面积公式,1sin 22S ac B ==, 所以,1a =.由余弦定理,2222cos 25b a c ac B =+-=.所以,5b =. 故答案为:5.8.(2022·全国·高三专题练习)在△ABC 中,若cos cos A bB a=,则△ABC 的形状是________. 【答案】等腰三角形或直角三角形【分析】由已知及余弦定理可得22222()()0a b c a b ---=,即可判断△ABC 的形状.【详解】由余弦定理,222222cos 2cos 2b c a A bbc a c b B aac+-==+-,化简得22222()()0a b c a b ---=, ∴a b =或222c a b =+,∴△ABC 为等腰三角形或直角三角形. 故答案为:等腰三角形或直角三角形 四、解答题9.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,3sin cos 0a B b A -=.(1)求A ; (2)若3c =3a =ABC 的面积. 【答案】(1)6A π=(2)338【分析】(1)由正弦定理将已知式子统一成角的形式,然后化简可求出角A ; (2)利用余弦定理求出b ,再利用三角形的面积公式可求得结果. (1)因为3sin cos 0a B b A -=所以由正弦定理得3sin sin sin cos A B B A =, 因为()0,B π∈,所以sin 0B ≠, 所以3sin cos A A =,即3tan 3A =, 又因为()0,A π∈,所以6A π=.(2)。
高考数学一轮复习效果监测 正弦定理和余弦定理及其应用.pdf
正弦定理和余弦定理及其应用 【选题明细表】 知识点、方法题号用正、余弦定理解三角形1、2、7、10三角形面积问题4判定三角形的形状3、9实际应用题6、11综合应用5、8、12 一、选择题 1.(2013河南郑州质检)已知△ABC,sin A∶sin B∶sin C=1∶1∶,则此三角形的最大内角的度数是( B ) (A)60°(B)90°(C)120°(D)135° 解析:依题意和正弦定理知,a∶b∶c=1∶1∶,且c最大. 设a=k,b=k,c=k(k>0), 由余弦定理得,cos C==0, 又0°<C1. ∴角B不存在,即满足条件的三角形不存在.故选C. 3.(2013湖南十校联考)若==,则△ABC是( C ) (A)等边三角形 (B)直角三角形,且有一个角是30° (C)等腰直角三角形 (D)等腰三角形,且有一个角是30° 解析:在△ABC中,将a=2Rsin A,b=2Rsin B,c=2Rsin C,代入==得==,所以==1.所以tan B=tan C=1, 所以B=C=45°.所以△ABC是等腰直角三角形.故选C. 4.(2013天津模拟)在△ABC中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a=1,b=,则S△ABC等于( C ) (A)(B)(C)(D)2 解析:∵A、B、C成等差数列, ∴A+C=2B,∴B=60°. 又a=1,b=, ∴=, ∴sin A==×=, ∴A=30°,∴C=90°. ∴S△ABC=×1×=.故选C. 5.(2013年高考陕西卷)在△ABC中,角A,B,C所对边的长分别为a,b,c,若a2+b2=2c2,则cos C的最小值为( C ) (A)(B)(C)(D)- 解析:由余弦定理,知 cos C===≥=, 当且仅当a=b时, cos C取得最小值.故选C. 6. 如图所示,我炮兵阵地位于A处,两观察所分别设于B,D处,已知△ABD为边长等于a的正三角形,当目标出现于C处时,测得∠BDC=45°,∠CBD=75°,则炮击目标的距离AC为( D ) (A)2a(B)a (C)a (D)a 解析:在△BCD中,由正弦定理得=, 所以BC=a.在△ABC中,由余弦定理得: AC2=AB2+BC2-2AB·BC·cos∠ABC, 所以AC=a, 即炮击目标的距离AC为a.故选D. 二、填空题 7.(2013年高考北京卷)在△ABC中,若a=2,b+c=7,cos B=-,则b=.? 解析:在△ABC中,由b2=a2+c2-2accos B及b+c=7知, b2=4+(7-b)2-2×2×(7-b)×. 整理得15b-60=0,∴b=4. 答案:4 8.( 2012安徽淮南质检)在△ABC中,设角A、B、C的对边分别为a、b、c,若a=(cos C,2a-c),b=(b,-cos B)且a⊥b,则B=.? 解析:由a⊥b,得a·b=bcos C-(2a-c)cos B=0, 利用正弦定理,可得 sin Bcos C-(2sin A-sin C)cos B=sin Bcos C+cos Bsin C-2sin Acos B=0, 即sin(B+C)=sin A=2sin Acos B, 因为sin A≠0,故cos B=,因此B=. 答案: 9.在△ABC中,内角A、B、C所对的边分别是a、b、c若sin C+sin(B-A)=sin 2A,则△ABC的形状为 .? 解析:由sin C+sin (B-A)=sin 2A得 sin(A+B)+sin(B-A)=sin 2A, 2sinBcos A=2sin Acos A. ∴cos A=0或sin A=sin B. ∵040=AQ,且QE=AE-AQ=15. 过点E作EP⊥BC于点P,在Rt△QPE中, PE=QE·sin∠PQE=QE·sin∠AQC=QE·sin(45°-B)=15×=30)图象的两个相邻交点,且AB=. (1)求ω的值; (2)在锐角△ABC中,a、b、c分别是角A、B、C的对边,若f (A)=-,c=3,△ABC的面积为3,求a的值. 解:(1)f(x)=cos ωx+cos ωx-sin ωx=cos ωx-sin ωx=-sin, 由函数的图象及AB=, 得到函数的周期T==2×, 解得ω=2. (2)∵f(A)=-sin=-, ∴sin=. 又∵△ABC是锐角三角形, ∴-<2A-<, ∴2A-=, 即A=, 由S△ABC=bcsin A=×=3,得b=4, 由余弦定理得 a2=b2+c2-2bccos A=42+32-2×4×3×=13, ∴a=.。
新高考数学理一轮总复习知能演练3.8正弦定理和余弦定理的应用举例(含答案详析)
一、选择题1.在某次丈量中,在 A 处测得同一平面方向的 B 点的仰角是 50°,且到 A 的距离为 2,C 点的俯角为 70°,且到 A 的距离为 3,则 B 、 C 间的距离为 ( )A. 16B. 17C. 18D. 19答案: D2.在△ ABC 中, B = 45°,C = 60°, c = 1,则最短边的边长是 ()6 6 A. 3 B. 213 C.2D. 2分析:选 A.由 c = b ,得 b = csinB = sin45 ° 6sinC sinB sinC sin60 = 3 ,° ∵角B 最小,∴最短边是 b.3.(2013 济·南质检 )在△ ABC 中,角 A 、B 均为锐角,且 cosA>sinB ,则△ ABC 的形状是()A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形πππππ分析: 选 C.cosA = sin(2- A)>sinB ,2- A ,B 都是锐角,则 2- A>B , A + B<2, C>2.4.已知 A 、B 两地间的距离为10 km , B 、C 两地间的距离为 20 km ,现测得∠ ABC =120 °,则 A 、 C 两地间的距离为 ()A . 10 km B. 3 kmC . 10 5 kmD . 10 7 km分析:选 D. 利用余弦定理 AC 2 =AB 2+ BC 2- 2AB ·BCcos120 °= 102+ 202-2× 10×20× (-12)= 700,∴AC = 10 7(km) .5.一船自西向东匀速航行,上午 10 时抵达灯塔 P 的南偏西 75°距塔 68 海里的 M 处,下午 2 时抵达这座灯塔的东南方向的 N 处,则这只船航行的速度为 ( )A. 17 6海里 /时B . 34 6 海里 /时2C. 172海里 /时 D . 34 2 海里 /时2分析: 选 A.如图,由题意知∠ MPN = 75°+ 45°= 120°,∠PNM = 45°.在△PMN 中, MNPM由正弦定理,得=,3∴MN = 68×2 6(海里 ).= 3422又由 M 到 N 所用时间为 14- 10= 4(小时 ),∴船的航行速度 v =346= 176(海里 /时) .42二、填空题6.地上画了一个角∠ BDA = 60°,某人从角的极点 D 出发,沿角的一边 DA 行走 10米后,拐弯往另一方向行走 14 米正好抵达∠ BDA 的另一边 BD 上的一点,我们将该点记为点 B ,则 B 与 D 之间的距离为________米.分析:如图,设 BD = x m ,则 142 =102+ x 2- 2×10×xcos60 °,∴x 2- 10x - 96= 0,∴(x - 16)(x + 6)= 0,∴x = 16 或 x =- 6(舍 ). 答案: 167.在直径为 30 m 的圆形广场中央上空, 设置一个照明光源, 射向地面的光呈圆形,且其轴截面顶角为 120°,若要光源恰巧照亮整个广场,则光源的高度为 ________ m.分析: 轴截面如图,则光源高度h =15= 5 3 (m) .tan60 °答案:5 38. (2011 高·考上海卷 )在相距 2 千米的 A 、B 两点处丈量目标点CBA = 60°,则 A 、 C 两点之间的距离为 ________千米.分析:C ,若∠ CAB = 75°,∠如下图,由题意知∠C =45°,AC2由正弦定理得=,23∴AC = · = 6.2答案: 6 三、解答题9.某人在塔的正东沿着南偏西 60°的方向行进 40 米后,看见塔在东北方向,若沿途测得塔的最大仰角为 30°,求塔高.解:依题意画出图, 某人在 C 处,AB 为塔高, 他沿 CD 行进, CD = 40 米,此时∠DBF = 45°,从 C 到 D 沿途测塔的仰角, 只有 B 到测试点的距离最短时, 仰角才最大, 这是由于 tan ∠AEBAB= BE , AB 为定值, BE 最小时,仰角最大.要求出塔高 AB ,一定先求 BE ,而要求 BE ,需先求 BD(或 BC).在△BCD 中, CD = 40,∠BCD = 30°,∠DBC = 135°.由正弦定理,得CD= BD ,sin ∠DBC sin ∠BCD ∴BD =40sin30 °sin135 =20 2.°在 Rt △BED 中,∠BDE = 180°- 135°- 30°= 15°,BE = BD sin15 =°20 2× 6- 23- 1)(米 ).= 10( 4在 Rt △ABE 中,∠AEB = 30°,10∴AB = BEtan30 °= 3 (3- 3)( 米 ).10∴所求的塔高为 3 (3- 3) 米.10.如图,南山上原有一条笔挺的山路 BC ,此刻又新架了一条索道 AC ,小李在山脚 B 处看索道,发现张角∠ ABC = 120°,从 B 处登攀 400 米抵达 D 处,回头看索道,发现张角∠ADC = 160 °,从 D 处再登攀 800 米抵达 C 处,问索道 AC 长多少? (精准到米,使用计算器计算 )解: 在△ABD 中, BD = 400 米,∠ABD = 120°.∵∠ADC =160°,∴∠ADB =20°,∴∠DAB = 40°.∵BD =AD ,sin ∠DAB sin ∠ABD∴ 400 = AD,∴AD ≈ 538.9 米. sin40 °sin120 °在△ADC 中, DC = 800,∠ADC = 160°,222∴AC = AD + DC - 2AD ·DC ·cos ∠ADC= 538.92+ 8002- 2×538.9×800·cos160 ° ≈ 1740653.8,∴AC ≈ 1319(米 ).∴索道 AC 长约 1319 米.一、选择题1.线段 AB 外有一点 C ,∠ ABC = 60°, AB = 200 km ,汽车以 80 km/h 的速度由 A 向 B行驶,同时摩托车以 50 km/h 的速度由 B 向 C 行驶,则几小时后,两车的距离最小()69A. 43 B . 170C.43D . 2分析: 选 C.如下图,设过 x h 后两车距离为 y ,则 BD = 200-80x , BE = 50x ,∴y 2= (200-80x)2+ (50x) 2- 2× (200- 80x) ·50x ·cos60 °, 整理得 y 2= 12900x 2- 42000x + 40000(0≤ x ≤ 2.5),∴当x =7043时 y 2 最小,即 y 最小. 2.(2013 陕·西西北九校联考 )如下图,当甲船位于 A 处时获悉,在其正东方向相距20 海里的 B 处有一艘渔船遇险等候营救,甲船立刻前去营救,同时把信息见告在甲船的南偏西30°相距 10 海里 C 处的乙船,乙船立刻朝北偏东 θ+ 30°角的方向沿直线前去 B 处营救,则sin θ的值为 ()212A. 7B. 2 35 7 C. 2D. 14分析:选 A. 连结 BC.在△ABC 中, AC =10,AB = 20,∠BAC = 120°,由余弦定理, 得 BC 2= AC 2+AB 2- 2AB ·AC ·cos120 °= 700,∴BC = 10 7,再由正弦定理, 得BC =AB,∴sin θsin ∠BAC sin θ= 217 .二、填空题3.(2013 ·东四校联考广)在平面直角坐标系 xOy 中,已知△ ABC 的极点 A(- 5,0)和 C(5,0),极点 B 在椭圆x22+ y= 1 上,则sinA +sinC= ________.369sinBsinA + sinC a + c分析: 由正弦定理知sinB= b ,此中 a , b , c 是△ABC 的三边长,由题易知, b= 10, a +c = 12,因此sinA + sinCa + c 12 6sinB= b = 10= 5.答案: 65 4.(2013 南·通调研 )“温馨花园”为了美化小区, 给居民供给更好的生活环境,在小区内如2草皮需要 ________元.分析: 三角形空地的面积S = 1 × 12 3 ×25× sin120 °= 225 ,故共需2225× 120 =27000( 元 ).答案: 27000 三、解答题5.如图, A , B 是海面上位于东西方向相距 5(3+ 3)海里的两个观察点,现位于 A 点北偏东 45°,B 点北偏西 60°的 D 点有一艘轮船发出求救信号,位于 B 点南偏西 60°且与 B 点相距 20 3海里的 C 点的营救船立刻前去营救,其航行速度为 30 海里 /时,该营救船抵达D 点需要多长时间?解: 由题意知 AB =5(3+ 3)( 海里 ),∠DBA = 90°- 60°= 30°,∠DAB = 90°- 45°= 45°,∴∠ADB =180°- (45 °+ 30°)= 105°.在△DAB 中,由正弦定理得DB= AB ,sin ∠DAB sin ∠ADBAB ·sin ∠DAB 5 3+ 3 ·sin45 °∴DB = sin ∠ADB =sin105 ° 5 3+ 3 ·sin45 °5 3 3+ 1 ==3+ 1sin45 cos60° °+ cos45 °sin60°2= 10 3(海里 ).又∠DBC =∠DBA +∠ABC =30°+ (90 °- 60°)= 60°,BC = 20 3(海里 ),在△DBC 中,由余弦定理得CD 2= BD 2+ BC 2- 2BD ·BC ·cos ∠DBC= 300+ 1200-2× 10 3× 20 3× 12=900,∴CD =30(海里 ),则需要的时间t =30= 1(小时 ).30即该营救船抵达D点需要 1小时.。
高考数学复习、高中数学 正弦定理和余弦定理附答案解析
第6节 正弦定理和余弦定理课标要求:借助向量的运算,探索三角形边长与角度的关系,掌握余弦定理、正弦定理.知 识 梳 理1.正弦定理____=____=____=2R ,其中R 是三角形外接圆的半径.2.余弦定理a 2=________________,b 2=________________,c 2=________________.3.在△ABC 中,a =b cos C +c cos B ,b =__________,c =__________.(此定理称作“射影定理”,亦称第一余弦定理)4.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .5.在△ABC 中,已知a ,b 和A 时,解的情况如下:[1.由正弦定理可以变形为:(1)a :b :c =_______:_______:_______;(2)a =2R sin A ,b =2R sin B ,c =__________;(3)sin A =a 2R ,sin B =b 2R,sin C =______等形式,以解决不同的三角形问题. 2.余弦定理可以变形为:cos A =b 2+c 2-a 22bc,cos B =______________,cos C =______________. 3. S △ABC =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .基 础 自 测1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)在△ABC 中,A >B 必有sin A >sin B . ( )(2)在△ABC 中,若b 2+c 2>a 2,则△ABC 为锐角三角形. ( )(3)在△ABC 中,若A =60°,a =43,b =42,则∠B =45°或∠B =135°. ( )(4)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,则实数a 的取值范围是(3,2).( )(5)在△ABC 中,若a cos B =b cos A ,则△ABC 是等腰三角形. ( )(6)在△ABC 中,若tan A =a 2,tan B =b 2,则△ABC 是等腰三角形. ( )2.在△ABC 中中,如果4:3:2sin :sin :sin =C B A ,那么=C cos .3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ). A. 2 B. 3 C .2 D .34.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos2A =sin A ,bc =2,则△ABC 的面积为( ).A.12B.14C .1D .2 5.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若bc a c b c b a 3))((=-+++,则=A .6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.考点1应用正弦、余弦定理解三角形【例1】已知△ABC 的面积为S ,且22BC CA CB S =⋅+. (1)求B 的大小; (2)若12S =,且1BC BA -=,试求△ABC 最长边的长度.[规律方法]破解平面向量与“三角”相交汇题的常用方法是“化简转化法”,即先活用诱导公式、同角三角函数的基本关系式、倍角公式、辅助角公式等对三角函数进行巧“化简”;然后把以向量共线、向量垂直形式出现的条件转化为“对应坐标乘积之间的关系”;再活用正、余弦定理,对三角形的边、角进行互化.【训练1】(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ). A .42 B.30 C.29 D .25考点2三角形解得个数问题【例2】在△ABC 中,如果A =60°,c =4,a =______个解.[规律方法]解三角形问题首先要判断是否会出现多解或无解的情况:对于“已知两角与任一边,求其他两边和一角”的题型不可能有多个解,也不可能无解;对于“已知两边与其中一边的对角,求另一边的对角(从而进一步求出其他边和角)”的题型,可能出现多解或无解的情况. 验证解的情况可用数形结合法.【训练2】在△ABC 中, c b a ,,分别是△ABC 中角C B A ,,的对边,若︒===45,2,B b x a ,且此三角形有两解,则x 的取值范围( ).A .2B .52C .1D .考点3利用正弦、余弦定理判定三角形的【例3】1.若△ABC 中,满足222sin sin sin C A B =+,则该三角形的形状是 三角形.2在△ABC 中,角,,A B C 的对边分别为,,a b c ,若,,a b c 成等比数列,且3B π=,则△ABC的形状为 三角形.[规律方法]常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【训练3】在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ).A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形考点4与三角形面积有关的问题【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且∠A =π3,c =37a . (1)求sin C 的值; (2)若a =7,求△ABC 的面积.[规律方法]高考中主要涉及利用正弦、余弦定理求三角形的边长、角、面积等基本计算,或将两个定理与三角恒等变换相结合综合解三角形.【训练4】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________.[思维升华](1)在解三角形中,如果表达式中含有角的余弦或边的二次式时,则优先考虑使用余弦定理。
正余弦定理知识点及高考考试题型整理学生理
正、余弦定理一、知识总结 (一)正弦定理1.正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 2.变形公式:(1)化边为角:(2)化角为边:(3)(4).3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一)在△ABC 中,已知a 、b 和A 时,解的情况如下:a =b sin A b sin A <a <b a ≥b a >b 1.余弦定理: 2222cos a b c bc A =+-2222cos c a b ab C =+-2222cos b a c ac B =+-2.变形公式:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab+-+-+-===.注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角;2sin ,2sin ,2sin ;a R A b R B c R C ===sin ,sin ,sin ;222a b cA B C R R R ===::sin :sin :sin a b c A B C =2sin sin sin sin sin sin a b c a b c RA B C A B C ++====++3.余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):4.由余弦定理判断三角形的形状a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。
(注意:A是锐角/ △ABC是锐角三角形,必须说明每个角都是锐角)(三) ΔABC的面积公式:(1)1() 2a aS a h h a= 表示边上的高;(2)111sin sin sin() 2224abcS ab C ac B bc A RR====为外接圆半径;(3)1()() 2S r a b c r=++为内切圆半径(四) 实际问题中的常用角1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
高考数学总复习含答案:知识梳理_正弦、余弦定理及解三角形_提高
正弦、余弦定理及解三角形【考纲要求】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 【知识网络】【考点梳理】要点一、三角形中的边与角之间的关系约定:ABC ∆的三个内角A 、B 、C 所对应的三边分别为a 、b 、c . 1.边的关系:(1) 两边之和大于第三边:a b c +>,a c b +>,c b a +>;两边之差小于第三边:a b c -<,a c b -<,c b a -<; (2) 勾股定理:ABC ∆中,22290a b c C +=⇔=︒. 2.角的关系:ABC ∆中,A B C π++=,222C B A ++=2π (1)互补关系:sin()sin()sin A B C C π+=-= cos()cos()cos A B C C π+=-=- tan()tan()tan A B C C π+=-=-(2)互余关系:sinsin()cos 2222A B C Cπ+=-= cos cos()sin 2222A B C C π+=-=tan tan()cot 2222A B C C π+=-=3.直角三角形中的边与角之间的关系Rt ABC ∆中,90C =︒(如图),有: c cC c b B c a A ====1sin ,sin ,sin , cos ,cos ,cos 0b aA B C c c===.要点二、正弦定理、余弦定理应用解三角形正弦定理 余弦定理1.正弦定理:在—个三角形中,各边和它所对角的正弦的比相等.即:2sin sin sin a b c R A B C ===(R 为ABC ∆的外接圆半径)⇒⎪⎩⎪⎨⎧===CR c B R b AR a sin 2sin 2sin 22. 余弦定理:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
高考数学一轮复习专题训练—正弦定理和余弦定理及其应用
正弦定理和余弦定理及其应用考纲要求 1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos_A ;b 2=c 2+a 2-2ca cos_B ; c 2=a 2+b 2-2ab cos_C常见变形(1)a =2R sin A ,b =2R sin_B ,c =2R sin_C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(3)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数一解两解 一解 一解 无解(1)S =12a ·h a (h a表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R .(3)S =12r (a +b +c )(r 为内切圆半径).4.测量中的几个术语 (1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B 点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等. (4)坡度:坡面与水平面所成的二面角的正切值.解决与平面几何有关的计算问题关键是找清各量之间的关系,从而应用正、余弦定理求解.1.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2.2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A >sin B ⇔ cos A <cos B .诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( ) 答案 (1)× (2)√ (3)× (4)×解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,△ABC 不一定为锐角三角形.2.在△ABC 中,a =2,b =3,c =4,则cos B =( ) A.1116 B .1316C .1114D .1314答案 A解析 由余弦定理知cos B =22+42-322×2×4=1116.3.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD .2522m答案 A解析 在△ABC 中,由正弦定理得 AB sin ∠ACB =ACsin ∠CBA,又∠CBA =180°-45°-105°=30°, ∴AB =AC sin ∠ACBsin ∠CBA =50×2212=502(m).4.(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( ) A.π2 B .π3C .π4D .π6答案 C解析 因为a 2+b 2-c 2=2ab cos C , 且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1. 又C ∈(0,π),故C =π4.5.(2020·全国Ⅲ卷)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A. 5 B .2 5 C .4 5 D .8 5答案 C解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,得AB =3,所以AB =BC .过点B 作BD ⊥AC ,交AC 于点D ,则AD =12AC =2,BD =32-22=5,所以tan ∠ABD =AD BD =25=255,所以tan ∠ABC =2tan ∠ABD1-tan 2∠ABD=4 5.故选C.6.(2019·浙江卷)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________. 答案1225 7210解析 如图,易知sin ∠C =45,cos ∠C =35.在△BDC 中,由正弦定理可得 BD sin ∠C =BCsin ∠BDC,∴BD =BC ·sin ∠Csin ∠BDC =3×4522=1225.由∠ABC =∠ABD +∠CBD =90°,可得cos ∠ABD =cos(90°-∠CBD )=sin ∠CBD =sin[π-(∠C +∠BDC )] =sin(∠C +∠BDC )=sin ∠C ·cos ∠BDC +cos ∠C ·sin ∠BDC =45×22+35×22=7210.考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C =60°,b =6,c =3,则A =________.(2)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b sin 2A =a sin B ,且c =2b ,则ab 等于( ) A .2B .3C . 2D . 3答案 (1)75° (2)D解析 (1)由正弦定理,得sin B =b sin C c =6sin 60°3=22,所以B =45°或135°,因为b <c ,所以B <C ,故B =45°,所以A =75°.(2)由正弦定理及b sin 2A =a sin B ,得2sin B sin A cos A =sin A sin B ,又sin A ≠0,sin B ≠0,则cos A =12.又c =2b ,所以由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+4b 2-4b 2×12=3b 2,得ab = 3.故选D.感悟升华 利用正弦定理可解决以下两类三角形问题:一是已知两角和一角的对边,求其他边与角;二是已知两边和一边的对角,求其他边与角(该三角形具有不唯一性,常根据三角函数值的有界性和大边对大角定理进行判断).利用余弦定理可解决以下两类三角形问题:一是已知两边和它们的夹角,求其他边与角;二是已知三边求各个角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的. 【训练1】 (1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个B .2个C .0个D .无法确定(2)如图所示,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则 sin C 的值为________.答案 (1)B (2)66解析 (1)由正弦定理得a sin A =b sin B ,∴sin B =b sin A a =6sin 45°2=32,∵0°<B <180°,A =45°,b >a ,∴B =60°或120°,故满足条件的三角形有2个. (2)设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD , ∴AD =a ,BD =2a 3,BC =4a3. 在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33, ∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC ,∴sin C =BD ·sin ∠BDC BC =66.考点二 正弦定理、余弦定理的应用角度1 判断三角形的形状【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等腰三角形或直角三角形 答案 C解析 法一 由余弦定理可得a =2b ·a 2+b 2-c 22ab ,因此a 2=a 2+b 2-c 2,得b 2=c 2,于是b =c , 从而△ABC 为等腰三角形.法二 由正弦定理可得sin A =2sin B cos C , 因此sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C ,于是sin(B -C )=0,因此B -C =0,即B =C , 故△ABC 为等腰三角形. 角度2 三角形面积的计算【例3】 (2019·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________.答案 6 3解析 由余弦定理b 2=a 2+c 2-2ac cos B , 得36=4c 2+c 2-2×2c 2×12,解得c =23,所以a =43,所以S △ABC =12ac sin B =12×43×23×32=6 3.角度3 以平面几何为背景解三角形【例4】 如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.解 (1)因为AD ∶AB =2∶3,所以可设AD =2k , AB =3k ,k >0.又BD =7,∠DAB =π3,所以在△ABD 中,由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,所以AD=2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)因为AB ⊥BC ,所以cos ∠DBC =sin ∠ABD =217, 所以sin ∠DBC =277,在△BCD 中,因为BD sin ∠BCD =CD sin ∠DBC ,所以CD =7×27732=433.感悟升华 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系; (2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.三角形面积计算问题要适当选用公式,可以根据正弦定理和余弦定理进行边角互化. 3.求解几何计算问题要注意(1)根据已知的边角画出图形并在图中标示. (2)选择在某个三角形中运用正弦定理或余弦定理.【训练2】 (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B = a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 B解析 由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2,∴△ABC 为直角三角形.(2)(2021·西安模拟)如图,在锐角△ABC 中,D 为边BC 的中点,且AC =3,AD =322,O 为△ABC 外接圆的圆心,且cos ∠BOC =-13.①求sin ∠BAC 的值; ②求△ABC 的面积. 解 ①如图所示,∠BOC =2∠BAC , ∴cos ∠BOC =cos2∠BAC =1-2sin 2∠BAC =-13,∴sin 2∠BAC =23,sin ∠BAC =63.②延长AD 至E ,使AE =2AD ,连接BE ,CE , 则四边形ABEC 为平行四边形,∴CE =AB , 在△ACE 中,AE =2AD =32,AC =3, ∠ACE =π-∠BAC , cos ∠ACE =-cos ∠BAC =-1-⎝⎛⎭⎫632=-33,由余弦定理得,AE 2=AC 2+CE 2-2AC ·CE ·cos ∠ACE ,即(32)2=(3)2+CE 2-2×3·CE ×⎝⎛⎭⎫-33, 解得CE =3,AB =CE =3,∴S △ABC =12AB ·AC ·sin ∠BAC=12×3×3×63=322. 解三角形应用举例一、测量距离问题测量距离问题分为三种类型:两点间不可通又不可视、两点间可视但不可达、两点都不可达.解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解. 【例1】如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为300 3 m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠P AB =90°,∠P AQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________ m.答案 900解析 由已知,得∠QAB =∠P AB -∠P AQ =30°, 又∠PBA =∠PBQ =60°, ∴∠AQB =30°,∴AB =BQ .又PB 为公共边,∴△P AB ≌△PQB , ∴PQ =P A .在Rt △P AB 中,AP =AB ·tan 60°=900,故PQ =900, ∴P ,Q 两点间的距离为900 m. 二、测量高度问题测量高度问题一般涉及方位角、仰角、俯角等,因而所画图形为立体图形.在画图时,要注意运用空间想象力,解题时要尽可能地寻找其中的直角三角形,利用直角三角形中的特征关系解决问题,避免复杂的运算.【例2】如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角30°,45°,且A,B两点间的距离为60 m,则树的高度为________m.答案30+30 3解析在△P AB中,∠P AB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-24,由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度为PB·sin 45°=30(6+2)×22=(30+303)(m).三、测量角度问题与距离问题和高度问题不同,角度问题求解的方向为角,解决角度问题的关键仍在于将实际问题转化为具体的解三角形问题,即确定所求角,找出三角形中已知的边和角,利用正、余弦定理将这些边、角联系起来从而求解.【例3】如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角∠CAD等于()A.30°B.45°C.60°D.75°答案 B解析 依题意可得AD =2010 m ,AC =30 5 m , 又CD =50 m ,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =3052+20102-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.A 级 基础巩固一、选择题1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( ) A .1 B .2C .4D .6答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).2.已知△ABC ,a =5,b =15,A =30°,则c 等于( ) A .2 5 B . 5C .25或 5D .均不正确答案 C解析 ∵a sin A =b sin B,∴sin B =b sin A a =155·sin 30°=32.∵b >a ,∴B =60°或120°.若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.3.(2020·全国Ⅲ卷)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A.19 B .13C .12D .23答案 A解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.故选A.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形答案 A解析 由c b <cos A ,得sin Csin B <cos A ,又B ∈(0,π),所以sin B >0, 所以sin C <sin B cos A , 即sin(A +B )<sin B cos A , 所以sin A cos B <0,因为在三角形中sin A >0,所以cos B <0, 即B 为钝角,所以△ABC 为钝角三角形.5.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,则B ,C 两点间的距离是( ) A .102海里B .103海里C .203海里D .202海里答案 A解析 如图所示,易知,在 △ABC 中,AB =20,∠CAB =30°,∠ACB =45°, 在△ABC 中,根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里).6.(2021·郑州调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3b ,A -B =π2,则角C =( ) A.π12 B .π6C .π4D .π3答案 B解析 由题意得A =B +π2,所以sin A =sin ⎝⎛⎭⎫B +π2=cos B ,又a =3b ,所以由正弦定理得sin A =3sin B ,故cos B =3sin B ,所以tan B =33,因为B ∈(0,π),所以B =π6,所以C =π-⎝⎛⎭⎫π6+π2-π6=π6. 二、填空题7.(2021·北京西城区模拟改编)在锐角三角形ABC 中,若a =2,b =3,A =π6,则cos B =________. 答案74解析 由正弦定理a sin A =b sin B ,得sin B =b ·sin Aa =3×122=34,又△ABC 为锐角三角形,所以cos B =1-sin 2B =1-916=74. 8.如图,在△ABC 中,D 是AB 边上的点,且满足AD =3BD ,AD +AC =BD +BC =2,CD =2,则cos A =________.答案 0解析 设BD =x (x >0),则AD =3x ,AC =2-3x ,BC =2-x , 易知cos ∠ADC =-cos ∠BDC . ∴9x 2+2-2-3x 22×2×3x=-x 2+2-2-x22×2x,解得x =13,故AD =1,AC =1,∴cos A =AD 2+AC 2-CD 22·AD ·AC=0.9.(2020·长春二模改编)在△ABC 中,C =30°,cos A =-23,AC =15-2,则AC 边上的高为________. 答案5解析 依题意得sin A =1-cos 2A =53,则sin B =sin(A +C )=sin A cos C +cos A sin C =53×32-23×12=15-26. 由正弦定理得BC sin A =AC sin B ,得BC =AC ·sin A sin B ,所以AC 边上的高为BC ·sin C =AC ·sin A ·sin C sin B=15-2×53×1215-26= 5.三、解答题10.(2020·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a =3c ,b =27,求△ABC 的面积; (2)若sin A +3sin C =22,求C . 解 (1)由题设及余弦定理, 得28=3c 2+c 2-2×3c 2×cos 150°, 解得c =-2(舍去)或c =2,从而a =2 3. 因此△ABC 的面积为12×23×2×sin 150°= 3.(2)在△ABC 中,A =180°-B -C =30°-C , 所以sin A +3sin C =sin(30°-C )+3sin C =sin(30°+C ), 故sin(30°+C )=22. 而0°<C <30°,所以30°<30°+C <60°, 所以30°+C =45°,故C =15°.11.(2021·成都诊断)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且(a -c )sin(A +B )=(a -b )(sin A +sin B ). (1)求角B 的大小;(2)若b =4,求a +c 的最大值.解 (1)在△ABC 中,∵sin(A +B )=sin(π-C )=sin C , ∴(a -c )sin C =(a -b )(sin A +sin B ). 由正弦定理,得(a -c )c =(a -b )(a +b ),整理,得c 2+a 2-b 2=ac . ∴c 2+a 2-b 22ac =12,∴cos B =12.又0<B <π,∴B =π3.(2)∵b =4,∴a 2+c 2-16=ac , 即(a +c )2-16=3ac . ∵ac ≤⎝⎛⎭⎫a +c 22,∴(a +c )2-16≤3⎝⎛⎭⎫a +c 22,∴14(a +c )2≤16, ∴a +c ≤8,当且仅当a =c 时等号成立. ∴a +c 的最大值为18.B 级 能力提升12.(2021·西安一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b =a tan A +btan B ,则角C =( ) A.π6 B .π4C .π3D .π2答案 D 解析 ∵a +b =a tan A +b tan B, ∴a +b =a cos A sin A +b cos Bsin B ,由正弦定理得sin A +sin B =sin A cos A sin A +sin B cos Bsin B,即sin A -cos A =cos B -sin B , ∴2sin ⎝⎛⎭⎫A -π4=2sin ⎝⎛⎭⎫π4-B , ∴A -π4=π4-B 或A -π4+π4-B =π,即A +B =π2或A -B =π(舍),∴C =π2,故选D.13.(2020·太原调研)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的外接圆面积为16π,且cos 2C -cos 2B =sin 2A +sin A sin C ,则a +c 的最大值为________. 答案 8解析 由cos 2C -cos 2B =sin 2A +sin A sin C , 得(1-sin 2C )-(1-sin 2B )=sin 2A +sin A sin C , 即sin 2B -sin 2C =sin 2A +sin A sin C ,结合正弦定理,得b 2-c 2=a 2+ac ,即a 2+c 2-b 2=-ac , 所以由余弦定理,得cos B =a 2+c 2-b 22ac =-12.因为0<B <π,所以B =2π3,则A +C =π-B =π3,C =π3-A ,且0<A <π3.设△ABC 的外接圆半径为R ,则由条件得πR 2=16π, 解得R =4,所以由正弦定理,得a sin A =c sin C=2R =8, 所以a =8sin A ,c =8sin C ,所以a +c =8sin A +8sin C =8sin A +8sin ⎝⎛⎭⎫π3-A =8sin A +8⎝⎛⎭⎫32cos A -12sin A =4sin A +43cos A =8sin ⎝⎛⎭⎫A +π3. 因为π3<A +π3<2π3,所以sin ⎝⎛⎭⎫A +π3=1, 即A =π6时,a +c 取得最大值8.14.已知函数f (x )=sin 2x -cos 2x +23sin x cos x (x ∈R). (1)求f (x )的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,c =5,cos B =17,求△ABC中线AD 的长.解 (1)f (x )=-cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x -π6.∴T =2π2=π.∴函数f (x )的最小正周期为π.(2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π6, ∵在△ABC 中f (A )=2, ∴sin ⎝⎛⎭⎫2A -π6=1, ∴2A -π6=π2,∴A =π3.又cos B =17且B ∈(0,π),∴sin B =437,∴sin C =sin(A +B )=32×17+12×437=5314, 在△ABC 中,由正弦定理c sin C =a sin A ,得55314=a32, ∴a =7,∴BD =72.在△ABD 中,由余弦定理得, AD 2=AB 2+BD 2-2AB ·BD cos B =52+⎝⎛⎭⎫722-2×5×72×17=1294, 因此△ABC 的中线AD =1292.。
解三角形(正弦定理、余弦定理)知识点、例题解析、高考题汇总及答案
解三角形【考纲说明】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识梳理】一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。
2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b cA B C R R R=== (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C++====++.3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABCabc S ah ab C ac B bc A R A B C R∆====== 4、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一) 二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=2、余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).图1 图2 图3 图42、方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 3、方向角相对于某一正方向的水平角(如图3).4、坡角:坡面与水平面所成的锐二面角叫坡角(如图4). 坡度:坡面的铅直高度与水平宽度之比叫做坡度(或坡比)【经典例题】1、(2012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .2425【答案】A 【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B BC B B ≠∴===-=. 2、(2009广东文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b =( )A .2B .4+ C .4— D【答案】 A【解析】0sin sin 75sin(3045)sin 30cos 45sin 45cos304A ==+=+=由a c ==可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2ab B A=⋅==,故选A3、(2011浙江)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .-12 B .12C . -1D . 1 【答案】D【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==6、(2012重庆理)设ABC ∆的内角,,A B C 的对边分别为,,abc ,且35cos ,cos ,3,513A B b ===则c =______ 【答案】145c =【解析】由35412cos ,cos sin ,sin 513513A B A B ==⇒==, 由正弦定理sin sin a b A B=得43sin 13512sin 513b A a B ⨯===, 由余弦定理2222142cos 25905605a cb bc A c c c =+-⇒-+=⇒=7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=. (I )求B ; (Ⅱ)若075,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=由余弦定理得2222cos b a c ac B =+-.故cos B =,因此45B = (II )sin sin(3045)A =+sin30cos 45cos30sin 45=+4=故sin 1sin A a b B =⨯==+ sin sin 6026sin sin 45C c b B =⨯=⨯=8、(2012江西文)△ABC 中,角A,B,C 的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC.(1)求cosA;(2)若a=3,△ABC 的面积为求b,c.【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3B C B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩则1cos3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理 2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩.9、(2011安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,12cos()0B C ++=,求边BC 上的高.【解析】:∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin 602sin b A B a ===,又∵b a <,所以B <A ,B =45°,C =75°,∴BC 边上的高AD =AC·sinC 752sin(4530)=+45cos30cos45sin 30)=+1)2==10、(2012辽宁理)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(I )求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值. 【解析】(I )由已知12,,,cos 32B AC A B C B B ππ=+++=∴==(Ⅱ)解法一:2b ac =,由正弦定理得23sin sin sin 4A CB ==, 解法二:2222221,cos 222a c b a c ac b ac B ac ac+-+-====,由此得22a b ac ac +-=,得a c =所以3,sin sin 34A B C A C π====【课堂练习】1、(2012广东文)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC =( )A .B .CD 2、(2011四川)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ3、(2012陕西理)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12 D .12- 4、(2012陕西)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若2222c b a =+,则C cos 的最小值为( ) A .23B .22 C .21D .21-5、(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===则sin C 的值为( )A .3 B .6 C .3 D .66、(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=ab( )A .B .CD 7、(2012湖北文)设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶48、(2011上海)在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A C 两点之间的距离是 千米。
高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件
[对点练]
1.在△ ABC中,c-2ca
=sin
2B 2
(a,b,c分别为角A,B,C的对边),则
△ ABC的形状为( )
A.直角三角形
B.等边三角形
C.等腰三角形或直角三角形 D.等腰直角三角形
解析:由cos
B=1-2sin
2B 2
得sin
2B 2
=1-co2s
B ,所以c-2ca =1-co2s
AE sin sin
45° 30°
=
2AB cos 15°
,因此CD=AD
sin
60°= cos
2×10 (45°-30°)
×sin 60°=10(3- 3 ).
答案:10(3- 3 )
备考第 2 步——突破核心考点,提升关键能力
考点1 利用正弦定理、余弦定理解三角形[自主演练]
1.△ ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin
答案:BC
4.在△ ABC中,内角A,B,C的对边分别为a,b,c,若a=4,b=5,b>c, △ ABC的面积为5 3 ,则c=________.
解析:由三角形面积公式,得12 ×4×5sin C=5 3 ,
即sin
C=
3 2
.又b>a,b>c,所以C为锐角,于是C=60°.
由余弦定理,得c2=42+52-2×4×5cos 60°,解得c= 21 .
3.(多选)在△ ABC中,角A,B,C所对的各边分别为a,b,c,若a=1,b= 2 ,
A=30°,则B等于( )
A.30°
B.45°
C.135°
D.150°
解析:根据正弦定理sina A =sinb B 得,
高考数学 4.7 正弦定理 余弦定理应用举例复习
正弦定理 余弦定理
由正弦定理 求出角 B;由 A+B+C= 180°,求出角 C;再利用正 弦定理或余 弦定理求 c. 可有两解,一
解或无解
整理课件
2. 用正弦定理和余弦定理解三角形的常见题 型 测量距离问题、高度问题、角度问题、计 算面积问题、航海问题、物理问题等.
3.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和 目标视线的夹角,目标视线在水平视线上 方叫仰角,目标视线在水平视线下方叫俯 角(如图①).
解析 如图所示,设塔高为 h m. 由题意及图可知: (200-h)·tan 60°=ta2n0600°. 解得:h=4300 (m).
整理课件
4.某人向正东方向走 x km 后,他向右转 150°, 然后朝新方向走 3 km,结果他离出发点恰 好 3 km,那么 x 的值为__3_或__2_.3 解析 如图,在△ABC 中,AB=x,BC=3, AC= 3,∠ABC=30°, 由余弦定理得( 3)2=32+x2-2×3x×cos 30°, 即 x2-3 3x+6=0,解得 x1= 3,x2=2 3, 经检验均合题意.
又 AD⊥CD,∴∠CDB=30°, ∴BC=sin161035°·sin 30°=80 2≈113 (m). 即两景点 B 与 C 之间的距离约为 113 m.
整理课件
题型二 测量高度问题 例 2 某人在塔的正东沿着南偏西 60°的方向前
进 40 米后,望见塔在东北方向,若沿途 测得塔顶的最大仰角为 30°,求塔高.
整理课件
5.如图,在△ABC 中,若 A=120°, AB=5,BC=7,则△ABC 的面积 S=___1_54_3___. 解析 设 AC=x,则 72=x2+52-2×5× xcos 120°,即 x2+5x-24=0, ∴x=3 或 x=-8(舍去). ∴S=12×3×5×sin 120°=154 3.
正弦定理、余弦定理的应用-高考数学满分秘籍
专题6.4 正弦定理、余弦定理的应用1.(2021·江西省万载中学高一期末(理))在中,已知,则的形状一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰或直角三角形2.(2021·江西省万载中学高一期末(理))在中,已知,则的形状一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰或直角三角形3.(2021·辽宁高三其他模拟)英国数学家约翰・康威在数学上的成就是全面性的,其中“康威圆定理”是他引以为傲的研究成果之一.定理的内容是:三角形ABC 的三条边长分别为a ,b ,c ,分别延长三边两端,使其距离等于对边的长度,如图所示,所得六点仍在一个圆上,这个圆被称为康威圆.现有一边长为2的正三角形,则该三角形生成的康威圆的面积是( )A .B .C .D . 4.(2021·黑龙江哈尔滨市·哈尔滨三中高三其他模拟(理))某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在处(点在水平地面的下方,为与水平地面的交点)进行该仪器的垂直弹射,水平地面上两个观察点,两地相距100米,,其中到的距离比到的距离远40米.地测得该仪器在处的俯角为,地测得最高点的仰角为,则该仪器的垂直弹射高度为( )练基础ABC tan tan a b a b A B +=+ABC ABC tan tan a b a b A B +=+ABC 121212,,,,,A C B A C B 9π143π283π323πC C ABO O CH ABO A B 60BAC ∠=︒A C B C A C 30OAC ∠=︒A H 45OAH ∠=︒CHA .210米B .C .米D .420米 5.(2021·山东省青岛第一中学高一期中)如图所示,为测量山高选择A 和另一座山的山顶为测量观测点,从A 点测得点的仰角点的仰角以及从点测得,若山高米,则山高等于( )A .米B .米C .米D .米6.(2021·四川成都市·成都七中高一期中)如图,一辆汽车在一条水平的公路上向正西匀速行驶,在公路北侧远处一座高900米的山顶D 的测得点A 的在东偏南方向上过一分钟后测得点B 处在山顶地的东偏南方向上,俯角为,则该车的行驶速度为( )(210+,MN C M 60,MAN C ∠=︒30CAB ∠=︒75,MAC ∠=︒C 60MCA ∠=︒BC =MN 30036024032030 60 45A .15米/秒B .米/秒C .20米/秒D .米/秒7.(2021·山西临汾市·高三其他模拟(文))说起延安革命纪念地景区,可谓是家喻户晓,它由宝塔山、枣园革命旧址、杨家岭革命旧址、中共中央西北局旧址、延安革命纪念馆组成.尤其宝塔山,它可是圣地延安的标志,也是中国革命的摇篮,见证了中国革命的进程,在中国老百姓的心中具有重要地位.如图,宝塔山(坡度比即坡面的垂直高度和水平宽度的比),在山坡处测得,从处沿山坡往上前进到达处,在山坡处测得,则宝塔的高为( )A .B .C .D .8.(2021·浙江高一期末)在中,,若,则的最大值是____________. 9.(湖北高考真题))如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30∘的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75∘的方向上,仰角为30∘,则此山的高度CD = ________ m.3A 15CAD ∠=︒A 66m B B 30CBD ∠=︒CD 44m 42m 48m 46m ABC 2AB =12BC CA ⋅= A ∠10.(宁夏高考真题)为了测量两山顶M ,N 间的距离,飞机沿水平方向在A ,B 两点进行测量,A ,B ,M ,N 在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M ,N 间的距离的步骤.1.(2021·四川自贡市·高三三模(文))如图,在山脚A 处测得山顶P 的仰角为α,沿倾角为β的斜坡向上走b 米到B 处,在B 处测得山顶P 的仰角为γ(A 、B 、P 、Q 共面)则山高P 等于( )米.A .B .练提升()()sin sin sin b αγβγα--()()sin sin sin b γβαγα--C .D .2. (2021·黑龙江哈尔滨市第六中学校高三月考(理))在如图所示四边形中,,,,,,则四边形的面积为________.3.(2021·合肥一六八中学高三其他模拟(文))南宋数学家秦九韶著有《数书九章》,创造了“大衍求一术”,被称为“中国剩余定理”.他所论的“正负开方术”,被称为“秦九韶程序”.世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则.科学史家称秦九韶:“他那个民族、他那个时代,并且确实也是所有时代最伟大的数学家之一”.在《数书九章》中提出“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上:以小斜幂乘大斜帮,减上,余四约之,为实:一为从隅,开平方得积可用公式a ,b ,c ,S 为三角形的三边和面积)表示.在中,a ,b ,c 分别为角A 、B 、C 所对的边,若,且则面积的最大值为______.4.(2021·河南高二月考(文))为测量山高.选择A 和另一座山的山顶C 为测量观测点.从A 点测得N 点的仰角,C 点的仰角以及,从C 点测得.已知山高米.则所求山高为___________米.()()sin sin sin sin b b γαββγβ-+-()()sin sin sin sin b b γγββγα-+-ABCD AD DC =AC =BC =120ADC =∠︒75BCD ∠=︒ABCD =S ABC 3a =22cos cos 3c b C c B -=ABC MN 30MAN ∠=︒60CAB ∠=︒105NAC ∠=︒30NCA ∠=︒150=BC MN5.(2021·齐齐哈尔市第八中学校高一期中)在中,已知且.(1)试确定的形状;(2)求的取值范围. 6.(2021·重庆市长寿中学校高三其他模拟)如图四边形中,,,,、, .(1)求;(2)求面积的最大值.从①且为锐角;②;③选一个补充在上面的问题中并作答7.(2021·全国高一专题练习)如图,为了检测某工业区的空气质量,在点A 处设立一个空气监测中心(大小忽略不计),在其正东方向点B 处安装一套监测设备.为了使监测数据更加准确,在点C 和点D 处,再分别安装一套监测设备,且满足,,设.ABC sin sin sin a b B a B A+=-()cos cos 1cos2A B C C -+=-ABC a c b+ABCD 2DAB DCB π∠=∠=3AB =2BC =ADC ∠()0,ABC π∠∈DB DAC △ABC S =△ABC ∠222AC AB BC AB BC =+-⋅BA BC -= 2km,4km,AD AB BD BC ===90DBC ∠=︒DAB θ∠=(1)当,求四边形的面积; (2)当为何值时,线段最长.8.(2021·江苏高一月考)缉私船在A 处测出某走私船在方位角为(航向),距离为10海里的C处,并测得走私船正沿方位角的方向以9海里/时的速度沿直线方向航行逃往相距27海里的陆地D 处,缉私船立即以v 海里/时的速度沿直线方向前去截获.(方位角:从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角)(1)若,求缉私船航行的方位角正弦值和截获走私船所需的时间;(2)缉私船是否有两种不同的航向均恰能成功截获走私船?若能,求v 的取值范围,若不能请说明理由. 9.(2021·广东汕头市·高三二模)随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美食,这样网上外卖订餐应运而生.现有美团外卖送餐员小李在A 地接到两份外卖单,他须分别到B 地、D 地取餐,再将两份外卖一起送到C 地,运餐过程不返回A 地.A ,B ,C ,D 各地的示意图如图所示,,,,,,假设小李到达B 、D 两地时都可以马上取餐(取餐时间忽略不计),送餐过程一路畅通.若小李送餐骑行的平均23πθ=ABCD θAC 30°150︒21v =2km BD =AD =120ABD ∠=︒45DCB ∠=︒30CDB ∠=︒速度为每小时20千米,请你帮小李设计出所有送餐路径(如:),并计算各种送餐路径的路程,然后选择一条最快送达的送餐路径,并计算出最短送餐时间为多少分钟.(各数值保留3位小数)()10.(2021·江苏扬州市·扬州中学高三其他模拟)如图,某生态农庄内有一直角梯形区域,,,百米,百米.该区域内原有道路,现新修一条直道(宽度忽略不计),点在道路上(异于,两点),,.(1)用表示直道的长度;(2)计划在区域内种植观赏植物,在区域内种植经济作物.已知种植观赏植物的成本为每平方百米2万元,种植经济作物的成本为每平方百米1万元,新建道路的成本为每百米1万元,求以上三项费用总和的最小值.1.(2021·全国高考真题(理))已知是双曲线C 的两个焦点,P 为C 上一点,且,则C 的离心率为( )ABCD2.(2021·全国高考真题(理))2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,AB BD DB BC →→→1.414≈ 1.732≈ABCD //AB CD AB BC ⊥3AB =2CD =AC DP P AC A C 6BAC π∠=DPA θ∠=θDP ADP △CDP DP 练真题12,F F 121260,3F PF PF PF ∠=︒=B ,C 三点,且A ,B ,C 在同一水平面上的投影满足,.由C 点测得B 点的仰角为,与的差为100;由B 点测得A 点的仰角为,则A ,C 两点到水平面的高度差)()A .346B .373C .446 D.473 3.(2021·全国高考真题(理))魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )A .表高B .表高C .表距D .表距 4.(2021·浙江高考真题)我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为,小正方形的面积为,则___________. ,,A B C '''45A C B ∠'''=︒60A B C ''∠'=︒15︒BB 'CC '45︒A B C '''AA CC ''- 1.732≈E H G AC DE FG EG GC EH GC EH AB =⨯+表高表距表目距的差⨯-表高表距表目距的差⨯+表高表距表目距的差⨯表高表距-表目距的差1S 2S 12S S =5.(2021·北京高考真题)已知在中,,. (1)求的大小; (2)在下列三个条件中选择一个作为已知,使存在且唯一确定,并求出边上的中线的长度. ①;②周长为;③面积为; 6.(上海高考真题)如图,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为5千米/小时,乙的路线是,速度为8千米/小时.乙到达地后原地等待.设时乙到达地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是3千米.当时,求的表达式,并判断在上得最大值是否超过3?说明理由. ABC 2cos c b B =23C π=B ABCBC c=4+ABC S ∆=。
高考研究课(二) 正、余弦定理的3个应用点——高度、距离和角度
结 束
高考研究课(二 正、余弦定理的 3 个应用点——高度、距离和角度
[全国卷5年命题分析]
考点 高度问题 距离问题 角度问题
考查频度 5年1考 未考查 未考查
考查角度 测量山高问题
正、余弦定理的3个应用点——高度、距离和角度
结 束
测量高度问题
[典例] (2015· 湖北高考)如图,一辆汽车 在一条水平的公路上向正西行驶, 到 A 处时测 得公路北侧一山顶 D 在西偏北 30°的方向上, 行驶 600 m 后到达 B 处, 测得此山顶在西偏北 75°的方向上,仰角为 30°,则此山的高度 CD=________m.
正、余弦定理的3个应用点——高度、距离和角度
结 束
[方法技巧]
利用正、余弦定理求解高度问题应注意的 3 个问题 (1)在处理有关高度问题时,要理解仰角、俯角(它是在铅 垂面上所成的角)、方向(位)角(它是在水平面上所成的角 )是 关键. (2)在实际问题中,可能会遇到空间与平面 (地面)同时研 究的问题,这时最好画两个图形,一个空间图形,一个平面 图形,这样处理起来既清楚又不容易搞错. (3)注意山或塔垂直于地面或海平面,把空间问题转化为 平面问题.
正、余弦定理的3个应用点——高度、距离和角度
结 束
[即时演练] 1.要测量底部不能到达的电视塔 AB 的高度,在 C 点测得塔顶 A 的仰角是 45°,在 D 点测得塔顶 A 的仰角是 30°,并测得水平面上的∠BCD= 120°,CD=40 m,则电视塔的高度为( A.10 2 m C.20 3 m B.20 m D.40 m )
结 束
2.如图,为测得河岸塔 AB 的高,先在河岸上选一点 C, 使 C 在塔底 B 的正东方向上, 测得点 A 的仰角为 60°, 再由点 C 沿北偏东 15°方向走 10 米到位置 D,测得∠ BDC=45°,则塔 AB 的高是________米.
高考数学一轮复习 正弦定理、余弦定理及其应用
(3)若三角形三边 a,b,c 成等差数列,则 2b=____________
⇔
2sinB
=
____________
⇔
2sin
B 2
=
cos
A-C 2
解:由正弦定理得ab=ssiinnAB,所以
sinB=
2× 7
sinπ3=
721,
由余弦定理得 a2=b2+c2-2bccosA,所以 7= 4+c2-2c,所
以 c=3(负值舍去).故填 721;3.
(2018·全国卷Ⅰ) △ABC 的内角 A,B,C 的对边 分别为 a,b,c,已知 bsinC+csinB=4asinBsinC,b2+c2
-a2=8,则△ABC 的面积为________.
解:根据题意,结合正弦定理
可得 sinBsinC+sinCsinB=4sinAsinBsinC,即 sinA=12, 结合余弦定理可得 b2+c2-a2=2bccosA=8,
所以 A 为锐角,且 cosA= 23,从而求得 bc=8 3 3,
所以△ABC 的面积为 S=12bcsinA=12×8 3 3×
所 以 AB2 = BC2 + AC2 - 2BC·AC·cosC = 1 + 25 -
2×1×5×-35=32,所以 AB=4 2.故选 A.
(2017·山东)在△ABC 中,角 A,B,C 的对边分
别为 a,b,c.若△ABC 为锐角三角形,且满足 sinB(1+2cosC)
=2sinAcosC+cosAsinC,则下列等式成立的是( )
2019年高考数学(理科)一轮复习达标检测(二十) 正、余弦定理的3个应用点——高度、距离和角度
高考达标检测(二十) 正、余弦定理的3个应用点——高度、距离和角度一、选择题1.(2018·东北三校联考)如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a km B.2a km C .2a km D.3a km解析:选D 依题意知∠ACB =180°-20°-40°=120°,在△ABC 中,由余弦定理知AB = a 2+a 2-2×a ×a ×⎝⎛⎭⎫-12=3a (km),即灯塔A 与灯塔B 的距离为3a km.2.如图所示为起重机装置示意图,支杆BC =10 m ,吊杆AC =15 m ,吊索AB =519 m ,起吊的货物与岸的距离AD 为( )A .30 mB.1532 m C .15 3 m D .45 m解析:选B 在△ABC 中,AC =15 m ,AB =519 m ,BC =10 m ,由余弦定理得cos ∠ACB =AC 2+BC 2-AB 22×AC ×BC =152+102-(519)22×15×10=-12. ∴sin ∠ACB =32. 又∠ACB +∠ACD =180°.∴sin ∠ACD =sin ∠ACB =32. 在Rt △ADC 中,AD =AC ·sin ∠ACD =15×32=1532(m). 3.(2018·江西联考)某位居民站在离地20 m 高的阳台上观测到对面小高层房顶的仰角为60°,小高层底部的俯角为45°,那么这栋小高层的高度为( )A .20⎝⎛⎭⎫1+33mB .20(1+3)mC .10(2+6)mD .20(2+6)m 解析:选B 如图,设AB 为阳台的高度,CD 为小高层的高度,AE 为水平线.由题意知AB =20 m ,∠DAE =45°,∠CAE =60°,故DE =20 m ,CE =AE ·tan 60°=20 3 m .所以CD =20(1+3)m.4.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km /hD .10 km/h解析:选B 设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45, 所以由余弦定理得⎝⎛⎭⎫110v 2=⎝⎛⎭⎫110×22+12-2×110×2×1×45,解得v =6 2.5.(2018·武昌调研)如图,据气象部门预报,在距离某码头南偏东45°方向600 km 处的热带风暴中心正以20 km/h 的速度向正北方向移动,距风暴中心450 km 以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为( )A .14 hB .15 hC .16 hD .17 h解析:选B 记现在热带风暴中心的位置为点A ,t 小时后热带风暴中心到达B 点位置,在△OAB 中,OA =600,AB =20t ,∠OAB =45°,根据余弦定理得OB 2=6002+400t 2-2×20t ×600×22, 令OB 2≤4502,即4t 2-1202t +1 575≤0, 解得302-152≤t ≤302+152, 所以该码头将受到热带风暴影响的时间为302+152-302-152=15(h). 6.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.二、填空题7.(2018·郑州调研)如图,在山底测得山顶仰角∠CAB =45°,沿倾斜角为30°的斜坡走1 000 m 至S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________ m.解析:由题图知∠BAS =45°-30°=15°,∠ABS =45°-15°=30°,∴∠ASB =135°,在△ABS 中,由正弦定理可得1 000sin 30°=AB sin 135°, ∴AB =1 0002,∴BC =AB 2=1 000. 答案:1 0008.如图,在水平地面上有两座直立的相距60 m 的铁塔AA1和BB 1.已知从塔AA 1的底部看塔BB 1顶部的仰角是从塔BB 1的底部看塔AA 1顶部的仰角的2倍,从两塔底部连线中点C 分别看两塔顶部的仰角互为余角.则从塔BB 1的底部看塔AA 1顶部的仰角的正切值为________;塔BB 1的高为________ m.解析:设从塔BB 1的底部看塔AA 1顶部的仰角为α,则AA 1=60tan α,BB 1=60tan 2α. ∵从两塔底部连线中点C 分别看两塔顶部的仰角互为余角,∴△A 1AC ∽△CBB 1,∴AA 130=30BB 1,∴AA 1·BB 1=900, ∴3 600tan αtan 2α=900,∴tan α=13(负值舍去),tan 2α=34,BB 1=60tan 2α=45. 答案:13459.如图,为了测量河对岸A ,B 两点之间的距离,观察者找到一个点C ,从点C 可以观察到点A ,B ;找到一个点D ,从点D 可以观察到点A ,C ;找到一个点E ,从点E 可以观察到点B ,C .并测量得到一些数据:CD =2,CE =23,∠D =45°,∠ACD =105°,∠ACB=48.19°,∠BCE =75°,∠E =60°,则A ,B 两点之间的距离为________.⎝⎛⎭⎫其中cos 48.19°取近似值23 解析:依题意知,在△ACD 中,∠A =30°,由正弦定理得AC =CD sin 45°sin 30°=2 2. 在△BCE 中,∠CBE =45°,由正弦定理得BC =CE sin 60°sin 45°=3 2. 在△ABC 中,由余弦定理AB 2=AC 2+BC 2-2AC ×BC cos ∠ACB =10,所以AB =10. 答案:10三、解答题10.已知在东西方向上有M ,N 两座小山,山顶各有一个发射塔A ,B ,塔顶A ,B 的海拔高度分别为AM =100 m 和BN =200 m ,一测量车在小山M 的正南方向的点P 处测得发射塔顶A 的仰角为30°,该测量车向北偏西60°方向行驶了100 3 m 后到达点Q ,在点Q 处测得发射塔顶B 处的仰角为θ,且∠BQA =θ,经测量tan θ=2,求两发射塔顶A ,B 之间的距离.解:在Rt △AMP 中,∠APM =30°,AM =100,∴PM =100 3.连接QM ,在△PQM 中,∠QPM =60°,又PQ =1003,∴△PQM 为等边三角形,∴QM =100 3.在Rt △AMQ 中,由AQ 2=AM 2+QM 2,得AQ =200.在Rt △BNQ 中,tan θ=2,BN =200,∴BQ =1005,cos θ=55. 在△BQA 中,BA 2=BQ 2+AQ 2-2BQ ·AQ cos θ=(1005)2,∴BA =100 5.即两发射塔顶A ,B 之间的距离是100 5 m.11.某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile /h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.⎝⎛⎭⎫sin 21.8°≈3314解:如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°,所以212t 2=102+81t 2+2×10×9t ×12, 即360t 2-90t -100=0,解得t =23或t =-512(舍去). 所以舰艇靠近渔轮所需的时间为23h. 此时AB =14,BC =6.在△ABC 中,根据正弦定理,得BC sin ∠CAB =AB sin 120°, 所以sin ∠CAB =6×3214=3314, 即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去),即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需23h 才能靠近渔轮. 12.某高速公路旁边B 处有一栋楼房,某人在距地面100 m 的32楼阳台A 处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C 处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D 处.(假设客车匀速行驶)(1)如果此高速路段限速80 km/h ,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E 处,问此时客车距离楼房多远? 解:(1)在Rt △ABC 中,∠BAC =60°,AB =100 m ,则BC =100 3 m.在Rt △ABD 中,∠BAD =45°,AB =100 m ,则BD =100 m.在△BCD 中,∠DBC =75°+15°=90°,则DC =BD 2+BC 2=200 m ,所以客车的速度v =CD 10=20 m /s =72 km/h , 所以该客车没有超速.(2)在Rt △BCD 中,∠BCD =30°,又因为∠DBE =15°,所以∠CBE =105°,所以∠CEB =45°.在△BCE 中,由正弦定理可知EB sin 30°=BC sin 45°, 所以EB =BC sin 30°sin 45°=50 6 m , 即此时客车距楼房50 6 m.1.如图所示,在平面四边形ABCD 中,AD =1,CD =2,AC =7,若cos ∠BAD =-714,sin ∠CBA =216,则BC =________. 解析:由题意,在△ADC 中,AD =1,CD =2,AC =7,∴由余弦定理可得cos ∠CAD =1+7-42×1×7=277, ∴sin ∠CAD =217, 由cos ∠BAD =-714,可得sin ∠BAD =32114, ∴sin ∠CAB =sin(∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD sin ∠CAD =32, 在△ABC 中,由正弦定理可得BC =7×32216=3. 答案:32.湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的A 点处,乙船在中间B 点处,丙船在最后面的C 点处,且BC ∶AB =3∶1.一架无人机在空中的P 点处对它们进行数据测量,在同一时刻测得∠APB =30°,∠BPC =90°.(船只与无人机的大小及其它因素忽略不计)(1)求此时无人机到甲、丙两船的距离之比;(2)若此时甲、乙两船相距100 m ,求无人机到丙船的距离.(精确到1 m)解:(1)画出示意图如图所示,在△ABP 中,由正弦定理得AP sin ∠ABP =AB sin ∠APB =AB 12. 在△BPC 中,由正弦定理得CP sin ∠CBP =BC sin ∠CPB =BC 1. 又因为BC AB =31,sin ∠ABP =sin ∠CBP , 所以AP CP =2AB BC =23, 故此时无人机到甲、丙两船的距离之比为2∶3.(2)由BC∶AB=3∶1,得AC=400,且∠APC=120°.由(1)可设AP=2x,则CP=3x,在△APC中,由余弦定理得160 000=(2x)2+(3x)2-2×2x×3x×cos 120°,解得x=4001919,即无人机到丙船的距离为CP=3x=1 2001919≈275(m).。
人教高中数学必修二A版《余弦定理、正弦定理》平面向量及其应用说课复习(余弦定理)
c=2,cos A=23,则 b=( )
A. 2
B. 3
C.2
D.3
栏目 导引
第六章 平面向量及其应用
【解析】 (1)因为 cos C=2cos2 C2-1=2×15-1=-35,所以由余
弦 定 理 , 得 AB2 = AC2 + BC2 - 2AC·BCcos C = 25 + 1 -
课件
课件
课件
栏目 导引
第六章 平面向量及其应用
在△ABC 中,a=2 3,c= 6+ 2,B=45°, 解这个三角形.
解:根据余弦定理得, 课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
b2=a2+c2-2accos B=(2 3)2+( 6+ 2)2-2×2 3×( 6+
2)×cos 45°=8,
所以 b=2 2. 又因为 cos A=b2+2cb2c-a2=8+2(×26+2×2()26-+(22)3)2=12,
所以 A=60°,C=180°-(A+B)=75°.
栏目 导引
第六章 平面向量及其应用
已知三边(三边关系)解三角形
(1)在△ABC 中,已知 a=3,b=5,c=
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
3 课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考达标检测(二十) 正、余弦定理的3个应用点——高度、距离和角度一、选择题1.(2017·东北三校联考)如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a kmB.2a km C .2a km D.3a km解析:选D 依题意知∠ACB =180°-20°-40°=120°,在△ABC 中,由余弦定理知AB = a 2+a 2-2×a ×a ×⎝ ⎛⎭⎪⎫-12=3a (km),即灯塔A 与灯塔B 的距离为3a km. 2.如图所示为起重机装置示意图,支杆BC =10 m ,吊杆AC =15 m ,吊索AB =519 m ,起吊的货物与岸的距离AD 为( )A .30 mB.1532 m C .15 3 m D .45 m 解析:选B 在△ABC 中,AC =15 m ,AB =519 m ,BC =10 m ,由余弦定理得cos ∠ACB =AC 2+BC 2-AB 22×AC ×BC=152+102-51922×15×10=-12. ∴sin ∠ACB =32. 又∠ACB +∠ACD =180°.∴sin ∠ACD =sin ∠ACB =32. 在Rt △ADC 中,AD =AC ·sin∠ACD =15×32=1532 m. 3.(2017·江西联考)某位居民站在离地20 m 高的阳台上观测到对面小高层房顶的仰角为60°,小高层底部的俯角为45°,那么这栋小高层的高度为( )A .20⎝ ⎛⎭⎪⎫1+33m B .20(1+3)mC .10(2+6)mD .20(2+6)m 解析:选B 如图,设AB 为阳台的高度,CD 为小高层的高度,AE 为水平线.由题意知AB =20 m ,∠DAE =45°,∠CAE =60°,故DE =20 m ,CE=AE ·tan 60°=20 3 m .所以CD =20(1+3)m.故选B.4.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h解析:选B 设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝ ⎛⎭⎪⎫110v 2=⎝ ⎛⎭⎪⎫110×22+12-2×110×2×1×45,解得v =6 2. 5.(2017·武昌调研)如图,据气象部门预报,在距离某码头南偏东45°方向600 km 处的热带风暴中心正以20 km/h 的速度向正北方向移动,距风暴中心450 km 以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为( )A .14 hB .15 hC .16 hD .17 h解析:选B 记现在热带风暴中心的位置为点A ,t 小时后热带风暴中心到达B 点位置,在△OAB 中,OA =600,AB =20t ,∠OAB =45°,根据余弦定理得OB 2=6002+400t 2-2×20t ×600×22,令OB 2≤4502,即4t 2-1202t +1 575≤0,解得302-152≤t ≤302+152,所以该码头将受到热带风暴影响的时间为302+152-302-152=15(h),故选B.6.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.二、填空题7.(2017·郑州调研)如图,在山底测得山顶仰角∠CAB =45°,沿倾斜角为30°的斜坡走1 000 m 至S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________ m.解析:由题图知∠BAS =45°-30°=15°,∠ABS =45°-15°=30°,∴∠ASB =135°,在△ABS 中,由正弦定理可得1 000sin 30°=AB sin 135°, ∴AB =1 0002,∴BC =AB2=1 000.答案:1 0008.如图,在水平地面上有两座直立的相距60 m 的铁塔AA 1和BB 1.已知从塔AA 1的底部看塔BB 1顶部的仰角是从塔BB 1的底部看塔AA 1顶部的仰角的2倍,从两塔底部连线中点C 分别看两塔顶部的仰角互为余角.则从塔BB 1的底部看塔AA 1顶部的仰角的正切值为________;塔BB 1的高为________ m.解析:设从塔BB 1的底部看塔AA 1顶部的仰角为α,则AA 1=60tan α,BB 1=60tan 2α.∵从两塔底部连线中点C 分别看两塔顶部的仰角互为余角,∴△A 1AC ∽△CBB 1,∴AA 130=30BB 1,∴AA 1·BB 1=900,∴3 600tan αtan 2α=900,∴tan α=13(负值舍去),tan 2α=34,BB 1=60tan 2α=45.答案:1345 9.如图,为了测量河对岸A ,B 两点之间的距离,观察者找到一个点C ,从点C 可以观察到点A ,B ;找到一个点D ,从点D 可以观察到点A ,C ;找到一个点E ,从点E 可以观察到点B ,C .并测量得到一些数据:CD =2,CE =23,∠D =45°,∠ACD =105°,∠ACB =48.19°,∠BCE =75°,∠E =60°,则A ,B 两点之间的距离为________.⎝⎛⎭⎪⎫其中cos 48.19°取近似值23 解析:依题意知,在△ACD 中,∠A =30°,由正弦定理得AC =CD sin 45°sin 30°=2 2.在△BCE 中,∠CBE =45°,由正弦定理得BC =CE sin 60°sin 45°=3 2. 在△ABC 中,由余弦定理AB 2=AC 2+BC 2-2AC ×BC cos ∠ACB =10,所以AB =10. 答案:10三、解答题10.已知在东西方向上有M ,N 两座小山,山顶各有一个发射塔A ,B ,塔顶A ,B 的海拔高度分别为AM =100米和BN =200米,一测量车在小山M 的正南方向的点P 处测得发射塔顶A 的仰角为30°,该测量车向北偏西60°方向行驶了1003米后到达点Q ,在点Q 处测得发射塔顶B 处的仰角为θ,且∠BQA =θ,经测量tan θ=2,求两发射塔顶A ,B 之间的距离.解:在Rt △AMP 中,∠APM =30°,AM =100,∴PM =1003,在△PQM 中,∠QPM =60°,又PQ =1003,∴△PQM 为等边三角形,∴QM =100 3.在Rt △AMQ 中,由AQ 2=AM 2+QM 2,得AQ =200.在Rt △BNQ 中,tan θ=2,BN =200,∴BQ =1005,cos θ=55. 在△BQA 中,BA 2=BQ 2+AQ 2-2BQ ·AQ cos θ=(1005)2,∴BA =100 5.即两发射塔顶A ,B 之间的距离是1005米.11.某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.⎝⎛⎭⎪⎫sin 21.8°≈3314 解:如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos120°,所以212t 2=102+81t 2+2×10×9t ×12, 即360t 2-90t -100=0,解得t =23或t =-512(舍去). 所以舰艇靠近渔轮所需的时间为23h. 此时AB =14,BC =6.在△ABC 中,根据正弦定理,得BC sin ∠CAB =AB sin 120°, 所以sin ∠CAB =6×3214=3314, 即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去),即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需23h 才能靠近渔轮. 12.某高速公路旁边B 处有一栋楼房,某人在距地面100米的32楼阳台A 处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C 处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D 处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E 处,问此时客车距离楼房多远? 解:(1)在Rt △ABC 中,∠BAC =60°,AB =100米,则BC =1003米.在Rt △ABD 中,∠BAD =45°,AB =100米,则BD =100米.在△BCD 中,∠DBC =75°+15°=90°,则DC =BD 2+BC 2=200米,所以客车的速度v =CD10=20米/秒=72千米/时, 所以该客车没有超速.(2)在Rt △BCD 中,∠BCD =30°,又因为∠DBE =15°,所以∠CBE =105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.。