初二_数学_第16章_分式整章同步测试(含答案)

合集下载

广西玉林市八年级数学下册 第16章 分式复习练习题(二)及答案 新人教版

广西玉林市八年级数学下册 第16章 分式复习练习题(二)及答案 新人教版

第16章 分式复习练习题(二)一、填空题1.填空:()2a b aba b+=, ()22x xyx yx ++=,)(222xx x x =-- 2.若果2ab =a -b ,则分式11a b -的值是 . 若3,111--+=-baa b b a b a 则的值是 .3.a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”).4.化简:224442x x xx x ++-=-- .;化简211x x x ÷-的结果是 . 5.()221112211x x x +--把分式、、通分,最简公分母是 . 6.计算:(1)22255(2)3a b a b -- = ; (2)42321()()x y x y y--÷ = 7.当m=____时,关于x 的分式方程213x m x +=-- 无解;方程0211=+-x 的解是8.化简:a b a b b a a -⎛⎫-÷= ⎪⎝⎭;化简:b a aa b a -⋅-)(2= . 9.计算22()ab a b -的结果是 ;分式方程3131=---xx x 的解是_____________. 10.在下列三个不为零的式子x 2-4,x 2-2x ,x 2-4x +4中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 . 11.某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含a 的代数式表示).12.若分式35511322x x m x m x+----无意义,当=0时,则m=_______. 13.观察下面一列分式:, (16),8,4,2,15432xx x x x --(1)计算一下这里任一个分式与前面的分式的商是 。

(2 ) 根据你发现的规律写出第10个分式. 14.在正数范围内定义一种运算“※”,其规则为a ※b =11a b +,如2※4113244=+=.根 据这个规则,则方程x ※(2x -)=1的解为 。

HS华师版 八级数学 下册第二学期 同步课堂补习辅导练习题作业 第十六章 分式 (第16单元全章 电子作业)

HS华师版 八级数学 下册第二学期 同步课堂补习辅导练习题作业 第十六章 分式 (第16单元全章 电子作业)

第16章 分 式16.1 分式及其基本性质1. 分式课中合作练题型1:分式、有理式概念的理解应用1.(辨析题)下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有___________;是整式的有___________;是有理式的有_________.题型2:分式有无意义的条件的应用2.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.3.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x +D .2221x x + 4.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用5.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用6.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题7.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 8.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( )A .①②B .③④C .①③D .①②③④9.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 10.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 11.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +-D .211m m ++ 12.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1拓展创新题13.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.14.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.15.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.16.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.17.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.18.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.19.当m=________时,分式2(1)(3)32m m m m ---+的值为零.2. 分式的基本性质一、填空题:1. 写出等式中未知的分子或分母:①x y 3= ()23x y ②)()).(().(2x xy y x x y x x +=+=+ ③y x xy 257=()7 ④ )()).(()(1b a b a b a +=-=- 2. 不改变分式的值,使分式的分子与分母都不含负号: ①=--yx 25 ; ②=---b a 3 .3. 等式1)1(12--=+a a a a a 成立的条件是________. 4. 将分式b a b a -+2.05.03.0的分子、分母中各项系数都化为整数,且分式的值不变,那么变形后的分式为________________.5. 若2x=-y ,则分式22y x xy -的值为________. 三、认真选一选1. 把分式yx x 322-中的x 和y 都扩大为原来的5倍,那么这个分式的值 ( ) A .扩大为原来的5倍 B .不变 C .缩小到原来的51 D .扩大为原来的25倍 2. 使等式27+x =xx x 272+自左到右变形成立的条件是 ( ) A .x <0 B.x >0 C.x ≠0 D.x ≠0且x ≠-23. 不改变分式27132-+-+-x x x 的值,使分式的分子、分母中x 的最高次数式的系数都是正数,应该是( ) A.27132+-+x x x B.27132+++x x x C.27132---x x x D.27132+--x x x四、解答题:1. (3×4=12)不改变分式的值,使分式的分子、分母中的首项的系数都不含 “-” 号: ①yx 32-- ②112+--x x ③ 2122--+-x x x ④1312+----x x x2. (6分)化简求值:222222484y x y xy x -+-,其中x=2,y=3.3.已知当x=3时,分式x+a/3x-b 的值为0,当x=1时,分式无意义,试求a,b 的值.4. (6分)已知x 2+3x -1=0,求x -x1的值.16.2 分式的运算1.分式的乘除一. 填空题1. 计算:=-⋅224)2()2(c ab c ;=⋅-⋅-4222)1()()(ab a b b a ; =-÷-⋅-)()()(2222xy x y y x ;=⋅-112112)2()2(yx x y ; =÷62332)2()43(a bc ab c ;=-⋅+-÷-222222)(xy x xy y xy x x xy 。

完整版华师大版八年级下册数学第16章 分式含答案

完整版华师大版八年级下册数学第16章 分式含答案

华师大版八年级下册数学第16章分式含答案一、单选题(共15题,共计45分)1、遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万kg,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万kg,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万kg?设原计划每亩平均产量x万kg,则改良后平均每亩产量为1.5x万kg,根据题意列方程为()A. ﹣=20B. ﹣=20C. ﹣=20 D. + =202、甲、乙两人分别从距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前h到达目的地,设甲的速度为3xkm/h,下列方程正确的是()A. B. C. D.3、下列计算正确的是()A.a 2•a 3=a 6B.(﹣2xy 2)3=﹣8x 3y 5C.2a ﹣3=D.(﹣a)3÷(2a)2=﹣ a4、钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A.634×10 4B.6.34×10 6C.63.4×10 5D.6.34×10 75、函数中自变量x的取值范围是()A.x≠2B.C.D. 且x≠06、如果,,那么等于()A.1B.2C.3D.47、用科学记数法表示5700000,正确的是()A.5.7×10 6B.5.7×10 5C.570×10 4D.0.57×10 78、我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.167×10 3B.16.7×10 4C.1.67×10 5D.0.167×10 69、若代数式+ 有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠110、下列函数中,自变量x的取值范围是x≥2的是()A. B. C. D.11、下列各式运算正确的是()A.a 2+a 3=a 5B.a 2•a 3=a 6C.(a 2)3=a 6D.a 0=112、新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿13、﹣()]=中,在()内填上的数是()A. B. C. D.14、若分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x>﹣2D.x>215、计算的结果是()A.x 2﹣1B.x﹣1C.x+1D.1二、填空题(共10题,共计30分)16、把1020000用科学记数法表示为________;2.236×107的原数是________;17、 ________.18、分式的最简公分母是________.19、化简分式的结果是________.20、计算:(﹣x2y)2=________(﹣2)﹣2=________﹣2x2•(﹣x)3=________(﹣0.25)2014×42015=________.(﹣1)2015+(﹣π)0+2﹣2=________.21、当x________时,分式无意义.22、要使代数式有意义,则的取值范围是________.23、分式有意义的条件是________.24、已知分式的值为零,那么x的值是________.25、第一季度,我国国民经济开局平稳,积极因素逐渐增多.社会消费品零售总额约为97790亿元,同比增长8.3%;网上零售额为22379亿元,同比增长15.3%.其中22379亿用科学记数法表示为________.三、解答题(共5题,共计25分)26、﹣(π﹣3)0﹣(﹣1)2017+(﹣)﹣2+tan60°+| ﹣2|27、列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造10%,结果提前3天完成了任务,求原计划每天改造道路多少米?28、先化简,然后a在﹣1,1,2三个数中任选一个合适的数代入求值.29、列方程或方程组解应用题几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.30、解分式方程:+1=参考答案一、单选题(共15题,共计45分)1、A2、B4、B5、A6、B7、A8、C9、D10、C11、C12、C13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

人教版八年级下《第16章二次根式》单元测试题((有答案))-(数学)

人教版八年级下《第16章二次根式》单元测试题((有答案))-(数学)

人教版八年级下册数学《第16章二次根式》单元测试题一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥33.化简的结果是()A.B.C.D.4.下列二次根式,最简二次根式是()A.B.C.D.5.下列式子一定成立的是()A.﹣2B.+2C.D.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式7.下列各式中,与是同类二次根式的是()A.B.C.D.8.计算的值等于()A.B.4C.5D.2+29.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=210.现将某一长方形纸片的长增加3cm,宽增加6cm,就成为一个面积为128cm2的正方形纸片,则原长方形纸片的面积为()A.18cm2B.20cm2C.36cm2D.48cm2二.填空题(共8小题)11.若a、b为实数,且b=+4,则a+b=.12.若有意义,则a的取值范围为13.已知,化简的结果是.14.计算:3﹣(﹣1)﹣1+1=.15.化简(﹣1)2017(+1)2018的结果为.16.如果最简二次根式和是同类二次根式,则a=,b=.17.二次根式:①,②,③,④中,能与合并的是(填序号).18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为.三.解答题(共7小题)19.计算:﹣3+2.20.计算:4×2÷.21.已知:a=+1,求代数式a2﹣2a﹣1的值.22.已知实数a,b,c在数轴上的位置如图,且|a|=|b|,化简|a|+|b|+|c|﹣﹣223.已知=b+1(1)求a的值;(2)求a2﹣b2的平方根.24.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.25.化简求值:已知:x=,y=,求(x+3)(y+3)的值.人教版八年级下册数学《第16章二次根式》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.【分析】根据二次根式的定义判断即可.【解答】解:A、x+y不是二次根式,错误;B、是二次根式,正确;C、不是二次根式,错误;D、不是二次根式,错误;故选:B.【点评】本题考查了二次根式的定义:形如(a≥0)叫二次根式.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥3【分析】根据二次根式的被开方数为非负数,可得出关于x的一元一次不等式,解出即可得出答案.【解答】解:∵无意义,∴3﹣x<0,解得:x>3.故选:C.【点评】此题考查了二次根式有意义的条件,关键是掌握二次根式有意义则被开方数为非负数.3.化简的结果是()A.B.C.D.【分析】本题应先判断与1的大小,再对原式进行开方.【解答】解:∵>1,∴﹣1>0,∴==﹣1.故选:B.【点评】本题考查的是二次根式的化简,解此类题目时要先讨论根号内的数的正负性,再开方.4.下列二次根式,最简二次根式是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.下列式子一定成立的是()A.﹣2B.+2C.D.【分析】根据二次根式的性质,二次根式的乘除法法则计算,判断即可.【解答】解:=|a2﹣2|,A不一定成立;=a2+2,B一定成立;当a≥﹣1时,=•,C不一定成立;当a≥0,b>0时,=,D不一定成立;故选:B.【点评】本题考查的是二次根式的化简,二次根式的乘除法,掌握二次根式的乘除法法则是解题的关键.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式【分析】根据二次根式的运算法则即可求出答案.【解答】解:由于a+b≠0,ab≠±1,∴a与b不是互为相反数,倒数、负倒数,故选:D.【点评】本题考查二次根式,解题的关键是正确理解倒数、相反数、负倒数的概念,本题属于基础题型.7.下列各式中,与是同类二次根式的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=2与是同类二次根式,故本选项正确;B、=2与不是同类二次根式,故本选项错误;C、=2与不是同类二次根式,故本选项错误;D、=3与不是同类二次根式,故本选项错误;故选:A.【点评】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.8.计算的值等于()A.B.4C.5D.2+2【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=2+3=5故选:C.【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.9.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.现将某一长方形纸片的长增加3cm ,宽增加6cm ,就成为一个面积为128cm 2的正方形纸片,则原长方形纸片的面积为( ) A .18cm 2B .20cm 2C .36cm 2D .48cm 2【分析】利用算术平方根求出正方形的边长,进而求出原矩形的边长,即可得出答案.【解答】解:∵一个面积为128cm 2的正方形纸片,边长为:8cm ,∴原矩形的长为:8﹣3=5(cm ),宽为:8﹣6=2(cm ),∴则原长方形纸片的面积为:5×2=20(cm 2).故选:B .【点评】此题主要考查了二次根式的应用,根据题意得出原矩形的边长是解题关键. 二.填空题(共8小题)11.若a 、b 为实数,且b =+4,则a +b = 5或3 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案. 【解答】解:由被开方数是非负数,得,解得a =1,或a =﹣1,b =4, 当a =1时,a +b =1+4=5, 当a =﹣1时,a +b =﹣1+4=3, 故答案为:5或3.【点评】本题考查了二次根式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.12.若有意义,则a 的取值范围为 a ≤4且a ≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零. 【解答】解:依题意得:4﹣a ≥0且a +2≠0, 解得a ≤4且a ≠﹣2. 故答案是:a ≤4且a ≠﹣2.【点评】考查了二次根式的意义和性质.概念:式子(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.已知,化简的结果是2.【分析】由于,则=x﹣2,|x﹣4|=4﹣x,先化简,再代值计算.【解答】解:已知,则=x﹣2+4﹣x=2.【点评】根据x的取值,确定x﹣2和x﹣4的符号是解此题的关键.14.计算:3﹣(﹣1)﹣1+1=2.【分析】根据分母有理化解答即可.【解答】解:原式==,故答案为:2【点评】此题考查分母有理化,关键是根据分母有理化计算.15.化简(﹣1)2017(+1)2018的结果为+1.【分析】利用积的乘方得到原式=[(﹣1)(+1)]2017•(+1),然后利用平方差公式计算.【解答】解:原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.如果最简二次根式和是同类二次根式,则a=0,b=1.【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【解答】解:依题意得:,解得.故答案是:0;1.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.17.二次根式:①,②,③,④中,能与合并的是①④(填序号).【分析】与是同类二次根式即可合并.【解答】解:=2,=3,=,=3,∴、能与合并,故答案为:①④.【点评】本题考查二次根式,解题的关键是正确理解同类二次根式与最简二次根式的定义,本题属于基础题型.18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为3﹣3.【分析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形的边长是x、y(x<y),则x2=3,y2=9,x=,y=3,则阴影部分的面积是(y﹣x)x=(3﹣)×=3﹣3,故答案为:3﹣3.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.三.解答题(共7小题)19.计算:﹣3+2.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=4﹣3×3+2×2=﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.20.计算:4×2÷.【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式=8÷=8×3 =24.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键. 21.已知:a =+1,求代数式a 2﹣2a ﹣1的值.【分析】利用完全平方公式得到原式=(a ﹣1)2﹣2,再有已知条件得到a ﹣1=,然后利用整体代入的方法计算. 【解答】解:原式=(a ﹣1)2﹣2,因为a =+1,所以a ﹣1=,所以原式=()2﹣2=5﹣2=3.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.22.已知实数a ,b ,c 在数轴上的位置如图,且|a |=|b |,化简|a |+|b |+|c |﹣﹣2【分析】根据数轴上点的位置判断出实数a ,b ,c 的符号,然后利用二次根式与绝对值的性质求解即可求得答案.【解答】解:由题意得:c <a <0<b , 又∵|a |=|b |, ∴c ﹣a <0,∴|a |+|b |+|c |﹣﹣2=﹣a +b ﹣c ﹣a +c +2c =﹣2a +b +2c .【点评】此题考查了实数与数轴,二次根式以及绝对值的性质,合并同类项,熟练掌握各自的意义是解本题的关键.23.已知=b +1(1)求a 的值;(2)求a 2﹣b 2的平方根.【分析】(1)根据二次根式的被开方数是非负数解答; (2)结合(1)求得a 、b 的值,然后开平方根即可.【解答】解:(1)∵,有意义,∴,解得:a =5;(2)由(1)知:b +1=0, 解得:b =﹣1,则a 2﹣b 2=52﹣(﹣1)2=24,则平方根是:.【点评】考查了二次根式有意义的条件,平方根.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.24.求+的值解:;设x =+,两边平方得:x 2=()2+()2+2,即x 2=3++3﹣+4,x 2=10∴x =±.∵+>0,∴+=请利用上述方法,求+的值.【分析】根据题意给出的解法即可求出答案.【解答】解:设x =+,两边平方得:x 2=()2+()2+2,即x 2=4++4﹣+6,x 2=14∴x =±.∵+>0,∴x =【点评】本题考查二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.25.化简求值:已知:x =,y =,求(x +3)(y +3)的值.【分析】将x 和y 的值分母有理化,再代入到原式xy +3x +3y +9=xy +3(x +y )+9计算可得.【解答】解:当x ===,y ===时,原式=xy +3x +3y +9 =xy +3(x +y )+9..=×+3×(+)+9=+3×+9=+3+9=+3. 【点评】此题考查了二次根式的化简求值与分母有理化,正确选择两个二次根式,使它们的积符合平方差公式及二次根式的混合运算顺序与运算法则是解答问题的关键.。

华师大版八年级数学下册 第十六章《分式》整章水平测试

华师大版八年级数学下册  第十六章《分式》整章水平测试

八年级数学下册第十六章《分式》整章水平测试(总分:100分,时间:40分钟)一、 试试你的身手(每小题4分,共28分)1.若分式11x x -+的值为零,则x 的值为 . 2.不改变分式的值,把分式10.720.3a b a b-+的分子与分母的各项系数化为整数为: . 3.当a 时,分式2521a a -+的值不小于0. 4.化简:3222222232a b a b a ab ab a ab b a b +--÷++-= . 5.生物学家发现一种病毒的长度约为0.000043㎜,用科学记数法表示0.000043的结果为㎜.6.若方程56x x a x x -=--有增根,则a 的值可能是 . 7.把题目补充完整:轮船在顺流中航行64km 与逆流中航行34km 一共用去的时间等于该船在静水中航行180km 所用的时间,已知水流的速度是每小时3km ,求该船 . 设 ,依题意列方程 .二、相信你的选择(每小题4分,共32分)1.在有理式21121,,(),,,,(15)321x x x m n m n R x a m n yππ-+--+中,分式有( ). (A )1个 (B )2个 (C )3个 (D )4个2.如果226x x x ---=0,则x 等于( ). (A )±2 (B )-2 (C )2 (D )33.分式2232x x y-中的,x y 同时扩大2倍,则分式的值( ).(A )不变 (B )是原来的2倍 (C )是原来的4倍 (D )是原来的21 4.下列各式从左到右的变形正确的是( ). (A )122122x y x y x yx y --=++(B )0.220.22a b a b a b a b ++=++(C )11x x x y x y +--=-- (D )a b a b a b a b +-=-+ 5.已知111,11ab M a b ==+++,11a b N a b =+++,则M 与N 的大小关系为( ). (A )M>N (B )M=N (C )M<N (D )不确定6.关于x 的方程(1)43a x x +=+的解是负数,则a 的取值范围是( ).(A )a =3 (B )a <3且a ≠-1 (C )a ≥3 (D )a ≤3且a ≠-17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b+,根据这个规则方程x ※(1x +)=0的解为( ).(A )1 (B )0 (C )无解 (D )12- 8.学生有m 个,若每n 个人分配1间宿舍,则还有一人没有地方住,问宿舍的间数为( ).(A )1m n + (B )1m n - (C )1m n - (D )1m n + 三、挑战你的技能(本大题共37分)1.(本题8分)解方程:214 1.11x x x +-=--2.(本题10分)先化简代数式222222()()()a b a b aba b a b a b a b+--÷-+-+,然后请选择一组你喜欢的,a b的值代入求值.3.(本题12分)同一条高速公路沿途有三座城市A、B、C,C市在A市与B市之间,A、C两市的距离为540千米,B、C两市的距离为600千米.现有甲、乙两辆汽车同时分别从A、B两市出发驶向C 市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C市.求两车的速度.四、拓广探索(本大题共12分)请阅读某同学解下面分式方程的具体过程. 解方程1423.4132x x x x +=+---- 解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22684 3.x x x x -+=-+ ④ ∴5.2x =把52x =代入原方程检验知52x =是原方程的解. 请你回答:(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 .(3)给出正确答案(不要求重新解答,只需把你认为应改正的加上即可).参考答案:一、1.1 2.57310a b a b -+ 3.a ≤524.2ab 5.54.310-⨯6.6 7.在静水中的速度,船在静水中的速度为x km/h ,64348033x x x +=+-.。

八年级数学第16章《分式》同步作业测试

八年级数学第16章《分式》同步作业测试

八年级数学第16章《分式》同步作业测试测试1 从分数到分式一、填空题1.用A 、B 表示两个整式,A ÷B 就可以表示成______的形式,如果除式B 中______,该分式的分式.2.把下列各式写成分式的形式:(1)5÷xy 为______. (2)(3x +2y )÷(x -3y )为______.3.甲每小时做x 个零件,做90个零件所用的时间,可用式子表示成______小时. 4.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成______吨.5.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成______小时. 6.当x =______时,分式13-x x没有意义. 7.当x =______时,分式112--x x 的值为0.8.分式yx,当字母x 、y 满足______时,值为1;当字母x ,y 满足______时值为-1. 二、选择题 9.使得分式1+a a有意义的a 的取值范围是( ) A .a ≠0 B .a ≠1 C .a ≠-1D .a +1>010.下列判断错误的是( )A .当32=/x 时,分式231-+x x 有意义 B .当a ≠b 时,分式22ba ab-有意义 C .当21-=x 时,分式x x 412+值为0D .当x ≠y 时,分式x y y x --22有意义 11.使分式5+x x值为0的x 值是( ) A .0 B .5C .-5D .x ≠-512.当x <0时,xx ||的值为( ) A .1 B .-1 C .±1 D .不确定13.x 为任何实数时,下列分式中一定有意义的是( )A .xx 12+B .112--x x C .11+-x x D .112+-x x 三、解答题14.下列各式中,哪些是整式?哪些是分式?⋅----++++-π1;)1(;2;3;3;13;222x x x x y x y x y x x y x y x 15.x 取什么值时,2)3)(2(---x x x 的值为0?综合、运用、诊断一、填空题16.当x =______时,分式632-x x无意义. 17.使分式2)3(2+x x有意义的条件为______.18.分式2)1(522+++x x 有意义的条件为______.19.当______时,分式44||--x x 的值为零. 20.若分式x--76的值为正数,则x 满足______. 二、选择题21.若x 、y 互为倒数,则用x 表示y 的正确结果是( )A .x =-yB .y x 1=C .x y 1=D .xy 1±=22.若分式ba ba 235+-有意义,则a 、b 满足的关系是( )A .3a ≠2bB .b a 51=/C .a b 32-=/ D .b a 32-=/23.式子222--+x x x 的值为0,那么x 的值是( ) A .2 B .-2 C .±2D .不存在24.若分式6922---a a a 的值为0,则a 的值为( )A .3B .-3C .±3D .a ≠-225.若分式1212+-b b的值是负数,则b 满足( )A .b <0B .b ≥1C .b <1D .b >1三、解答题 26.如果分式323||2-+-y y y 的值为0,求y 的值.27.当x 为何值时,分式121+x 的值为正数?28.当x 为何整数时,分式124+x 的值为正整数?拓展、探究、思考29.已知分式,by ay +-当y =-3时无意义,当y =2时分式的值为0,求当y =-7时分式的值.测试2 分式的基本性质课堂学习检测一、填空题1.,MB M A B A ⨯⨯=其中A 是整式,B 是整式,且B ≠0,M 是______. 2.把分式xy中的x 和y 都扩大3倍,则分式的值______.3.⋅-=--)(121xx x4..y x xy x 22353)(= 5.22)(1y x y x -=+.6.⋅-=--24)(21y y x 二、选择题7.把分式bab a 392+-约分得( )A .33++b a B .33+-b a C .ba 3- D .ba 3+ 8.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .缩小10倍 C .是原来的32D .不变9.下列各式中,正确的是( )A .b am b m a =++ B .0=++b a ba C .1111--=-+c b ac abD .y x y x y x +=--122 三、解答题 10.约分:(1)ac ab1510-(2)yx yx 322.36.1-(3)112--m m(4)yx x xy y -+-2442211.不改变分式的值,使下列分式的分子、分母都不含负号.(1);53a- (2);y x 532- (3);52a b-- (4)⋅---x y 1511综合、运用、诊断一、填空题12.化简分式:(1)=--3)(x y yx _____;(2)=+--22699xx x _____. 13.填空:)()1(=++-nm n m =-----ba n m m n 212)2(;)(⋅-ba221 14.填入适当的代数式,使等式成立.(1)⋅+=--+b a b a b ab a )(22222(2).a b ba b a-=-+)(11 二、选择题 15.把分式yx x-2中的x 、 y 都扩大m 倍(m ≠0),则分式的值( ) A .扩大m 倍B .缩小m 倍C .不变D .不能确定16.下面四个等式:;22;22;22yx y x y x y x y x y x +-=+---=----=+-③②①⋅-+=--22yx y x ④其中正确的有( ) A .0个B .1个C .2个D .3个17.化简22222b ab a b a ++-的正确结果是( )A .b a b a -+B .b a b a +-C .ab21 D .ab21- 18.化简分式2222639ab b a b a -后得( )A .222223ab b a b a -B .263aba ab- C .ba ab23- D .bb a ab2332- 三、解答题 19.约分:(1)322)(27)(12b a a b a --(2)62322--++x x x x(3)22164m m m --(4)2442-+-x x x20.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)yx x --22(2)aa b --2(3)x x x x +---2211(4)2213m m m ---拓展、探究、思考21.(1)阅读下面解题过程:已知,521=+x x 求142+x x 的值. 解:),0(5212=/=+x x x,521=+∴xx 即⋅=+251x x ⋅=-=-+=+=+∴1742)2(12)(111222242x x x x x x (2)请借鉴(1)中的方法解答下面的题目:已知,2132=+-x x x求1242++x x x 的值.测试3 分式的乘法、除法课堂学习检测一、填空题1.=-⋅)29(283x yy x ______. 2.=+-÷-x y x x xy x 33322______. 3.=+÷+)(1b a b a ______.4.=--++⋅+aba b a .b ab a b ab 2222222______. 5.已知x =2008,y =2009,则4422))((y x y x y x -++的值为______.二、选择题 6.)(22m n n m a-⋅-的值为( )A .nm a+2 B .nm a+ C .nm a+-D .nm a--7.计算cdaxcd ab 4322-÷等于( ) A .x b 322B .232x bC .xb 322-D .222283dc x b a -8.当x >1时,化简xx --1|1|得( ) A .1B .-1C .±1D .0三、计算下列各题9.xy x y 212852⋅10.nm mnm mn m n m --÷--24222211.11.11)1(122+-÷--x x x x 12.2222294255)23(xa xb a b a a x --⋅++四、阅读下列解题过程,然后回答后面问题13.计算:⋅⨯÷⨯÷⨯÷dd c c b b a 1112解:dd c c b b a 1112⨯÷⨯÷⨯÷ =a 2÷1÷1÷1①=a 2. ②请判断上述解题过程是否正确?若不正确,请指出在①、②中,错在何处,并给出正确的解题过程.综合、运用、诊断一、填空题14.cc b a 1⨯÷_____. 15.x y xy 3232÷-_____.16.一份稿件,甲单独打字需要a 天完成,乙单独打字需b 天完成,两人共同打需_____天完成. 二、选择题 17.计算xx x x x x +-÷---2231)2)(3(的结果是( )A .22--x x xB .xx x 212--C .xx x --22D .122--x x x18.下列各式运算正确的是( )A .m ÷n ·n =mB .m n n m =÷1.C .111=÷⋅÷mm m m D .1123=÷÷m mm 三、计算下列各题 19.44)16(.2-+÷-a a a20.2222)1()1(a a a a .a a a -+--21.a b b ab a b ab a b a a 22222224.2+÷+-- 22.xx x x x x --+÷+--32.)3(446222拓展、探究、思考23.小明在做一道化简求值题:,.2)(2222xyx xy y xy x x xy -+-÷-他不小心把条件x 的值抄丢了,只抄了y =-5,你说他能算出这道题的正确结果吗?为什么?测试4 分式的乘法、除法、乘方课堂学习检测一、填空题1.分式乘方就是________________.2.=323)2(bca ____________. 3.=-522)23(z y x ____________. 二、选择题4.分式32)32(ba 的计算结果是( )A .62aB .56aC .58aD .68a5.下列各式计算正确的是( ) A .yx y x =33B .36m m =C .b a ba b a +=++22D .b a a b b a -=--23)()( 6.22222nm m n m n ⋅÷-的结果是( )A .2nm -B .2nm -C .4mn -D .-n7.计算⨯-32)2(b a 2)2(a b )2(a b -⨯的结果是( ) A .68ba - B .638b a - C .5216b aD .5216ba -三、计算题8.32)32(cb a9.22)52(ay x --10.223)2(8y x y ÷11.232)4()2(ba ba -÷-四、解答题12.先化简,再求值:(1),144421422xx x x x ++÷--其中⋅-=41x(2),ab .b b a a b a b a a 222224)()(+÷--其中,21=a b =-1.综合、运用、诊断一、填空题13.=⋅-⋅-76252)1()()(aba b b a ______.14.=-÷-32223)3()3(ac b c ab ______. 二、选择题15.下列各式中正确的是( )A .363223)23(yx y x =B .22224)2(b a a ba a +=+ C .22222)(yx y x y x y x +-=+- D .333)()()(n m n m nm n m -+=-+16.na b 22)(-(n 为正整数)的值是( )A .n n a b 222+B .n nab 24C .n n a b 212+-D .n nab 24-17.下列分式运算结果正确的是( )A .nm m n n m =3454.B .bc add c b a =.C .22224)2(b a a ba a -=- D .3343)43(y x yx =三、计算下列各题18.2222)2()()(ab abb a -÷⋅-19.2313.-nn ba a c b20.22321).()(b a a b a ab b a -÷---四、化简求值21.若m 等于它的倒数,求32222)2.()22(444m m m m m m m --+÷-++的值.拓展、探究、思考22.已知.0)255(|13|2=-+-+b a b a 求2232332).6().()3(a bb a ab b a -÷--的值.测试5 分式的加减学习要求1.能利用分式的基本性质通分. 2.会进行同分母分式的加减法. 3.会进行异分母分式的加减法.课堂学习检测一、填空题1.分式2292,32ac bc b a 的最简公分母是______. 2.分式3241,34,21x x x x x +--的最简公分母是______. 3.分式)2(,)2(++m b nm a m 的最简公分母是______.4.分式)(,)(x y b yy x a x --的最简公分母是______.5.同分母的分式相加减的法则是______.6.异分母的分式相加减,先______,变为______的分式,再加减. 二、选择题 7.已知=++=/xx x x 31211,0( ) A .x 21 B .x61 C .x65 D .x611 8.x y y a y x a x +--+++3333等于( )A .y x y x +-33B .x -yC .x 2-xy +y 2D .x 2+y 29.cab c a b +-的计算结果是( ) A .abc a c b 222+-B .abcb a ac c b 222--C .abcb a ac c b 222+-D .abcac b +- 10.313---a a 等于( ) A .aa a --+1622B .1242-++-a a a C .1442-++-a a a D .a a -111.21111xx x x n n n +-+-+等于( ) A .11+n xB .11-n xC .21xD .1三、解答题 12.通分:(1)abb a a b 41,3,22 (2))2(2,)2(-+x b x a y(3)aa a a -+21,)1(2(4)aba b a b a --+2222,1,1四、计算下列各题 13.x x x x x -+--+22422214.xx x x x x x x +---+--+++3522363422215.412234272--+--x x x16.xyy xxy x y -+-22综合、运用、诊断一、填空题17.计算a a -+-329122的结果是____________. 18.=-+abb a 6543322____________. 二、选择题19.下列计算结果正确的是( )A .)2)(2(42121-+=--+x x x x B .))((211222222222x y y x x xy y x ---=--- C .yx xy y x x 231223622-=- D .33329152+-=----x x x x 20.下列各式中错误的是( )A .ad a d c d c a d c a d c 2-=---=+-- B .1522525=+++a aaC .1-=---xy yy x x D .11)1(1)1(22-=---x x x x 三、计算下列各题 21.ba aa b b b a b a ---+-+22 22.zx y zy z x y z x z y x y ------+++-223.941522333222-++-++a a a a 24.43214121111x x x x x x +-++-+--25.先化简,1)121(22xx x x x x x ÷+---+再选择一个恰当的x 值代入并求值.拓展、探究、思考26.已知,10345252---=++-x x x x B x A 试求实数A 、B 的值.27.阅读并计算:例:计算:⋅+++++++)3)(2(1)2)(1(1)1(1x x x x x x原式31212111111+-+++-+++-=x x x x x x⋅+=+-=)3(3311x x x x 仿照上例计算:⋅+++++++)6)(4(2)4)(2(2)2(2x x x x x x测试6 分式的混合运算学习要求1.掌握分式的四则运算法则、运算顺序、运算律. 2.能正确进行分式的四则运算.课堂学习检测一、填空题1.化简=-22639ab b a b a ______.2.化简2426aa ab -=______. 3.计算)1()1111(2-⨯+--m m m 的结果是______. 4.)1(y x yy x +-÷的结果是______. 二、选择题5.2222y x y x y x y x -+÷+-的结果是( ) A .222)(y x y x ++B .222)(y x y x -+C .222)(y x y x +-D .222)(yx y x ++6.222)(b a bb b a -⨯-的结果是( ) A .b1 B .2bab ba +- C .ba ba +- D .)(1b a b +7.ba ba b a b a b a b a -+⨯-+÷-+22)()(的结果是( ) A .ba ba +- B .ba ba -+ C .2)(ba b a -+ D .1三、计算题 8.xxx -+-111 9.291232mm -+-10.242-++x x11.121)11(22+-+-÷--a a a a a a12.)()(nm mnm n m mn m +-÷-+13.)131()11(22a a a a --÷++综合、运用、诊断一、填空题14.=-+-+-b a ba b a b a ______. 15.=++-+-32329122m m m ______. 二、选择题16.(1-m )÷(1-m 2)×(m +1)的结果是( )A .2)1(1m +B .2)1(1m - C .-1 D .117.下列各分式运算结果正确的是( ).45232510.25bc b a c c b a =①abc b a a c b 32332=⋅②1131).3(1122+=--÷+x x x x ③1111.2=+÷--xyx x x xy ④ A .①③B .②④C .①②D .③④18.abb a b a 2223231⨯--等于( ) A .aba - B .bab - C .aba 323- D .bab 232- 19.实数a 、b 满足ab =1,设,11,1111b ba aN b a M +++=+++=则M 、N 的大小关系为( ) A .M >N B .M =NC .M <ND .不确定三、解答下列各题 20.yy y y y yy y 4)44122(22-÷+--+-+21.)1214()11(22-----+÷+x x x x x x四、化简求值22.,)]3(232[x y x y x x y x y x x -÷--++-其中5x +3y =0.拓展、探究、思考23.甲、乙两名采购员去同一家饲料公司购买两次饲料,两次购买时饲料的价格各不相同.两位采购员的购货方式也各不相同,甲每次购买1000千克,乙每次只购买800元的饲料,设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 为正整数,且m ≠n ),那么甲、乙两名采购员两次购得饲料的平均价格分别是多少?谁的购买方法更合算?测试7 整数指数幂学习要求1.掌握零指数幂和负整数指数幂的意义. 2.掌握科学记数法.课堂学习检测一、填空题1.3-2=______,=--3)51(______.2.(-0.02)0=______,=0)20051(______. 3.(a 2)-3=______(a ≠0),=-2)3(______,=--1)23(______. 4.用科学记数法表示:1cm =______m ,2.7mL =______L .5.一种细菌的半径为0.0004m ,用科学记数法表示为______m .6.用小数表示下列各数:10-5=______,2.5×10-3=______.7.(3a 2b -2)3=______,(-a -2b )-2=______.8.纳米是表示微小距离的单位,1米=109纳米,已知某种植物花粉的直径为35000纳米,用科学记数法表示成______m . 二、选择题9.计算3)71(--的结果是( )A .3431-B .211- C .-343 D .-21 10.下列各数,属于用科学记数法表示的是( )A .20.7×10-2B .0.35×10-1C .2004×10-3D .3.14×10-5 11.近似数0.33万表示为( )A .3.3×10-2 B .3.3000×103 C .3.3×103 D .0.33×104 12.下列各式中正确的有( ) ①;9)31(2=-②2-2=-4;③a 0=1;④(-1)-1=1;⑤(-3)2=36.A .2个B .3个C .4个D .1个 三、解答题13.用科学记数法表示:(1)0.00016 (2)-0.0000312 (3)1000.5 (4)0.00003万14.计算:(1)98÷98 (2)10-3 (3)2010)51(-⨯15.地球的质量为6×1013亿吨,太阳的质量为1.98×1019亿吨,则地球的质量是太阳质量的多少倍(用负指数幂表示)?综合、运用、诊断一、填空题16.=-+-01)π()21(______,-1+(3.14)0+2-1=______.17.=-+---|3|)12()21(01______.18.计算(a -3)2(ab 2)-2并把结果化成只含有正整数指数幂形式为______. 19.“神威一号”计算机运算速度为每秒384000000000次,其运算速度用科学记数法表示,为______次/秒.20.近似数-1.25×10-3有效数字的个数有______位.二、选择题21.2009200908)125.0()13(⨯+-的结果是( )A .3B .23-C .2D .022.将201)3(,)2(,)61(---这三个数按从小到大的顺序排列为()A .21)3()61()2(-<<-- B .201)3()2()61(-<-<-C .12)61()2()3(-<-<-D .12)61()3()2(-<-<-三、解答题23.计算下列各式,并把结果化成只含有正整数指数幂的形式:(1)(a 2b -3)-2(a -2b 3)2 (2)(x -5y -2z -3)2(3)(5m -2n 3)-3(-mn -2)-224.用小数表示下列各数:(1)8.5×10-3 (2)2.25×10-8 (3)9.03×10-5测试8 分式方程的解法学习要求了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.课堂学习检测一、填空题 1.分式方程1712112-=-++x x x 若要化为整式方程,在方程两边同乘的最简公分母是______. 2.方程111=+x 的解是______. 3.方程625--=-x x x x 的解是______. 4.x =2是否为方程32121---=-x x x 的解?答:______. 5.若分式方程127723=-+-xax x 的解是x =0,则a =______.二、选择题6.下列关于x 的方程中,不是分式方程的是( ) A .11=+x xB .4132=+x xC .52433=+x xD .6516-=x x 7.下列关于x 的方程中,是分式方程的是( ) A .55433+=--x x B .abb x b a a x +=- C .11)1(2=--x xD .nx m n n x =- 8.将分式方程yyy y 2434216252--=+-+化为整式方程时,方程两边应同乘( ). A .(2y -6)(4-2y ) B .2(y -3) C .4(y -2)(y -3) D .2(y -3)(y -2)9.方程4321+-=+-x x x x 的解是( ) A .x =-4 B .21-=x C .x =3 D .x =110.方程34231--=+-x xx 的解是( ) A .0 B .2C .3D .无解11.分式方程)2(6223-+=-x x x x 的解是( ) A .0B .2C .0或2D .无解三、解分式方程12.0227=-+x x13.3625+=-x x 14.45411--=--x xx 15.1617222-=-++x xx xx综合、运用、诊断一、填空题16.当x =______时,分式x 3与x-62的值互为相反数. 17.下列每小题中的两个方程的解是否相同? (1)2322-=-+x x x 与x +2=3 ( )(2)2422-=-+x x x 与x +2=4 ( ) (3)113112-+=-++x x x 与x +2=3 ( ) 18.当m =______时,方程312=-xm 的解为1. 19.已知分式方程 424-+=-x a x x 有增根,则a 的值为______. 二、选择题 20.若分式方程58)1()(2-=-+x a a x 的解为,51-=x 则a 等于( )A .65 B .5C .65-D .-521.已知,11,11cb b a -=-=用a 表示c 的代数式为( ) A .b c -=11 B .ca -=11 C . aac -=1 D .aa c 1-=22.若关于x 的方程0111=----x xx m 有增根,则m 的值是( ) A .3 B .2 C .1D .-123.将公式21111R R R +=(R ,R 1,R 2均不为零,且R ≠R 2)变形成求R 1的式子,正确的是( )A .R R RR R -=221B .R R RR R +=221 C .2211R RR RR R +=D .221R R RR R -=三、解分式方程 24.1211422+=+--x xx x x25.2224412-++=--x x x x x26.32)3)(2(122-=-----x x x x x x x 27.xx x x x x ---+-=-+41341216852拓展、探究、思考28.若关于x 的分式方程211=--x m 的解为正数,求m 的取值范围.29.(1)如下表,方程1、方程2、方程3……是按照一定规律排列的一列方程.猜想方程(2)若方程)(11b a bx x a >=--的解是x 1=6,x 2=10,猜想a 、b 的值,该方程是不是(1)中所给出的一列方程中的一个?如果是,是第几个?(3)请写出这列方程中的第n 个方程和它的解.测试9 列分式方程解应用题学习要求会列出分式方程解简单的应用问题.课堂学习检测一、选择题1.某班学生军训打靶,有m 人各中靶a 环,n 人各中靶b 环,那么所有中靶学生的平均环数是( ) A .nm ba ++ B .nm bnam ++ C .)(21nb m a +D .)(21bn am +2.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( )A .420480480=+-x xB .204480480=+-x xC .448020480=--x x D .204804480=--xx二、列方程解应用题3.一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,求汽车先后行驶的速度.4.一个车间加工720个零件,预计每天做48个,就能如期完成,现在要提前5天完成,每天应该做多少个?5.甲、乙两同学学习电脑打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同,已知甲每分钟比乙多打12个字,问甲、乙两人每分钟各打字多少个?6.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤的时间相同.问现在平均每天采煤多少吨?综合、运用、诊断一、填空题7.仓库贮存水果a 吨,原计划每天供应市场m 吨,若每天多供应2吨,则要少供应______天.8.某人上山,下山的路程都是s ,上山速度v 1,下山速度v 2,则这个人上山和下山的平均速度是______.9.若一个分数的分子、分母同时加1,得;21若分子、分母同时减2,则得,31这个分数是______. 二、列方程解应用题10.某市决定修建一条从市中心到飞机场的轻轨铁路,为了使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少月?11.某一工程招标时,接到甲、乙两工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.目前有三种施工方案:方案一:甲队单独完成此项工程刚好如期完成;方案二:乙队单独完成此项工程比规定日期多5天;方案三:若甲、乙两队合作4天,剩下的工程由乙队单独做也正好如期完成.哪一种方案既能如期完工又最节省工程款?。

人教版八年级下册数学第十六章分式混合运算测试题(含答案)

人教版八年级下册数学第十六章分式混合运算测试题(含答案)

分式混合运算测试题姓名__________ 班级___________ 分数_______________一、选择题(每小题3分,共30分)1.化简(322211x x x x x x ---++)÷211x x ++的结果为( )A 、1x -B 、21x -C 、21x +D 、1x +2.计算(22x x x x --+)÷42x x -的结果是( ) A 、12x + B 、12x -+ C 、-1 D 、13.计算1a a -÷(1a a -)的正确结果是( )A 、11a +B 、1C 、11a - D 、-14.若0xy x y =-≠,则分式11y x-等于( )A 、1xyB 、y x -C 、1D 、-15.在一段坡路上,小明骑自行车上坡的速度为每小时1v 千米,下坡时的速度为每小时2v 千米,则他在这段坡路上的平均速度是每小时( )千米 A 、122v v + B 、1212v v v v + C 、12122v vv v + D 、无法确定 6.计算(22a a a a --+)·24a a-的结果是( ) A 、-4 B 、4 C 、2a D 、24a +7.化简1x x -÷(1x x -)的结果是( )A 、11x +B 、1C 、11x - D 、-18.分式34x x y -与4x y y x +-的和减去74yx y-,所得的差为( )A 、264x y x y+-- B 、264x yx y -- C 、-2 D 、29.把分式2221,,322136a a a a a a -+++++通分后,各分子的和是( )A 、22711a a ++B 、2244a a ++C 、241113a a ++D 、2810a a ++10.设A x y =+,B x y =-,则A B A BA B A B+---+等于( ) A 、22x y xy - B 、222x y xy - C 、22x y xy + D 、222x y xy+二、填空题(每小题3分,共24分)11.已知3,1a b ab +==,则a bb a+的值等于_________________________. 12.若222222m xy y x yx y x y x y --=+--+,则m =_________________________. 13.若()111A B n n n n +=++,则A=___________,B=______________. 14.已知115a b a b +=+,则b aa b +的值为_________________________.15.若2222a ab a b b abab b a ab++-÷-- 的值是正整数,则整数a 的值为_________________________.16.计算422a a+--的结果为_________________________.17.已知:,a b 为实数,且1ab =,设M=11a b a b +++,N=1111a b +++,则M 与N 的大小关系是M________N,(填“>”、“<”、或“=”).18.油库有油m 升,计划每天用n 升,实际用油每天节约了d 升,这些油可以多用________________天. 三、计算题(每小题4分,共24分)(1)(22x x x x --+)÷42x x - (2)22a b a b--÷(222a b ab ++)(3)21x x --÷(311x x +--) (4)(1n m +)÷(1n m -)·(22m n -)(5)b a b -+32322222b ab b a a b ab b a +÷-+- (6)()2222x y x y x y y x++--四、化简求值(每小题6分,共18分) (1)先化简,再求值:(4ab a b a b -+-)(4ab a b a b +-+),其中31,22a b ==-(2)先化简,再求值:(2221244a a a a a a ---+++)·24a a +-,其中a 满足2210a a +-=(3)先化简,再求值:112x x y-+(222x y x y x +-+)其中2,3x y ==五、条件求值(每小题6分,共24分)(1)已知12012,2012a b ==,求(22a b a b b a---)÷a b ab +的值.(2)已知52,52a b =+=-,求2b aa b++的值.(3)已知269a a -+与1b -互为相反数,求(a bb a-)÷()a b +已知230,3260,0x y z x y z xyz -+=--=≠,求2222222x y z x y z+++-的值.分式混合运算测试题(参考答案)一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案ABACCAADAB二、填空题11. 7 12. 2x 13. A=1,B=1 14. 315.1a =- 16.22a a - 17. = 18.2md n nd -三、计算题(1)12x + (2)ab a b+ (3)12x -+ (4)222m mn n ++(5)ba(6)x y +四、化简求值(1)原式=22a b -,其值为2 (2)原式=212a a+,其值为1 (3)原式=y x -,其值为32-五、条件求值(1)原式=ab ,其值为1 (2)原式=()2a b ab+其值为20(3)原式=a b ab-,其值为23 (4)1320。

2021-2022学年度华东师大版八年级数学下册第十六章分式章节测评试题(含详细解析)

2021-2022学年度华东师大版八年级数学下册第十六章分式章节测评试题(含详细解析)

华东师大版八年级数学下册第十六章分式章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x 的不等式组45253m x x x ->⎧⎨+≥+⎩所有整数解中非负整数解有且仅有三个,且关于y 的分式方程2301322my y y --=--有正整数解,则符合条件的整数m 有( )个 A .1 B .2 C .3 D .42、若关于x 的一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-,且关于x 的分式方程32222ax x x x +=+--有非负整数解,则所有满足条件的整数a 的值之和是( )A .14-B .5-C .9-D .6- 3、要使式子5a b a b -+值为0,则( ) A .a ≠0 B .b ≠0 C .5a =bD .5a =b 且b ≠0 4、根据分式的基本性质,分式22m -可以变形为( ) A .11m - B .22m -- C .22m -+ D .21m-5、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 6、已知分式2ab a b +的值为25,如果把分式2ab a b+中的,a b 同时扩大为原来的3倍,那么新得到的分式的值为( )A .25 B .45 C .65 D .4257、下列运算正确的是( )A .22352a b a b -=-B .()22448a b a b -= C .()224--= D .()22224a b a b -=- 8、已知5a b +=,3ab =,则b a a b+的值为( ) A .6 B .193 C .223 D .89、若关于x 的一元一次不等式组()21122x x x m ⎧+-<+⎨-≤⎩的解集为1x <;关于x 的分式方程2422x m m x x ++=--的解为非负整数.则满足条件的整数m 的值之和是( )A .13B .12C .14D .1510、一辆汽车以60千米/时的速度行驶,从A 城到B 城需t 小时,如果该车的速度每小时增加v 千米,那么从A 城到B 城需要( )小时.A .60t v B .6060t v + C .60vt v + D .60vt 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、计算下列各题:(1)|3﹣4|﹣1=_____;(2=_____;(3)30=_____;(4)32y xy x+=_____. 2、计算:24133--+=--m m m m _________. 3、如果分式2356x x x --+的值为零,那么x =____. 4、将0.000927用科学计数法表示为______.5、当x ≠4时,(x ﹣4)0=___.6、计算:1322x x x -+=++________. 7、已知ab =﹣4,a +b =3,则11a b +=_____. 8、若分式21x +无意义,则x 的值为__. 9、化简:1111x x x ⎛⎫+÷= ⎪--⎝⎭______. 10、计算:02202211122-⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭______. 三、解答题(5小题,每小题6分,共计30分)1、如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①11x x -+;②222a b a b --;③22x y x y +-,其中是“和谐分式”的是 (填写序号即可); (2)若a 为整数,且214x x ax --++为“和谐分式”,写出满足条件的a 的值为 ; (3)在化简22344a ab ab b b -÷-时,小明和小娟分别进行了如下三步变形:小明:原式22222323232232444444()()a a a a a b a ab b ab b b b ab b b ab b b --=-⋅=-=---, 小娟:原式22223222444444()()()a a a a a a ab ab b b b b a b b b a b --=-⋅=-=---, 你比较欣赏谁的做法?先进行选择,再根据你的选择完成化简过程,并说明你选择的理由.2、计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭3、计算:()03.14π-4、计算:1111x y x y ----+-. 5、计算:(1)()()()23123a a a a -+--(2)()254111x x x x x --⋅++---参考答案-一、单选题1、B【解析】【分析】解不等式组和分式方程得出关于x 的范围,根据不等式组有且仅有非负整数解和分式方程的解为正整数解得出m 的范围,继而可得整数m 的个数.解:解不等式45m x ->,得:54m x -<, 解不等式253x x +≥+,得:2x ≥-,不等式组有且仅有三个非负整数解,4234m -∴<≤, 解得:1216m <≤,解关于y 的分式方程2301322my y y --=--, 23013(2)my y --=-,(13)58m y -=, 得:1358y m =-, 分式方程有正整数解, ∴58013m >-,且58213m ≠-,即42m ≠, 解得:13m >且42m ≠,综上,1316m <≤,所以所有满足条件的整数m 的值为14,15,一共2个.故选:B .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,解题的关键是熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m 的范围.2、B【解析】先解不等式组根据解集x a ≤-,求出得a 的范围,再解分式方程,根据非负整数解,求出a 的值即可求解.【详解】 解一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩得5x x a ≤⎧⎨≤-⎩ ∵元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-∴5a ≥-,即5a ≥-解关于x 的分式方程32222ax x x x +=+--得61x a =-+ ∵分式方程32222ax x x x+=+--有非负整数解, ∴11a +=-或12a +=-或13a +=-或16a +=-,解得2a =-或3a =-或4a =-或7a =-, ∵621x a =-≠+ ∴4a ≠-∵5a ≥-∴2a =-或3a =-∴2(3)5-+-=-或3a =-故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键.3、D【解析】【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:50a b -= 且0a b +≠ ,∴5a b = 且0b ≠ .故选:D【点睛】本题主要考查了,熟练掌握分式有意义的条件是分式的分子等于0且分母不等于0是解题的关键.4、B【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式2222m m =---, 故选B .【点睛】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A.方程分母中不含未知数,故不是分式方程,不符合题意;B.方程分母中不含未知数,故不是分式方程,不符合题意;C.方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D.方程分母中含未知数x,故是分式方程,符合题意.故选:D.【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).6、C【解析】【分析】直接利用分式的基本性质进而化简得出答案.【详解】解:把分式2aba b+中的,a b都扩大为原来的3倍,则分式223392263333()55ab a b aba b a b a b===⨯=+++,故选:C.【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式.7、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确; C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键.8、B【解析】【分析】 将原式同分,再将分子变形为2()2a b ab ab+-后代入数值计算即可. 【详解】解:∵5a b +=,3ab =, ∴2222()25231933b a a b a b ab a b ab ab ++--⨯+====, 故选:B .【点睛】此题考查了分式的化简求值,正确掌握完全平方公式的变形计算是解题的关键.9、B【解析】【分析】由关于x 的一元一次不等式组可得m ≥-1,关于x 的分式方程的解为83m x -=,根据题意得出所有满足条件的整数m 的值,求和即可.【详解】解:解不等式组2(1)122x x x m +-<+⎧⎨-≤⎩得,12x x m <⎧⎨≤+⎩, 因为不等式组的解集为1x <;所以21m +≥,解得,1m ≥-; 解分式方程2422x m m x x ++=--得,83m x -=, 因为关于x 的分式方程2422x m m x x ++=--的解为非负数. 所以,803m -≥且823m -≠, 解得,8m ≤且2m ≠,又因为方程的解是非负整数,则整数m 的值为-1,5,8;它们的和为:-1+5+8=12;故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算.考虑解分式方程可能产生增根是解题的关键.10、B【解析】【分析】根据题意求出全程,及后来行驶的速度,相除即可得到时间.【详解】解:一辆汽车以60千米/时的速度行驶,从A城到B城需t小时,故全程为60t千米,该车的速度每小时增加v千米后的速度为每小时(60+v)千米,则从A城到B城需要6060tv+小时,故选:B.【点睛】此题考查了分式的实际应用,正确理解题意是解题的关键.二、填空题1、 0 3 1 5 x【解析】【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==, 故答案为:5x .【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.2、-1【解析】【分析】根据同分母分式的加法法则计算即可.【详解】 解:241241313333m m m m m m m m m---+--+===-----. 故答案为:-1.【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减.3、3-【解析】【分析】根据分时的值为0的条件,可得30x -= 且2560x x -+≠ ,即可求解.【详解】 解:根据题意得:30x -= 且2560x x -+≠ ,即3x =± 且()()230x x --≠ ,∴3x =± 且2x ≠ 且3x ≠ ,∴3x =- .故答案为:3-【点睛】本题主要考查了分时的值为0的条件,熟练掌握当分式的分子等于0,且分母不等于0时,分时的值为0是解题的关键.4、9.27×10-4【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000927=9.27×10-4,故答案为:9.27×10-4.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、1【解析】【分析】根据零指数幂的定义:a0=1(a≠0),求解即可.【详解】解:∵x≠4,∴x-4≠0,∴(x-4)0=1.故答案是:1.【点睛】本题考查了零指数幂,掌握运算法则是解答本题的关键.6、1【解析】【分析】根据b c b ca a a++=计算即可.【详解】∵1322 xx x-+++=13222 x xx x-++=++=1,故答案为:1.【点睛】本题考查了同分母分式的加法,熟练掌握同分母分式的加减法的法则是解题的关键.7、3 4 -【解析】先通分:11a ba b ab++=,然后再代入数据即可求解.【详解】解:由题意可知:113344a ba b ab++===--,故答案为:34 -.【点睛】本题考查了分式的加减运算及求值,属于基础题,计算过程中细心即可.8、-1【解析】【分析】根据使分式无意义的条件“分母为0”,计算即可.【详解】根据题意有10x+=,解得:1x=-.故答案为:-1.【点睛】本题考查使分式无意义的条件.掌握使分式无意义的条件是分母为0是解答本题的关键.9、1【解析】【分析】根据分式的加减运算法则以及乘除运算法则即可求出答案.解:原式=1111x xx x +--⨯-=11x xx x-⨯-=1故答案为:1.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.10、-4【解析】【分析】先运用乘方、零次幂、负整数次幂化简,然后计算即可.【详解】解:02 202211122-⎛⎫⎛⎫-+--⎪ ⎪⎝⎭⎝⎭=114-+-=-4.故答案为-4.【点睛】本题主要考查了乘方、零次幂、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键.三、解答题1、(1)②(3)我欣赏小娟的做法,见解析【解析】【分析】(1)根据和谐分式的定义判断即可得出答案;(2)根据完全平方公式和十字相乘法即可得出答案;(3)小娟利用了和谐分式,通分时找到了最简公分母,完成化简即可.(1)解:①分子或分母都不可以因式分解,不符合题意;②分母可以因式分解,且这个分式不可约分,符合题意;③这个分式可以约分,不符合题意;故答案为:②;(2)解:将分母变成完全平方公式得:244x x ±+,此时4a =±;将分母变形成(1)(4)x x ++,此时5a =;故答案为:4±或5;(3)我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.解:我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.【点睛】本题考查了分式的混合运算,解题的关键是掌握在分式的混合运算中,能因式分解的多项式要分解因式,便于约分.2、 (1)243b ab -- (2)21x x -- 【解析】【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.3、6【解析】【分析】先运用零次幂、算术平方根的性质、立方根的知识化简,然后计算即可.【详解】解:()03.14π-=1+2-(-3)=1+2+3=6.【点睛】本题主要考查了零次幂、算术平方根、立方根等知识点,灵活运用相关知识是解答本题的关键.4、y x y x+-. 【解析】【分析】根据负整数指数幂、分式的加减法与除法法则即可得.【详解】 解:原式1111x y x y+=-y x xy xy y x xy xy+=- y xxy y xxy+=- y x y x+=-. 【点睛】本题考查了负整数指数幂、分式的加减法与除法,熟练掌握分式的运算法则是解题关键.5、 (1)3a + (2)11x - 【解析】【分析】(1)先利用单项式乘多项式和多项式乘多项式运算法则计算,然后再合并即可;(2)运用分式的四则混合运算法则计算即可.(1)解:()()()23123a a a a -+--=2262253a a a a -+-+=3a +.(2) 解:()254111x x x x x --⋅++-- =()()()541111x x x x x x --⋅+++-- =5411x x x x --+-- =541x x x -+-- =11x -. 【点睛】本题主要考查整式乘法混合运算、分式四则混合运算等知识点,灵活运用相关知识点成为解答本题的关键.。

第16章 分式 华东师大版八年级数学下册学情评估试题(含答案)

第16章 分式 华东师大版八年级数学下册学情评估试题(含答案)

第16章分式学情评估试题一、选择题(每题3分,共24分)1.在式子3a2π,x22x,34a+b,x+3x-1,-m2,am中,分式有( )A.2个B.3个C.4个D.5个2.碘是人体必需的微量元素之一,在人的身体成长、发育过程中起着至关重要的作用.已知碘原子的半径约为0.000 000 013 3 cm,数字0.000 000 013 3用科学记数法表示为( )A.13.3×10-8B.1.33×10-8C.1.33×10-9D.0.133×10-73.若分式x2-25x+5的值为0,则x的值为( )A.0 B.5 C.-5 D.±54.把分式2x2x-3y中的x和y都扩大为原来的5倍,那么这个分式的值( )A.扩大为原来的5倍B.不变C.缩小到原来的15D.扩大为原来的52倍5.分式1a+b,2aa2-b2,bb-a的最简公分母是( )A.(a2-b2)(a+b)(a-b) B.(a2-b2)(a+b) C.(a2-b2)(b-a) D.a2-b26.解分式方程x2x-1+11-2x=2时,去分母可得( )A.x+1=2 B.x-1=2(2x-1)C.x+1=2(2x-1) D.x-1=27.中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动,用3 600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2 400元购买的套数只比第一批少4套,设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是( )A.3 6000.8x-2 400x=4 B.3 600x -2 4000.8x=4 C.2 4000.8x -3 600x =4 D.2 400x -3 6000.8x=48.对于实数a ,b ,定义一种新运算“⊗”:a ⊗b =1a -b 2.例如:1⊗3=11-32=-18.则方程x ⊗(-2)=2x -4-1的解是( )A .x =4B .x =5C .x =6D .x =7二、填空题(每题3分,共18分)9.要使分式1x -2有意义,则x 的取值范围是________.10.计算35x +x -35x 的结果是________.11.计算:9-(π-1)0=________.12.若关于x 的分式方程2x -3+x +m3-x =2有增根,则m 的值是________.13.已知 x 2-4x +1=0,则2(x -1)x -4-x +6x的值为________.14.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,如三根弦的长度之比是15￿12￿10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、sol ,研究15、12、10这三个数的倒数发现:112-115=110-112,我们称15、12、10这三个数为一组调和数.现有一组两两各不相等的数:4、6、x ,若要使这三个数组成一组调和数,则x 的值为________.三、解答题(15题8分,16题16分,17~20题每题8分,21题10分,22题12分,共78分)15.当x =5时,分式x -b x +a 无意义;当x =-2时,分式x -b x +a 的值为0,求分式a +bab的值.16.计算:(1)x -3x +2÷2x -6x 2-4; (2)x 2+2x +1x +1-x 2+xx;(3)m -n m÷(m 2+n 2m -2n );(4)(-13)-2+(-1)2 024-|-23|+(π-5)0.17.解方程:(1)2x+1+1=xx-1;(2)x+1x-1-4x2-1=1;(3)23x-1-1=36x-2.18.先化简:3m2-9mm-2÷(m+2-5m-2),然后从1,2,3中选择一个合适的数作为m的值代入求值.19.老师让同学们化简(x2x2-4-1)÷2x-2,某同学给出了如下的解答过程:解:原式=x2-(x2-4)x2-4×x-22 ①=x2-x2-4x2-4×x-22 ②=-4(x+2)(x-2)×x-22 ③=-2x+2. ④请回答下列问题:(1)该同学的解答过程从第______步开始出现错误,该步错误的原因是__________________________;(2)请你给出正确的解答过程.20.已知关于x的方程2xx-2+mx-2=-2.(1)当m=5时,求方程的解;(2)当m取何值时,此方程无解;(3)当此方程的解是正数时,求m的取值范围.21.根据以下素材,探索完成任务.如何设计奖品购买及兑换方案?素材1某文具店销售某种钢笔与笔记本,已知钢笔的单价是笔记本的2倍,用120元购买笔记本的数量比用160元购买钢笔的数量多8.素材2某学校花费400元购买该文具店的钢笔和笔记本作为奖品颁发给“优秀学生”,两种奖品的购买数量均不少于20,且购买笔记本的数量是10的倍数.素材3学校花费400元后,文具店赠送m张(1<m<10)兑换券(如图)用于商品兑换.兑换后,笔记本与钢笔数量相同.(第21题)问题解决任务1求商品单价请运用适当方法,求出钢笔与笔记本的单价.任务2探究购买方案探究购买钢笔和笔记本数量的所有方案.任务3确定兑换方式运用数学知识,任选一种购买方案并说明符合条件的兑换方式.22.先阅读下列解法,再解答后面的问题.已知3x-4x2-3x+2=Ax-1+Bx-2,求A,B的值.解法一:去分母,得3x-4=A(x-2)+B(x-1),即3x -4=(A +B )x -(2A +B ),所以{A +B =3,-(2A +B )=-4,解得{A =1,B =2.解法二:在已知等式中取x =0,有-A +B-2=-2,整理,得2A +B =4;取x =3,有A 2+B =52,整理,得A +2B =5,解{2A +B =4,A +2B =5,得{A =1,B =2.(1)已知11x-3x 2-14x +24=A x +6+B 4-3x,用上面的解法一或解法二求A ,B 的值;(2)计算[1(x -1)(x +1)+1(x +1)(x +3)+1(x +3)(x +5)+…+1(x +9)(x +11)](x +11),并求当x 取何整数时,这个式子的值为正整数.答案一、1.B 2.B 3.B 4.B 5.D 6.B 7.B 8.B 二、9.x ≠2 10.15 11.2 12.-1 点拨:解分式方程得x =8-m 3.因为该方程有增根,所以x =3,所以8-m3=3,解得m =-1.13.-2314.3,245或12 点拨:当x <4时,根据题意得14-16=1x -14,整理得1x =13,解得x =3,经检验,x =3是原方程的解;当4<x <6时,根据题意得1x -16=14-1x ,整理得2x =512,解得x =245,经检验,x =245是原方程的解;当x >6时,根据题意得16-1x =14-16,整理得1x =112,解得x =12,经检验,x =12是原方程的解.所以x 的值为3,245或12.三、15.解:由题意可得5+a =0,-2-b =0,解得a =-5,b =-2,所以a +b ab =-5+(-2)-5×(-2)=-710.16.解:(1)原式=x -3x +2·(x +2)(x -2)2(x -3)=x -22.(2)原式=(x +1)2x +1-x (x +1)x=(x +1)-(x +1)=0.(3)原式=m -n m ÷m 2+n 2-2mn m =m -n m ·m (m -n )2=1m -n .(4)原式=9+1-8+1=3.17.解:(1)去分母,得2(x -1)+(x +1)(x -1)=x (x +1),解得x =3.检验:把x =3代入(x +1)(x -1),得(3+1)(3-1)≠0,所以x =3是原分式方程的解.(2)去分母,得(x +1)2-4=x 2-1,解得x =1.检验:把x =1代入x 2-1,得12-1=0,所以x =1是原分式方程的增根,所以原分式方程无解.(3)去分母,得4-2(3x -1)=3,解得x =12.检验:把x =12代入2(3x -1),得2×(3×12-1)≠0,所以x =12是原分式方程的解.18.解:原式=3m (m -3)m -2÷[(m +2)(m -2)m -2-5m -2]=3m (m -3)m -2÷m 2-9m -2=3m (m -3)m -2×m -2(m +3)(m -3)=3mm +3.因为m ≠2,m ≠±3,所以m =1.当m =1时,原式=3×11+3=34.19.解:(1)②;括号前为“-”, 去括号后,括号内的第二项没有变号(2)原式=x 2-(x 2-4)x 2-4×x -22=x 2-x 2+4x 2-4×x -22=4(x +2)(x -2)×x -22=2x +2.20.解:去分母,得2x +m =-2(x -2),整理,得4-4x =m .(1)当m =5时,4-4x =5,解得x =-14.经检验,x =-14是原方程的解.(2)因为此方程无解,所以x -2=0,所以x =2.当x =2时,m =4-4x =-4,所以当m =-4时,此方程无解.(3)解此方程,得x =4-m4,因为此方程有解,且解是正数,所以{4-m4>0,4-m4≠2,解得m <4且m ≠-4.21.解:任务1:设笔记本的单价为x 元,则钢笔的单价为2x 元.根据题意,得120x=1602x+8,解得x =5.经检验,x =5是所列方程的解,当x =5时,2x =10.所以钢笔的单价为10元,笔记本的单价为5元.任务2:设购买钢笔a 支,笔记本b 本.根据题意,得10a +5b =400,则a =40-12b ,由题意知a ≥20,b ≥20,且b 是10的倍数,所以{a =30,b =20或{a =25,b =30或{a =20,b =40,所以购买方案有:购买钢笔30支,笔记本20本;购买钢笔25支,笔记本30本;购买钢笔20支,笔记本40本.任务3(答案不唯一):当购买钢笔30支,笔记本20本时,设用y 张兑换券兑换钢笔,则用(m -y )张兑换券兑换笔记本.根据题意,得30+y =20+2(m -y ),整理得y =2m -103.因为1<m <10,y ≥0,且m ,y 均为整数,所以易得{m =5,y =0或{m =8,y =2.所以文具店赠送5张兑换券,均兑换笔记本,或赠送8张兑换券,其中2张兑换钢笔,6张兑换笔记本.22.解:(1)去分母,得11x =A (4-3x )+B (x +6),即11x =(-3A +B )x +(4A +6B ),所以{-3A +B =11,4A +6B =0,解得{A =-3,B =2.(解法不唯一)(2)原式=12(1x -1-1x +1+1x +1-1x +3+1x +3-1x +5+…+1x +9-1x +11)(x +11)=12(1x -1-1x +11)(x +11)=12×12(x -1)(x +11)×(x +11)=6x -1.要使式子的值为正整数,则x -1=1或2或3或6,则x 的值为2或3或4或7.经检验,当x 取2,3,4,7时均符合题意.。

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套专训1 分式求值的方法名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:直接代入法求值、活用公式求值、整体代入法求值、巧变形法求值、设参数求值等.直接代入法求值1.(中考·鄂州改编)先化简,再求值:⎝ ⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.活用公式求值2.已知x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x的值.设参数求值6.已知x 2=y 3=z 4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.专训2 全章热门考点整合应用名师点金:本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现.分式方程是中考的必考内容之一,一般着重考查解分式方程,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.其主要考点可概括为:三个概念、一个性质、一种运算、一个解法、一个应用、四种思想.三个概念概念1 分式1.下列说法中,正确的是( )A .分式的分子中一定含有字母B .分母中含有字母的式子是分式C .分数一定是分式D .当A =0,分式AB的值为0(A ,B 为整式)2.若式子1x 2-2x +m不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<1 概念2 分式方程3.关于x 的方程:①x 2-x -13=6;②x 900=500x -30;③x 3+1=32x ;④a 2x =1x ;⑤320x -400x =4; ⑥x a =35-x.分式方程有____________(填序号). 4.(中考·遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划每亩平均产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A .36x -36+91.5x =20 B .36x -361.5x=20C .36+91.5x -36x =20D .36x +36+91.5x =20 概念3 增根5.若关于x 的方程x -4x -5-3=a x -5有增根,则增根为( )A .x =6B .x =5C .x =4D .x =36.已知方程21+x -k 1-x =6x 2-1有增根x =1,求k 的值.7.若关于x 的分式方程2m +x x -3-1=2x无解,求m 的值.一个性质——分式的基本性质8.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y .一种运算——分式的运算9.先化简,再求值:⎝ ⎛⎭⎪⎫2ab 2a +b 3÷⎝ ⎛⎭⎪⎫ab 3a 2-b 22·⎣⎢⎡⎦⎥⎤12(a -b )2,其中a =-12,b =23.一个解法——分式方程的解法10.(中考·嘉兴)小明解方程1x -x -2x =1的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x ,得1-(x -2)=1.……① 去括号,得1-x -2=1.……② 合并同类项,得-x -1=1.……③ 移项,得-x =2.……④ 解得x =-2.……⑤∴原方程的解为x =-2.……⑥一个应用——分式方程的应用11.某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9元/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.(1)该种干果第一次的进价是多少?(2)超市销售这种干果共盈利多少元?四种思想思想1数形结合思想12.如图,点A,B在数轴上,它们所表示的数分别是-4,2x+23x-5,且点A,B到原点的距离相等,求x的值.(第12题) 思想2整体思想13.已知实数a满足a2+4a-8=0,求1a+1-a+3a2-1·a2-2a+1a2+6a+9的值.思想3 消元思想14.已知2x -3y +z =0,3x -2y -6z =0,且z≠0,求x 2+y 2+z 22x 2+y 2-z 2的值.思想4 类比思想15.化简:⎝ ⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b .答案专训11.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,原式=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x+1x=5.∴⎝ ⎛⎭⎪⎫x +1x 2=25.∴x 2+1x 2=23.∴x 4+1x 4=⎝⎛⎭⎪⎫x 2+1x 22-2=232-2=527.点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以原式=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.5.解:∵4x 2-4x +1=0, ∴(2x-1)2=0.∴2x=1. ∴原式=1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k)2-(3k)2+2(4k)2 2k·3k+3k·4k+2k·4k=27k226k2=2726.专训21.B2.B点拨:∵x2-2x+m=x2-2x+1+m-1=(x-1)2+m-1,∴当m-1>0,即m>1时,式子1x2-2x+m总有意义.3.②④⑤4.A 5.B6.解:方程两边同乘x2-1,得2(x-1)+k(x+1)=6.整理得(2+k)x+k-8=0.∵原分式方程有增根x=1,∴2+k+k-8=0.解得k=3.7.解:方程两边都乘x(x-3),得(2m+x)x-x(x-3)=2(x-3),即(2m+1)x=-6.①(1)当2m+1=0时,此方程无解,∴原分式方程也无解.此时m=-0.5;(2)当2m+1≠0时,要使关于x的分式方程2m+xx-3-1=2x无解,则x=0或x-3=0,即x=0或x=3.把x=0代入①,m的值不存在;把x=3代入①,得3(2m+1)=-6,解得m=-1.5.∴m的值是-0.5或-1.5.8.解:(1)原式=12x-30y15x+40y.(2)原式=5x +15y25x -y.9.解:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2 =8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2 =2aa +b. 当a =-12,b =23时,原式=2×⎝ ⎛⎭⎪⎫-12-12+23=-6.10.解:步骤①去分母时,没有在等号右边乘x ; 步骤②括号前面是“-”号,去括号时,没有变号; 步骤⑥前没有检验. 正确的解答过程如下:解:方程两边都乘x ,得1-(x -2)=x , 去括号,得1-x +2=x ,移项、合并同类项,得-2x =-3, 解得x =32.经检验x =32是原分式方程的解.11.解:(1)设该种干果第一次的进价是x 元/kg ,则第二次的进价是(1+20%)x 元/kg. 由题意,得9 000(1+20%)x =2×3 000x +300.解得x =5.经检验,x =5是原分式方程的解,且符合题意. 答:该种干果第一次的进价是5元/kg.(2)[3 0005+9 0005×(1+20%)-600]×9+600×9×80%-(3 000+9 000)=5 820(元).答:超市销售这种干果共盈利5 820元.12.解:由题意得2x +23x -5=4.去分母,得2x +2=4(3x -5).解得x =2.2.经检验,x =2.2是原方程的根.所以x 的值是2.2.点拨:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.13.解:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a 2+4a +3.由a 2+4a -8=0得a 2+4a =8,故原式=411.点拨:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子.14.解:由2x -3y +z =0,3x -2y -6z =0,z≠0,得到⎩⎨⎧2x -3y =-z ,3x -2y =6z.解得⎩⎨⎧x =4z ,y =3z.所以原式=(4z )2+(3z )2+z22(4z )2+(3z )2-z 2=16z 2+9z 2+z 232z 2+9z 2-z 2=1320.点拨:本题先用含z 的式子分别表示出x 与y ,然后代入所求式子消去x ,y 这两个未知数,从而简化求值过程,体现了消元思想.15.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2aa +b.点拨:本题是类比思想的典范,分式的性质、运算顺序、运算律都可以类比分数的相关知识.专训2 分式的意义及性质的四种题型名师点金:1.从以下几个方面透彻理解分式的意义:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零;(4)分式值为正数⇔分子、分母同号;(5)分式值为负数⇔分子、分母异号.2.分式的基本性质是约分、通分的依据,而约分、通分为分式的化简求值奠定了基础.)分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( ) A .1个 B .2个 C .3个 D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个.分式有无意义的条件3.无论a 取何值,下列分式总有意义的是( )A .a +1a 2B .a -1a 2+1C .1a 2-1D .1a +1 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m总有意义,试求m 的取值范围.分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( ) A .x <-2 B .x <1C .x >-2且x≠1D .x >17.若分式3x -42-x的值为负数,则x 的取值范围是________. 8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.分式的基本性质及其应用9.下列各式正确的是( )A.ab=a2b2B.ab=aba+bC.ab=a+cb+cD.ab=abb210.要使式子1x-3=x+2x2-x-6从左到右变形成立,x应满足的条件是( )A.x>-2 B.x=-2 C.x<-2 D.x≠-211.已知x4=y6=z7≠0,求x+2y+3z6x-5y+4z的值.12.已知x+y+z=0,xyz≠0,求x|y+z|+y|z+x|+z|x+y|的值.专训2 分式运算的八种技巧名师点金分式的加减运算中起关键作用的就是通分.但对某些较复杂或具有特定结构的题目,使用一般方法有时计算量太大,容易出错,有时甚至算不出来,若能结合题目结构特征,灵活运用相关性质、方法、解题技巧,选择恰当的运算方法与技能,常常能达到化繁为简、事半功倍的效果.约分计算法1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.整体通分法2.计算:a -2+4a +2.顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m 3m -2n -1.裂项相消法⎝ ⎛⎭⎪⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abc ab +bc +ac的值.倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.答案专训11.C 点拨:4x -25,2m ,x 2π+1不是分式. 2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式.3.B 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1.7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1. 9.D 10.D11.解:设x 4=y 6=z 7=k(k≠0),则x =4k ,y =6k ,z =7k. 所以x +2y +3z 6x -5y +4z =4k +2×6k+3×7k 6×4k-5×6k+4×7k =37k 22k =3722. 12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z |-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z |-z|=1-1-1=-1. 综上所述,所求式子的值为1或-1.专训21.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程.2.解:原式=a -21+4a +2=a 2-4a +2+4a +2=a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减.3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1= x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x (x +1)(x -1)=4n -6m (3m -2n +1)(3m -2n -1). 5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n(n+1)=1 n -1n+1进行裂项,然后相加减,这样可以抵消一些项.6.解:1a+1b=16,1b+1c=19,1a+1c=115,上面各式两边分别相加,得⎝⎛⎭⎪⎫1a+1b+1c×2=16+19+115,所以1a+1b+1c=31180.易知abc≠0,所以abcab+bc+ac=11c+1a+1b=18031.7.解:由xx2-3x+1=-1,知x≠0,所以x2-3x+1x=-1.所以x-3+1x=-1.即x+1x=2.所以x4-9x2+1x2=x2-9+1x2=⎝⎛⎭⎪⎫x+1x2-11=22-11=-7.所以x2x4-9x2+1=-17.8.解:以x,y为主元,将已知的两个等式化为⎩⎨⎧4x-3y=6z,x+2y=7z.解得x=3z,y=2z.因为xyz≠0,所以z≠0.所以原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.点拨:此题无法直接求出x,y,z的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.专训3 巧用分式方程的解求字母的值名师点金:巧用分式方程的解求字母的值主要体现在以下几方面:(1)利用方程解的定义求字母的值,解决这类问题的方法是将其解代入分式方程,即可求出待定字母的值;(2)利用分式方程有解、有增根、无解求字母的取值范围或值时,一般都是列出关于待定字母的不等式或方程,通过解不等式或方程得到字母的取值范围或值.利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=m x -3+2有解,求m 的取值范围.利用分式方程有增根求字母的值3.若分式方程x x -1-m 1-x=2有增根,则m =________. 4.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.利用分式方程无解求字母的值5.(中考·东营)若分式方程x -a x +1=a 无解,则a =________. 6.已知关于x 的方程x -4x -3-m -4=m 3-x无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1. (1)若方程的增根为x =2,求a 的值;(2)若方程有增根,求a 的值;(3)若方程无解,求a 的值.答案专训1.解:解分式方程32x =1x -1,得x =3. 经检验,x =3是该方程的解.将x =3代入2x +4=m x, 得27=m 3.解得m =67. ∴m 2-2m =⎝ ⎛⎭⎪⎫672-2×67=-4849. 2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解,∴x=4-m 不能为增根.∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解.3.-14.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3.当x =3时,m +2×(3-3)=3+3,解得m =6;当x=-3时,m+2×(-3-3)=-3+3,解得m=12.综上所述,原方程的增根是x=3或x=-3.当x=3时,m=6;当x=-3时,m=12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m的值.5.1或-16.解:原方程可化为(m+3)x=4m+8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m+3=0且4m+8≠0,此时m=-3;(2)若整式方程的根是原方程的增根,则4m+8m+3=3,解得m=1.经检验,m=1是方程4m+8m+3=3的解.综上所述,m的值为-3或1.7.解:(1)原方程去分母并整理,得(3-a)x=10.因为原方程的增根为x=2,所以(3-a)×2=10.解得a=-2.(2)因为原分式方程有增根,所以x(x-2)=0.解得x=0或x=2.因为x=0不可能是整式方程(3-a)x=10的解,所以原分式方程的增根为x=2.所以(3-a)×2=10.解得a=-2.(3)①当3-a=0,即a=3时,整式方程(3-a)x=10无解,则原分式方程也无解;②当3-a≠0时,要使原方程无解,则由(2)知,此时a=-2.综上所述,a的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.。

八年级数学下册第十六章《分式》单元计算题大全新课标人教版(6)

八年级数学下册第十六章《分式》单元计算题大全新课标人教版(6)

⼋年级数学下册第⼗六章《分式》单元计算题⼤全新课标⼈教版(6)⼋年级数学下册第⼗六章《分式》单元计算题⼤全新课标⼈教版1. 计算:(1)11123x x x ++(2)3xy 2÷x y 262.2223189218a a a a a +-÷-+-+, 2221()2444x x xx x x x x+----+- 3. 计算题⑴22124a aa +-- ⑵22233mn mn n p p ÷ ?⑶112---x x x ⑷2222x y xy y x x x ??--÷-⑸ 121200523-??-+ ?⑹()()23323a b ab ----?(结果只含正整数指数幂)a cb ac ÷÷(4)42232)()()(abc ab c c b a ÷-?- (5)22233)()()3(x y x y y x y x a +-÷-?+5. 计算:x x x x -+--+11211 21211+++-+x x x xx x x x x x 13632+-+--)2122()41223(2+--÷-+-a a a aaa a a a a -?+--4)22( 6. 计算(1)3223322a b a c cd d a÷? ?-7. 计算:??+--- ++11111212x x x x x x 8. 22326123()()y y xy x x÷-.22234()()()x y y y x x ÷-, 9. 22222a b ab b a a ab a ?? -+÷+ ?-??10. 计算:()2222x 2xy+y x yxy+x xy x++÷-÷a a a 2122+-12.6532----x x x x x ; 211a a a +-+ 42()a a a a+-÷; 13. 计算:22()x y- 22)2(4yx y x -÷ 14. 计算(1)168422+--x x x x (2)mn nn m m m n n m -+-+--2 15. 计算:(1)232223(4)(2)x y z xy z -?- ;(2)9323496222-?+-÷-+-a a b a ba a .(3)2221()244x x x x x -+÷+--(4) 44()()xy xy x y x y x y x y -++--+16.化简:1441312-+-÷?--+x x x x x17. 22a b b a b a b a b a b --??÷ ?+-+??-18.2121()2a bca bc ---÷ 221()()x x x x ---÷- 30(0.25)(0.25)--+-332p mn p n n m ÷???? ??? ⑵2)22444(22-÷+-++--x xx x x x x (3)11141+-???? ??-+-a a a a a (4)()1632125.00 2+--?-?-π20. 计算:(1)222x y xy x y x y +--- (2)???? ??-÷??? ?-y x x y 1121. 22[()]33x y x yx y x x y x x +----÷+ 222212111a a a a a a a a --÷++++; 22.??-÷x y y x 346342;-y x x y x y x 22426438; 23. 化简:232224a a aa a a ??-÷ ?+--??. 24. 计算:(1)130)21()2()21(----÷- ;(2)329122---m m . 25.xy x xz xy x z y x y xy x z y x y x --+?--++÷---2222222222)(2)(; () yy y x xy xy -+?+-33212.27. 计算:)12()23()344(222222---÷++-?+--x x x x x x x x 28.215()()x xy x y x x x y x --+-÷- 42321()()x y x y y--÷29.(1+1m)÷22121m m m --+30. 计算⑴2332)2(2ab c d a cd b a ?÷-)((2)2228224a a a a a a +-??+÷ ?--??(3)44()()xy xy x y x y x y x y-++--+ (4)2233x y x y x y x x y x x ??+-??---÷ +? 31. 计算:()()()()()() c a a b b ca b b c b c c a c a a b ---++------32.222()111a aa a a ++÷++- 33.1)111(2-÷-+x x x34. 计算:(1))141)(141(+-+-+-a a a a a a (2) 1211111222+-+-÷??? ??---x x x x x 35. 计算:32)(y x y x --? 32232)()2(b a c ab ---÷)102.3()104(36- 2125)103()103(--?÷?36.624)373(+-÷+--a a a a 37. 计算下列各式:(1)22 33222)(b a ab ba b a b a ba -+--+÷(2)a a a a a a a a 444122)(22-+---+÷-38.计算(1)ab c 2cb a 22?(2)322542n m m n- (3)-÷x x y 27(4)-8xy xy 52÷ (5)39. 化简(1)2232129x y x y (2)222x x y xy -- (3)222221x x x --+ (4) 22 39m m m-- (5)()()2222x y z x y z --+-40. 计算: ()3322232n m n m --? 41.计算:33xx 1x 1+++ ⑵.计算:223x 1x 36x 6x x +-?-+ 42. 计算⑴5331111x x x x+---- ⑵22y xy x y y x -+- ⑶()432562b ab a ÷- (4)()113423-??--+--(5)(1a x -)÷22x a x -43. 计算:23011)31(64)3()1(4-+--?-+-π计算:y x yx28712÷ 44. 计算2222444(1)(4);282a a a a a a a --+÷-+--(2)0)1(213=-+--x x x x 45. 计算:(3)96312-++a a (4) 96-22; 46. 22211()961313a a a a a a -÷++++ 13(1)224a a a --÷-- 47.223252224x x x x x +??+÷ ?-+-??48. 计算:(1);(2)()2442444222-+-?-÷++-a a a a a a a(3)a b a ab ab a b a b a b a -+÷--?-2232 (4)2216168m m m -++÷428m m -+·2 2m m -+(5)(2b a )2÷(b a -)·(-34b a)3(6)a b ab a b a b ab a b 2222121121-+---÷---++49. 化简:221211241x x x x x x --+÷++-- 2121a a a a a -+?-÷50. 计算:(1)22424422x x xx x x x ??--+÷ ?-++-??(2) 121a a a a a --??÷- ,(3)()2111211x x x ??+÷-- ?--?(4)232224xx x x x x ??-÷ ?-+-??,51. 计算:(1)423223423b a d c cd ab ? (2)m m m m m --?-+-3249622 (3).(xy -x 2)÷xy y x - (4).24244422223-+-÷+-+-x x x x x x x x (5).12--x x ÷(x +1-13-x )(6).x x x x 3922+++969(8)x y y x y x y x y y x ----+-+2. (9).232323194322---+--+x x x x x 52. 计算:)2(121y x x yx y x x --++- 53.2243312()()22a a b a b b -÷- 2221644168282m m m m m m m ---÷++++,54. 计算:cd b a c ab 4522223-÷ 411244222--?+-+-a a a a a am m m 7149122-÷- 228241681622+-?+-÷++-a a a a a a a 55.计算3223322a b a c cd d a÷? ?-56. 计算:24424441622++++-÷++-m m m m m m m 57.11)1111(-÷--+a a a 58. 计算:(1) ()()322322y x z xy ---÷ (2) x yx y x xy x y x x -÷211111222+-+-÷??? ??---x x x x x 59. 化简下列各式1. 212312+-÷??? ??+-x x x2.2111a a a a -++-3. 22(1)b a a b a b-÷+-4.352242a a a a -??÷-- ?--??5.)2422(4222+---÷--x x x x x x6. (x 2+4x -4)÷ x 2-4 x 2+2x7. 1-aa a a a 21122+-÷- 8. 2211(1).a a a a--÷+ 9. 2112()x x xx x x +++÷+ 10. 6931x x x x --÷- ? ??11. 21(1)1xx x x x ??-÷+ ?--??12.39631122-+÷+---+x xx x x x x 13. 432112--÷??? ??--a a a 14. 1224422++÷--a a a a15.22444()2x x x x x x -+÷-- 16. ,1 11122--+÷-x xx x x 17. 260. 计算: aa --+242 61. 计算与化简:(1)222)2222(x x x x x x x --+-+- (2) 1- aa a a a 21122+-÷- 62. 2301()20.1252005|1|2---?++- ()3 22514-++-÷13-, 63. 2141326a a a -??+÷--64.(112-+a a +1)? a a a 122+-65. 计算与化简:(1)222x y y x ?;(2)22211444a a a a a --÷-+-;(3)22142a a a ---;(4)211a a a ---;(5)()()222142y x x y xy x y x +-÷-.66.计算43222??? ?-÷ - -x y x y y x 67. 计算 1、y x axyx y x y 2211-+- 3、1111-÷??--x x x 4、22224421y xy x y x y x y x ++-÷+-- 5、2 2221106532xyx y y x ÷? 6、m n n n m m m n n m -+-+--2 7、4412222+----+x x x x x x 8、x x x x x x x x 4)44122(22-÷+----+ 9.xx x x x x x x 4)44122(22-÷+----+ 10.2144122++÷++-a a a a a 68. 化简下列分式(1)232123ab b a - (2)232213n m nm - (3))1(9)1(322m ab m b a ---(4))(12)(2222x y xy y x y x -- (5)22112mm m -+- (6)222963a ab b aba +-- 69. 计算:(1)b a ab a b --- (2)324332??x y y x (3)()1302341200431-??--+- - (4)()()222234a a a a -÷-70. 211()(3)31a a a a +---- 71.计算:22121124x x x x ++?72. 计算:221.111x x x x x ??-÷ ?-+-?? 73. 计算(1) 22)2(4y x y x -÷ (2) 432221??--ab a b b a(3)2222255343m n p q mnp pq mn q ?÷ (4)??÷ - -a bc ab c c b a 223274. 计算:(1)(2x y )2·(2y x )3÷(-y x )4;(2)(2b a )2÷(b a -)·(-34b a)375. 计算:①3333x x x x -+-+-;②212211933a a a +--+-;③2111111x x x ++-+-. 76. 计算:(4a a -)÷2a a+.77.233()()()24b b b a a a -÷- 22136932x x x x x x +-÷-+-+ 78. 计算:①2114()22x x x x --?-+;②22214()244x x x x x x x x+---÷--+;③11x x x -?-;④211(1)(1)11x x x +---+;⑤342n m n m n m ÷-? (2)2324222263ab a c c d b b ??-??÷? ? ?-?80.??--+÷--252423x x x x 23111x x x x -??÷+- ?--??81. 计算:(1)1111-÷??? ?--x x x (2)4214121111xx x x ++++++- 82. 计算:11)121(2+-÷+-x x x 83.化简:(1-44822+++a a a )÷aa a 2442+-84. 计算:(1)222x y xy x y x y +--- (2)-÷ -y x x y 11 (3).)1(1aa a a -÷- (4). )(22ab b a a ab a -÷- 85.21(1)(2)x x x++÷+86. 计算:(1)44223x y c ??-(2) mn a a n m 4322? (3) 222 324835154b a n n b a -?。

人教版八年级下册数学第十六章 二次根式测试题含答案

人教版八年级下册数学第十六章 二次根式测试题含答案

人教版八年级下册数学第十六章测试卷一、选择题(每小题3分,共30分)1.下列计算正确的是( )A .532=+B .2553=-C .3226=⨯D .326=÷2.如果a 为任意实数, 下列各式中一定有意义的是( )AB CD 3.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .31 4.下列二次根式,不能与12合并的是( )A .48B .18C .311D .-755.下列计算正确的是( )A =B 1==C .(21-+=D=6.已知ab <0,则b a 2化简后为( )A .b aB . b a -C .b a -D .b a --7.在△ABC 中,BC =,BC 上的高为cm ,则△ABC 的面积为( )A . 2B .cm 2C . 2D .28.( )ABCD9.|3﹣y |=0( )A .9B .C .D .﹣910.实数a 在数轴上的位置如图所示,则错误!未找到引用源。

化简后为( )A . 7B . -7C . 错误!未找到引用源。

D .无法确定第10题图二、填空题(每小题3分,共30分)11.当6-=x 时,二次根式73x -的值为12.小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?________ (填对或错)13.若代数式2-x x有意义,则x 的取值范围是_____________ 14.已知y =44x x -+-+3,则(y ﹣x )2017= .15.当a = 时,最简二次根式2a -与102a -是同类二次根式;16.把1m m--根号外的因式移到根号内,则得 . 17.如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是3和-1,则点C 所对应的实数是 .第17题图18.已知a 、b 、c 是△ABC ()2940a b --=,则第三边c 的取值范围是____________.19.已知a ,b 18a b +=a +b = .20. 2 2 6 22 10 ⋅⋅⋅、、、、 (第n 个数). 三、解答题(共60分)21.(6分)化简(1(2)60061243--22.(6分)(1)(2)先化简,在求值:22()a b ab b a a a--÷-,其中1a =,1b =.23.(6分)求值: (1)已知a =21,b =41,求b a b --ba b +的值.(2)已知x =251-,求x 2-x +5的值.24.(6分)x 为偶数,求(1+x .25.(8分)一个三角形的三边长分别为,54.(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.26.(8分)在一块边长为m 的正方形土地中,修建了一个边长为m 的正方形养鱼池,问:剩余部分的面积是多少?27.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax +b =0,其中a 、b 为有理数,x 为无理数,那么a =0且b =0.运用上述知识,解决下列问题:(1)如果032)2(=++-b a ,其中a 、b 为有理数,那么a = ,b = ; (2)如果5)21()22(=--+b a ,其中a 、b 为有理数,求2a b +的值.28.(10分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如(231+=+,善于思考的小明进行了如下探索:设(2a m +=+,(其中a 、b 、m 、n 均为正整数)则有2222a m n +=+222,2a m n b mn ∴=+=这样,小明找到了把部分a +. 请你仿照小明的方法探索并解决问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b 得,a = ,b =(2)若(2a m +=+且a 、b 、m 、n 均为正整数,求a 的值.参考答案1.C2.C3.B【解析】最简二次根式是指不能继续化简的二次根式,A 、原式=3;B 为最简二次根式;C 、原式=25;D 、原式=334.B【解析】本题首先将所有的二次根式的化简,如果化简后被开方数相同,则能够进行合并.3212=;3448=;2318= 5.A .【解析】A ==B ==;故该选项错误;C 、(2451+=-=-,故该选项错误;D 212==;故该选项错误.故选A . 6.B【解析】根据题意可得:a <0,b >0,则原式=a .7.C【解析】由三角形面积公式得11422ABC S BC h ==⨯==△(cm 2). 8.B【解析】二次根式的乘除法运算属于同级运算,按照从左到右的运算顺序运算即可. 9.C【解析】根据非负数的性质列出算式,分别求出x 、y 的值,根据二次根式的性质计算即可. 解:由题意得,x ﹣12=0,3﹣y =0,解得,x =12,y =3, 则﹣=2﹣=,故选:C . 10.A 【解析】二次根式的性质为:⎩⎨⎧≤-≥=)0()0(2a a a a a a ,根据数轴可得:a -4 0,a -11 0,则原式=114-+-a a =a -4+11-a =7.11.5. 【解析】当6x =-时,()73736255x -=--==.12.错【解析】二次根式是指含有的式子.13.x ≥0且x ≠2【解析】二次根式的被开方数为非负数,分式的分母不为零.根据性质可得:x ≥0且x -2≠0,解得:x ≥0且x ≠2. 14.﹣1【解析】直接利用二次根式有意义的条件得出x ,y 的值,进而代入求出答案. 解:∵y =++3,∴x =4,y =3,则(y ﹣x )2017=(3﹣4)2017=﹣1. 故答案为:﹣1. 15.4.【解析】根据同类二次根式的定义可得,a -2=10-2a ,解得a =4. 故答案为:4. 16.m -【解析】根据题意可得:m <0,所以211()()m m m m--=--=- 17.23+1.【解析】解:设点C 所对应的实数是x .则有x (-1),解得x =1. 18.5<c <13【解析】根据题意可得:a -9=0,b -4=0,解得:a =9,b =4,则a -b <c <a +b ,即5<c <13. 19.10.==,x 、y 都是正整数,是同类二次根式, ∴28a b ==⎧⎨⎩或82b a ==⎧⎨⎩, ∴a +b =10.20【解析】的倍数,的1倍,依此类推,第n21.(1)-1;(2 【解析】(1)利用平方差公式计算;(2)先将各式化简成最简二次根式,然后合并同类二次根式即可. 解:(1)原式=223-2)()( =2-3 =-1 (2)60061243--= 61066166-- =6)10616(-- =6625-22.(12【解析】(1)先根据绝对值、负整数指数幂、二次根式等知识点分别进行计算,最后进行加减运算即可.(2)先化简分式,再把a 、b 的值代入化简的式子即可求值. 解:(1)原式=34-+1.(2)原式=222a b a ab b a a--+÷=2()a b aa ab -⨯- =1a b-把1a =,1b =代入上式得:12=.23.(1)2;(2)7+【解析】(1)首先根据二次根式的计算法则将所求的二次根式进行化简,然后将a 和b 的值代入化简后的式子进行计算;(2)首先根据二次根式的化简法则将x 进行化简,然后将x 的值代入所求的代数式进行计算. 解:(1)原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时, 原式=4121412-⨯=2. (2)∵x =-251-=4525-+=25+.∴=x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45. 24.6a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩ ∴6<x ≤9 ∵x 为偶数 ∴x =8∴原式=(1+x=(1+x=(1+x∴当x =86.25.(1(2)当x =20或当x 等)【解析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并解:(1)周长=+54;(2)当x =2025=(或当x =455=等)262.【解析】解:22-====m 2).答:剩余部分的面积是m 2.27.(1)a=2,b=-3;(2)5 3 -.【解析】(1),b是有理数,则a﹣2,+3都是有理数,根据如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.即可确定(2)首先把已知的式子化成ax+b=0,(其中a、b为有理数,x为无理数)的形式,根据a=0,b=0即可求解.解:(1)2,﹣3;(2)整理,得(a+b)2+(2a﹣b﹣5)=0.∵a、b为有理数,∴250a ba b+=⎧⎨--=⎩,解得:5353ab⎧=⎪⎪⎨⎪=-⎪⎩,∴523a b+=-.第11 页共11 页。

(完整版)新人教版八年级下数学第十六章分式单元检测题及答案

(完整版)新人教版八年级下数学第十六章分式单元检测题及答案

八年级(下)数学单元检测题(第十六章 分式)一、选择题(每小题3分,共30分)1.下列式子是分式的是( B )A .2xB .x 2C .πx D .2y x + 2.下列各式计算正确的是(C )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am a n m n ++= 3.下列各分式中,最简分式是( A )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( B ) A.3+m m B.3+-m m C 。

3-m m D 。

m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( C ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( D ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则cb a +的值是( D ) A .54 B. 47 C.1 D 。

45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( A )A .x x -=+306030100B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程( D )A .1%206060++=x x B. 1%206060-+=x x C 。

第十六章 分式_题库_初中数学新_西城区学探诊_八年级 学习·探究·诊断下册

第十六章  分式_题库_初中数学新_西城区学探诊_八年级 学习·探究·诊断下册

第十六章 分式测试1 分式(一)课堂学习检测一、选择题:1.在代数式3,252,43,3,2,1,32222xx x x x xy x x -++中,分式共有 ( ). (A)2个 (B)3个 (C)4个(D)5个2.下列变形从左到右一定正确的是 ( ).(A)22--=b a b a (B)bc ac b a = (C)babx ax =(D)22b a b a = 3.把分式yx x+2中的x 、y 都扩大3倍,则分式的值 ( ).(A)扩大3倍 (B)扩大6倍 (C)缩小3倍 (D)不变 4.下列各式中,正确的是 ( ).(A)y x y x y x y x +-=--+- (B)yx yx y x y x ---=--+-(C)yx yx y x y x -+=--+-(D)yx yx y x y x ++-=--+-5.若分式222---x x x 的值为零,则x 的值为 ( ).(A)-1(B)1(C)2(D)2或-1二、填空题:6.当x ________时,分式121-+x x 有意义. 7.当x ________时,分式122+-x 的值为正. 8.若分式1||2--x xx 的值约为0,则x 的值为________.9.分式22112m m m -+-约分的结果是________.10.若x 2-12y 2=xy ,且xy >0,则分式yx yx -+23的值为________.11.填上适当的代数式,使等式成立:(1);)(22222b a b a b ab a +=--+ (2);2122)(2x xxx --=- (3)a b b a b a-=-+)(11(4)⋅=)(22xy xy (二)综合运用诊断三、解答题:12.把下列各组分式通分:(1);65,31,22abca b a - (2)⋅--222,ba aab a b13.把分子、分母的各项系数化为整数:(1);04.03.05.02.0+-x x(2)⋅-+b a ba 3223214.不改变分式的值,使分式的分子与分式本身不含负号:(1);22yx yx ---(2).2)(ba b a ++--15.有这样一道题,计算,))(1)12(()(2222x x x x x x x -+--+其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?(三)拓广、探究、思考16.已知311=-y x ,求分式yxy x y xy x ---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数?18.已知3x -4y -z =0,2x +y -8z =0,求yzyz xy z y x 2222++-+的值.测试2 分式的运算(一)课堂学习检测一、选择题:1.下列各式计算结果是分式的是 ( ).(A)ba m n ÷ (B)n m m n 23⋅(C)xx 53÷(D)3223473yx y x ÷2.下列计算中正确的是 ( ). (A)(-1)0=-1(B)(-1)-1=1(C)33212a a =- (D)4731)()(a a a =-÷-3.下列各式计算正确的是 ( ).(A)m ÷n ·m =m (B)m nn m =⋅÷1(C)11=⋅÷m m m(D)n ÷m ·m =n4.计算54)()(ab a a b a -⋅-的结果是 ( ). (A)-1 (B)1 (C)a1(D)ba a--5.下列分式中,最简分式是 ( ).(A)21521y xy(B)yx y x +-22(C)y x y xy x -+-222 (D)y x y x -+226.下列运算中,计算正确的是 ( ).(A))(212121b a b a +=+ (B)ac b c b a b 2=+ (C)aa c a c 11=+- (D)011=-+-ab b a 7.a b a b a -++2的结果是 ( ).(A)a2-(B)a4(C)b a b --2(D)ab- 8.化简22)11(y x xyy x -⋅-的结果是 ( ).(A)yx +1(B)yx +-1(C)x -y (D)y -x二、填空题:9.=-÷2232)()(y x y x __________.10.=-232])[(x y __________.11.=-+-ab b b a a 22__________. 12.=-+-aa a 21422__________. 13.若x <0,则=---|3|1||31x x __________. 14.若ab =2,a +b =3,则=+ba 11__________. (二)综合运用诊断三、解答题:15.计算:).()()(432b a bab a -÷-⋅-16.计算:⋅-+-++222244242x y yx y x y y x17.计算:⋅-÷+--+11)1211(22x x x x18.计算:).2(121y x xy x y x x --++-19.先化简,再求值:,1112+---x xx x 其中x =2.(三)拓广、探究、思考20.等式236982-++=-++x Bx A x x x 对于任何使分母不为0的x 均成立,求A 、B 的值.21.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B 玉米试验田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg . (1)哪种玉米田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?测试3 分式方程(一)课堂学习检测一、选择题:1.方程132+=x x 的解为 ( ). (A)2 (B)1 (C)-2(D)-12.解分式方程,12112-=-x x 可得结果 ( ).(A)x =1 (B)x =-1 (C)x =3 (D)无解3.要使54--x x 的值和xx--424的值互为倒数,则x 的值为 ( ). (A)0 (B)-1 (C)21(D)14.已知,4321--=+-y y x x 若用含x 的代数式表示y ,则以下结果正确的是 ( ). (A)310+=x y (B)y =x +2 (C)310xy -=(D)y =-7x -25.若关于x 的方程xkx --=-1113有增根,则k 的值为 ( ). (A)3(B)1(C)0(D)-16.若关于x 的方程323-=--x mx x 有正数解,则 ( ). (A)m >0且m ≠3 (B)m <6且m ≠3 (C)m <0 (D)m >6 7.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ). (A))(54b a +小时(B))11(54b a +小时(C))(54b a ab +小时(D)ba ab +小时8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是 ( ). (A)ca 2(B)2ac(C)ac 2(D)2ca 二、填空题:9.x =________时,两分式44-x 与13-x 的值相等. 10.关于x 的方程324+=-b xa 的解为________. 11.当a =________时,关于x 的方程4532=-+x a ax 的根是1. 12.若方程114112=---+x x x 有增根,则增根是________. 13.关于x 的方程11=+x a的解是负数,则a 的取值范围为________. 14.一艘轮船在静水中的最大船速为20千米/时,它在江水中航行时,江水的流速为v千米/时,则它以最大航速顺流航行S 千米所需的时间是________.(二)综合运用诊断三、解方程:15..32121=-+--xx x16.⋅+=+--1211422x xx x x17.⋅-+=+-xx x x x 25316四、列方程解应用题:18.甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了0.5小时还比A 早到2小时,求自行车和汽车的速度.(三)拓广、探究、思考20.解方程:⋅---=---71614131x x x x全章测试一、填空题:1.在代数式222232,3221,12,1,2,3,1,43abx x x b a a y x x b a --+++-中,分式有________.2.当x ________时,分式2+x x 没有意义;当x ________时,分式112+x 有意义;当x ________时,分式113-+x x 的值是零.3.不改变分式的值,把分式的分子和分母各项系数都化成整数:=+-b a ba 3.051214.0________. 4.计算:=---332m m m _________.5.若x =-4是方程311+=-x x a 的解,则a =________. 6.若332-+x x 与35+x 的值互为相反数,则满足条件的x 的值是________. 7.当x ________时,等式512)5(2222+-=+-x x x x x x 两边的值相同.8.加工一批产品m 件,原计划a 天完成,今需要提前b 天完成,则每天应生产_______件产品.9.已知空气的单位体积质量为0.001239g /cm 3,那么100单位体积的空气质量为________g/cm 3.(用科学记数法表示)10.锅炉房储存了P 天用的煤m 吨,要使储存的煤比预定的多用d 天,那么每天应节约________吨.二、选择题:11.下列分式为最简分式的是( ).(A)ab 1533(B)a b b a --22 (C)x x 32(D)y x y x ++2212.下列分式的约分运算中,正确的是( ).(A)339x xx =(B)bac b c a =++ (C)0=++ba ba (D)1=++ba ba 13.分式111211122-+-+x x x x 、、的最简公分母是( ).(A)(x 2+1)(x -1) (B)(x 2-1)(x 2+1) (C)(x -1)2(x 2+1) (D)(x -1)2 14.下列各式中,正确的个数有( ).(1)2-2=-4; (2)(32)3=35; (3);41)2(22x x -=-- (4)(-1)-1=1. (A)0个 (B)1个 (C)2个 (D)3个 15.使分式x 326--的值为负数的条件是( ). (A)32<x (B)x >0 (C)32>x (D)x <016.使分式1||-x x有意义的条件是( ). (A)x ≠1 (B)x ≠-1 (C)x ≠1且x ≠-1 (D)x ≠017.在下面的运算中:①,21212mnn m m =+ ②,41)21(2222xx x x +=+ ③,xz y x z x y +-=+- ④⋅=--=---=-+-x x x x x x x x x 1)1(1)1(1)1()1(1)1(22222 其中错误的有( ).(A)4个 (B)3个 (C)2个 (D)1个18.如果分式)(3)(b a b a a ++的值是零,那么a 、b 满足的条件是( ).(A)a =-b (B)a ≠-b(C)a =0(D)a =0且a ≠-b19.若关于x 的分式方程11+=+x m x x 无解,则m 的值为( ). (A)1 (B)0 (C)-1 (D)-220.有一项工程需在规定日期内完成,如果甲队去做,恰能如期完成;如果乙队去做,要超过规定日期3天.现由甲、乙两队合作2天后,余下的工程由乙队单独去做,恰好在规定日期内完成.如果设规定日期为x 天,下列关于x 的方程中错误的是( ).(A)132=++x x x (B)332+=x x (C)1)2(312)311(=-++⨯++x x x x (D)1311=++x x 三、解答下列各题:21.⋅+----112223x x xx x x 22.⋅-÷+--24)22(x x x x x x23.⋅⎪⎭⎫⎝⎛--÷⎪⎪⎭⎫ ⎝⎛-++--+64121622322222x x x x x x x x四、解方程:24.⋅++=+-312132x x x 25.2163524245--+=--m m m m五、列方程解应用题:26.A 、B 两地相距80千米,一辆大汽车从A 地开出2小时后,又从A 地开出另一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B 地,求两种汽车每小时各走多少千米.答案与提示第十六章 分式测试1 分式(一)1.B . 2.C . 3.D . 4.A . 5.A . 6.⋅=/217.⋅-<21 8.0. 9.⋅+-11m 10.1. 11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.(二)12.(1);6562632223bc a a,bc a bc ,bc a c a -(2)))(()(b a b a a b a b -++,))((2b a b a a a -+. 13.(1);2152510+-x x(2)⋅-+b a ba 6491214.(1);22xy yx --(2)⋅-+ba b a 2 15.化简原式后为1,结果与x 的取值无关.(三) 16.⋅53 17.x =0或2或3或-1. 18.⋅23 测试2 分式的运算(一)1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B . 9.x 4y .10..x y 612 11.a +b . 12.⋅+21a 13.⋅-922x x 14.⋅-23(二)15.⋅6ba16.⋅+y x x 22提示:分步通分. 17.2x . 18.1. 19.化简得,1)1(+--x x 把x =2代入得⋅-31(三)20.A =3,B =5.。

人教版八年级数学第十六章二次根式测试题(含答案)

人教版八年级数学第十六章二次根式测试题(含答案)

人教版八年级数学第十六章二次根式测试题(含答案)人教版八年级数学第十六章二次根式测试题(含答案)一、单选题(共20题;共40分)1.下列二次根式中,最简二次根式是()XXX.下列根式中,属于最简二次根式的是()A.﹣XXX下列根式中,不是最简二次根式的是()XXX.下列计算正确的是()XXX.函数中自变量的取值范围是()A.≥-2B.≥-2且≠1C.≠1D.≥-2或≠16.下列各式一定是二次根式的是()XXX.(2015•黄冈)下列结论正确的是()A.C.使式子B.单项式的系数是﹣1的值等于,则a=±1有意义的x的取值范围是x>﹣1 D.若分式8.以下式子没成心义的是()A.9.式子B.C.D.有意义的条件是()A.x≥3B. x>3C.x≥﹣3D. x>﹣310.的值是()A. 3B.﹣3C. ±3D. 611.要使式子在实数规模内成心义,字母a的取值必需满意A.a≥2B.a≤2C.a≠2D.a≠012.二次根式成心义的前提是()A. x>3B. x>﹣3C.x≥﹣3D.x≥3第1页13.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A.x≤10B.x≥10C. x<10D. x>1014.以下运算精确的选项是()A.﹣=B.=2C.﹣=D.=2﹣15.计算A. 6B. 4的成效是()C. 2;(2)+6 D. 12;(3);(4);(5).16.下列各式是二次根式的有1)()A. 4个B. 3个C. 2个D. 1个17.二次根式中,x的取值范围是()A.x≤3B. x=3C.x≠3D. x<318.下列二次根式中,是最简二次根式的是()XXX.以下式子中,属于最简二次根式的是()XXX.已知a为实数,下列各式是二次根式的是()XXX、填空题(共9题;共10分)21.当________时,22.计算23.将24.函数25.若代数式26.计算XXX。

的结果是________.化成最简二次根式的成效为________.中,自变量x的取值范围是________.成心义,则x的取值规模为________.+()2=________.,则其面积为________.的平行四边形的周长是________.27.一个等边三角形的边长为28.相邻两边长分别是2+29.当x取________时,2﹣与2﹣的值最大,最大值是________.第2页3、计较题(共4题;共25分)30.若a,b为有理数,且31.计较:32.化简:×(+=).,求的值.33.计较:(1)(2)×+-;4、解答题(共2题;共15分)34.计较题(1)(2)35.如图,在四边形ABCD中,∠A=∠BCD=90°,∠B=45°,,.求四边形ABCD的面积.五、综合题(共1题;共10分)36.一个三角形的三边长划分为、、.(1)求它的周长(请求成效化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值第3页谜底剖析局部一、单选题1.C2.B3.B4.D5.B6.C7.B8.B9.C10.A11.A12.C13.A14.A15.D16.C17.A18.D19.B20.B二、填空题21.-2≤x≤22.223.324.25.x≥2且x≠326.627.28.829.5;2三、计算题30.解:b=131.解:原式=32.解:原式==2﹣=4.33.(1)解:(2)解:四、解答题+2+﹣=6﹣2=4.+=|2﹣|+|2+|++=2+3+=,因为a、b都为有理数,所以a=0,b=,所以第4页34.(1)解:原式=(2)解:原式=。

华东师大版数学八年级下册-第16章-分式--章节检测题-含答案

华东师大版数学八年级下册-第16章-分式--章节检测题-含答案

华东师大版数学八年级下册 第16章 分式 章节检测题一、选择题1.下列分式是最简分式的是( )A 。

错误!B 。

错误!C.a +b a 2+b 2D.错误! 2.使分式错误!有意义,x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1或x ≠2D .x ≠1且x ≠23.若分式x -2x +3的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .24.下列各式中,与分式错误!相等的是( )A.错误! B 。

错误!C.错误!(x ≠y ) D 。

错误!5.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=错误!C .a -2×b -2=a 2×b 2 D.a 2-b 2b -a=a +b 6.分式方程3x =4x +1+1的解是( ) A .x =-3 B .x =1C .x 1=3,x 2=-1D .x 1=1,x 2=-37.若关于x 的分式方程错误!=2-错误!的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,38.已知a 2+a -2=7,则a +a -1的值( )A .49B .47C .±3D .39.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,下列正确的是( )A.错误!=错误!B.错误!=错误!C 。

错误!=错误!D 。

错误!=错误!二、填空题10.若分式错误!(m -n≠0)的分母经过通分后变为m 2-n 2,则分子变为_____5m 2+5mn _______.11.已知错误!与错误!互为倒数,则x 的值为________.12.在学习负整数指数幂的知识后,明明给同桌晶晶出了如下题目:将(p 3q -2)2(-3p 4q ( ))-3的结果化为只含有正整数指数幂的形式,其结果为-错误!,其中“( )"处的数字是多少?聪明的你替晶晶同学填上“( )”的数字______.13.若关于x 的分式方程错误!-2=错误!有增根,则m 的值为______.14.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM 2.5检测指标,“PM 2.5”是指大气中危害健康的直径小于或等于2。

第16章分式单元复习训练卷2021-2022学年华东师大版八年级数学下册(word版含答案)

第16章分式单元复习训练卷2021-2022学年华东师大版八年级数学下册(word版含答案)

华东师大版八年级数学下册第16章 分式单元复习训练卷一、选择题(共10小题,每小题4分,共40分)1. 若分式|x|-1x -1的值等于0,则x 的值为( ) A .-1 B .0 C .1 D .±12. 某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ) A .8-a b 分钟 B .8a +b分钟 C .(8-a b +1)分钟 D .8-a -b b分钟 3. 若x ,y 的值均扩大为原来的5倍,则下列分式的值保持不变的是( ) A.2+x 2+y B.x 2y 3 C.x +y x 2-y 2 D.x 3(x +y)34. 下列说法:①解分式方程一定会产生增根;②方程x -2x2-4x +4=0的根为x =2;③方程12x =12x -4的最简公分母为2x(2x -4);④x +1x -1=1+1x +1是分式方程. 其中正确的个数有( )A .1个B .2个C .3个D .4个5. 已知两个分式:A =-4x 2-4,B =1x +2+12-x,其中x≠±2,则A 与B 的关系是( ) A .相等 B .互为倒数C .互为相反数D .A 大于B6. 化简⎝⎛⎭⎫1-2x -1x 2÷⎝⎛⎭⎫1-1x 2的结果为( ) A.x -1x +1 B.x +1x -1 C.x +1x D.x -1x 7. 如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等,则x 的值为( )A .2.2B .2C .4D .38. 已知13m -12n =1,则4n +3mn -6m 9m +6mn -6n的值是( ) A .-53 B .-54 C.58 D.539.由(1+c 2+c -12 )值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( ) A .当c =-2时,A =12 B .当c =0时,A≠12C .当c <-2时,A >12D .当c <0时,A <1210. 小明用18元买售价相同的一次性医用口罩,小美用290元买售价相同的N95口罩(两人的钱恰好用完),已知每个N95口罩比一次性医用口罩贵27.2元.且小明和小美买到数量相同的口罩.设一次性医用口罩每个x 元,根据题意可列方程为( )A.18x =290x +27.2B.18x =290x -27.2C.18x +27.2=290xD.18x -27.2=290x二.填空题(共6小题,每小题4分,共24分)11. 计算:3y 10x ÷3y 25x 2 =________. 12.计算:2x x -1 -x x -1=__________. 13.若分式x 2-2x x的值为0,则x 的值是____. 14.化简:(1x -4 -8x 2-16)·(x +4)=______. 15. 中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是__ __.16.观察下列一组数:32,1,710,917,1126,…,它们是按一定规律排列的,那么这组数的第n 个数是__________.(n 为正整数)三.解答题(共6小题, 56分)17.(6分) 化简:⎝⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b.18.(8分) 先化简:⎝ ⎛⎭⎪⎫x -4-x x -1÷x 2-4x +4x -1,并将x 从0,1,2中选一个合理的数代入求值.19.(8分) 已知x 2+y 2+8x +6y +25=0,求x 2-4y 2x 2+4xy +4y 2-x x +2y的值.20.(10分) 解下列分式方程:(1)1-x x -2+2=12-x;(2)3x 2-9+x x -3=1.21.(12分) 某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人按原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排多少工人.22.(12分) 阅读下面的材料,解答后面的问题.解方程:x -1x -4x x -1=0. 解:设y =x -1x ,则原方程可化为y -4y=0,方程两边同时乘以y ,得y 2-4=0,解得y 1=2,y 2=-2.经检验,y 1=2,y 2=-2都是方程y -4y=0的解. 当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1或x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13. 上述这种解分式方程的方法称为换元法.问题:(1)若在方程x -14x -x x -1=0中,设y =x -1x ,则原方程可化为______________; (2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_____________; (3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.参考答案1-5ACDAA 6-10AABCA11.x 2y12. x x -113.214.115.3600x -24000.8x=4 16.2n +1n 2+117.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2a a +b. 18.解:原式=x 2-x -4+x x -1·x -1x 2-4x +4=(x +2)(x -2)x -1·x -1(x -2)2=x +2x -2.因为x -1≠0,x -2≠0,所以x≠1,x≠2.所以0,1,2中只能选0.当x =0时,原式=-1.19.解:因为x 2+y 2+8x +6y +25=0,所以(x +4)2+(y +3)2=0.所以x =-4,y =-3. x 2-4y 2x 2+4xy +4y 2-x x +2y =(x +2y )(x -2y )(x +2y )2-x x +2y =x -2y x +2y -x x +2y =-2y x +2y.当x =-4,y =-3时,原式=-35. 20.(1)解:原方程无解.(2)解:x =-4.21.解:(1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的解,且符合题意,所以规定的天数为24 000÷2 400=10(天).答:原计划每天生产的零件个数是2 400个,规定的天数是10天.(2)设原计划安排y 个工人.由题意得[5×20×(1+20%)×2 400y+2 400]×(10-2)=24 000,解得y =480.经检验,y =480是原方程的解,且符合题意.答:原计划安排480个工人.22.解:(1)y 4-1y=0 (2)y -4y=0 (3)原方程可化为x -1x +2-x +2x -1=0,①,设y =x -1x +2,则方程①可化为y -1y =0.方程两边同时乘以y ,得y 2-1=0,解得y 1=1,y 2=-1.经检验,y 1=1,y 2=-1都是方程y -1y=0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12,经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。

苏科版八年级下学期数学《分式》章节测试题(含解析)

苏科版八年级下学期数学《分式》章节测试题(含解析)

苏科版八年级下学期数学《分式》章节测试题(含解析)一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣22.若分式,则分式的值等于()A.﹣B.C.﹣D.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±24.已知a2+b2=6ab,则的值为()A.B.C.2 D.±25.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)46.在,,,,中分式的个数有()A.1个B.2个C.3个D.4个7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或38.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.= C.=D.=9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠110.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2二.填空题(共8小题)11.计算:﹣=.12.分式方程的解是.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.14.已知a>b>0,a2+b2=3ab,则的值为.15.当a=2016时,分式的值是.16.已知关于x的方程的解是负数,则m的取值范围为.17.若分式方程的解为x=0,则a的值为.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.20.化简:(a+1﹣)•.21.先化简,再求值:(﹣)+,其中a=2,b=.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案与试题解析一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=1.故选:C.【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.2.若分式,则分式的值等于()A.﹣ B.C.﹣ D.【分析】根据已知条件,将分式整理为y﹣x=2xy,再代入则分式中求值即可.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故答案为B.【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±2【分析】根据解分式方程的方法和关于x的分式方程无解,可以求得相应的m的值,本题得以解决.【解答】解:方程两边同乘以x,得x﹣m=mx﹣x解得,x=∵关于x的分式方程无解,∴x=0或2﹣m=0,解得m=0或m=2,故选C.【点评】本题考查分式方程的解,解题的关键是明确分式方程什么时候无解.4.已知a2+b2=6ab,则的值为()A.B.C.2 D.±2【分析】首先由a2+b2=6ab,即可求得:(a+b)2=8ab,(a﹣b)2=4ab,然后代入即可求得答案.【解答】解:∵a2+b2=6ab,∴a2+b2+2ab=8ab,a2+b2﹣2ab=4ab,即:(a+b)2=8ab,(a﹣b)2=4ab,a+b=±2,a﹣b=±2,∴当a+b=2,a﹣b=2时,=;当a+b=2,a﹣b=﹣2时,=﹣;当a+b=﹣2,a﹣b=2时,=﹣;当a+b=﹣2,a﹣b=﹣2时,=.故选:B.【点评】本题主要考查完全平方公式.注意熟记公式的几个变形公式,还要注意整体思想的应用.5.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)4【分析】利用最简公分母就是各系数的最小公倍数,相同字母或整式的最高次幂,所有不同字母或整式都写在积里求解即可.【解答】解:=,,=,所以分式,,的最简公分母是(a﹣1)2(a+1)2.即(a2﹣1)2故选:A.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.6.在,,,,中分式的个数有()A.1个 B.2个 C.3个 D.4个【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.【解答】解:分母不含字母,不是分式;是分式;是分式;π是数字不是字母,不是分式,是分式.故选C.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或3【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴|x|﹣2=0.解得:x=±2.当x=2时,x2﹣4x+4=0,分式无意义,当x=﹣2时,x2﹣4x+4=16≠00,分式有意义.∴x的值为﹣2.故选:B.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.8.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1【分析】首先根据解分式方程的步骤,求出关于x的分式方程﹣=1的解是多少;然后根据分式方程的解为负数,求出k的取值范围即可.【解答】解:由﹣=1,可得(x+k)(x﹣1)﹣k(x+1)=x2﹣1,解得x=1﹣2k,∵1﹣2k<0,且1﹣2k≠1,1﹣2k≠﹣1,∴k>且k≠1.故选:B.【点评】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.二.填空题(共8小题)11.计算:﹣=.【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣===.故答案为:.【点评】考查了分式的加减法,注意通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.12.分式方程的解是x=﹣1.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.【分析】先求得小王每小时分拣的件数,然后根据小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同列方程即可.【解答】解:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:.故答案为:.【点评】本题主要考查的是分式方程的应用,根据找出题目的相等关系是解题的关键.14.已知a>b>0,a2+b2=3ab,则的值为.【分析】先依据完全平方公式得到(a+b)2=5ab,(a﹣b)2=ab,然后由=求解即可.【解答】解:∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab.∵a>b>0,∴>0.∴===.故答案为:.【点评】本题主要考查的是求分式的值,依据完全平方公式求得=是解题的关键.15.当a=2016时,分式的值是2017.【分析】首先化简分式,然后把a=2016代入化简后的算式,求出算式的值是多少即可.【解答】解:当a=2016时,=﹣===a+1=2016+1=2017.故答案为:2017.【点评】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.16.已知关于x的方程的解是负数,则m的取值范围为m>﹣8且m≠﹣4.【分析】求出分式方程的解x=﹣,得出﹣<0,求出m的范围,根据分式方程得出﹣≠﹣2,求出m,即可得出答案.【解答】解:,2x﹣m=4x+8,﹣2x=8+m,x=﹣,∵关于x的方程的解是负数,∴﹣<0,解得:m>﹣8,∵方程,∴x+2≠0,即﹣≠﹣2,∴m≠﹣4,故答案为:m>﹣8且m≠﹣4.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出﹣<0和﹣≠﹣2,题目具有一定的代表性,但是有一定的难度.17.若分式方程的解为x=0,则a的值为5.【分析】根据方程的解的定义,把x=0代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把x=0代入方程得:=1,解得:a=5,故答案是:5.【点评】解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.【分析】根据题意,易知倒出的水的规律,第n次倒出的水=,然后从1升水中逐次减去每一次倒的水,再进行计算即可.【解答】解:根据题意可知第一次倒出:,第二次倒出:,第三次倒出:,…第n次倒出:,∴第10次倒出:,∴倒了10次后容器内剩余的水量=1﹣(++…+)=1﹣(+﹣+﹣+…+﹣)=1﹣(1﹣)=.故答案是.【点评】本题考查了分式的混合运算,解题的关键是注意寻找规律,如:第n次倒出:;以及=﹣.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.【分析】先化简分式,再把x=﹣1代入求解即可.【解答】解:﹣÷=﹣•,=﹣,=,当x=﹣1时原式=.【点评】本题主要考查了分式的化简求值,解题的关键是正确的化简.20.化简:(a+1﹣)•.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.21.先化简,再求值:(﹣)+,其中a=2,b=.【分析】先对所求式子进行化简,然后根据a=2,b=可以求得化简后式子的值,本题得以解决.【解答】解:(﹣)+===,当a=2,b=时,原式=.【点评】本题考查分式的化简求值,解题的关键是会对所求的式子化简并求值.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,经检验,x=60是分式方程的根,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?【分析】(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;(2)设最低可以打m折,根据这批文具盒利润不得少于288元列出一元一次不等式求解.【解答】解:(1)设第一批每只文具盒的进价是x元.根据题意得:,解之得x=15,经检验,x=15是方程的根答:第一批文具盒的进价是15元/只.(2)设最低可打m折(24﹣15×1.2)××+(24×﹣15×1.2)××≥288,m≥8,答:最低可打8折.【点评】本题考查了列分式方程解实际问题的运用,列一元一次不等式解实际问题的运用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【分析】(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x元,根据题意可列出方程=,解方程即可.【解答】解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为=0.325=32.5%;(2)设西服标价x元,根据题意得=,解之得x=750经检验,x=750是原方程的根.答:该套西装的标价为750元.【点评】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.要注意题中给出的判断条件.此题关键是套用优惠率的公式.25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=75是原分式方程的解,即a的值是75.【点评】本题考查分式方程的应用、函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式整章同步测试
(时间90分钟 满分100分)
班级 _____________ 学号 姓名 ________ 得分____
一、填空题(每小题3分,共24分)
1.下列各式:()222
1451, , ,
532x x y x x x
π---其中分式共有( ) A .1个 B .2个 C .3个 D .4个 2.下列计算正确的是( ) A .m m
m
x x
x 2=+ B .22=-n n x x C .3332x x x =⋅ D .264x x x -÷=
3.下列约分正确的是( ) A .
313m m m +=+ B .212y x y x -=-+ C .
1
23369+=
+a b
a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )
A .y x
23 B .2
23y
x C .y x 232 D .2323y x 5.计算
x
x -+
+11
11的正确结果是( ) A .0 B .212x x - C .212x - D .1
2
2-x
6.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千
米,则他在这段路上、下坡的平均速度是每小时( ) A .
2
2
1v v +千米 B .2121v v v v +千米 C .21212v v v v +千米 D .无法确定
7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( ) A .x +48720
─548720= B .x
+=+48720548720 C .
572048720=-x
D .-
48720x +48720
=5
8.若0≠-=y x xy ,则分式
=-x
y 1
1( ) A .
xy
1
B .x y -
C .1
D .-1 二、填空题(每小题3分,共30分)
9.分式12x ,212y ,1
5xy
-
的最简公分母为 . 10.约分:(1)=b
a ab
2
205__________,(2)=+--96922x x x __________. 11.方程
x
x 5
27=-的解是 . 12.利用分式的基本性质填空: (1)
())0(,10 53≠=a axy xy a (2)()
1
422=
-+a a 13.分式方程
11
11112
-=+--x x x 去分母时,两边都乘以 . 14.要使2
4
15--x x 与
的值相等,则x =__________. 15.计算:=+-+3
9
32a a a __________.
16.若关于x 的分式方程3
232
-=--x m x x 无解,则m 的值为__________. 17.若分式
2
31
-+x x 的值为负数,则x 的取值范围是__________.
18.已知2242141
x y y x y y +-=-+-,则的2
4y y x ++值为______. 三、解答题:(共56分) 19.(4分)计算:
(1)11123x x x
++ (2)3xy 2
÷
x y 26
20.(4分)计算: (
)
332
22
32n m n m --⋅
21.(4分)计算
(1)16
8422+--x x x x (2)m n n
n m m m n n m -+
-+--2
22.(6分)先化简,后求值:
222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33
a b ==-
23.(6分)解下列分式方程.
(1)
x
x 3121=- (2)14
12112
-=-++x x x
24.(6分)计算: (1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4
214
121111x
x x x ++++++-
25.(6分)已知x 为整数,且
9
18232322-++-++x x x x 为整数,求所有符合条件的x 的值.
26.(6分)先阅读下面一段文字,然后解答问题:
一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,
如果给初三年级学生每人买1支,则只能按零售价付款,需用(
)
12
-m 元,(m 为正整数,且12
-m >100)如果多买60支,则可按批发价付款,同样需用(
)
12
-m 元.设初
三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).
27.(6分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km
的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
28.(8分)问题探索:
(1)已知一个正分数
m
n
(m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论. (2)若正分数
m
n
(m >n >0)中分子和分母同时增加2,3…k (整数k >0),情况如何?
(3)请你用上面的结论解释下面的问题:
建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.
参考答案
一、选择题
1.A 2.D 3.C 4.A 5.C 6.C 7.D 8.C 二、填空题
9.2
10xy 10.(1)
14a (2)33
x x +- 11.x =-5 12.26a 、2a - 13.(1)(1)x x +-
14.6 15.3a - 16. 17.-1<x <2
3
18.2
三、解答题
19.(1)
116x ;(2)212x 20.17
12m n - 21.(1)4x x -;(2)m m n -- 22.2a a b -,411
23.(1)x =-1;(2)原方程无解. 24.(1)1;(2)8
8
1x - 25.1、2、4、5. 26.①
241≤x ≤300;②x m 12-,60
12+-x m 27.8小时 28.(1)增大;(2)增大;(3)采光条
件变好了,理由略。

相关文档
最新文档