矩阵分析1-5,8)

合集下载

《矩阵分析》课程教学大纲

《矩阵分析》课程教学大纲

《矩阵分析》课程教学大纲课程编号:20821105总学时数:32(理论32)总学分数:2课程性质:专业选修课适用专业:信息与计算科学一、课程的任务和基本要求:本课程的任务是介绍六个内容,分别是线性空间与线性变换,λ---矩阵与Jordan标准形,矩阵函数及矩阵方法,矩阵微分方程,矩阵分解和广义逆矩阵。

要求学生系统掌握这六个内容所涉及的基本概念、基本理论和基本方法,并能熟练地运用这些方法和工具解决理论和实际中遇到的各种问题。

二、基本内容和要求:(一)线性空间与线性变换1、线性空间的定义、性质、基变换与坐标变换公式。

2、子空间的概念、运算及相关定理3、内积空间、正交化方法,空间的正交分解4、线性变换的概念、运算、矩阵表示、线性变换的值域与核的性质5、特征值与特征向量的概念、求法、矩阵的化简要求:理解线性空间、子空间、线性变换、特征值、特征向量的概念,掌握基变换公式,坐标变换公式,正交化方法,特征值和特征向量的求法,矩阵的化简的应用。

(二)λ---矩阵与Jordan标准形a)λ---矩阵的概念,λ---矩阵的标准形b)不变因子与初等因子的概念、求法、性质c)若当标准形理论推导,若当标准形的求法d)Cayley定理、最小多项式的性质及求法要求:理解λ---矩阵、不变因子、初等因子等相关概念,掌握不变因子、初等因子、标准形、Jordan标准形的求法,掌握Cayley定理,最小多项式的应用。

(三)矩阵分析和矩阵函数e)矩阵序列、矩阵函数收敛性f)函数矩阵的极限、连续性、微分与积分g)数量函数关于矩阵的微分及其性质h)向量的范数、范数的等价、按范数的收敛、矩阵的相容范数、算子范数的概念及其性质i)矩阵函数的定义、性质、计算方法要求:理解矩阵序列的极限,矩阵级数的收敛性,函数矩阵的极限,连续性概念,掌握与这些概念相关的命题和定理,会求函数矩阵的微分和积分,会求数量函数关于矩阵的微分,函数向量关于向量的微分,能正确计算矩阵函数(四)矩阵微分方程j)线性常系数齐次微分方程组的定解问题k)线性常系数非齐次微分方程组的定解问题l)n阶常系数微分方程的定解问题m)线性变系数微分方程组的定解问题,转移矩阵的概念、性质、求法。

矩阵分析职业规划

矩阵分析职业规划

矩阵分析职业规划引言职业规划是每个人都应该重视的事情。

通过有效的职业规划,我们能够更好地管理和发展自己的职业生涯,实现自己的职业目标。

而矩阵分析作为一种工具和方法,可以在职业规划过程中发挥重要的作用。

本文将介绍矩阵分析在职业规划中的应用,并提供一些实用的建议和方法。

矩阵分析的基本概念和原理矩阵分析是一种数学工具,通过将复杂的问题转化为矩阵形式,可以更加清晰地展示和分析问题。

在职业规划中,我们可以使用矩阵分析来对自己的优势、劣势、机会和威胁进行评估,并制定相应的职业规划策略。

•优势(Strengths):指个人在某些方面相对其他人的优势,例如技能、知识、经验等。

•劣势(Weaknesses):指个人在某些方面相对其他人的劣势,例如缺乏某项技能、知识等。

•机会(Opportunities):指个人所面临的有利条件和机会,例如行业发展、市场需求等。

•威胁(Threats):指个人所面临的不利条件和威胁,例如竞争激烈、技术变革等。

矩阵分析在职业规划中的应用SWOT 分析SWOT 分析是一种常用的矩阵分析工具,用于评估个人的优势、劣势、机会和威胁,从而确定个人的职业发展方向和策略。

在进行 SWOT 分析时,可以按以下步骤进行:1.列出个人的优势、劣势、机会和威胁。

2.将这些因素分别放入四个象限中,形成一个矩阵。

3.根据矩阵中的结果,确定个人的优势、劣势、机会和威胁,并制定相应的职业规划策略。

成功矩阵分析成功矩阵分析是一种帮助个人评估自己在职业领域成功的潜力的工具。

在进行成功矩阵分析时,可以按以下步骤进行:1.确定成功的关键因素,例如技能、经验、人际关系等。

2.将这些关键因素列为矩阵的行。

3.对于每个关键因素,根据自己的实际情况,将其评分填入矩阵的列。

4.根据矩阵中的结果,评估自己在各个关键因素上的成功潜力,并制定相应的职业规划策略。

优先级矩阵分析优先级矩阵分析是一种帮助个人确定自己在职业规划中应该注重和发展的关键因素的工具。

矩阵分析

矩阵分析

⎤⎞ 0 ⎥⎟ ⎥ ⎟ P −1 ∞ k k ⎥⎟ 5 ⎥⎟ ∑ k k =0 5 ⎦⎠Biblioteka 由于∑ k发散, 所以原级数发散.
k =0
1 k 解:(3)相应的幂级数为∑ (−1) z , k +1 k =0 的收敛半径为 1,
k

1 k (−1) 所以,当ρ ( A) < 1时, A 收敛。 ∑ k +1 k =0
(3) lim PA Q = PAQ
(k ) k →∞
(4)设 lim A
k →∞ ( k ) −1 k →∞
(k )
= A,若A ,A均可逆,则
(k ) −1
lim( A ) = A
例:设A( k )
⎡ k +1 ⎢ 3k =⎢ ⎢ r 1k ⎢ ⎣
⎤ r ⎥ 1 + 1 1⎤ ⎡ (k ) k ⎥ ,B = ⎢ ⎥ 2 k −k⎥ ⎣ 1 1⎦ k2 + k ⎥ ⎦
1 所以,矩阵幂级数∑ 2 k =0 k


⎡1 7⎤ ⎢ −1 −3⎥ 发散。 ⎣ ⎦
k
⎡ 1 -8⎤ 的特征值为 − 3, (2) A = ⎢ 5 ⎥ ⎣ −2 1 ⎦
ρ ( A) = 5,
k k 级数∑ k z 的收敛半径为b, k =0 b

所以,当5 < b时, 原矩阵级数收敛,
当5 > b时, 原矩阵级数发散,
b = 5时,
k ∞ ⎛ k ⎡ 1 −8⎤ k ⎡ −3 0 ⎤ ⎞ −1 ⎟P = P⎜∑ k ⎢ ∑ ⎥ ⎥ k ⎢ ⎜ k =0 5 ⎣ 0 5⎦ ⎟ 1⎦ k = 0 5 ⎣ −2 ⎝ ⎠ ∞ k
⎛ ⎡∞ k k − ( 3) ⎜ ∞ ⎢∑ k k =0 5 ⎜ ⎢ =P ∑ ⎜ k =0 ⎢ 0 ⎜ ⎢ ⎝ ⎣

《矩阵分析》(第3版)史荣昌,魏丰.第四章课后习题答案

《矩阵分析》(第3版)史荣昌,魏丰.第四章课后习题答案

第四章 矩阵分析4-1.(1)对矩阵A 只做初等行变换得到行简化阶梯形矩阵82100-55212311125141010551312114001-5582100-5521211251,0105513114001-55A B C A BC ⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-→⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦=取于是即为其满秩分解表达式(2)对矩阵A 只做初等行变换得到行简化阶梯形矩阵1101010-10-1011110111123131000001110-10-101,0111123A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(3)对矩阵A 只做初等行变换得到行简化阶梯形矩阵12101212101212213300112124314500000048628100000001112121012,2300112146A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(4)对矩阵A 只做初等行变换得到行简化阶梯形矩阵120111012011036142360011-1024022270000016121757300000010101201103136,0011-1020270000016173A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=取于是即为其满秩分解表达式4-2.解:首先注意到A 的秩为1,同时计算出HAA 的特征值12=6=0λλ,,所以A 的奇异值1=6.σ然后分别计算出属于12λλ,的标准正交特征向量.]] []121211112121,1-1,1,.3111111=[,]T TH HU UV A UVV V VAηηηηη-====⎡⎤⎢⎥=∆==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎢⎢⎢⎢⎢⎢⎥⎢⎥⎣⎦⎤⎥==⎢⎥⎥⎣⎦,记,现在计算取于是r000003333HrA U V⎤⎥⎤=⎥⎥⎢⎣⎦⎥⎦⎥⎢⎥⎣⎦=∆=⎦⎥⎦或者4-3.解:(1)容易验证H H H HAA A A BB B B==,所以A,B是正规矩阵.(2)下面求A的谱分解:[][]21231123232323111(+1)(-2)=2==-1.=2=.==-1=10-1=1-0.=0=.TTTTTH E A A G λλλλλλλξλλααααξξξξ-===故的特征值为:,对于特征值,其对应的特征向量对于特征值,其对应的特征向量,,,,1,将,正交化和单位化得,,于是2223311133311133311133300111110636221210003331110226H H G ξξξξ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢=+=+⎢⎥⎢⎢⎥⎢⎢⎢⎥⎢⎣⎢⎥⎣⎦-⎡⎤-⎢⎥⎢⎥=+--⎢⎥⎢⎥-⎢⎥-⎣⎦122113331213331111236333=2A G G ⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦-因此即为其谱分解.矩阵B 的谱分解参照矩阵A 的谱分解方法. 4-4. 解:已知矩阵024102211042A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦[][][]21231212331231231(+1)(+2),==-1=-2==-1=-2,1,0,4,0,1=-2=4,2,1.244[,,]102011T TTE A A A P P AP λλλλλλλλααλααααααα--==---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦-=求得所以其对应的特征值为:,对应于特征值,其对应的特征向量对应于特征值,其对应的特征向量为:,,线性无关,所以矩阵可对角化,所以矩阵是单纯矩阵于是而且有:11231112223311161212100211010,()366002221333122112111=--=-=6331263126322433312263311212632T TTTT TT P G G βββαβαβαβ-⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦==取:,,,,,,,,令122433312263311212632A G G A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=-+故即为矩阵的谱分解表达式.4-5.解:[][][]12312i 20000-i 0000500000,=5==0000=51,0,02001,0,0,=1,0,0-i 00100H H H H TT T H HHA A AA AA AA U V A U A V λλλδληηη-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==∆⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢=∆=⎢⎢⎣⎦,求出的特征值为,所以的奇异值为:求出对应于的特征根:==H⎡⎤⎥⎥⎥⎥⎢⎥⎣⎦4-6.解:()()()1231212112204002000i ,0100-i 000000(-1)(-4)=4,=1,=02=2,=1,14=1,0,04=0,1,010,0100H H H H T H TH A A AA E AA AA AA AA U λλλλλλλααμμμμ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦-=⇒⎡⎤∆=⎢⎥⎣⎦⎡⎤⎢⎥==⎢⎢⎣⎦,所以的奇异值为:特征值为的单位特征向量为:特征值为的单位特征向量为:于是1111100-i 102100110-i 00H H H HV A U A U V -⎥⎥⎡⎤=∆=⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=∆=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦因此所以4-7.解:(1) 首先求出矩阵A 的特征多项式212322082(+2)(-6)06=-2==6A (6E-A)=14204206E-A=8400000000E A aa a λλλλλλλλλ---=--=---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以其特征值为:,由于是单纯矩阵,从而r 有此可知:a=0;(2) 由上知a=0;()21231212331112223220=820-(+2)(-6)006==6;=-2,==6=0 =001=-2=0125524551TT T H H A E A A G G λλλλλλλλααλαααααα⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⇒⎫⎪⎭⎫⎪⎭⎛⎫ ⎪ ⎪⎪=+== ⎪ ⎪ ⎪ ⎪⎝⎭所以,求出对应于的单位正交特征向量为:,,,求出对应于的单位特征向量为:因此,的投影矩阵,31212552455062H A G G α⎛⎫- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭=-4-8.解: (1)3i -13i -1-i 0i -i 0i -1-i 0-1-i 0,.HH H A A AA A A A ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=,所以是正规矩阵 (2)()()())()()()212311223312312314122 1.2==-1=0,-i,1,,=0.8801,0.3251i,0.3251,=0.4597,0.6280i 0.6280,=TTTTTE A λλλλλλλλαλαλααααηηη-=+-+=+==-===求出与求出与求出与对应的特征向量为:将单位化得到单位特征向量为:,111222333112233,,=TH H HG G G A G G G ηηηηηηλλλ⎛ ⎝⎭===++所以4-9.解:对矩阵A 只作初等行变换100071415610290102000147712401525001772655700000310007141102901020077,1245250017726500000.A ABC BC A -⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→→⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦-⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦= 的秩为,且前三个列向量线性无关,故容易验证:4-10.解: 对矩阵A 只作初等行变换110130-331321421=261070013339311100000211012130-3321,210013333.2113210-361,93A A B C BC A A B C ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ 的秩为,且第一,第三个列向量线性无关,故容易验证:的秩为,且第二,第三个列向量线性无关,故10992100133.BC A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=容易验证:4-11.解:()()1231231231231===0=00=0004400TTTH A Schmidt U R U A R ααααααυυυυυυ-⎛ ⎝⎛⎝⎛⎝⎡⎢⎢⎢==⎢⎢⎢⎢⎣⎡⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎣⎦将,,的列向量,,用方法标准正交化得,命,,,则111335---1444420111==-=--2222-1131=.H x R U b Ax b -⎥⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦不难验证4-12.解:5000000005,0,0A H H AA AA ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为的特征值为,故4-13.解:2123111111202000202(-4),=4==0A=2=2.=4==,10111012HH HT T HHHAAE AA AAAA UV A Uλλλλλλαλ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦-=∆=⎡⎤=∆=∙=⎢⎥⎢⎥⎣⎦⎢⎥所以的特征值,,的奇异值为,的特征值的单位特征向量u u因此:不难验1122124.3.443301001HHHHH HA U VAAUA AU A A VU=∆=⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎢⎢=⎢⎥⎢⎥⎣⎦=证这是定理表达形式.下面介绍定理..表述形式.又的零特征值所对应的次酉矩阵的零特征值所对应的次酉矩阵V于是AA的酉矩阵与的酉矩阵分别为V⎤⎥⎥=⎢⎥⎥⎢⎥⎥⎥⎦⎥⎦,且2000000HD A UDV ⎡⎤∆⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=不难验证4-14. 解:()()()12312111121111400010(1)(4),000=4=1=02=2=1=14=1001=01010==010010010=U V 010H HH H H H H H AA E AA AA A AA u AA u U u u V A U i A λλλλλλλαα-⎡⎤⎢⎥=-=--⎢⎥⎢⎥⎣⎦⎡⎤∆⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤=∆=⎢⎥⎣⎦∆=,的特征值,,所以的奇异值,,的特征值为的单位特征向量的特征值为的单位特征向量于是因此所以3222121010043300=0=110010(,)=010,V=V 0001100201001001000100HH Hi AA u U U U U i A UDV i ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦若要写成定理..形式还得计算U,V.特征值为的单位特征向量故所以4-15.解:242-24-2422-4-2-2-2252-2-5H i i A i i i i A i i i i -⎡⎤⎡⎤⎢⎥⎢⎥==-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦由于所以A 是反Hermite 矩阵.2123121233111222-424+22==(+6i)(-3i)-22A ==-6i =3i.==-6i =0==3i 221=i -33354i2i -999-TTT H H iE A i i iA G λλλλλλλλλλλααλααααα+-=⎛ ⎝⎛⎫ ⎪⎝⎭=+= 的特征值,属于特征值的正交单位特征向量,属于特征值的正交单位特征向量,,因此的正交投影矩阵为233124i529992i 2899944i 2i 9994i 429992i 219996i 3i H G A A G G αα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦=-所以的谱分解式为:+4-16..解:130i 2202031-i 022HA A ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦由于所以A 是Hermite 矩阵.()21231212331112213--i 220-20==(-2)(+1)31-i 0-22A ==2=-1.==2=010=0=-1=01i 022010i 1-022TTTH H E A A G G λλλλλλλλλλλααλααααα-=⎡⎤⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎣⎦ 的特征值,属于特征值的正交单位特征向量,,,属于特征值的正交单位特征向量因此的正交投影矩阵为233121i 0-22010i 10222-H A A G G αα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦=所以的谱分解式为:4-17. . .解:先求A 的特征值和特征向量,由21234-603+50=(-1)(+2)36-1==1=-2.E A A λλλλλλλλλ--=故的特征值为:,()()()()1231212331123=1-3-60360=0360=2-1,0=0,0,1=-2-3-60360=0360=-11,1201111,,101()=122011010TTT Tx x x x x x P P λααλαααα-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎡⎤⎡⎢⎥==--⎢⎥⎢⎥⎣⎦⎣当时,由方程组求得特征向量为:,,当时,由方程组求得特征向量为:,所以,()()()1231112223312=1,1,0,=-1,-2,1,=1,2,022*******,1201211202TTTT TT G G A A G G βββαβαβαβ⎤⎢⎥⎢⎥⎢⎥⎦--⎡⎤⎡⎤⎢⎥⎢⎥=+=--==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦=-因此于是所求投影矩阵为的谱分解表达式为4-18.解: 因为()()1122r r 1122r 20112012012r 11122r r 1122r r 220111011201=+++=++++=++++=(G +G ++G )+()++()=(++++)G +(++++)G ++(+k k k k r s s ss s s s s s A G G G A G G G f a a a a f A a E a A a A a A a a G G G a G G G a a a a a a a a a a λλλλλλλλλλλλλλλλλλλλλλλ=+++++++++ 若则()()()211122+++)=G +G ++s s r ra a f f f G λλλλλ 4-19.解:方法一:A 是单纯矩阵()()()()()31234123123441234-1-11-11-1=(-1)(+3)-11-11-1-1===1=-3.===1=1100=101,0=-100,1=-3=1-1-1,111-11100-1,,,=010-10011T T TTE A A P λλλλλλλλλλλλλλαααλααααα-=⎡⎤⎢⎢=⎢⎢⎣故的特征值为:,属于特征值的正交单位特征向量,,,,,,,,,属于特征值的正交单位特征向量,,所以1123411122331111-44443111--4444,()=1311--44441131444413111131=-=-4444444411131111=-=--44444444314+T TTT TT TT P A G ββββαβαβαβ-⎡⎤⎢⎥⎢⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎦⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=+=因此,,,,,,,,,,,,,,因此的正交投影矩阵为11444131144441131444411134444⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦244121111-4444111144441111--444411114444-3H G A A G G αβ⎡⎤-⎢⎥⎢⎥⎢⎥--⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:方法二:A 是正规矩阵.由方法一中已知A 的特征值1234===1=-3λλλλ,,把1234αααα,,,Schmidt 方法标准正交化得123441112233244=00=0=1111=--22223111444413114444+113144441113444411-44T T TTT T TH G G υυυαυυυυυυυυυ⎫⎫⎛⎪⎪ ⎭⎝⎭⎛⎫⎪⎝⎭⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦-==,,,把单位化得 ,,,正交投影矩阵121144111144441111--444411114444-3A A G G ⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:。

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

第1章 线性空间和线性变换(详解)1-1 证:用iiE 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,iiE ,ijE 都是对称矩阵,iiE 有(1)2n n -个.不难证明iiE ,ijE 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间.同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A EE E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基;(2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A 在21,(),(),,()n -ξξξξA AA下矩阵表示为n 阶矩阵000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A 的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求;(2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故 12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T--.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP 计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ. 方法一 设1212{,}{,}span span ∈ξααββ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T-.方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组 13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T-,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span ααα的基底就是12,,,nααα的极大线性无关组.维数等于秩12{,,,}n ααα.1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββ就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基,解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==,则11,,,,,k l ααββ的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξA AA①用1k -A从左侧成①式两端,由()0k=ξA 可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξA AA②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===,于是21,(),(),,()k -ξξξξA AA线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξAAA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]0000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξA A A AA A A A AAA AA 所以A在21,(),(),,()n -ξξξξA AA 下矩阵表示为n 阶矩阵0000100001000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξA AA是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==设11,,,,,,r r s ξξξξξ是的极大无关组,则可以证明11,,,,,,r r s ααααα是的极大无关组.1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证.1-18证:对k 用数学归纳法证。

矩阵分析复习知识点整理

矩阵分析复习知识点整理

一、定义设V 是一个非空集合, F 为数域.上述的两种运算满足以下八条运算规律,那 么 就称为数域 F 上的线性空间.[ V, F, “+”, “.”, 8 ]判别线性空间的方法:一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间.R[X]n 是次数不超过n 的多项式,构成了向量空间,其基是[1,X,X 2,……, X n ]。

P[X]n 是次数不超过n-1的多项式,构成了向量空间,其基是[1,X,X 2,……,X n-1]。

Q[X]n 是次数不超过n 的多项式,其中an 不等于0,不构成了向量空间,。

Ax=0的解空间,称为矩阵A 的核(零)空间,记N (A )设A 为实数(或复数)m*n 矩阵,x 为n 维列向量,则m 维列向量集合V={y ∈R m (C m )|y=Ax,x ∈R n (C n ),A ∈R m*n (C m*n)}构成实(或复)数域R (或C )上的线性空间,称为A 的列空间或A 的值域,记R (A )。

线性相关与无关略所有二阶实矩阵组成的集合 ,对于矩阵的加法和数量乘法,构成实数域 上的一个线性空间.对于 中的矩阵例 1.1.11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1000,0100,0010,000122211211E E E E ,4321224213122111⎪⎪⎭⎫⎝⎛=+++k k k k E k E k E k E k 有,0000 224213122111⎪⎪⎭⎫⎝⎛==+++O E k E k E k E k 因此 03321====⇔k k k k .,,,22211211线性无关即E E E E()(),,,,,,, 2121P n n αααβββ =基变换公式矩阵P 称为由基n ααα,,,21到基n βββ,,,21 的过渡矩阵.坐标变换公式 ,'''2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x P x x x 例1.2.6略P11设V l ,V 2是线性空间V 的两个子空间, 可以验证: 21V V 构成V 的线性子空间.称为 21V V 为V l 与 V 2 的交空间.可以验证: 21V V + 构成V 的线性子空间.称21V V +为 V l 与 V 2 的和空间例1.3.5◆{}{}2122112121,span ,,span ,1,3,5,1,1,3,5,4,1,31,1,131,2ββααββαα==-=-=--==V V T TT T )()(),(),,(试求;(1)V l +V 2的基与维数;(2) 21V V 的基与维数● [解] (1)由定理3知{}212121,,,span ββαα=+V V 121,,βαα是极大无关组.故它是V 1+V 2的基,维数=3,于是且,即)设(21212V V V V ∈∈∈ααα 24132211ββαααk k k k +=+=把2121,,,ββαα的坐标代入上式,解之得4342132,35,0k k k k k -===于是. 35,5,35,35214的向量表示为V V k T⎪⎭⎫ ⎝⎛--=α其维数=l线性映射:设V1,V2是数域F 上的两个线性空间,映射T :V1->V2,如果对于任何两个向量a1,a2∈V1和任何数K∈F,都有T (a1+a2)=T(a1)+T(a2);T (Ka1)=KT(a1)便称为映射。

新QC七大手法-5-矩阵解析法

新QC七大手法-5-矩阵解析法
新七种工具
6
2 3 10
1-5-12
6 2
+ +
— — — —
+ — —
+ + — —— + — +
+ — — +
新七种工具
1-5-11
QC新七大工具—矩阵解析法演练
演练: A公司生产的车床立轴的加工过程影响度分析如下表,试确定主要加工过 程的影响度
加工过程 车立环
输出 评分
平面度 8
圆度 7 8
挠曲度 影响度 6
车光轴
钻孔 铣键槽 精车
100%
结论:由上表计算结果可知: e、b、c三个因素对输出因素影响最大 新七种工具
QC新七大工具—矩阵解析(例三)
PCBA来料加工的缺陷因果分析矩阵
工序 输入变量 PCBA 组件 10 1 1 1 1 2 1 1 3 1 5 4 10 3 8 2 3 8 10 1 2 1 焊接 短路 8 2 3 5 4 4 2 8 2 8 5 10 5 3 4 5 焊接 少锡 5 5 4 5 6 4 2 8 2 8 5 10 7 3 2 过程输出 功能 在线 测试 测试 10 10 板裂 9 51 10 94 105 142 102 76 174 56 224 145 385 105 119 62 180 180 140 10 113 10 评 分
2 2 2 2 1 4 3 5
4 3 4 2 2 2 1 3 1 6
5
5 8
6 10
1
1
8
新七种工具
1-5-9
QC新七大工具—矩阵解析(例四)
IE动作分析中左右手安排矩阵图
左手 右手 伸出 搬运 使用 抓住 装配 分解 放开 用力 伸出 A A A B B B A B 搬运 A A A B B B A B 使用 A A A B B B A B 抓住 B B B B C C A C 装配 B B B C C A A A 分解 B B B C C A A A 放开 A A A A A A A A 用力 B B B C C A A A

矩阵分析1

矩阵分析1

矩阵分析矩阵分析是数学中一门重要的分支,主要研究矩阵及其运算规律、性质和应用。

矩阵分析被广泛应用于各个领域,如物理学、经济学、工程学、信息科学、生物学等,成为现代科技和工程中不可或缺的一部分。

一、矩阵介绍矩阵是一种数学对象,由m行n列的元素数排列成一个矩形阵列。

一般用大写字母A、B、C等表示矩阵,而用小写字母a、b、c等表示元素。

如下所示:A = [a11 a12 (1)a21 a22 (2)… … …am1 am2 … amn]其中,a11、a12、a21和a22等都是矩阵A的元素,其中第i行第j列的元素表示为aij,i表示行数,j表示列数。

二、矩阵的运算矩阵的运算包括加、减、乘和求逆,下面分别介绍。

1、加法令A、B是两个矩阵,则矩阵的加法定义为相加其对应的元素。

例如,如果A和B都是两行两列的矩阵,则A + B的结果为:A +B = [a11+b11 a12+b12a21+b21 a22+b22]2、减法矩阵的减法也是按照对应元素相减的规则。

例如,如果A和B都是两行两列的矩阵,则A - B的结果为:A -B = [a11-b11 a12-b12a21-b21 a22-b22]3、乘法矩阵乘法是指将一个矩阵的行乘以另外一个矩阵的列的结果所组成的矩阵。

例如,如果A是m行n列的矩阵,B是n行p列的矩阵,则它们的乘积C是m行p列的矩阵,C中第i行第j列的元素可以表示为:Cij = Σk=1,2,…n aikbkj其中,Σ表示求和符号,k表示矩阵A和B相乘的公共维度,即行数或列数。

4、求逆如果矩阵A是非奇异矩阵,即其行列式不为0,则可以求出其逆矩阵A-1,使得A×A-1=I,其中I为单位矩阵。

求逆矩阵的公式如下:A-1 = 1/|A| adj(A)其中,|A|表示A的行列式,adj(A)表示A的伴随矩阵。

三、矩阵的性质矩阵有很多基本的性质,其中包括:1、矩阵的行和列数可以不相等;2、矩阵可以相加和相乘,但不可以相减和相除;3、矩阵加法和乘法有结合律、分配律和交换律;4、矩阵乘法不满足交换律,即AB≠BA。

矩阵分析教案

矩阵分析教案

矩阵分析教案一、引言矩阵分析是高等数学中的重要概念和工具,具有广泛的应用领域,包括线性代数、统计学和物理学等。

本教案旨在通过系统的教学设计,引导学生全面理解矩阵分析的基本概念和运算方法,培养学生的逻辑思维和问题分析能力。

二、教学目标1. 掌握矩阵的基本定义和性质;2. 熟练运用矩阵的加法、减法和数乘等运算;3. 理解矩阵乘法的定义,能够进行矩阵乘法运算;4. 掌握矩阵的转置、逆矩阵和行列式的计算方法;5. 运用矩阵分析解决实际问题。

三、教学内容及安排1. 矩阵的基本概念- 了解矩阵的定义和表示方法;- 认识行、列、元素和维数的概念;- 学习零矩阵、单位矩阵和对角矩阵的特点。

2. 矩阵的基本运算- 学习矩阵的加法和减法运算;- 掌握数乘矩阵的运算规则;- 理解矩阵的乘法定义和性质。

3. 矩阵乘法- 通过示例引导学生理解矩阵乘法的概念; - 讲解矩阵乘法的定义和计算规则;- 练习矩阵乘法运算,加强巩固。

4. 矩阵的转置与逆矩阵- 讲解矩阵的转置定义和性质;- 引导学生理解逆矩阵的概念和计算方法; - 练习矩阵转置和逆矩阵的计算。

5. 矩阵的行列式- 介绍行列式的概念和计算方法;- 探索行列式在线性方程组中的应用;- 练习行列式的计算和应用。

6. 矩阵分析的实际应用- 将矩阵分析应用于实际问题的解决;- 通过案例分析加深学生对矩阵分析的理解;- 强化解题思路和方法的训练。

四、教学方法与手段1. 讲授法:通过讲解矩阵分析的概念、定义和运算规则,向学生传递相关知识;2. 案例分析法:通过具体案例引导学生分析和解决问题,提升实际应用能力;3. 练习与应用:设计一系列练习和应用题,巩固学生的知识和技能。

五、教学评价与反馈1. 课堂练习:布置与教学内容相关的练习题,检验学生对知识点的掌握程度;2. 作业评查:批改学生的作业,及时给予评价和指导;3. 期中、期末考试:以闭卷形式考查学生对矩阵分析的掌握情况。

六、教学资源准备1. 教材:选择一本合适的教材,提供理论知识和练习题;2. 多媒体设备:准备投影仪、电脑等设备,展示教学内容;3. 计算工具:在教学过程中使用计算器或电脑软件辅助计算。

swot分析矩阵范例

swot分析矩阵范例

S10.T2结合,通过检验依据、样板,核对产品信息差异点,确 保产品符合客户要求
S4.T3结合,通过检验、试验设备对原材料进行检验判定,确 保原材料质量符合要求
S2.S9.T4结合,通过专业的检验团队,文件控制的严谨性,确 保样板及资料的准确性 S3.S4.S5.S7.T5.T8结合,运用完善的品质管控流程,检验、 试验标准,通过检测、试验设备验证产品设计缺陷,减少设计 缺陷
物料特采成品品质缺陷waive所隐含的客诉风险s2s8t7结合通过良好的客户服务心态运用专业人才与客户沟通达成共识降低客诉风险t8pe分析质量异常原因的准确性改善措施的有效性s3t9t11结合运用健全的质量管控流程适时监督降低质量事故发生机率t9
外部
内部
机会 (Opportunities)
XXX包装有限公司
W9.质量异常验证、跟进力度欠缺
W10.检验人员对外来文件、检验依据的识别能力欠缺
WO强化策略(利用机会,克服劣势)
W1.O3结合,通过精益管理培训,梳理内部信息链,建立信 息交流窗口,确保信息传递到各个单位 W3.O1.O10结合,全面了解高端产品质量要求,按工程资料 、样板对产品实施检验,提升高端产品检验能力 W4.W5.W10.O2.O3结合,通过精益管理培训,全面梳理工作 职责、流程,建立岗位说明书,确保团队的稳定性,提升工作 质量 W6.O4结合,定期对供应商评鉴和辅导,提升供应商对零部 件质量保证能力 W7.W8.O3结合,通过精益管理培训,学习先进的质量管理工 作方法和工具,运用实际工作中 W9.O7.O8.O9结合,及时发现质量异常问题,通过准确的技 术分析,找出有效的改善对策,及时验证和关闭
善措施的有效性
质量事故发生机率
T9.仓储出货时录,进行稽核,验证记录数据真 实性

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间.同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T ,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++=1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些. 1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ.方法一 设1212{,}{,}span span ∈ξααββI ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T -. 方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T -,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span αααL 的基底就是12,,,n αααL 的极大线性无关组.维数等于秩12{,,,}n αααL .1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββI 就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==L L ,则11,,,,,k l ααββL L 的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξL A AA①用1k -A从左侧成①式两端,由()0k=ξA可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξL A A A②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===L ,于是21,(),(),,()k -ξξξξL A AA 线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξL A AA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]00000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξL L L L L L L M M M M L LA A A AA A A A AAA A A 所以A在21,(),(),,()n -ξξξξL A AA下矩阵表示为n 阶矩阵00001000010000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L L M M M M L L评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξL A A A是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==L L L L L 设11,,,,,,r r s ξξξξξL L L 是的极大无关组,则可以证明11,,,,,,r r s αααααL L L 是的极大无关组. 1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα 设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。

矩阵分析考试重点

矩阵分析考试重点
对矩阵B而言,因
det(I - B) ( a)n (1)n1( )(1)n1 ( a)n 故Dn () ( a)n ,
所以A与B的第n阶行列式因子不相同, 从而A与B不相似。
2-5 设 A 为数域F 上旳 n 阶方阵且存在 正整数n 使得 An I ,证明: A 与对角矩
阵相同且主对角线上旳元素均为 n 次单位根。
证明: 因为 A是一种正定H-阵, 所以存在可
逆矩阵 Q 使得
A QHQ
这表白 A 是可逆旳. 于是
A B A AA1B A I A1B
另一方面注意矩阵 A1 依然为正定H-阵, 而 矩阵 B 为H-反阵, 由上面旳例题结论可知
矩阵 A1B旳特征值实部为零, 那么矩阵 I A1B
旳特征值中不可能有零, 从而
从而
A B B (QH )1 AQ1 I B
3-21 设 A 是一种正定旳H-阵, 且又是酉矩 阵, 则 A I
证明: 因为 A是一种正定H-阵, 所以必存在
酉矩阵U U nn 使得
1
AU
2
U H ,
n
0 i R
因为 A 又是酉矩阵, 所以 i 1
这么必有 i 1 , 从而 A I
2-2 设 0 ,证明: n 阶矩阵
a 1
A
a
1

a
相同。
a
B
a
a
证明 : 计算A旳行列式因子。显然
Dn () ( a)n
下面看 n 1 阶行列式因子。有一种 n 1
阶子式要注意,即
1
a 1
(1)n1
a 1
轻易计算出 Dn1() 1 从而 D1() D2 () Dn1() 1 d1() 1, d2 () 1, , dn1() 1, dn() ( a)n

《矩阵分析》课程教学大纲(本科)

《矩阵分析》课程教学大纲(本科)

《矩阵分析》课程教学大纲课程编号:07193课程名称:矩阵分析英文名称:Matrix Analysis课程类型:专业课课程要求:限选学时/学分:4蹈(讲课学时:48)开课学期:4适用专业:数学与应用数学授课语言:中文课程网站:无一、课程性质与任务矩阵分析是高等院校数学类、控制科学类及信息科学类专业的一门专业理论课,通过本门课程的教学,使学生了解矩阵分析的基本概念、基本理论与基本方法。

为学生继续学习该方面的知识奠定必要的理论基础。

一、课程与其他课程的联系1、先修课程:《数学分析》、《复变函数》、《高等代数》2、后续课程:《现代控制理论》3、本课程与其它课程的联系矩阵分析课是一门重要的专业课,它以数学分析、高等代数和复变函数等课程为基础,为将来从事控制理论方面的研究及工科后继课的学习打基础。

三、课程教学目标1、通过本课程的学习,使学生掌握矩阵理论的基本概念,基本理论和基本运算,全面了解若干特殊矩阵的标准形及其基本性质(支撑毕业要求指标点4.1)2、了解近代矩阵理论中十分活跃的若干分支,为今后在应用数学、计算数学专业的进一步学习和研究打下扎实的基础。

(支撑毕业要求指标点1.1)3、通过本课程中基本概念和基本定理的阐述和论证,培养高年级本科生的抽象思维和逻辑推理能力,提高高年级本科生的数学素养。

在重视数学论证的同时,强调数学概念的物理、力学的实际背景,培养学生应用数学知识解决实际工程技术问题的能力。

(支撑毕业要求指标点12.2)1求真务实、积极探索、勇于创新:矩阵分析课是一门重要的专业课,内容严谨详实,逻辑性较强。

以线性空间为例,需要明确何为线性空间,如何判定,何为它的基以及如何寻找它的基,以及在一组基下的坐标等等。

这些都需要师生在求真务实的前提下得以进行。

并在此基础上讨论是否由三维向量构成的线性空间一定是三维的,并尝试举例说明,这在调动了学生参与的积极性同时体现了思政元素中的积极探索,勇于创新的一面。

矩阵分析引论--第一章 线性空间与线性变换-子空间与维数定理、线性空间的同构

矩阵分析引论--第一章 线性空间与线性变换-子空间与维数定理、线性空间的同构
(2) W W .
目录 上页 下页 返回 结束
第一章第三四节 子空间与维 数定理、线性空间的同构
子空间举例
零子空间{0}与线性空间V 本身称为平凡子空间.
例1 线性空间V 的子集:(1,2 ,,m V )
m
L(1,2 ,,m ) { | kii , ki P} i 1
是V的子空间,称为由
称为子空间 V1 与 V2 的交;
(2)集合 V1 V2 { | V1, V2 }
称为子空间 V1 与 V2 的和;
目录 上页 下页 返回 结束
第一章第三四节 子空间与维 数定理、线性空间的同构
定理1-3:线性空间V 的两个子空间V1与V2的 交W=V1∩V2也是V 的子空间.
证 (1) W 是非空集合, 0 W ;
生成的子空间.
例2 在n维线性空间V=Pn 中,子集
W { | A 0, Pn}
是V 的一个n-r 维子空间,r是的ຫໍສະໝຸດ .目录 上页 下页 返回 结束
第一章第三四节 子空间与维 数定理、线性空间的同构
二、子空间的运算
定义:设V1, V2是线性空间V 的两个子空间,则
(1)集合 V1 V2 { | V1且 V2 }
目录 上页 下页 返回 结束
第一章第三四节 子空间与维 数定理、线性空间的同构
推论:若n维线性空间V 的两个子空间的维数之和
大于n,则其交V1∩V2必含非零向量. dim(V1 V2 ) dimV1 dimV2 dim(V1 V2 )
定义1-5:设V1, V2是线性空间V 的两个子空间, 若和 W V1 V2 具有性质:
(4) dimV1 dimV2 dim(V1 V2 ) .
目录 上页 下页 返回 结束

矩阵分析

矩阵分析

命题:用初等行变换可把A 变为: 命题:用初等行变换可把A∈Crm×n,变为:
Er 0 1 0 = 0 * 1 ⋱ 1 * * * * * * *
设A∈Crm×n的前列线性无关
证:因前r列线性无关,故用第一类初等矩阵左乘 因前r列线性无关, 可使A (1,1)元 0.再用第二类初等矩阵左 可使A的(1,1)元≠0.再用第二类初等矩阵左 乘可使a =1;最后用若干第三类初等矩阵左 乘可使a11=1;最后用若干第三类初等矩阵左 乘可使A的第一列=e 因前2列线性无关, 乘可使A的第一列=e1.因前2列线性无关,故 新的第2列与e 不线性相关且≠0,故用第一类 新的第2列与e1不线性相关且≠0,故用第一类 行变换可使(2,2) (2,2)元 0,…可使 的第2 可使A 行变换可使(2,2)元≠0, 可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元。 此时空白处必为0 .可使A的第r
-1 Er ( E A =P
Er B=P-1 0
, C= (Er 0) Q-1 满足所要求的条件. 满足所要求的条件.
0
r
0)
Q-1 = BC
,其中 ,其中
教本pp.183 184给出的证明 pp.183给出的证明. 比较:教本pp.183-184给出的证明.
1 ⋱ 1 k ⋱ 1 ⋱ 1
1
初等变换与初等矩阵性质 初等变换与初等矩阵性质
①3类初等矩阵都是可逆的(行列式不为0). 类初等矩阵都是可逆的(行列式不为0). 可逆的 0) ②将A依次作初等矩阵P1,…,Pr对应的行(列)初等变 ,P
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t1a11 ... t r a1r ta1 j 0 即有 ...... t a ... t a ta 0 r mr mj 1 m1 由于该方程组系数矩阵的秩r 未知量个数r 1, 必有非0解,从而 / A(1 ),
故向量组 / A( 1 ),
R(/ A) span(/ A( 1 ), span(/ A( r 1 ),
又设 kr 1 / A( r 1 ) ...... kn / A( n ) 0 即 令 /A (k r 1 r 1 ... kn n) 0 kr 1 r 1 ... kn n k1 1 ... k r r
, / A( r ), / A( j )线性相关,
, / A( n )的秩等于r
设 / A是线性空间V1到V2的线性映射,令 N ( / A) / A(0) { V1 , / A( ) 0}
-1
易证 N ( / A)是V1的线性子空间。
定义1.5.2: 称 N (/ A)为线性映射 / A的核空间, 称 dim N (/ A)为 / A的零度。 可以证明,一般的线性映射不保持向量组 的无关性,但当N (/ A) {0}时,则线性映射保持 向量组的无关性。
定理1.5.2
设 / A是线性空间V1到V2的
线性映射,则 dim N (/ A) dim R(/ A) n 其中 dim V1 n.
证:设 1, 2 , 一组基 1, , r , 那么
, r 是N (/ A)的基,将其扩充为V1的 ,n ;
, / A( r ), , / A( n )) , / A( n ))
&1.5 线性映射的值域、核
设 : / A是线性空间V1到V2的线性映射, 令 / A(V ={/ A( ) / V}. 1) 1 则 易证 / A (V)是V 的线性子空间。 1 2 定义1 .5.1 称 / A (V)是线性映射 1 / A的值域,记为R(/ A);称 dimR(/ A) 为 / A的秩,记为rank (/ A).
2 0 1 0 1 0 1 0 0 0 1 0
0 1 0 1 2 0 0 1 0 1 1 1
定义1.6.1
设A,B F nn , 若存在P Fnnn
使得B P -1 AP , 则称B与A相似,记为B A。 可以证明:矩阵的相似关系具有反身性、 对称性、传递性。 定理1.6.1 设 / A是V 的线性变换, , n ) (1, 2 , , n)P , n ) A , n ) B
2 2
表示A。
解:设 / A 1, 2, 3, 4 1, 2, 3, 4 A
1, 2, 3, 4 E11 , E12 , E21 , E22 P / A 1, 2, 3, 4 E11 , E12 , E21 , E22 B , 则 1, 2, 3, 4 A E11 , E12 , E21 , E22 B
1, 2 , , n与1, 2 , , n为V 的两组基,
且 (1, 2 , / A (1, 2 , / A(1, 2 , 则B A。 , n ) (1, 2 ,
, n ) (1, 2 ,
证:由定理1.4.2及定义1.6.1易证(或直接推导)。 同一线性变换在不同基下的矩阵表示是 相似的,自然希望找到一组基,使得线性变换 在该基下的矩阵表示很简单。


(1.7.3)
定义1.7.2
设A是数域F 上的n阶矩阵, 是
一个文字,称:矩阵 E - A为A的特征矩阵; 行列式 E - A 为A的特征多项式; E - A 0 式(1.7.3)的非零解(x1,x2 , ..., xn)为A的属于0
定义1.6.2: 设 / A是线性空间 V 的线性变换, W 是V 的线性子空间。如果 / A(W ) W ,则 称W 是 / A的不变子空间。 例如:N (/ A)、R(/ A) 都是 / A的不变子空间; 任何一个子空间都是数乘变换的不变 子空间。
可以证明:(1)设W 是 / A的不变子空间,
事实上,设 1, 2 , 那么
, n线性无关,
且k 1 / A( 1 ) ...... kn / A( n ) 0 /A (k 1 1 ... kn n) 0, 又N (/ A) {0},则k 1 1 ... kn n 0 即又有k 1 ...... kn 0
反之,当 / A在基1 , ..., r , r 1 , ..., n之下的矩阵 表示为(1.6.4),那么W span{1, 2 , ..., r } 是 / A的不变子空间;
(2) 设V W1 ...... Ws, / A(Wi ) Wi, (i 1, 2... s)
x1 x2 ( 1, 2 , ..., n ) x n / A( 1, 2 , .., n ) ( 1, 2 , .., n ) A 则因为 / A( ) 0

x1 x1 x x2 2 ( 1, 2 , ..., n)A ( 1, 2 , ..., n)0 ... ... x x n n x1 x1 x2 x2 A 0 ... ... x x n n x1 x2 (0 E A) 0 ... x n
1, 2,, ... r 是W 的一组基,将其扩充为
V 的一组基 1,, ... r , r 1,, ... n,那么在 该基下的矩阵表示形如 a11 ...a1r a1,r 1 ...a1n ...... a ...a a A A r1 rr r , r 1 ...a rn 1 2 A (1.6.4) 0......0 ar 1,r 1 ...ar 1n 0 A3 ...... 0......0 a ... a n ,r 1 nn
k1 (a11 1
于是 (k 1a11
am 1 m )
kr a1 r) 1
k1 a11 ... kr a1r 0 由 1, 2 ,..., m 线性无关,得 k a ... k a 0 r mr 1 m1
由于该方程组系数矩阵的秩为r,与未知量的 个数相等,故只有零解,即k 1 这说明 / A(1 ), j r 1, ,n 又设 t1 / A(1 ) , kr 0. , / A( n )线性无关; , t r / A( r ) t / A( j ) 0,

y1 x1 y2 A x 2 。 y x n n
1 0 1 1 例1 在F 中有基1 , 2 , 1 0 1 0 2 0 1 1 3 / A为线性变换且 , 4 。 1 0 1 1 1 0 0 1 1 2 / A( 1 ) , / A( 2 ) , / A( 3 ) , 0 0 0 1 1 1 0 0 / A( 4 ) .求 / A在基1 , 2 , 3 , 4下的矩阵 0 1
(2) 只证明向量组 / A( 1 ), 设 k 1 / A( 1 ) 即
, / A( n )的秩等于A的列秩:
不妨设rankA r,r min{ m , n}且A的前r列线性无关; kr / A( r ) 0; k r (a1 r 1 ( k1am 1 a mr m ) 0 k r amr ) m 0
由 1, ..., r , ..., n 线性无关,知kr 1 ...... kn 0, 故 dim R(/ A) n - r .
例( 1 P33
例1.5.1)过程有误
&1.6
线性变换的不变子空间
线性空间V 到V 的线性映射称为 线性空间V 的线性变换。 设 1, 2 , , n为V 的一组基, , n ) A / A为V 的线性变换,且 / A( 1, 2 , , n ) ( 1, 2 ,
定理1.5.1
设 / A是线性空间V1到V2的线性映射,
1, 2 ,
, n是V1的基, 1, 2 , , n)( 1, 2 ,
, m 是V2的基, , m)A
且/ A ( 1, 2 ,
这里 A=( aij ) ,那么 mn (1) R(/ A)=span(/ A( 1 ), (2) 证: (1) V1, x1 1 /A () x1 / A( 1 ) 故R(/ A)=span(/ A( 1 ), xn n , 有 , / A( n )); xn / A( n ) rank / A rankA , / A( n ));
称n阶方阵A为 / A在基 1, 2 , ..., n 下的矩阵表示。 设=( 1, 2 , x1 x2 , n ) V , x n
/ A( )=( 1, 2 ,
y1 y2 , n ) y n
i 1 , ..., ir 是Wi的一组基,那么 / A在基
i
11 , ..., 1r , 21 , ..., 2 r , ..., s1 , ..., sr 下的矩阵表示为:
1 2 s
A1 A2 A . A s
&1.7 特征值和特征向量
即:
E11 ,
E12 , E21 , E22 PA E11 , E12 , E21 , E22 B
从而有B PA, 所以有A P 1 B
相关文档
最新文档