山东省聊城市2018届高三一模数学(理)试题及答案解析

合集下载

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。

2018 年全国 III 卷数学(理)答案及解析

2018 年全国 III 卷数学(理)答案及解析

− x + x + 2 的图像大致为( 7.函数 y =
4 2

A.
B.
C.
D.பைடு நூலகம்
【答案】D 【考点】函数图像以及性质 【难易程度】基础题 【解析】当 x=1 时,函数值大于 0,排除 A、B;因为 F(x)=F(-x),函数为偶函数,图像关于 y 轴
−4 x 3 + 2 x =0 ,解得 x=0、 、 对称, 令F '( x) =
p ,各成员的支付方式相互独立。设 X 为该群
,
P( x = 4) < p( x = 6) ,则 p =(
D.0.3

C.0.4
DX = np(1 − p) =10 × p(1 − p) = 2.4 , 解 得
= p1 0.6 = , p2 0.4 .
因为 P(X=4)<P(X=6),即
4 6 C10 p 4 (1 − p )6 < C10 p 6 (1 − p ) 4 ,所以 p 取 0.6。故答案选 B.
2 7 = 9 9 ,故答案选 B.
2 ( x 2 + )5 x 的展开式中 5、
A.10 【答案】C 【考点】二项式定理 【难易程度】基础题 B.20
的系数为( D.80

C.40
2 ( x 2 + )5 x 的展开式中的第 r+1 项为 【解析】
,题目中需要求解 ,故答案选 C
的系
4 ,则 r = 2 ,∴ 数,需使 2 × (5 − r ) − r =
是带卯眼的木构件的俯视图可以是(

A.
B.
C. 【答案】A 【考点】三视图 【难易程度】基础题

2018年全国高考新课标2卷理科数学考试(解析版)

2018年全国高考新课标2卷理科数学考试(解析版)

2018年全国高考新课标2卷理科数学考试(解析版)作者:日期:2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要 求的。

434 3 3 4 3 4 A ・ 一 T 一 弓 B * -5 + 5i c ∙ - 5 ' 5i D * - 5 + 5i解析:选D2. 已知集合A={(x,y) ∣χ2+y2≤3,x∈Z,y∈Z },则A 中元素的个数为( ) A. 9B. 8C. 5D ・ 4解析:选A 问题为确定圆面内整点个数 3. 函数f (x)=E 2的图像大致为()-、选择题:本题共12小题, 1.l+2i F r2解析:选B f(x)为奇函数,排除 A,x>0,f (x)>0,排除 D,取 x=2,f (2) = e 2-e^24 力,故选B4. 已知向量 a, b 满足 Ial=1, a ∙ b 二-1,则 a ∙ (2a~b)=( ) A. 4B. 3C. 2D.5.双曲线= I (a>0, b>0)的离心率为\龙,则其渐近线方程为( C. y=±迟X9A. y=±j∖βxB. y 二±ι∖βx=∖β C2 二 3¥ b=∖βa C √5 歹专,BC=I,AC 二 5, B. √30C 3 解析:选 A CoSo2cos 右-I= - ~ 2 5解析:选A e-6-在ΔABC 中,COS 则 AB 二() D. y=±A. 4√2 AB^AO+BC2-2AB ∙ BC ∙ COSC=322√5 AB=4√2 D.7. ................................................... 为计算S=I- 2 + 3 ^ 4 ++^ T∞,设计了右侧的程序框图,则在空白框中应填入()A. i=i+lB. i 二i+2C. i 二i+3D. i 二i+4解析:选B8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数 可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的 概率是()3为7+23, 11+19, 13+17,共3种情形,所求概率为P=FF109. 在长方体ABCD-ABc I D I 中,AB=BC=I, AAi=W 则异面直线AD】与DBl 所成角的余弦值为(D.解析:选C 建立空间坐标系,利用向量夹角公式可得。

山东省聊城市2018届高三一模考试数学文

山东省聊城市2018届高三一模考试数学文

数列”的( ) A.充分不必要条件 C.充要条件
B D
.必要不充分条件 .既不充分也不必要条件
· 1·
6. 已知直线 l 与抛物线 C : y 2 4 x 相交于 A , B 两点, 若线段 A B 的中点为 ( 2 ,1) ,则直线 l 的方程
为( )
A. y x 1
B
.y
2x 5
C .y
x3
D . y 2x 3
ab
的距离为 2 的点有且仅有 1 个,则这个点到双曲线
C 的左焦点
F 1
的距离为(

A. 2
B
.4
C
.6
D
.8
9. 执行如图所示的程序框图,若输出的结果为
1.5 ,则输入 k 的值应为( )
A. 4.5
B
.6
C
. 7.5
D
.9
10. 在 A B C 中, B C 边上的中线 A D 的长为 2, B C 2 6 ,则 A B A C ( )
7. 已知函数 f ( x ) x (1 0 x 1 0 x ) ,不等式 f (1 2 x ) f (3) 0 的解集为(

A. ( , 2 )
B
. (2, )
C
. ( ,1)
D
. (1, )
2
2
x
y
8. 已知双曲线 C : 2
2 1( a 0 , b 0 ) 的右焦点 F 2 到渐近线的距离为 4,且在双曲线 C 上到 F 2
,该图是由四个全等的直
角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形
. 设直角三角形中一个锐角
的正切值为 3. 在大正方形内随机取一点,则此点取自小正方形内的概率是(

2018高考数学(理科)模拟考试题一含答案及解析

2018高考数学(理科)模拟考试题一含答案及解析

2018年高考数学(理科)模拟试卷(一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016年四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B. 5 C.4 D.31.B解析:由题意,A∩Z={1,2,3,4,5},故其中的元素的个数为5.故选B.2.(2016年山东)若复数z满足2z+z=3-2i, 其中i为虚数单位,则z=()A.1+2i B.1-2iC.-1+2i D.-1-2i2.B解析:设z=a+b i(a,b∈R),则2z+z=3a+b i=3-2i,故a=1,b=-2,则z=1-2i.故选B.3.(2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为()图M1-1A.1 B. 2 C. 3 D.23.C解析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA=SC2+AC2=SC2+AB2+BC2= 3.故选C.图D1884.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π24.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.5.设x ∈R ,[x ]表示不超过x 的最大整数. 若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立,则正整数n 的最大值是( )A .3B .4C .5D .65.B 解析:因为[x ]表示不超过x 的最大整数.由[t ]=1,得1≤t <2,由[t 2]=2,得2≤t 2<3.由[t 3]=3,得3≤t 3<4.由[t 4]=4,得4≤t 4<5.所以2≤t 2< 5.所以6≤t 5<4 5.由[t 5]=5,得5≤t 5<6,与6≤t 5<4 5矛盾,故正整数n 的最大值是4.6.(2016年北京)执行如图M1-2所示的程序框图,若输入的a 值为1,则输出的k 值为( )图M1-2A .1B .2C .3D .46.B 解析:输入a =1,则k =0,b =1;进入循环体,a =-12,否,k =1,a =-2,否,k =2,a =1,此时a =b =1,输出k ,则k =2.故选B.7.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m +n 的值是( )图M1-3A .10B .11C .12D .137.C 解析:由题意,得78+88+84+86+92+90+m +957=88,n =9.所以m +n =12.故选C.8.(2015年陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知分别生产1吨甲、乙产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16C .17万元 D .18万元8.D 解析:设该企业每天生产甲、乙两种产品分别为x 吨、y 吨,则利润z =3x +4y .由题意可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0.其表示如图D189阴影部分区域:图D189当直线3x +4y -z =0过点A (2,3)时,z 取得最大值,所以z max =3×2+4×3=18.故选D.9.(2016年新课标Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个9.C 解析:由题意,必有a 1=0,a 8=1,则具体的排法列表如下:10.(2016年天津)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎝⎛⎦⎤0,18B.⎝⎛⎦⎤0,14∪⎣⎡⎭⎫58,1 C.⎝⎛⎦⎤0,58 D.⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58 10.D 解析:f (x )=1-cos ωx 2+sin ωx 2-12=22sin ⎝⎛⎭⎫ωx -π4,f (x )=0⇒sin ⎝⎛⎭⎫ωx -π4=0, 所以x =k π+π4ω(π,2π),(k ∈Z ).因此ω⎝⎛⎭⎫18,14∪⎝⎛⎭⎫58,54∪⎝⎛⎭⎫98,94∪…=⎝⎛⎭⎫18,14∪⎝⎛⎭⎫58,+∞⇒ω∈⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58.故选D.11.四棱锥P -ABCD 的底面ABCD 为正方形,P A ⊥底面ABCD ,AB =2,若该四棱锥的所有顶点都在体积为243π16的同一球面上,则P A =( )A .3 B.72C .2 3 D.9211.B 解析:如图D190,连接AC ,BD 交于点E ,取PC 的中点O ,连接OE ,则OE∥P A ,所以OE ⊥底面ABCD ,则O 到四棱锥的所有顶点的距离相等,即O 为球心,12PC =12P A 2+AC 2=12P A 2+8,所以由球的体积可得43π⎝⎛⎭⎫12P A 2+83=243π16,解得P A =72.故选B.图D19012.已知F 为抛物线y 2=x 的焦点,点A 、B 在该抛物线上且位于x 轴两侧,若OA →·OB →=6(O 为坐标原点),则△ABO 与△AOF 面积之和的最小值为( )A .4 B.3 132 C.17 24D.1012.B 解析:设直线AB 的方程为x =ty +m ,点A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M (m,0),将直线方程与抛物线方程联立,可得y 2-ty -m =0,根据韦达定理有y 1·y 2=-m ,因为OA →·OB →=6,所以x 1·x 2+y 1·y 2=6,从而(y 1·y 2)2+y 1·y 2-6=0,因为点A ,B 位于x 轴的两侧,所以y 1·y 2=-3,故m =3,不妨令点A 在x 轴上方,则y 1>0,又F ⎝⎛⎭⎫14,0,所以S △ABO +S △AFO =12×3×(y 1-y 2)+12×14y 1=138y 1+92y 1≥2138·y 1·92·1y 1=3132,当且仅当13y 18=92y 1,即y 1=6 1313时取等号,故其最小值为3 132.故选B.第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.13.2 解析:a =(1,2),b =(4,2),则c =m a +b =(m +4,2m +2),|a |=5,|b |=2 5,a ·c =5m +8,b ·c =8m +20.∵c 与a 的夹角等于c 与b 的夹角,∴c·a |c|·|a|=c·b |c|·|b|.∴5m +85=8m +202 5.解得m =2.14.设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为__________.14.5 解析:根据双曲线的对称性,不妨设F (c,0),虚轴端点为(0,b ),从而可知点(-c,2b )在双曲线上,有c 2a 2-4b 2b2=1,则e 2=5,e = 5.15.(2016年北京)在(1-2x )6的展开式中,x 2的系数为________.(用数字作答)15.60 解析:根据二项展开的通项公式T r +1=C r 6·(-2)r x r 可知,x 2的系数为C 26(-2)2=60,故填60.16.在区间[0,π]上随机地取一个数x ,则事件“sin x ≤12”发生的概率为________.16.13 解析:由正弦函数的图象与性质知,当x ∈⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π时,sin x ≤12. 所以所求概率为⎝⎛⎭⎫π6-0+⎝⎛⎭⎫π-5π6π=13.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.17.解:(1)设{a n }的公比为q ,{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10.消去d ,得q 4-2q 2-8=0.解得q =2,d =2.所以{a n }的通项公式为a n =2n -1,n ∈N *, {b n }的通项公式为b n =2n -1,n ∈N *.(2)由(1)有c n =(2n -1)2n -1,设{c n }的前n 项和为S n , 则S n =1×20+3×21+5×22+…+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -1)×2n .两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =-(2n -3)×2n -3. 所以S n =(2n -3)·2n +3,n ∈N *.18.(本小题满分12分)(2014年大纲)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.18.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.19.(本小题满分12分)(2016年四川)如图M1-4,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠P AB=90°,BC=CD=12AD,E为边AD的中点,异面直线P A与CD所成的角为90°.(1)在平面P AB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.图M1-419.解:(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形.所以CD∥EB.从而CM∥EB.又EB ⊂平面PBE ,CM 平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点) (2)方法一,由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 从而CD ⊥PD .所以∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.设BC =1,则在Rt △P AD 中,P A =AD =2.如图D191,过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH . 易知P A ⊥平面ABCD , 从而P A ⊥CE . 于是CE ⊥平面P AH . 所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE . 所以∠APH 是P A 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=3 22, 所以sin ∠APH =AH PH =13.图D191 图D192方法二,由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 于是CD ⊥PD .从而∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.由P A ⊥AB ,可得P A ⊥平面ABCD .设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD → ,AP →的方向分别为x 轴,z 轴的正方向,建立如图D192所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2)设平面PCE 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0, 得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13 .所以直线P A 与平面PCE 所成角的正弦值为13.20.(本小题满分12分)(2016年新课标Ⅲ)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x <x ;(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x .20.解:(1)由题设,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增; 当x >1时,f ′(x )<0,f (x )单调递减.(2)由(1)知,f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)由题设c >1,设g (x )=1+(c -1)x -c x , 则g ′(x )=c -1-c x ln c . 令g ′(x )=0,解得x 0=lnc -1ln cln c .当x <x 0时,g ′(x )>0,g (x )单调递增; 当x >x 0时,g ′(x )<0,g (x )单调递减. 由(2)知,1<c -1ln c<c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0. 所以x ∈(0,1)时,1+(c -1)x >c x .21.(本小题满分12分)(2016年广东广州综合测试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2, 0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.21.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),因为椭圆的左焦点为F 1(-2,0),所以a 2-b 2=4.①因为点B (2,2)在椭圆C 上,所以4a 2+2b 2=1.②由①②,解得a =2 2,b =2.所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A ,则点A 的坐标为(-2 2,0).因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于两点E ,F ,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).联立方程组⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2. 所以x 0=2 21+2k2,则y 0=2 2k 1+2k2.所以直线AE 的方程为y =k1+1+2k2(x +2 2).因为直线AE ,AF 分别与y 轴交于点M ,N ,令x =0得y = 2 2k1+1+2k2,即点M ⎝ ⎛⎭⎪⎫0, 2 2k 1+1+2k 2. 同理可得点N ⎝ ⎛⎭⎪⎫0, 2 2k 1-1+2k 2. 所以|MN |=⎪⎪⎪⎪⎪⎪2 2k 1+1+2k 2- 2 2k 1-1+2k 2=22(1+2k 2)|k |. 设MN 的中点为P ,则点P 的坐标为P ⎝⎛⎭⎫0,-2k .则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+2 2k y =4. 令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0),请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:极坐标与参数方程已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A 、B 的极坐标分别为A (2,π)、B ⎝⎛⎭⎫2,4π3. (1)求直线AB 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线AB 距离的最大值.22.解:(1)将A 、B 化为直角坐标为A (2cos π,2sin π),B ⎝⎛⎭⎫2cos 4π3,2sin 4π3,即A ,B 的直角坐标分别为A (-2,0),B (-1,-3),k AB =-3-0-1+2=-3,∴直线AB 的方程为y -0=-3(x +2),即直线AB 的方程为3x +y +2 3=0.(2)设M (2cos θ,sin θ),它到直线AB 的距离d =|2 3cos θ+sin θ+2 3|2=|13sin (θ+φ)+2 3|2, ∴d max =13+2 32.23.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -2|-|2x -a |,a ∈R .(1)当a =3时,解不等式f (x )>0;(2)当x ∈(-∞,2)时,f (x )<0恒成立,求a 的取值范围.23.解:(1)当a =3时,f (x )>0,即|x -2|-|2x -3|>0,等价于⎩⎪⎨⎪⎧ x ≤32,x -1>0,或⎩⎪⎨⎪⎧ 32<x <2,-3x +5>0,或⎩⎪⎨⎪⎧x ≥2,-x +1>0. 解得1<x ≤32,或32<x <53. 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <53. (2)f (x )=2-x -|2x -a |,所以f (x )<0可化为|2x -a |>2-x , ①即2x -a >2-x ,或2x -a <x -2.①式恒成立等价于(3x -2)min >a 或(x +2)max <a ,∵x ∈(-∞,2),∴a ≥4.。

2018年全国高考理科数学(全国一卷)试题及答案

2018年全国高考理科数学(全国一卷)试题及答案

2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=( )A.0 B 。

C 。

1 D 。

2、已知集合A={x|x 2—x-2〉0},则A =( )A 、{x |—1<x<2}B 、{x|—1≤x ≤2}C 、{x|x<—1}∪{x |x 〉2}D 、{x|x ≤-1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍建设前经济收入构成比例建设后经济收入构成比例D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn 为等差数列{an}的前n项和,若3S3= S2+ S4,a1=2,则a5=()A、—12B、—10C、10D、125、设函数f(x)=x³+(a—1)x²+ax .若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为( )A。

y= -2x B.y= -x C。

y=2x D.y=x6、在∆ABC中,AD为BC边上的中线,E为AD的中点,则=()A。

- B. - C。

+ D。

+7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A。

2B。

2C。

3D。

28.设抛物线C:y²=4x的焦点为F,过点(—2,0)且斜率为的直线与C交于M,N两点,则·=( )A.5B.6 C。

7 D.89。

山东省聊城市2018届高三下学期第一次模拟考试数学(理)试卷(含解析)

山东省聊城市2018届高三下学期第一次模拟考试数学(理)试卷(含解析)

山东省聊城市2018届高三第一次模拟考试数学试题(理科)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

1. 已知集合,,则()A. B. C. D.【答案】A【解析】.故选A.2. 设复数,则()A. 4B. 2C.D. 1【答案】C【解析】,故选C.3. 设等差数列的前项和为,若,,则数列的公差为()A. 2B. 3C. 4D. 5【答案】B【解析】,故公差.故选B.4. 我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是()A. B. C. D.【答案】D【解析】不妨设两条直角边为,故斜边,即大正方形的边长为,小正方形边长为,故概率为.5. 设等比数列的各项均为正数,其前项和为,则“”是“数列是递增数列”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】由得,故是递增数列,反之也成立,所以为充要条件.选C.6. 已知直线与抛物线:相交于,两点,若线段的中点为,则直线的方程为()A. B. C. D.【答案】D【解析】设,代入抛物线得,两式相减得,即,即直线的斜率为,由点斜式得,化简得,故选D. 7. 已知函数,不等式的解集为()A. B. C. D.【答案】A【解析】由于,所以函数为奇函数,且为单调递增函数,故,所以,故选A.8. 已知双曲线:的右焦点到渐近线的距离为4,且在双曲线上到的距离为2的点有且仅有1个,则这个点到双曲线的左焦点的距离为()A. 2B. 4C. 6D. 8【答案】D【解析】双曲线焦点到渐近线的距离为,所以.双曲线上到的距离为2的点有且仅有1个,即双曲线右顶点到右焦点的距离为,故,由于,解得,右顶点到左焦点的距离为,故选D.9. 执行如图所示的程序框图,若输出的结果为1.5,则输入的值应为()A. 4.5B. 6C. 7.5D. 9【答案】B【解析】,判断是,,判断是,,判断是, ,判断否,输出,故选B.10. 在中,边上的中线的长为2,点是所在平面上的任意一点,则的最小值为()A. 1B. 2C. -2D. -1【答案】C【解析】建立如图所示的平面直角坐标系,使得点D在原点处,点A在y轴上,则.设点P的坐标为,则,故,当且仅当时等号成立.所以的最小值为.选C.11. 如图是某几何体的三视图,其中俯视图为等边三角形,正视图为等腰直角三角形,若该几何体的各个顶点都在同一个球面上,则这个球的体积与该几何体的体积的比为()A. B. C. D.【答案】C【解析】设底边长和高为,则三棱锥的体积为.底面外接圆半径,故几何体外接球的半径为,体积为.故比值为.故选C.12. 已知函数恰有3个零点,则实数的取值范围为()A. B. C. D.【答案】A【解析】,在上单调递减.若,则在上递增,那么零点个数至多有一个,不符合题意,故.故需当时,且,使得第一段有一个零点,故.对于第二段,,故需在区间有两个零点,,故在上递增,在上递减,所以,解得.综上所述,【点睛】本小题主要考查函数的图象与性质,考查含有参数的分段函数零点问题的求解策略,考查了利用导数研究函数的单调区间,极值,最值等基本问题.其中用到了多种方法,首先对于第一段函数的分析利用了分离常数法,且直接看出函数的单调性.第二段函数利用的是导数来研究图像与性质.13. 设,满足约束条件,则的最大值为__________.【答案】4【解析】,画出可行域如下图所示,由图可知,目标函数在点处取得最大值为.[点睛]本小题主要考查线性规划的基本问题,考查了指数的运算. 画二元一次不等式或表示的平面区域的基本步骤:①画出直线(有等号画实线,无等号画虚线);②当时,取原点作为特殊点,判断原点所在的平面区域;当时,另取一特殊点判断;③确定要画不等式所表示的平面区域.14. 某工厂从生产的一批产品中随机抽出一部分,对这些产品的一项质量指标进行了检测,整理检测结果得到如下频率分布表:据此可估计这批产品的此项质量指标的方差为__________.【答案】144【解析】由题意得这批产品的此项质量指标的平均数为,故方差为.答案:点睛:在频率分布直方图中平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和,在频率分布表中平均数的估计值等于每个分组的中点值乘以该组频率之和.利用类似的方法也可根据频率分布直方图或频率分布表求得方差.15. 的展开式中常数项为__________.【答案】672【解析】表示9个相乘,从这9个中选取6个且只取其中的,从剩余的3个中只取,相乘后即可得到常数项,故常数项为.答案:16. 若函数在开区间内,既有最大值又有最小值,则正实数的取值范围为__________.【答案】【解析】,其中,,故,解得,故,解得.17. 已知数列满足,.(Ⅰ)证明:是等比数列;(Ⅱ)求数列的前项和.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)递推公式是型时,通常等式两边同时加,构成新的等比数列,(Ⅱ)求和时采用分组求和的方法,其中是差比数列,采用错位想减法。

山东省聊城市2018届高三一模数学文试题 含答案 精品

山东省聊城市2018届高三一模数学文试题 含答案 精品

2018年聊城市高考模拟试题文科数学(一) 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合2{|1}A x x =<,{|lg(1)0}B x x =+≥,则AB =( )A .[0,1)B .(1,)-+∞C .(0,1)D .(1,0]-2.设复数2(1)1i z i-=+,则z =( )A .4B .2C .13.设等差数列{}n a 的前n 项和为n S ,若13104S =,65a =,则数列{}n a 的公差为( ) A .2 B .3 C .4 D .54.我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是( )A .110 B .15 C .310 D .255.设等比数列{}n a 的各项均为正数,其n 前项和为n S ,则“1921202S S S +>”是“数列{}n a 是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知直线l 与抛物线C :24y x =相交于A ,B 两点,若线段AB 的中点为(2,1),则直线l 的方程为( )A .1y x =-B .25y x =-+C .3y x =-+D .23y x =- 7.已知函数()(1010)x x f x x -=-,不等式(12)(3)0f x f -+>的解集为( ) A .(,2)-∞ B .(2,)+∞ C .(,1)-∞ D .(1,)+∞8.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点2F 到渐近线的距离为4,且在双曲线C上到2F 的距离为2的点有且仅有1个,则这个点到双曲线C 的左焦点1F 的距离为( ) A .2 B .4 C .6 D .8 9.执行如图所示的程序框图,若输出的结果为1.5,则输入k 的值应为( )A .4.5B .6C .7.5D .910.在ABC ∆中,BC 边上的中线AD 的长为2,BC =AB AC ⋅=( ) A .1 B .2 C .-2 D .-111.如图是某几何体的三视图,其中俯视图为等边三角形,正视图为等腰直角三角形,若该几何体的各个顶点都在同一个球面上,则这个球的体积与该几何体的体积的比为( )A .73π B .289π C .43π12.已知函数3,21(),20x x a x x f x a e x x ⎧--≤-⎪⎪+=⎨⎪--<<⎪⎩恰有3个零点,则实数a 的取值范围为( )A .11,3e ⎛⎫-- ⎪⎝⎭ B .211,e e ⎛⎫--⎪⎝⎭ C .221,3e ⎡⎫--⎪⎢⎣⎭ D .21,33⎡⎫--⎪⎢⎣⎭第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.设x ,y 满足约束条件102020x y x y x y -+≥⎧⎪-≤⎨⎪+≤⎩,则12()16x yz =的最大值为 .14.已知数列{}n a 的前n 项和公式为2n S n =,若2n an b =,则数列{}n b 的前n 项和n T = .15.已知0a >,0b >,32a b ab +=,则a b +的最小值为 . 16.若函数()sin()4f x m x π=+x 在开区间7(0,)6π内,既有最大值又有最小值,则正实数m 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos 2a C c b -=. (Ⅰ)求角A 的大小;(Ⅱ)已知a =ABC ∆的面积为4,求ABC ∆的周长. 18.为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且y 与x 有很强的线性相关关系.(Ⅰ)求y 关于x 的线性回归方程;(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少; (Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好? 参考数据:71359.6i ii x y==∑,721()7i i x x =-=∑.参考公式:121()ni ii nii x y nx yb x x ==-=-∑∑,a y bx =-.19.如图,四棱锥PABCD -中,PAD ∆为等边三角形,且平面PAD ⊥平面ABCD ,22AD BC ==,AB AD ⊥,AB BC ⊥.(Ⅰ)证明:PC BC ⊥; (Ⅱ)若棱锥P ABCD -的体积为2,求该四棱锥的侧面积. 20.已知圆224x y +=经过椭圆C :22221(0)x y a b a b+=>>的两个焦点和两个顶点,点(0,4)A ,M ,N 是椭圆C 上的两点,它们在y 轴两侧,且MAN ∠的平分线在y 轴上,AM AN ≠.(Ⅰ)求椭圆C 的方程; (Ⅱ)证明:直线MN 过定点.21.已知函数2()ln x f x a x x a =+-(0a >,且1a ≠).(Ⅰ)求函数()f x 的单调区间;(Ⅱ)求函数()f x 在[2,2]-上的最大值.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的普通方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin()4πρθ+=(Ⅰ)写出圆C 的参数方程和直线l 的直角坐标方程;(Ⅱ)设直线l 与x 轴和y 轴的交点分别为A 、B ,P 为圆C 上的任意一点,求PA PB ⋅的取值范围.23.选修4-5:不等式选讲已知函数()22f x x a a =++,a R ∈.(Ⅰ)若对于任意x R ∈,()f x 都满足()(3)f x f x =-,求a 的值; (Ⅱ)若存在x R ∈,使得()21f x x a ≤--+成立,求实数a 的取值范围.2018年聊城市高考模拟 文科数学(一)答案一、选择题1-5: ACBDC 6-10: DADBC 11、12:CA 二、填空题 13. 4 14. 2(41)3n-15. 223m <<三、解答题17.解:(Ⅰ)由2cos 2a C c b -=及正弦定理得,2sin cos sin 2sin A C C B -=,2sin cos sin A C C -2sin cos 2cos sin A C A C =+,∴sin 2cos sin C A C -=,又∵sin 0C ≠,∴1cos 2A =-. 又∵(0,)A π∈,∴23A π=.(Ⅱ)由a =23A π=,根据余弦定理得223b c bc ++=,由ABC ∆的面积为4,得1bc =. 所以222b c bc ++2()4b c =+=,得2b c +=,所以ABC ∆周长2a b c ++=18.解:(Ⅰ)6x =,8.3y =,7348.6xy =,717217()i ii ii x y x yb x x ==-=-∑∑359.6348.67-=111.5717=≈,a y bx =-8.3 1.5716 1.126=-⨯=-,那么回归方程为: 1.571 1.126y x =-. (Ⅱ)将8.0x =代入方程得1.5718.0 1.12611.442y =⨯-=,即小明家的“超级大棚”当年的利润大约为11.442万元.(Ⅲ)近5年来,无丝豆亩平均利润的平均数为 1.5 1.7 2.1 2.2 2.525m ++++==,方差22211[(1.52)(1.72)5s =-+-22(2.12)(2.22)+-+-2(2.52)]0.128+-=. 彩椒亩平均利润的平均数为 1.8 1.9 1.9 2.2 2.225n ++++==, 方差为22221[(1.82)(1.92)5s =-+-22(1.92)(2.22)+-+-2(2.22)]0.028+-=.因为m n =,2212s s >,∴种植彩椒比较好. 19.证明:(Ⅰ)取AD 的中点为O ,连接PO ,CO , ∵PAD ∆为等边三角形,∴PO AD ⊥.底面ABCD 中,可得四边形ABCO 为矩形,∴CO AD ⊥, ∵POCO O =,∴AD ⊥平面POC ,∵PC ⊂平面POC ,∴AD PC ⊥. 又//AD BC ,所以BC PC ⊥.(Ⅱ)由面PAD ⊥面ABCD ,PO AD ⊥,∴PO ⊥平面ABCD ,所以PO 为棱锥P ABCD -的高,由2AD =,知PO =,13P ABCD ABCD V S PO -=⋅1()32AD BC AB PO +⋅=⋅⋅AB ==, ∴1AB =.由(Ⅰ)知1CO AB ==,2PC ==,∴112PBC S BC PC ∆=⋅=. 12PAD S AD PO ∆=⋅=由AB AD ⊥,可知AB ⊥平面PAD ,∴AB PA ⊥, 因此112PAB S AB PA ∆=⋅=.在PCD ∆中2PC PD ==,CD =取AD 的中点E ,连结PE ,则PE CD ⊥,2PE ==,∴12PCD S CD PE ∆=⋅==所以棱锥P ABCD -的侧面积为2+20.解:(Ⅰ)圆224x y +=与x 轴交点(2,0)±即为椭圆的焦点,圆224x y +=与y 轴交点(0,2)±即为椭圆的上下两顶点,所以2c =,2b =.从而a =因此椭圆C 的方程为:22184x y +=. (Ⅱ)设直线MN 的方程为y kx m =+.由22184y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得222(21)4280k x kmx m +++-=.设11(,)M x y ,22(,)N x y ,则122421km x x k +=-+,21222821m x x k -=+.直线AM 的斜率1114y k x -=14m k x -=+; 直线AN 的斜率2224y k x -=24m k x -=+. 12k k +=1212(4)()2m x x k x x -++2(4)(4)228m km k m --=+-216(1)28k m m -=-.由MAN ∠的平分线在y 轴上,得120k k +=.又因为AM AN ≠,所以0k ≠, 所以1m =.因此,直线MN 过定点(0,1).21.解:(Ⅰ)'()ln 2ln xf x a a x a =+-,设()'()g x f x =2ln ln xx a a a =+-,则2'()2ln x g x a a =+.∵'()0g x >,x R ∈,∴()g x 在R 上单调递增, 从而得'()f x 在(,)-∞+∞上单调递增,又∵'(0)0f =, ∴当(,0)x ∈-∞时,'()0f x <,当(0,)x ∈+∞时,'()0f x >, 因此,()f x 的单调增区间为(0,)+∞,单调减区间为(,0)-∞. (Ⅱ)由(Ⅰ)得()f x 在[2,0]-上单调递减,在[0,2]上单调递增,由此可知max ()max{(2),(2)}f x f f =-.∵2(2)42ln f a a =+-,2(2)42ln f a a --=++, ∴22(2)(2)4ln f f a a a ---=--. 设22()4ln g x x x x -=--,则34'()22g x x x x -=+-423242x x x -+=2232(1)x x -=.∵当0x >时,'()0g x ≥,∴()g x 在(0,)+∞上单调递增.又∵(1)0g =,∴当(0,1)x ∈时,()0g x <;当(1,)x ∈+∞时,()0g x >.①当1a >时,()0g a >,即(2)(2)0f f -->,这时,max ()(2)f x f =22ln 4a a =-+;②当01a <<时,()0g a <,即(2)(2)0f f --<,这时,max ()(2)f x f =-22ln 4a a -=++.综上,()f x 在[2,2]-上的最大值为:当1a >时,max ()f x 22ln 4a a =-+; 当01a <<时,max ()f x 22ln 4aa -=++.22.解:(Ⅰ)圆C 的参数方程为2cos 3sin x y θθ=+⎧⎨=+⎩(θ为参数).直线l 的直角坐标方程为20x y +-=.(Ⅱ)由直线l 的方程20x y +-=可得点(2,0)A ,点(0,2)B . 设点(,)P x y ,则PA PB ⋅(2,)(,2)x y x y =--⋅--.2222x y x y =+--2412x y =+-.由(Ⅰ)知2cos 3sin x y θθ=+⎧⎨=+⎩,则PA PB ⋅4sin 2cos 4θθ=++)4θϕ=++.因为R θ∈,所以44PA PB -⋅≤+23.解:(Ⅰ)因为()(3)f x f x =-,x R ∈,所以()f x 的图象关于32x =对称. 又()2||22a f x x a =++的图象关于2a x =-对称,所以322a -=,所以3a =-. (Ⅱ)()21f x x a ≤--+等价于2210x a x a ++-+≤.设()g x =221x a x a ++-+,则min ()(2)(21)g x x a x a =+--+1a a =++. 由题意min ()0g x ≤,即10a a ++≤. 当1a ≥-时,10a a ++≤,12a ≤-,所以112a -≤≤-; 当1a <-时,(1)0a a -++≤,10-≤,所以1a <-, 综上12a ≤-.。

2018届高三上学期期末联考数学(理)试题有答案-精品

2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

山东省聊城市2018届高三下学期第一次模拟考试数学(理)试卷(含解析)

山东省聊城市2018届高三下学期第一次模拟考试数学(理)试卷(含解析)

山东省聊城市2018届高三第一次模拟考试数学试题(理科)1. 已知集合)A. B. C. D.【答案】A【解析】故选A.2. 设复数)A. 4B. 2C.D. 1【答案】C【解析】故选C.3. 设等差数列的前项和为,若,)A. 2B. 3C. 4D. 5【答案】B【解析】故选B.4. 我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是()【答案】D【解析】故斜边,小正方形边长为5. 设等比数列的各项均为正数,其递增数列”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】由,反之也成立,所以为充要条件.选C.6. 已知直线与抛物线:,为()D.【答案】D【解析】设两式相减得即,由点斜式得故选D.7. 已知函数)B. C. D.【答案】A【解析】由于,所以函数为奇函数,且为单调递增函数,故,所以,故选A.8. :的右焦点4,的距离为2的点有且仅有1个,则这个点到双曲线的左焦点)A. 2B. 4C. 6D. 8【答案】D【解析】所以2的点有且仅有1个,,故选D.9. 执行如图所示的程序框图,若输出的结果为1.5)A. 4.5B. 6C. 7.5D. 9【答案】B【解析】判断是,判断否,输出故选B.10. 在中,边上的中线的长为2,点)A. 1B. 2C. -2D. -1【答案】C【解析】建立如图所示的平面直角坐标系,使得点D在原点处,点A在y设点P的坐标为,当且仅当C.11. 如图是某几何体的三视图,其中俯视图为等边三角形,正视图为等腰直角三角形,若该几何体的各个顶点都在同一个球面上,则这个球的体积与该几何体的体积的比为()D.【答案】C底面外接圆半径,体积为故比值为.故选C.12. 已知函数3个零点,则实数的取值范围为()B. C. D.【答案】A【解析】.递增,那么零点个数至多有一个,不符合题意,故使得第一段有一个零点,对于第二段,,故需在区间,故在上递增,在上递减,【点睛】本小题主要考查函数的图象与性质,考查含有参数的分段函数零点问题的求解策略,考查了利用导数研究函数的单调区间,极值,最值等基本问题.其中用到了多种方法,首先对于第一段函数的分析利用了分离常数法,且直接看出函数的单调性.第二段函数利用的是导数来研究图像与性质.13. __________.【答案】4【解析】画出可行域如下图所示,由图可知,[点睛]本小题主要考查线性规划的基本问题,考查了指数的运算. 画二元一次不等式(有等号画实线,无等号画虚线)域.14. 某工厂从生产的一批产品中随机抽出一部分,对这些产品的一项质量指标进行了检测,整理检测结果得到如下频率分布表:据此可估计这批产品的此项质量指标的方差为__________.【答案】144【解析】由题意得这批产品的此项质量指标的平均数为故方差为点睛:在频率分布直方图中平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和,在频率分布表中平均数的估计值等于每个分组的中点值乘以该组频率之和.利用类似的方法也可根据频率分布直方图或频率分布表求得方差.15. __________.【答案】672【解析】9从这96个且只取其中,从剩余的3个中只取,相乘后即可得到常数项,故常数项为.答案:16. 在开区间的取值范围为__________.【答案】【解析】故17. 已知数列【答案】(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)递推公式是等比数列,(Ⅱ)采用错位想减法。

山东省聊城市2018届高考一模考试数学(文)试题有答案

山东省聊城市2018届高考一模考试数学(文)试题有答案
因此, 的单调增区间为 ,单调减区间为 .
(Ⅱ)由(Ⅰ)得 在 上单调递减,在 上单调递增,
由此可知 .
∵ , ,
∴ .
设 ,
则 .
∵当 时, ,∴ 在 上单调递增.
又∵ ,∴当 时, ;当 时, .
①当 时, ,即 ,这时, ;
②当 时, ,即 ,这时, .
综上, 在 上的最大值为:当 时, ;
当 时, .
16.若函数 在开区间 内,既有最大值又有最小值,则正实数 的取值范围为.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分
17.在 中,角 , , 所对的边分别为 , , ,且 .
22.解:(Ⅰ)圆 的参数方程为 ( 为参数).
直线 的直角坐标方程为 .
(Ⅱ)由直线 的方程 可得点 ,点 .
设点 ,则 .
.
由(Ⅰ)知 ,则 .
因为 ,所以 .
23.解:(Ⅰ)因为 , ,所以 的图象关于 对称.
又 的图象关于 对称,所以 ,所以 .
(Ⅱ) 等价于 .
设 ,
则 .
由题意 ,即 .
(Ⅰ)写出圆 的参数方程和直线 的直角坐标方程;
(Ⅱ)设直线 与 轴和 轴的交点分别为 、 , 为圆 上的任意一点,求 的取值范围.
23.选修4-5:不等式选讲
已知函数 , .
(Ⅰ)若对于任意 , 都满足 ,求 的值;
(Ⅱ)若存在 ,使得 成立,求实数 的取值范围.
2018年聊城市高考模拟
文科数学(一)答案
当 时, , ,所以 ;
当 时, , ,所以 ,

2018年全国高考理科数学(全国一卷)试题及答案

2018年全国高考理科数学(全国一卷)试题及答案

2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=( )A.0B. 12 C.1 D. √2 2、已知集合A={x|x 2-x-2>0},则C R A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍建设前经济收入构成比例建设后经济收入构成比例D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB → + 14 AC → D. 14 AB → + 34 AC→7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.89.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

(完整版)2018年高考全国卷1数学试题及答案解析[理科]

(完整版)2018年高考全国卷1数学试题及答案解析[理科]

WORD整理版分享2017 年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

x1.已知集合 A x x 1 ,B x 3 1 ,则()A. A B x x 0 B. A B RC. A B x x 1 D. A B2.如图,正方形ABCD 内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π43.设有下面四个命题,则正确的是()1 p :若复数z 满足1z R,则z R ;p :若复数z 满足z2 R ,则z R ;2p :若复数3 z,z 满足z z R ,则1 2 1 2zz ;1 2p :若复数z R ,则z R .4A.p1 ,p3 B.p,pC.1 4p,pD.2 3p,p244.记S n 为等差数列a n 的前n 项和,若a4 a5 24,S6 48 ,则a n 的公差为()A.1 B.2 C. 4 D.85.函数 f x 在,单调递减,且为奇函数.若 f 1 1,则满足1≤ f x 2 ≤ 1 的 x的取值范围是()A.2,2 B.1,1 C.0 ,4 D.1,3范文范例参考指导WORD整理版分享6.11 1x2x6展开式中 2x 的系数为A.15 B. 20 C. 30 D. 357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A.10 B. 12 C. 14 D.16n n 8.右面程序框图是为了求出满足3 2 1000 的最小偶数n ,那么在和两个空白框中,可以分别填入A. A 1000 和n n 1 B. A 1000 和n n 2 C. A≤1000 和n n 1 D. A≤1000 和 n n 29.已知曲线2πC1 : y cos x , C2 : y sin 2x ,则下面结论正确的是()3A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移单位长度,得到曲线C2π个6B.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π个12单位长度,得到曲线C2C.把 C 上各点的横坐标缩短到原来的1 12倍,纵坐标不变,再把得到的曲线向右平移π个6单位长度,得到曲线C2D.把 C 上各点的横坐标缩短到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移1π个12单位长度,得到曲线C2范文范例参考指导WORD 整理版分享10. 已知 F 为抛物线C :2 4y x 的交点, 过 F 作两条互相垂直 l 1 ,l 2 ,直线 l 1 与 C 交于 A 、B两点,直线 l 2 与 C 交于 D , E 两点, AB DE 的最小值为()A .16B . 14C . 12D .1011.设x , y , z 为正数,且 2x 3y 5z,则()A . 2x 3y 5zB . 5z 2x 3yC . 3y 5z 2xD . 3y 2x 5z12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列 1, 1, 2 , 1, 2 , 4 , 1, 2 , 4 , 8 , 1, 2 , 4 , 8 , 16 ,⋯ ,其中第一项是20,接下来的两项是 20 , 21 ,在接下来的三项式26 , 21 , 22,依次类推,求满足如下条件的 最小整数 N :N 100 且该数列的前N 项和为 2的整数幂. 那么该款软件的激活码是 ( )A . 440B . 330C . 220D .110二、 填空题:本题共 4 小题,每小题 5 分,共 20 分。

山东省聊城市2018届高考一模考试数学(文)试题含答案

山东省聊城市2018届高考一模考试数学(文)试题含答案

山东省烟台市2018届高三下学期高考诊断性测试文科数学试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项符合题目要求1.已知集合{{},21x A x y B x ==-==>,则A∩B=A.{}02x x <≤ B.{}12x x <≤ C.{}0x x > D.{}2x x ≤2.已知某单位有职工120人,男职工有90人,现采用分层抽样(按性别分层)抽取一个样本,若已知样本中有18名男职工,则样本容量为A.20B.24C.30D.403.已知复数312z i=+(i 是虚数单位),则z 的共轭复数z =A.1255i - B.1255i + C.3655i - D.3655i +4.七巧板是我国古代劳动人民的发明之一,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率是A.14B.18C.38D.3165.若双曲线22221(0,0)x y a b a b-=>>与直线y =有交点,则其离心率的取值范围是A.(1,2)B.(1.2]C.(2,)+∞ D.[2,)+∞6.如下图,点O 为正方体ABCD-A'B'C'D'的中心,点E 为棱BB'的中点,点F 为棱B'C'的中点,则空间四边形OEFD在该正方体的面上的正投影不可能是7已知变量x 、y 满足236x y y x x y +≥⎧⎪≤⎨⎪-≤⎩则22z x y =+的最小值是A.1B.C.2D.48.函数sin cos y x x x =+的图象大致是9.定义在R 上的奇函数f (x )在(0,)+∞上是增函数,则使得f (x )>f (x 2-2x +2)成立的x 的取值范围是A.(1,2)B.(,1)(2,)-∞+∞ C.(,1)-∞ D.(2,)+∞10.运行如图所示的程序框图,若输出的S 是126,则①应为A.5?n ≤ B.6?n ≤ C.7?n ≤ D.8?n ≤11.已知△ABC 的三个内角A、B、C 所对的边分别为a 、b 、c ,若b =1,1sin cos sin cos 2a B C c B A +=则a =A.1B.1C.1或2D.12.已知动点P 在椭圆2214940x y +=上,若点A 的坐标为(3,0),点M 满足1AM = 0PM AM ⋅= ,则PM的最小值是A.4B.C.15D.16二、填空题:本大题共有4个小题,每小题5分,共20分。

2018年山东省高考数学试卷(理科)word版试卷及解析

 2018年山东省高考数学试卷(理科)word版试卷及解析

2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=( )A.0B. 12 C.1 D. √2 2、已知集合A={x|x 2-x-2>0},则C R A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB → + 14 AC → D. 14 AB → + 34 AC→建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.8 9.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

2018年山东省聊城市高考一模数学试卷(理科)【解析版】

2018年山东省聊城市高考一模数学试卷(理科)【解析版】

大正方形和一个小正方形.设直角三角形中一个锐角的正切值为 3.在大正方
形内随机取一点,则此点取自小正方形内的概率是( )
A.
B.
C.
D.
5.(5 分)设等比数列{an}的各项均为正数,其 n 前项和为 Sn,则“S19+S21>2S20”
是“数列{an}是递增数列”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
6.(5 分)已知直线 l 与抛物线 C:y2=4x 相交于 A,B 两点,若线段 AB 的中点
为(2,1),则直线 l 的方程为( )
A.y=x﹣1
B.y=﹣2x+5
C.y=﹣x+3
D.y=2x﹣3
7.(5 分)已知函数 f(x)=|x|(10x﹣10﹣x),不等式 f(1﹣2x)+f(3)>0 的
A.2
B.4
C.6
D.8
9.(5 分)执行如图所示的程序框图,若输出的结果为 1.5,则输入 k 的值应为
()
A.4.5
B.6
C.7.5
D.9
10.(5 分)在△ABC 中,BC 边上的中线 AD 的长为 2,点 P 是△ABC 所在平面
上的任意一点,则
的最小值为( )
A.1
B.2
C.﹣2
D.﹣1
11.(5 分)如图是某几何体的三视图,其中俯视图为等边三角形,正视图为等

频数 2 4 4 10 16 20 16 12 8 6 2 以这 100 次记录的各乘车人数的频率作为各乘车人数的概率. (Ⅰ)若随机抽查两次教师们的乘车情况,求这两次中至少有一次乘车人数超过
18 的概率; (Ⅱ)有一次,王师傅的大客车出现了故障,于是王师傅准备租一辆小客车来临

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年聊城市高考模拟试题理科数学(一) 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合2{|1}A x x =<,{|lg(1)0}B x x =+≥,则AB =( )A .[0,1)B .(1,)-+∞C .(0,1)D .(1,0]-2.设复数2(1)1i z i-=+,则z =( )A .4B .2C .13.设等差数列{}n a 的前n 项和为n S ,若13104S =,65a =,则数列{}n a 的公差为( ) A .2 B .3 C .4 D .54.我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是( )A .110 B .15 C .310 D .255.设等比数列{}n a 的各项均为正数,其n 前项和为n S ,则“1921202S S S +>”是“数列{}n a 是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知直线l 与抛物线C :24y x =相交于A ,B 两点,若线段AB 的中点为(2,1),则直线l 的方程为( )A .1y x =-B .25y x =-+C .3y x =-+D .23y x =- 7.已知函数()(1010)x x f x x -=-,不等式(12)(3)0f x f -+>的解集为( ) A .(,2)-∞ B .(2,)+∞ C .(,1)-∞ D .(1,)+∞8.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点2F 到渐近线的距离为4,且在双曲线C上到2F 的距离为2的点有且仅有1个,则这个点到双曲线C 的左焦点1F 的距离为( ) A .2 B .4 C .6 D .8 9.执行如图所示的程序框图,若输出的结果为1.5,则输入k 的值应为( )A .4.5B .6C .7.5D .910.在ABC ∆中,BC 边上的中线AD 的长为2,点P 是ABC ∆所在平面上的任意一点,则PA PB PA PC ⋅+⋅的最小值为( )A .1B .2C .-2D .-111.如图是某几何体的三视图,其中俯视图为等边三角形,正视图为等腰直角三角形,若该几何体的各个顶点都在同一个球面上,则这个球的体积与该几何体的体积的比为( )A .73π B .289π C .43π12.已知函数3,21(),20x x a x x f x a e x x ⎧--≤-⎪⎪+=⎨⎪--<<⎪⎩恰有3个零点,则实数a 的取值范围为( )A .11,3e ⎛⎫-- ⎪⎝⎭ B .211,e e ⎛⎫--⎪⎝⎭ C .221,3e ⎡⎫--⎪⎢⎣⎭ D .21,33⎡⎫--⎪⎢⎣⎭第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.设x ,y 满足约束条件102020x y x y x y -+≥⎧⎪-≤⎨⎪+≤⎩,则12()16x yz =的最大值为 .14.某工厂从生产的一批产品中随机抽出一部分,对这些产品的一项质量指标进行了检测,整理检测结果得到如下频率分布表:据此可估计这批产品的此项质量指标的方差为 . 15.2922()y x x ++的展开式中常数项为 . 16.若函数()sin()4f x m x π=+x 在开区间7(0,)6π内,既有最大值又有最小值,则正实数m 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知数列{}n a 满足12a =-,124n n a a +=+. (Ⅰ)证明:{4}n a +是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S .18.某教育培训中心共有25名教师,他们全部在校外住宿.为完全起见,学校派专车接送教师们上下班.这个接送任务承包给了司机王师傅,正常情况下王师傅用34座的大客车接送教师.由于每次乘车人数不尽相同,为了解教师们的乘车情况,王师傅连续记录了100次的乘车人数,统计结果如下:以这100次记录的各乘车人数的频率作为各乘车人数的概率.(Ⅰ)若随机抽查两次教师们的乘车情况,求这两次中至少有一次乘车人数超过18的概率; (Ⅱ)有一次,王师傅的大客车出现了故障,于是王师傅准备租一辆小客车来临时送一次需要乘车的教师.可供选择的小客车只有20座的A 型车和22座的B 型车两种,A 型车一次租金为80元,B 型车一次租金为90元.若本次乘车教师的人数超过了所租小客车的座位数,王师傅还要付给多出的人每人20元钱供他们乘出租车.以王师傅本次付出的总费用的期望值为依据,判断王师傅租哪种车较合算?19.如图,四棱锥P ABCD -中,PAD ∆为等边三角形,且平面PAD ⊥平面ABCD ,22AD BC ==,AB AD ⊥,AB BC ⊥.(Ⅰ)证明:PC BC ⊥;(Ⅱ)若直线PC 与平面ABCD 所成角为60,求二面角B PC D --的余弦值.20.已知圆224x y +=经过椭圆C :22221(0)x y a b a b+=>>的两个焦点和两个顶点,点(0,4)A ,M ,N 是椭圆C 上的两点,它们在y 轴两侧,且MAN ∠的平分线在y 轴上,AM AN ≠.(Ⅰ)求椭圆C 的方程; (Ⅱ)证明:直线MN 过定点. 21.已知函数()22xf x e kx =--.(Ⅰ)讨论函数()f x 在(0,)+∞内的单调性;(Ⅱ)若存在正数m ,对于任意的(0,)x m ∈,不等式()2f x x >恒成立,求正实数k 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的普通方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin()4πρθ+=(Ⅰ)写出圆C 的参数方程和直线l 的直角坐标方程;(Ⅱ)设直线l 与x 轴和y 轴的交点分别为A 、B ,P 为圆C 上的任意一点,求PA PB ⋅的取值范围.23.选修4-5:不等式选讲已知函数()22f x x a a =++,a R ∈.(Ⅰ)若对于任意x R ∈,()f x 都满足()(3)f x f x =-,求a 的值; (Ⅱ)若存在x R ∈,使得()21f x x a ≤--+成立,求实数a 的取值范围.2018年聊城市高考模拟 理科数学(一)答案一、选择题1-5: ACBDC 6-10: DADBC 11、12:CA 二、填空题13. 4 14. 144 15. 672 16. 23m <<三、解答题17.解:(Ⅰ)∵12a =-,∴142a +=,∵124n n a a +=+,∴1428n n a a ++=+2(4)n a =+, ∴1424n n a a ++=+,∴{4}n a +是以2为首项,2为公比的等比数列.(Ⅱ)由(Ⅰ),可知42n n a +=,∴24n n a =-. ∴12n n S a a a =++⋅⋅⋅+2(24)(24)=-+-(24)n+⋅⋅⋅+-2(222)4nn =++⋅⋅⋅+-2(12)412n n -=--1224n n +=--. ∴1242n n S n +=--.18.解:(Ⅰ)由题意得,在一次接送中,乘车人数超过18的概率为0.8. 记“抽查的两次中至少有一次乘车人数超过18”为事件A ,则()1(10.8)P A =--(10.8)0.96-=.即抽查的两次中至少有一次乘车人数超过18的概率为0.96.(Ⅱ)设X 表示租用A 型车的总费用(单位:元),则X 的分布列为800.561000.16EX =⨯+⨯1200.121400.08+⨯+⨯1600.061800.0299.6+⨯+⨯=.设Y 表示租用B 型车的总费用(单位:元),则Y 的分布列为900.841100.08EX =⨯+⨯1300.061500.0295.2+⨯+⨯=.因此以王师傅本次付出的总费用的期望值为依据,租B 型车较合算. 19.证明:(Ⅰ)取AD 的中点为O ,连接PO ,CO , ∵PAD ∆为等边三角形,∴PO AD ⊥.底面ABCD 中,可得四边形ABCO 为矩形,∴CO AD ⊥, ∵POCO O =,∴AD ⊥平面POC ,∵PC ⊂平面POC ,∴AD PC ⊥. 又//AD BC ,所以BC PC ⊥.(Ⅱ)由面PAD ⊥面ABCD ,PO AD ⊥,∴PO ⊥平面ABCD ,可得OP ,OD ,OC 两两垂直,又直线PC 与平面ABCD 所成角为60,即60PCO ∠=, 由2AD =,知PO =,得1CO =.建立如图所示的空间直角坐标系O xyz -,则(0,0,3)P ,(0,1,0)D ,(1,0,0)C ,(1,1,0)B -,(0,1,0)BC =,(1,0,PC =,(1,1,0)CD =-,设平面PBC 的一个法向量为(,,)n x y z =.∴00y x =⎧⎪⎨=⎪⎩,令1z =,则(3,0,1)n =, 设平面PDC 的一个法向量为(',',')m x y z =,∴''0''0x y x -=⎧⎪⎨-=⎪⎩,令'1z =,则(3,m =, cos ,m n <>m n m n⋅===∵二面角B PC D --为钝角,∴二面角B PC D --的余弦值为.20.解:(Ⅰ)圆224x y +=与x 轴交点(2,0)±即为椭圆的焦点,圆224x y +=与y 轴交点(0,2)±即为椭圆的上下两顶点,所以2c =,2b =.从而a =因此椭圆C 的方程为:22184x y +=. (Ⅱ)设直线MN 的方程为y kx m =+.由22184y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得222(21)4280k x kmx m +++-=.设11(,)M x y ,22(,)N x y ,则122421km x x k +=-+,21222821m x x k -=+.直线AM 的斜率1114y k x -=14m k x -=+; 直线AN 的斜率2224y k x -=24m k x -=+. 12k k +=1212(4)()2m x x k x x -++2(4)(4)228m km k m --=+-216(1)28k m m -=-. 由MAN ∠的平分线在y 轴上,得120k k +=.又因为AM AN ≠,所以0k ≠, 所以1m =.因此,直线MN 过定点(0,1).21.解:(Ⅰ)'()2xf x e k =-,(0,)x ∈+∞,当2k ≤时,因为22xe >,所以'()0f x >,这时()f x 在(0,)+∞内单调递增.当2k >时,令'()0f x >得ln 2k x >;令'()0f x <得0ln 2k x <<.这时()f x 在(0,ln )2k 内单调递减,在(ln,)2k+∞内单调递增. 综上,当2k ≤时,()f x 在(0,)+∞内单调递增, 当2k >时,()f x 在(0,ln )2k 内单调递减,在(ln,)2k+∞内单调递增. (Ⅱ)①当02k <≤时,因为()f x 在(0,)+∞内单调递增,且(0)0f =,所以对于任意的(0,)x m ∈,()0f x >.这时()2f x x >可化为()2f x x >,即2(2)20x e k x -+->.设()2(2)2x g x e k x =-+-,则'()2(2)x g x e k =-+,令'()0g x =,得2ln2k x +=,因为2ln02k +>,所以()g x 在2(0,ln )2k +单调递减.又因为(0)0g =,所以当2(0,ln )2k x +∈时,()0g x <,不符合题意. ②当2k >时,因为()f x 在(0,ln )2k内单调递减,且(0)0f =,所以存在00x >,使得对于任意的0(0,)x x ∈都有()0f x <.这时()2f x x >可化为()2f x x ->, 即2(2)20x e k x -+-+>.设()2(2)2x h x e k x =-+-+,则'()2(2)x h x e k =-+-.(i )若24k <≤,则'()0h x <在(0,)+∞上恒成立,这时()h x 在(0,)+∞内单调递减, 又因为(0)0h =,所以对于任意的0(0,)x x ∈都有()0h x <,不符合题意.(ii )若4k >,令'()0h x >,得2ln 2k x -<,这时()h x 在2(0,ln)2k -内单调递增,又因为(0)0h =,所以对于任意的2(0,ln )2k x -∈,都有()0h x >, 此时取02min{,ln }2k m x -=,对于任意的(0,)x m ∈,不等式()2f x x >恒成立. 综上,k 的取值范围为(4,)+∞.22.解:(Ⅰ)圆C 的参数方程为2cos 3sin x y θθ=+⎧⎨=+⎩(θ为参数).直线l 的直角坐标方程为20x y +-=.(Ⅱ)由直线l 的方程20x y +-=可得点(2,0)A ,点(0,2)B . 设点(,)P x y ,则PA PB ⋅(2,)(,2)x y x y =--⋅--.2222x y x y =+--2412x y =+-.由(Ⅰ)知2cos 3sin x y θθ=+⎧⎨=+⎩,则PA PB ⋅4sin 2cos 4θθ=++)4θϕ=++.因为R θ∈,所以44PA PB -⋅≤+23.解:(Ⅰ)因为()(3)f x f x =-,x R ∈,所以()f x 的图象关于32x =对称. 又()2||22a f x x a =++的图象关于2a x =-对称,所以322a -=,所以3a =-. (Ⅱ)()21f x x a ≤--+等价于2210x a x a ++-+≤. 设()g x =221x a x a ++-+,则min ()(2)(21)g x x a x a =+--+1a a =++. 由题意min ()0g x ≤,即10a a ++≤. 当1a ≥-时,10a a ++≤,12a ≤-,所以112a -≤≤-; 当1a <-时,(1)0a a -++≤,10-≤,所以1a <-,综上12a ≤-.。

相关文档
最新文档