北京市七中七年级数学上学期期中试卷(含解析) 新人教版

合集下载

人教版学年7年级上册测试题及答案:北京市第七中学

人教版学年7年级上册测试题及答案:北京市第七中学

北京市第七中学2020~2021学年度第一学期期中检测试卷初一数学 2021.11试卷满分:100 分 考试时间:100分钟一.选择题(本大题共10小题,每小题2分,共20分,在每小题的四个选项中,只有一个符合题目要求)1.下列各数中,是负分数的是 ( )A . 45 B .6 C .0 D .-3.12.下列各数中,3-的相反数...是 ( ) A .3 B .3- C .31 D .31- 3.下列说法中正确的是 ( )A .0既不是整数也不是分数B .整数和分数统称有理数C .一个数的绝对值一定是正数D .绝对值等于本身的数是0和1 4.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是 ( )A .b a <B .0>abC .0<+b aD .0>ba5.我国领土面积大约是9600000平方公里,用科学记数法应记为 ( )A .71096.0⨯平方公里 B .6106.9⨯平方公里 C .51096⨯平方公里 D .5106.9⨯平方公里6.下列各组数中,运算结果相等的是 ( )A .232⎪⎭⎫ ⎝⎛与322B .22-与()22-C .()71--与71- D .()35-与35- 7.下列式子中,是单项式的是 ( )A .2321yz x -B .y x -C .22n m -D .x 18.下列各式中,运算错误..的是 ( ) A .x x x 325=- B .055=-nm mnC .15422=-xy y x D .22223x x x =-9.一种商品,降价10﹪后的售价是a 元,则原价为 ( )A .)101(00-元 B .a )101(00-元 C .a0101-元 D .00101-a 元10. 不相等的有理数,,a b c 在数轴上的对应点分别为A,B,C ,如果a b b c a c -+-=-,那么点A,B,C 在数轴上的位置关系是( )A .点A 在点B,C 之间B .点B 在点A,C 之间 C .点C 在点A,B 之间D .以上三种情况均有可能二.填空题(本大题共10小题,每小题2分,共20分)1.如果火车向东开出500千米记作+500千米,那么向西开出1000千米记作 千米。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

北京 七年级(上)期中数学试卷-(含答案)

北京  七年级(上)期中数学试卷-(含答案)

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.2015年内,甲同学的体重增加了4kg我们记为+4,乙同学的体重减少了3kg,应记为()A. B. 3 C. D.2.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即149600000千米.则用科学记数法表示1个天文单位是()千米.A. B. C. D.3.下列各组数中,结果一定相等的为()A. 与B. 与C. 与D. 与4.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③一个有理数不是正数就是负数④两个数比较,绝对值大的反而小.A. ①②B. ①③C. ①②③D. ①②③④5.下列运算正确的是()A. B.C. D.6.下列各式中去括号正确的是()A.B.C.D.7.如果x=2是方程x+a=-1的解,那么a的值是()A. 0B. 2C.D.8.设x为有理数,若|x|>x,则()A. x为正数B. x为负数C. x为非正D. x为非负数9.下列变形正确的是()A. 变形得B. 变形得C. 变形得D. 变形得10.设[a]是有理数,用[a]表示不超过a的最大整数,如[1.7]=1,[-1]=-1,[0]=0,[-1.2]=-2,则在以下四个结论中,正确的是()A. B. 等于0或C. D. 等于0或1二、填空题(本大题共10小题,共20.0分)11.比较大小:(1)-2 ______ +6;(2)-______ -.12.用四舍五入法求0.1287精确到百分位的近似数为______ .13.若代数式3a5b m与-2a n b2是同类项,那么m= ______ ,n= ______ .14.若a、b互为相反数,c、d互为倒数,则+2cd= ______ .15.若|m-3|+(n+2)2=0,则n m的值为______ .16.小红同学原来跑步的速度是a米/秒,经过一个学期的努力练习,速度提高了10%,那么她提高后的速度是______ 米/秒.17.已知|a|=2,|b|=5,且ab<0,那么a+b的值为______ .18.多项式x2-3kxy-3y2+6xy-8不含xy项,则k= ______ .19.若方程kx|k+1|+2=0是关于x的一元一次方程,则k=______.20.找规律:-,2,-,8,-,18…,则第7个数为______ ;第n个数为______ (n为正整数)三、计算题(本大题共2小题,共8.0分)21.先化简,再求值:(9ab2-3)+a2b+3-2(ab2+1),其中a=-2,b=3.22.已知-x-m y2与x5y4-n是同类项,求(m-2n)2-5(m+n)-2(2n-m)2+m+n的值.四、解答题(本大题共8小题,共52.0分)23.计算(1)(-20)+(+3)-(-5)-(+7)(2)-×-1.5÷(-)(3)(-+-)÷(-)(用分配律)(4)-52×|1-|+×[(-)2-8].24.4a2+3b2+2ab-4a2-4b2.25.解方程:(1)2(x-3)-5(3-x)=21(2)-=4.26.有理数a,b在数轴上的对应点位置如图所示,(1)在图中标出-a,-b所对应的点,并用“<”连接a,b,-a,-b,0;(2)化简:|a|+|a+b|-2|b-a|.27.(1)已知代数式3x2-4x的值为6,求代数式6x2-8x-9的值;(2)已知,求代数式的值.28.结合具体的数的运算,归纳有关特例,然后比较下列代数式的大小.(1)已知0<a<1,则比较______ (填>,=,<)(2)如果a<0,给出:a=-,a=-0.25,a=-2,a=-1,a=-5,利用给出的a的值,通过数的运算,归纳有关特例,说明a与的大小关系.29.定义“*运算”:a*b=ab+ma+2b,其中m为常数.(1)求 3*(-2);(用含m的式子表示)(2)若“*运算”对于任意的有理数a,b都满足“交换律”,请你探索并确定m 的值.30.阅读下面材料,回答问题.中国自古便有“十天干”与“十二地支”的说法,简称“干支”,源于树木的干和枝.十天干依次为:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支依次为:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.十位天干和十二位地支依次顺位搭配,即:甲子、乙丑、丙寅、丁卯、戊辰、己巳、庚午、辛未、壬申、癸酉、甲戌、乙亥、丙子、丁丑…辛酉、壬戌、癸亥、甲子、乙丑…后来天干地支被用以记录时间,即纪年、纪月、纪日、纪时,其中纪年法使用最广泛,如今我国仍然沿用夏历(农历)的纪年方法,即“干支纪年法”,称为农历(夏历)某某干支年(严格说,农历年与公历年并不完全重合).如公历2013年是农历癸巳年;再如,今年10月初在我国黄海打捞的致远舰遗骸,记载的是历史上著名的中日甲午海战,发生于公历1894年.十二地支又与十二生肖依次顺位相对应:子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪.根据以上材料,填空:(1)十位天干和十二位地支依次顺位相搭配,______年为一个最小循环;(2)获得诺贝尔医学奖的中国科学家屠呦呦生于公历1930年12月30日,用干支纪年法她生于______年.答案和解析1.【答案】A【解析】解:若增加体重记作正,那么减少体重记作负.所以乙同学体重减少了3kg记作-3.故选A.增加记作正,减少记作负.根据正负的规定,记乙同学体重减少3kg.本题考查了正负数在生活中的应用.弄清楚正负的规定是关键.2.【答案】A【解析】解:将149600000用科学记数法表示为:1.496×108.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:A、只有a=0时,-a2=(-a)2,故本选项错误;B、只有a=0时,-(-a)2=a2,故本选项错误;C、对任何数-a2=-(-a)2,故本选项正确;D、只有a=0时,(-a)2=-(-a)2,故本选项错误.故选C.根据有理数的乘方的定义,对各选项分析判断后利用排除法求解.本题考查了有理数的乘方,难点在于区分有括号与没有括号的区别,例如:-a2与(-a)2,是易错题.4.【答案】A【解析】解:①0是绝对值最小的有理数,正确;②相反数大于本身的数是负数,正确;③一个有理数不是正数就是负数还有0,本选项错误;④两个负数比较,绝对值大的反而小,故本选项错误;正确的是①②;故选A.根据有理数的分类和相反数的定义分别进行解答即可.此题考查了有理数,熟知有理数的分类和相反数的定义是本题的关键,是一道基础题.5.【答案】B【解析】解:A、由于2x2-x2=x2,故本选项错误;B、由于-a2-a2=(-1-1)a2=-2a2,故本选项正确;C、由于2a2不是a不是同类项,故本选项错误;D、由于2m2不是3m3不是同类项,故本选项错误,故选B.根据同类项及合并同类项法则进行解答.本题考查了合并同类项法则,判断每个选项中的项是否为同类项是解题的关键6.【答案】D【解析】解:A、a2-(2a-b2-b)=a2-2a+b2+b,故此选项错误;B、-(2x+y)-(-x2+y2)=-2x-y+x2-y2,故此选项错误;C、2x2-3(x-5)=2x2-3x+15,故此选项错误;D、-a3-[-4a2+(1-3a)]=-a3+4a2-1+3a,正确.故选:D.直接利用去括号法则进而分析得出答案.此题主要考查了去括号法则,正确掌握去括号法则是解题关键.7.【答案】C【解析】解:将x=2代入方程x+a=-1得1+a=-1,解得:a=-2.故选C.此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a 的值.此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.8.【答案】B【解析】解:根据绝对值的意义可知:若|x|>x,则x必为负数.故选B.根据绝对值的意义分析:非负数的绝对值是它本身,负数的绝对值是它的相反数,即可得知答案.此题主要考查绝对值的性质.9.【答案】D【解析】解:对于选项A,4x-5=3x+2变形得4x-3x=2+5,-5从左边移项到右边要变号,而选项A没变号,∴选项A错误,故选项A不符合题意;对于选项B,方程两边同时乘以,而选项B方程左边乘以,右边乘以,不满足不等式的性质2,∴选项B错误,故选项B不符合题意;对于选项C,去括号得,3(x-1)=2(x+3)变形得,3x-3=2x+6,而去括号时,左边的-1没乘以3,∴选项C错误,故选项C不符合题意;对于选项D,去分母得,5(x-1)-2x=10,去括号得,5x-5-2x=10,移项得,5x-2x=10+5,合并同类项得,3x=15,∴选项D正确,符合题意.故选:D.利用去括号,移项,合并同类项,不等式的性质对四个选项逐一分析,即可得出答案.此题主要考查了解一元一次方程,涉及到不等式的性质,去括号,移项,合并同类项,解本题的关键不等式的性质,去括号,移项,合并同类项法则.10.【答案】B【解析】解:(1)当a是整数时,[a]+[-a]=a+(-a)=0(2)当a不是整数时,例如:a=1.7时,[1.7]+[-1.7]=1+(-2)=-1∴[a]+[-a]=-1.综上,可得[a]+[-a]等于0或-1.故选:B.根据[a]表示不超过a的最大整数,分两种情况:(1)当a是整数时.(2)当a不是整数时.分类讨论,求出[a]+[-a]的值是多少即可.(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了[a]的含义和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:[a]表示不超过a的最大整数.11.【答案】<;<【解析】解:根据有理数比较大小的方法,可得(1)-2<+6;(2)-<-.故答案为:<、<.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.【答案】0.13【解析】解:0.1287≈0.13(精确到百分位的).故答案为0.13.把千分位上的数子8进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.\13.【答案】2;5【解析】解:代数式3a5b m与-2a n b2是同类项,则有n=5,m=2.答:m=2,n=5.本题考查同类项的定义(所含字母相同且相同字母的指数也相同的项是同类项)可得:n=5,m=2.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.14.【答案】2【解析】解:根据题意得:a+b=0,cd=1,则原式=2.故答案为:2利用相反数,倒数的定义求出a+b与cd的值,代入原式计算即可得到结果.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.【答案】-8【解析】解:根据题意得:m-3=0,n+2=0,解得:m=3,n=-2.则n m=(-2)3=-8.故答案是:-8.根据非负数的性质,可求出m、n的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.【答案】110%a【解析】解:她提高后的速度是a+10%a=110%a;故答案为:110% a根据题意列出代数式解答即可.此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.17.【答案】3或-3【解析】解:①a>0,b<0,则a=2,b=-5,a+b=-3;②a<0,b>0,则a=-2,b=5,a+b=3.故填3或-3.根据题意可得a和b异号,分情况讨论①a>0,b<0;②a<0,b>0.本题考查有理数的加法,注意讨论a和b的取值范围得出a和b的值是关键.18.【答案】2【解析】解:原式=x2+(-3k+6)xy-3y2-8,因为不含xy项,故-3k+6=0,解得:k=2.故答案为:2.先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.19.【答案】-2【解析】解:根据一元一次方程的特点可得:,解得:k=-2.故填:-2.若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于k的方程,继而可求出k的值.解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.20.【答案】;(-1)n【解析】解:把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(-1)n表示,故第7个数为:(-1)7×=-,第n个数为:(-1)n,故答案为:-,(-1)n.首先把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(-1)n表示,代入即可求解.本题主要考查了数字的变化类问题,统一数列中的分母寻找规律是解题的关键.21.【答案】解:原式=3ab2-1+a2b+3-2ab2-2=a2b+ab2,当a=-2,b=3时,原式=12-18=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:∵-x-m y2与x5y4-n是同类项,∴-m=5,4-n=2,即m=-5,n=2,原式=-(m-2n)2-4(m+n),将m=-5,n=2代入上式,得原式=-69.【解析】利用同类项的定义求出m与n的值,原式合并后,把m与n的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)(-20)+(+3)-(-5)-(+7)=-20+3+5-7=-17+5-7=-19(2)-×-1.5÷(-)=-+2=(3)(-+-)÷(-)=(-+-)×(-36)=(-)×(-36)+×(-36)-×(-36)=3-12+18=-9+18=9(4)-52×|1-|+×[(-)2-8]=-25×+×[-]=--=-9【解析】(1)(2)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(3)应用乘法分配律,求出每个算式的值各是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.【答案】解:原式=(4a2-4a2)+(3b2-4b2)++2ab=-b2+2ab.【解析】根据合并同类项,系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母部分不变.25.【答案】解:(1)去括号 2x-6-15+5x=21,移项得,2x+5x=21+6+15,合并同类项得,7x=42,系数化1得,x=6;(2)去分母得,2(2-x)-9(x-1)=24,去括号得,4-2x-9x+9=24,移项得,-2x-9x=24-4-9,合并同类项得,-11x=11,系数化1得,x=-1.【解析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,再移项,合并同类项,把x的系数化为1即可.本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解答此题的关键.26.【答案】解:(1)根据图示,可得a<-b<0<b<-a;(2)∵a<0,a+b<0,b-a>0,∴|a|=-a,|a+b|=-(a+b),|b-a|=b-a,∴|a|+|a+b|-2|b-a|=-a-(a+b)-2(b-a)=-a-a-b-2b+2a=-3b.【解析】(1)根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,比较出0,a,b,-1的大小关系,并用“<”连接0,a,b,-1即可.(2)首先根据图示,可得a<0,a+b<0,b-a>0,所以|a|=-a,|a+b|=-(a+b),|b-a|=b-a;然后根据整数的加减的运算方法,求出算式的值是多少即可.此题考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大.还考查了整式的加减运算,解答此类问题的关键是要明确整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.27.【答案】解:(1)∵3x2-4x=6,∴6x2-8x-9=2(3x2-4x)-9=2×6-9=3;(2)∵,∴=,∴=2×8+4×=16.【解析】(1)将原式化为关于3x2-4x的式子,进而求出答案;(2)首先得出=,进而代入原式求出答案.此题主要考查了代数式求值,正确利用整体思想代入原式求解是解题关键.28.【答案】>【解析】解:(1)如>=,=,=,0<a<1,则比较>;(2)a=-,=-2,a>;a=-0.25=-,=-4,a>,当-1<a<0时,a>;a=-2,=-,>a;a=-1,=-1;a=-5,=-,>a,当a≤-1时,a≤.(1)根据特殊值法,可得规律:0<a<1,则比较>;可得答案.(2)根据特殊值法,可得规律:当-1<a<0时,a>;当a≤-1时,a≤.本题考查了有理数的大小比较,利用特殊值法得出规律是解题关键.29.【答案】解:(1)根据题意得3*(-2)=3×(-2)+3m+2×(-2)=-6+3m-4=-10+3m;(2)a*b=ab+ma+2b,b*a=ab+mb+2a,根据题意得a*b=b*a,即ab+ma+2b=ab+mb+2a,(a-b)m=2(a-b),∵“*运算”对于任意的有理数a,b都满足“交换律”,∴a≠b,∴m=2.【解析】(1)根据题中的新定义化简所求式子,计算即可得到结果;(2)根据“*运算”对于任意的有理数a,b都满足“交换律”,得出ab+ma+2b=ab+mb+2a,进而求解即可.此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.30.【答案】60;庚午【解析】解:(1)天干与地支的汉字相差2个,十二地支代表12年,则有每12年地支比天干多2,当地支比天干多10时,重新开始为一个循环,所以:12×(10÷2)=60(年).故答案为:60.(2)列举甲子表:1 甲子13 丙子25 戊子37 庚子49 壬子2 乙丑14 丁丑26 己丑38 辛丑50 癸丑3 丙寅15 戊寅27 庚寅39 壬寅51 甲寅4 丁卯16 已卯28 辛卯40 癸卯52 乙卯5 戊辰17 庚辰29 壬辰41 甲辰53 丙辰6 已巳18 辛巳30 癸巳42 乙巳54 丁巳7 庚午19 壬午31 甲午43 丙午55 戊午8 辛未20 癸未32 乙未44 丁未56 已未9 壬申21 甲申33 丙申45 戊申57 庚申10 癸酉22 乙酉34 丁酉46 已酉58 辛酉11 甲戌23 丙戌35 戊戌47 庚戌59 壬戌12 乙亥24 丁亥36 已亥48 辛亥60 癸亥1930-1894=36(年),1894年是甲午年,排31号,31+36=67,67÷60=1…7,故与7号年份相同,故1930年是庚午年;故答案为:庚午.(1)首先要明确天干与地支的汉字相差2个,十二地支代表12年,则有每12年地支比天干多2,当地支比天干多10时,重新开始为一个循环,故用12×(10÷2)求解即可;(2)先排列出一个循环的干支纪年,用1930减去1894的差除以循环周期60,看余数是多少,进行推算即可.此题主要考查规律问题的探索与运用,了解天干地支纪年法的基础知识是解题的关键.。

北京市第七中学七年级(上)期中数学试卷(含答案解析)

北京市第七中学七年级(上)期中数学试卷(含答案解析)

北京市第七中学2015~2016学年度第一学期期中检测试卷初一数学 2015年11月试卷满分:100分 考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在2,0,1-,2-这四个数中,最小的数是( ).A . 2-B . 1-C .0 D . 1【答案】A 【解析】由题可知,2102-<-<<,最小的数是2-.2.北京时间21日晚间,法国电力公司(E D F )正式宣布,中国广核集团将在英国欣克利角核电项目中投资约58800000000元人民币,所投资的该工程被称为“地球上最昂贵的工程”.将数字58800000000用科学记数法表示为( ).A .858.810⨯B .95.8810⨯C .105.8810⨯D .110.58810⨯【答案】C【解析】58800000000用科学记数法表示为105.8810⨯.3.下列计算正确的是( ).A .(3)(5)8---=-B .239-=-C .()339-=-D .(3)(5)8-+-=+【答案】B【解析】A :(3)(5)352---=-+=,错误;B :239-=-,正确;C :()3327-=-,错误;D :(3)(5)8-+-=-,错误.4.下列各数是方程23515x x -=-的解的是( ).A .3x =B .4x =C .3x =-D .4x =-【答案】B【解析】移项:25153x x -=-+,合并同类项:312x -=-,化x 的系数为1:4x =.5.若21(2)02x y -++=,则2015()xy 的值为( ). A . 1 B . 1- C . 2015- D . 2015【答案】B 【解析】由题可知10220x y ⎧-=⎪⎨⎪+=⎩,解得122x y ⎧=⎪⎨⎪=-⎩, 2015201520151()(2)(1)12xy =-⨯=-=-.6.有理数23-,2(3)-,33-,13-按从小到大的顺序排列是( ). A .22313(3)33-<-<-<- B .322133(3)3-<-<-<- C .22313(3)33-<-<-<- D .232133(3)3-<-<-<-【答案】C【解析】239-=-,2(3)9-=,3327-=,∵99-=,1133-=, ∴193-<-,∴22313(3)33-<-<-<-.7. 在223ab 与232b a ,32x -与32y -,4abc 与cab ,3a 与34,23-与5,234a b c 与234a b 中,同类项有( ). A . 4组 B . 5组 C . 2组 D . 3组【答案】D【解析】由题可知,223ab 与232b a ,4abc 与cab ,23-与5共3组是同类项.8.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ).①0b a << ②b a < ③0ab > ④a b a b ->+A .①④B .①②C .②③D .③④【答案】A【解析】∵从数轴可知:0b a <<,b a >,∴①正确;②错误,∵0a >,0b <,∴0ab <,∴③错误;∵0b a <<,b a >,∴0a b ->,0a b +<,∴a b a b ->+,∴④正确;即正确的有①④.9. 若a ,b 互为相反数,且都不为零,则()1(1)a a b b+-+的值为( ). A . 0 B . 1- C . 1 D . 2-【答案】A【解析】a ,b 互为相反数,即0a b +=,1a b=-, 则()1(1)(01)(11)0a a b b+-+=-⨯-+=.10. 若“!”是一种数学运算符号,并且11=!,2212=⨯=!,33216=⨯⨯=!,44321=⨯⨯⨯!,L ,则100!98!的值为( ).A .5049B . 99!C . 9900D . 2!【答案】C 【解析】100!1009998972110099990098!98979621⨯⨯⨯⨯⨯⨯==⨯=⨯⨯⨯⨯⨯L L .二、填空题(本题共20分,每空2分)11.4-的倒数是__________. 【答案】14- 【解析】4-的倒数是14-.12. “m 与n 的平方差”用式子表示为__________.【答案】22m n -【解析】m 与n 的平方差是22m n -.13.若225m x y -是关于x 、y 的五次单项式,则m 为__________. 【答案】3【解析】由题可知,25m +=,即3m =.14.已知多项式22x y +的值是3,则多项式224x y ++的值是__________.【答案】7【解析】∵223x y +=,∴224347x y ++=+=.15.绝对值大于1而小于4的整数有__________.【答案】3±;2±【解析】∵124<±<,134<±<,∴绝对值大于1而小于4的整数有3±,2±.16.已知2x =是关于x 的方程1(2)3x k k x -+=+的解,则k 的值等于__________. 【答案】19【解析】由题可知21(22)3k k -+=+,即143k k +=, 解得19k =.17.已知轮船在静水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在逆水中航行的速度是__________千米/时;顺水中航行的速度是__________千米/时.【答案】2m -;2m +【解析】由题可知,在逆水中航行的速度是(2)2m m +-=-,顺水中航行的速度是2m +.18.根据规律填空: 134+=;1359++=;135716+++=;1357925++++=;L L1357999+++++⋅⋅⋅+=__________.1357999...(21)n +++++⋅⋅⋅++++=__________.【答案】250;2(1)n + 【解析】2231134()22++===;22511359()32+++===;2271135716()42++++===;22911357925()52+++++===;L ;229911357999()502++++++⋅⋅⋅+==; 222111357999...(21)()(1)2n n n +++++++⋅⋅⋅++++==+.三、计算题(本题共16分,每小题4分)19. 3011(10)(12)-+--- 【解析】原式30111012=--+4221=-21=.20.51(3)()(1)64-⨯-÷- 【解析】原式54365=-⨯⨯ 2=-.21.523()(12)1234+-⨯- 【解析】原式523(12)(12)(12)1234=⨯-+⨯--⨯- 589=--+139=-+4=-.22.()()420132163217⎛⎫---÷--- ⎪⎝⎭【解析】原式()1691617⎛⎫=--÷--- ⎪⎝⎭()7916116⎛⎫=--⨯--- ⎪⎝⎭971=-++1=-.四、解下列方程(本题共12分,每小题4分),23. 6745x x -=-【解析】移项:6475x x -=-合并同类项:22x =化x 的系数为1:1x =.24.13624x x -= 【解析】去分母:2243x x -=移项:2324x x -=合并同类项:24x -=化x 的系数为1:24x =-.25.21252x x x +--=- 【解析】去分母:2(2)20105(1)x x x +-=-- 去括号:24201055x x x +-=-+移项:21055420x x x -+=-+合并同类项:321x -=化x 的系数为1:7x =-.五、解答题(本题共5个小题,每小题4分,共20分)26. 合并同类项:223247a a a a -+-【解析】原式2(34)(27)a a =++--279a a =-.27. 化简:()()3322x y y x x ----【解析】原式3924x y y x x =--+-611x y =-.28.先化简,再求值.()2221142()2a b ab a b ---,其中1a =-,13b =. 【解析】原式22212222a b ab a b =--+ 2122ab =-, 当1a =-,13b =时 原式2112(1)()23=-⨯-⨯112(1)29=-⨯-⨯ 1229=+ 1318=.29.已知2320x x -+=,求代数式222(3)261x x x x --++的值.【解析】∵2320x x -+=,∴232x x -=-,22(3)2(2)x x --=--,即:2264x x -+=,222(3)261x x x x --++222(3)2(3)1x x x x =---+2(2)2(2)1=--⨯-+9=.30.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数 记作负数, 称后的记录如下:1.5 3- 2 0.5- 1 2- 2-2.5-回答下列问题:(1)这8筐白菜中,最接近25千克的那筐白菜为__________千克;(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【解析】(1)24.5千克,绝对值最小的数0.5-,因而是250.524.5-=千克.(2)258(1.5320.5122 2.5)⨯+-+-+---5.5=-,答:这8筐白菜总计不足5.5千克 .(3)由题意可得[825( 5.5)] 2.6505.7⨯+-⨯=元,答:出售这8筐白菜可卖505.7元.六、解答题(本题共2分)31. 阅读下面材料并解决有关问题: 我们知道: (0),0 (0), (0),x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式, 如化简代数式||12x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-,2分别为1x +与|2|x -的零点值). 在实数范围内,零点值1x =-和2x =可将全体实数分成不重复且不遗漏的如下3种情况:(1)1x <-;(2)12x -<≤;(3)2x ≥. 从而化简代数式||12x x ++-可分以下3种情况: (1)当1x <-时,原式(1)(2)21x x x =-+--=-+; (2)当12x -<≤时,原式1(2)3x x =+--=; (3)当2x ≥时,原式1221x x x =++-=-.综上讨论,原式2 1 (1),3 (12),2 1 (2),x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥ 通过以上阅读,请你解决以下问题:(1)化简代数式||24x x ++-.(2)求141x x --+的最大值.【解析】(1)①当2x <-时,原式2422x x x ---+=-+; ②当24x -<≤时,原式246x x =+-+=; ③当4x ≥时,原式2422x x x =++-=-.综上讨论,原式2 2 (2),6 (24),2 2 (4),x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥.(2)①当1x <-时,原式14435x x x -+++=+;②当11x -<≤时,原式14453x x x =-+--=--; ③当1x ≥时,原式14435x x x =---=--. 综上讨论,原式3 5 (1),5 3 (11),3 5 (1),x x x x x x +<-⎧⎪=---<⎨⎪--⎩≤≥;最大值是2,此时1x =-.。

北京市第七中学七年级数学上学期期中试题 新人教版

北京市第七中学七年级数学上学期期中试题 新人教版

2013-2014学年北京市第七中学七年级上学期期中数学试题 新人教版试卷满分:100 分 考试时间:100分钟一.选择题(本大题共10小题,每小题2分,共20分,在每小题的四个选项中,只有一个符合题目要求)1.下列各数中,是负分数的是 ( )A . 45 B .6 C .0 D .-3.12.下列各数中,3-的相反数...是 ( ) A .3 B .3- C .31 D .31-3.下列说法中正确的是 ( )A .0既不是整数也不是分数B .整数和分数统称有理数C .一个数的绝对值一定是正数D .绝对值等于本身的数是0和1 4.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是 ( )A .b a <B .0>abC .0<+b aD .0>ba5.我国领土面积大约是9600000平方公里,用科学记数法应记为 ( )A .71096.0⨯平方公里 B .6106.9⨯平方公里 C .51096⨯平方公里 D .5106.9⨯平方公里6.下列各组数中,运算结果相等的是 ( )A .232⎪⎭⎫ ⎝⎛与322 B .22-与()22- C .()71--与71- D .()35-与35-7.下列式子中,是单项式的是 ( )A .2321yz x -B .y x -C .22n m -D .x 18.下列各式中,运算错误..的是 ( ) A .x x x 325=- B .055=-nm mnC .15422=-xy y x D .22223x x x =-9.一种商品,降价10﹪后的售价是a 元,则原价为 ( )A .)101(00-元 B .a )101(00-元 C .a0101-元 D .00101-a 元10. 不相等的有理数,,a b c 在数轴上的对应点分别为A,B,C ,如果a b b c a c -+-=-,那么点A,B,C 在数轴上的位置关系是( )A .点A 在点B,C 之间B .点B 在点A,C 之间 C .点C 在点A,B 之间D .以上三种情况均有可能二.填空题(本大题共10小题,每小题2分,共20分)1.如果火车向东开出500千米记作+500千米,那么向西开出1000千米记作 千米。

北京市 七年级(上)期中数学试卷 (含答案)

北京市 七年级(上)期中数学试卷  (含答案)

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.-2的相反数是()A. B. C. D. 22.在-,0,,-1这四个数中,最小的数是()A. B. 0 C. D.3.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()A. B. C. D.4.A、B两地相距6980000m,用科学记数法表示为()m.A. B. C. D.5.下面各式中,与-2xy2是同类项的是()A. B. C. D.6.一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是()A. B. C. D.7.下列代数式书写规范的是()A. B. C. ax3 D.8.关于多项式x5-3x2-7,下列说法正确的是()A. 最高次项是5B. 二次项系数是3C. 常数项是7D. 是五次三项式9.在代数式:,3m-3,-22,-,2πb2中,单项式的个数有()A. 1个B. 2个C. 3个D. 4个10.如果x是最大的负整数,y绝对值最小的整数,则-x2016+y的值是()A. B. C. 1 D. 2016二、填空题(本大题共10小题,共20.0分)11.的绝对值是______ ,的倒数是______ .12.在数轴上,若点P表示-2,则距P点3个单位长的点表示的数是______ .13.单项式-5πab2的系数是______ ,次数是______ .14.如图是一数值转换机,若输入的x为-1,则输出的结果为______ .15.绝对值小于3的所有整数的和是______ .16.数轴上表示数-5和表示-14的两点之间的距离是______ .17.在数4.3,-,|0|,-(-),-|-3|,-(+5)中,______ 是正数.18.已知|a|=2,|b|=5,且ab<0,那么a+b的值为______ .19.如果有|x-3|+(y+4)2=0,则x= ______ ,y x= ______ .20.现规定一种新的运算“*”:a*b=a b,如3*2=32=9,则()*3= ______ .三、解答题(本大题共13小题,共66.0分)21.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,,0,-30,0.15,-128,,+20,-2.6正数集合﹛______﹜负数集合﹛______﹜整数集合﹛______﹜分数集合﹛______﹜22.计算:28-37-3+52.23.计算:(-+)÷(-)24.计算(-4)×(-9)+(-)-23.25.化简:3x2-3+x-2x2+5.26.化简(5a-3a2+1)-(4a3-3a2).27.观察图形,写出一个与阴影面积有关的代数恒等式.28.(1)在数轴上表示下列各数,(2)用“<”连接:-3.5,,-1,4,0,2.5.29.先化简,再求值:5(a2b-ab2)-(ab2+5a2b),其中a=1,b=-2.30.10盒火柴如果以每盒100根为准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,-1,-2,-3,-2,+3,-2,-2.求:这10盒火柴共有多少根.31.已知有理数a,b,c在数轴上的位置如图所示,(1)用<,>,=填空:a+c ______ 0,c-b ______ 0,b+a ______ 0,abc ______ 0;(2)化简:|a+c|+|c-b|-|b+a|.32.阅读下列解题过程,然后答题:已知如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数,则必有x+y=0.(1)已知:|a|+a=0,求a的取值范围.(2)已知:|a-1|+(a-1)=0,求a的取值范围.33.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.答案和解析1.【答案】D【解析】解:-2的相反数是2,故选:D.根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.此题主要考查了相反数,关键是掌握相反数的定义.2.【答案】D【解析】解:根据有理数大小比较的法则,可得-1<-,所以在-,0,,-1这四个数中,最小的数是-1.故选:D.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.【答案】D【解析】解:∵从数轴可知:b<0<a,|b|>|a|,∴A错误;B错误;∵a>0,b<0,∴ab<0,∴C错误;∵b<0<a,|b|>|a|,∴a-b>0,a+b<0,∴a-b>a+b,∴D正确;故选D.数轴可知b<0<a,|b|>|a|,求出ab<0,a-b>0,a+b<0,根据以上结论判断即可.本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.4.【答案】D【解析】解:6980000=6.98×106,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】A【解析】解:由题意,得y2x与-2xy2是同类项,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.6.【答案】B【解析】解:周长=2(2a+3b+a+b)=6a+8b.故选B.长方形的周长等于四边之和,由此可得出答案.本题考查有理数的加减运算,比较简单,注意长方形的周长可表示为2(长加宽).7.【答案】A【解析】解:选项A正确,B正确的书写格式是b,C正确的书写格式是3ax,D正确的书写格式是.故选A.根据代数式的书写要求判断各项即可得出正确答案.代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.【答案】D【解析】解:A、多项式x5-3x2-7的最高次项是x5,故本选项错误;B、多项式x5-3x2-7的二次项系数是-3,故本选项错误;C、多项式x5-3x2-7的常数项是-7,故本选项错误;D、多项式x5-3x2-7是五次三项式,故本选项正确.故选:D.根据多项式的项和次数的定义,确定各个项和各个项的系数,注意要带有符号.本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.9.【答案】C【解析】解:-22,-,2πb2中是单项式;是分式;3m-3是多项式.故选C.根据单项式的定义进行解答即可.本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.10.【答案】B【解析】解:∵x是最大的负整数,y绝对值最小的整数,∴x=-1,y=0,∴-x2016+y=-(-1)2016=-1.故选B.由于x是最大的负整数,y绝对值最小的整数,由此可以分别确定x=-1,y=0,把它们代入所求代数式计算即可求解.此题主要考查了有理数的混合运算,解题的关键是根据最大的负整数,绝对值最小的整数的性质确定x、y的值,然后代入所求代数式即可解决问题.11.【答案】;【解析】解:-的绝对值为,1的倒数为.故答案为:,.根据绝对值、倒数,即可解答.本题考查了绝对值、倒数,解决本题的关键是熟记绝对值、倒数的定义.12.【答案】-5或1【解析】解:设距P点3个单位长的点表示的数是x,则|x+2|=3,当x+2≥0时,原式可化为:x+2=3,解得x=1;当x+2<0时,原式可化为:-x-2=3,解得x=-5.故答案为:-5或1.设距P点3个单位长的点表示的数是x,则|x+2|=3,求出x的值即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.13.【答案】-5π;3【解析】解:单项式-5πab2的系数是-5π,次数是3.故答案为:-5π,3.根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.此题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.【答案】9【解析】解:(-1-2)×(-3)=(-3)×(-3)=9.故答案为:9.根据运算规则:先-2,再×(-3),进行计算即可求解.此题主要考察根据运算规则列式计算,读懂题中的运算规则,并准确代入求值是解题的关键.15.【答案】0【解析】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1-1+2-2=0.故答案为:0.绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.此题考查了绝对值的意义,并能熟练运用到实际当中.16.【答案】9【解析】解:|-5-(-14)|=9.数轴上两点之间的距离等于这两点的数的差的绝对值,即较大的数减去较小的数.考查了数轴上两点之间的距离的计算方法.17.【答案】4.3,-(-)【解析】解:在数4.3,-,|0|,-(-)=,-|-3|=-3,-(+5)=-5中,4.3,-(-)是正数.故答案为:4.3,-(-).首先将各数化简,再根据正数的定义可得结果.本题主要考查了有理数的定义,熟练掌握有理数的分类是解答此题的关键.18.【答案】3或-3【解析】解:①a>0,b<0,则a=2,b=-5,a+b=-3;②a<0,b>0,则a=-2,b=5,a+b=3.故填3或-3.根据题意可得a和b异号,分情况讨论①a>0,b<0;②a<0,b>0.本题考查有理数的加法,注意讨论a和b的取值范围得出a和b的值是关键.19.【答案】3;-64【解析】解:由题意得,x-3=0,y+4=0,解得,x=3,y=-4,则y x=-64,故答案为:3;-64.根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.【答案】【解析】解:∵a*b=a b,3*2=32=9,∴()*3=(-)3=-.故答案为:-.根据题中所给出的运算方法列出乘方的式子,再根据乘方的运算法则进行计算即可.本题考查的是有理数的混合运算,熟知数的乘方法则是解答此题的关键.21.【答案】15,0.15,,+20;,-30,-128,-2.6;15,0,-30,-128,+20;,0.15,,-2.6【解析】解:正数集合﹛15,0.15,,+20,﹜负数集合﹛,-30,-128,-2.6,﹜整数集合﹛15,0,-30,-128,+20,﹜分数集合﹛,0.15,,-2.6,﹜按照有理数的分类填写:有理数.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.22.【答案】解:28-37-3+52,=28+52-37-3,=80-40,=40.【解析】先根据加法交换律将同号数相加,再把两个异号数相加.本题是有理数的加减混合运算,可以看作是省略加号的加法,注意运用简便算法进行计算.23.【答案】解:原式=(-+)×(-36),=×(-36)-×(-36)+×(-36),=-8+9-2,=-1.【解析】首先根据除以一个不为0的数等于乘以这个数的倒数可得(-+)×(-36),再用乘法分配律计算即可.此题主要考查了有理数的除法,关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.24.【答案】解:(-4)×(-9)+(-)-23=36+(-)-8=27.【解析】根据有理数的乘法和加减法可以解答本题.本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.25.【答案】解:3x2-3+x-2x2+5=(3x2-2x2)+x+(5-3)=x2+x+2.【解析】首先找出同类项,进而合并同类项得出答案.此题主要考查了合并同类项,正确找出同类项是解题关键.26.【答案】解:(5a-3a2+1)-(4a3-3a2)=5a-3a2+1-4a3+3a2=-4a3+5a+1.【解析】先去括号,然后合并同类项即可解答本题.本题考查整式的加减,解题的关键是明确整式的加减的计算方法,注意去括号后,各项内的符号是否变号.27.【答案】解:阴影部分的面积可表示为:a2-b2或(a+b)(a-b),∴a2-b2=(a+b)(a-b).【解析】分别利用不同的方法表示出阴影部分的面积,得到恒等式.本题考查的是平方差公式的几何背景,掌握平方差公式、矩形的面积公式是解题的关键.28.【答案】解:(1)如图所示:(2)-3.5<-1<0<<2.5<4【解析】在数轴上表示各数,数轴上各数从左往右的顺序,就是各数从小到大的顺序.本题考查了用数轴表示有理数和有理数的大小比较.数轴上各数从左往右的顺序就是各数从小到大的顺序.29.【答案】解:原式=5a2b-5ab2-ab2-5a2b=-6ab2,∴当a=1,b=-2时,∴原式=-6×1×4=-24【解析】先将原式化简,然后将a与b的值代入即可求出答案.本题考查整式运算,涉及代入求值.30.【答案】解:先求超过的根数:(+3)+(+2)+0+(-1)+(-2)+(-3)+(-2)+(+3)+(-2)+(-2)=-4;则10盒火柴的总数量为:100×10-4=996(根).答:10盒火柴共有996根.【解析】首先审清题意,明确“正”和“负”所表示的意义;然后根据每盒的数据记录求出超过的根数,进而可求得10盒火柴的总数量.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.31.【答案】<;>;<;>【解析】解:(1)根据数轴可知:a<b<0<c,且|c|<|b|<|a|,∴a+c<0,c-b>0,b+a<0,abc>0,故答案为:<,>,<,>;(2)原式=-(a+c)+(c-b)+(b+a)=-a-c+c-b+b+a=0.(1)根据数轴,判断出a,b,c的取值范围,进而求解;(2)根据绝对值的性质,去绝对值号,合并同类项即可.本题主要考查数轴、绝对值、整式的加减等知识的综合运用,解决此题的关键是能够根据数轴上的信息,判断出a,b,c等字母的取值范围,同时解决此题时也要注意绝对值性质的运用.32.【答案】解:(1)∵|a|≥0,|a|+a=0,∴a≤0;(2)∵|a-1|≥0,∴a-1≤0,解得a≤1.【解析】(1)根据绝对值的性质可得出|a|≥0,再由相反数的定义即可得出结论;(2)根据绝对值的性质可得出|a-1|≥0,再由相反数的定义即可得出结论.本题考查的是有理数的加法,熟知相反数的定义是解答此题的关键.33.【答案】解:(1)如图,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5.=(2-1)5,=1.【解析】(1)直接根据图示规律写出图中的数字,再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.本题考查了完全式的n次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.。

【6套打包】北京市七年级上册数学期中考试检测试卷(解析版)

【6套打包】北京市七年级上册数学期中考试检测试卷(解析版)

人教版七年级第一学期期中模拟数学试卷(含答案)一、选择题(每小题3分,共计36分)1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.24.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a26.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.510.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12 11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.1812.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是.14.a、b互为相反数,c、d互为倒数,则=.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣219.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是.②当|a+2|+|a﹣3|=5时,数a的取值范围是,这样的整数a有个③|a﹣3|+|a+2017|有最小值,最小值是.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?参考答案一、选择题1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据倒数的定义求解.解:﹣6的倒数是﹣.故选:D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.11 000 000=1.1×107.解:11 000 000=1.1×107.故选:B.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为1.1×107.3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.2【分析】把(﹣2)2014写成(﹣2)×(﹣2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.解:(﹣0.5)2013×(﹣2)2014,=(﹣0.5)2013×(﹣2)×(﹣2)2013,=(﹣2)×[(﹣0.5)×(﹣2)]2013,=﹣2×1,=﹣2.故选:C.【点评】本题考查了有理数的乘方,此类题目,转化为同指数幂相乘是解题的关键,也是难点.4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选:B.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a2【分析】根据合并同类项的法则,结合选项进行判断即可.解:A、5a3﹣6a3=﹣a3,故本选项错误;B、3a2+4a2=7a2,故本选项错误;C、7a和3a2不是同类项,不能合并,故本选项错误;D、a2+4a2=5a2,故本选项正确;故选:D.【点评】此题考查了合并同类项的知识,属于基础题,关键是掌握合并同类项的法则.6.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是【分析】直接利用单项式的系数以及多项式的次数与项数确定方法分别分析得出答案.解:A、1﹣a﹣ab是二次三项式,正确,不合题意;B、﹣a2b2c是单项式,正确,不合题意;C、是多项式,正确,不合题意;D、πr2中,系数是:π,故此选项错误,符合题意.故选:D.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据正数和负数的意义,可判断①;根据绝对值的意义,可判断②;根据倒数的意义,可判断③;根据绝对值的性质,可判断④;根据平方的意义,可判断⑤.解:①﹣a可能是负数、零、正数,故①说法错误;②|﹣a|一定是非负数,故②说法错误;③倒数等于它本身的数是±1,故③说法正确;④绝对值等于它本身的数是非负数,故④说法错误;⑤平方等于它本身的数是0或1,故⑤说法错误;故选:A.【点评】本题考查了有理数的乘方,注意0的平方等于0,﹣a不一定是负数,绝对值都是非负数.8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y【分析】根据题意表示另一边的长,进一步表示周长,化简.解:依题意得:周长=2(3x+2y+3x+2y+x﹣y)=14x+6y.故选D.【点评】此题考查了整式的加减,列式表示出长方形的周长是关键.9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.5【分析】先根据有理数的乘方运算法则将各数化简,找到最大的数与最小的数,然后根据有理数的加法法则求得计算结果.解:∵(﹣1)3=﹣1,(﹣1)2=1,﹣22=﹣4,(﹣3)2=9,且﹣4<﹣1<1<9,∴最大的数与最小的数的和等于﹣4+9=5.故选:D.【点评】解决此类题目的关键是熟记有理数的运算法则.10.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12【分析】根据题意,利用绝对值的代数意义,以及有理数的加法法则判断即可.解:∵|x|=7,|y|=5,且x+y>0,∴x=7,y=5;x=7,y=﹣5,则x+y=12或2,故选:A.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.18【分析】先把代数式进行适当的变形,然后直接把已知整式的值代入代数式即可求出代数式的值.解:2x2﹣4x+6=2(x2﹣2x)+6,将x2﹣2x=3代入上面的代数式得,2x2﹣4x+6,=2×3+6,=12,故选:C.【点评】本题主要考查了代数式的求值方法,通车分为三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5【分析】根据n!=1×2×3×…×n得到1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,且5!、…、10!的数中都含有2与5的积,则5!、…、10!的末尾数都是0,于是得到1!+2!+3!+…+10!的末尾数为3.解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.故选:C.【点评】本题考查了规律型:数字的变化类:通过特殊数字的变化规律探讨一般情况下的数字变化规律.二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是﹣.【分析】直接利用单项式的系数确定方法分析得出答案.解:单项式﹣y的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.14.a、b互为相反数,c、d互为倒数,则=.【分析】由a、b互为相反数,c、d互为倒数可知a+b=0,cd=1,然后代入求值即可.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=﹣3×0﹣﹣=﹣.故答案为:﹣.【点评】本题主要考查的是有理数的运算,根据题意得到a+b=0,cd=1是解题的关键.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为﹣3 .【分析】根据[x]表示不大于x的最大整数,进而得出答案.解:由题意可得:[2.7]+[﹣4.5]=2﹣5=﹣3.故答案为:﹣3.【点评】此题主要考查了新定义,正确理解题意是解题关键.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为4 .【分析】把x=1代入数值转换机中计算即可得到结果.解:把x=1代入得:2×12﹣4=2﹣4=﹣2,把x=﹣2代入得:2×(﹣2)2﹣4=8﹣4=4,则输出y的值为4.故答案为:4【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×【分析】(1)根据加法结合律可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)先算乘法,再算加减即可解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的乘法和减法即可解答本题.解:(1)25.7+(﹣7.3)+(﹣13.7)+7.3=(25.7﹣13.7)+[(﹣7.3)+7.3]=12+0=12;(2)=(﹣)×(﹣36)=18+20+(﹣21)=17;(3)=(﹣1)+﹣1=﹣;(4)﹣14﹣(1﹣0.5)×=﹣1﹣=﹣1﹣×(﹣3)=﹣1+=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣2【分析】根据整式的运算法则即可求出答案.解:原式=3a+2a﹣4a3+a﹣3a3+2a2=6a﹣7a3+2a2当a=﹣2时,原式=6×(﹣2)﹣7×(﹣8)+2×4=﹣12+56+8=52.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?【分析】(1)根据三视图可分别得出俯视图上小立方体的个数;(2)根据(1)可得小正方体的个数为10,然后利用1个小正方体的体积乘以10即可;(3)根据三视图可得该物体的表面有多少个小正方形,然后利用1个小正方形的面积乘以个数即可.解:(1)如图所示:(2)3×3×3×10=270(cm3),答:该物体的体积是270cm3;(3)3×3×38=342(cm2),答:该物体的表面积是342cm2.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.【分析】根据数轴判断出a、b、c的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.解:如图可知:a>0,c<0,b<0,且|b|>|c|>|a|,则|c|=﹣c,|a﹣c|=a﹣c,|c+b|=﹣c﹣b,|a+b|=﹣a﹣b,则原式=﹣c+(a﹣c)﹣2(﹣c﹣b)+(﹣a﹣b)=﹣c+a﹣c+2c+2b﹣a﹣b=b.【点评】本题考查了整式的加减、数轴、绝对值,在数轴上判断出字母的符号是解题的关键.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款(100x+8000)元;若客户按方案二购买,需付款(90x+9000)元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意可以得到先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带更合算.解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:(100x+8000)元;方案二费用:(90x+9000)元;(2)当x=30时,方案一费用:100x+8000=100×30+8000=11000(元);方案二费用:90x+9000=90×30+9000=11700(元);∵11000<11700,∴按方案一购买较合算;(3)先按方案一购买20套西装获赠20条领带,再按方案二购买10条领带.20×500+100×0.9×10=10900(元).故此方案需要付款10900元.【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是 5 ,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是 2 .(2)数轴上点A用数a表示,若|a|=5,那么a的值为5或﹣5 .(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是﹣2或8 .②当|a+2|+|a﹣3|=5时,数a的取值范围是﹣2≤a≤3 ,这样的整数a有 6 个③|a﹣3|+|a+2017|有最小值,最小值是2020 .【分析】(1)根据两点间的距离公式求解可得;(2)根据绝对值的定义可得;(3)①利用绝对值定义知a﹣3=5或﹣5,分别求解可得;②由|a+2|+|a﹣3|=5的意义是表示数轴上到表示﹣2和表示3的点的距离之和是5的点的坐标,据此可得;③由|a﹣3|+|a+2017|表示数轴到表示3与表示﹣2017的点距离之和,根据两点之间线段最短可得.解:(1)数轴上表示数8的点和表示数3的点之间的距离是8﹣3=5,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是﹣1﹣(﹣3)=2,故答案为:5、2.(2)若|a|=5,那么a的值为5或﹣5,故答案为:5或﹣5.(3)数轴上点A用数a表示,①若|a﹣3|=5,则a﹣3=5或a﹣3=﹣5,∴a=8或﹣2,故答案为:﹣2或8.②∵|a+2|+|a﹣3|=5的意义是表示数轴上到表示﹣2和表示3的点的距离之和是5的点的坐标,∴﹣2≤a≤3,其中整数有﹣2,﹣1,0,1,2,3共6个,故答案为:﹣2≤a≤3,6.③|a﹣3|+|a+2017|表示数轴到表示3与表示﹣2017的点距离之和,由两点之间线段最短可知:当﹣2017≤a≤3时,|a﹣3|+|a+2017|有最小值,最小值为2017﹣(﹣3)=2020,故答案为:2020.【点评】本题主要考查的是绝对值的定义的应用,理解并应用绝对值的定义及两点间的距离公式是解题的关键.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?【分析】观察图形发现部分①的面积为:,部分②的面积为:=,…,部分的面积,据此规律解答即可.解:∵观察图形发现部分①的面积为:,部分②的面积为:=,…,部分的面积,∴(1)阴影部分的面积是=;(2)=1﹣=;【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并发现图形变化的规律.七年级上学期期中考试数学试题(答案)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×1084.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣16.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2 7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为.10.比较大小:﹣(﹣3.14)﹣|﹣π|.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).16.(6分)计算:(﹣+﹣)×(﹣24).17.(6分)计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有个★,第六个图形共有个★;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2020个★?23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为;到乙商场购买所需的费用为;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?2018-2019学年吉林省长春市长春新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=9,不符合题意;B、原式=﹣3,不符合题意;C、原式=6x+4,不符合题意;D、原式=a,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.【点评】本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.【分析】根据多项式的次数和项数,同类项,单项式及单项式的系数的定义作答.【解答】解:A、1﹣a﹣ab是二次三项式,正确;B、符合同类项的定义,故是同类项,正确;C、不符合单项式的定义,错误;D、,正确.故选:C.【点评】单项式的系数应包含完整的数字因数,多项式里次数最高项的次数叫做这个多项式的次数,单项式中,所有字母的指数和叫做这个单项式的次数.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.6.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.【点评】此题考查了列代数式,弄清题意是解本题的关键.7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)【分析】三个连续的奇数中,最大的一个是2n+3,由于奇数是不能被2除尽的整数,即连续奇数的相邻两项之间相差2,所以中间的那个奇数为2n+3﹣2=2n+1,那么最小的一个是2n+1﹣2=2n﹣1.【解答】解:由题意得:三个连续奇数中最小的一个为:2n+3﹣2﹣2=2n﹣1,故选:A.【点评】本题主要考查了代数式的求值,关键在于熟练掌握奇数的含义,明确相邻两个奇数之间的差为2,属于中考中的常考考点.8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为 3.0.【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:将这个结果精确到十分位,即对百分位的数字进行四舍五入,是3.0.故答案为3.0.【点评】本题考查了近似数和有效数字,精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的7入了后,百分位的是9,满了10后要进1.10.比较大小:﹣(﹣3.14)>﹣|﹣π|.【分析】根据相反数的性质,绝对值的性质把两个数化简,根据正数大于负数比较即可.【解答】解:﹣(﹣3.14)=3.14,﹣|﹣π|=﹣π.3.14>﹣π,则﹣(﹣3.14)>﹣|﹣π|,故答案为:>.【点评】本题考查的是相反数的概念,实数的大小比较,掌握正数大于负数是解题的关键.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是c ﹣a.【分析】由数轴知c<a<0<b且|a|<|b|,据此得a﹣b>0、c+b<0,再根据绝对值性质去绝对值符号、合并即可得.【解答】解:由数轴知c<a<0<b,且|a|<|b|,则a﹣b>0、c﹣b<0,∴|a﹣b|﹣|c﹣b|=b﹣a+c﹣b=c﹣a,故答案为:c﹣a.【点评】此题考查了数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为1.【分析】根据题意确定出x2+2x的值,原式变形后代入计算即可求出值.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,则2x2+4x﹣1=2(x2+2x)﹣1=2×1﹣1=2﹣1=1,故答案为:1.【点评】此题考查了代数式求值,解题的关键是熟练掌握整体代入思想的运用.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于﹣3.【分析】先求出各个整数,再相加即可.【解答】解:数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)为﹣3,﹣2,﹣1,0,1,2,和为﹣3﹣2﹣1+0+1+2=﹣3,故答案为:﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能求出符合的所有整数是解此题的关键.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=3.【分析】根据规定运算法则,分别把a、b换成1、(﹣2),然后进行计算即可求解.【解答】解:根据题意,1★(﹣2)=12﹣1×(﹣2)=1+2=3.故答案为:3.【点评】本题考查了有理数的混合运算问题,根据规定新运算代入进行计算即可,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【分析】先凑成整数,再相加即可求解.【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点评】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.(6分)计算:(﹣+﹣)×(﹣24).【分析】原式利用乘法分配律计算即可求出值.【解答】解:原式=4﹣18+2=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)计算.【分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【解答】解:原式=9﹣60÷4×+2=9﹣60××+2=9﹣1.5+2=9.5.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)【分析】根据绝对值、相反数的意义得到﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,再利用数轴表示出6个数,然后利用数轴上右边的数总比左边的数大确定它们的大小关系.。

北京市七中七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

北京市七中七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

市七中2015-2016学年七年级数学上学期期中试题一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.在2,0,﹣1,﹣2这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.12.时间21日晚间,法国电力公司(E D F)正式宣布,中国广核集团将在英国欣克利角核电项目中投资约58 800 000 000元人民币,所投资的该工程被称为“地球上最昂贵的工程”.将数字58 800 000 000用科学记数法表示为()A.58.8×108B.5.88×109C.5.88×1010D.0.588×10113.下列计算正确的是()A.(﹣3)﹣(﹣5)=﹣8 B.﹣32=﹣9C.(﹣3)3=﹣9 D.(﹣3)+(﹣5)=+84.下列各数是方程2x﹣3=5x﹣15的解的是()A.x=3 B.x=4 C.x=﹣3 D.x=﹣45.若|x﹣|+(y+2)2=0,则(xy)2015的值为()A.1 B.﹣1 C.﹣2015 D.20156.有理数﹣32,(﹣3)2,|﹣33|,按从小到大的顺序排列是()A.<﹣32<(﹣3)2<|﹣33| B.|﹣33|<﹣32<<(﹣3)2C.﹣32<<(﹣3)2<|﹣33| D.<﹣32<|﹣33|<(﹣3)27.在ab2与b2a,﹣2x3与﹣2y3,4abc与cab,a3与43,﹣与5,4a2b3c与4a2b3中,同类项有()A.5组B.4组C.3组D.2组8.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④9.若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为()A.0 B.﹣1 C.1 D.﹣210.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本题共20分,每空2分)11.﹣4的倒数是.12.“m与n的平方差”用式子表示为.13.若﹣x2y m是关于x、y的五次单项式,则m为.14.已知多项式x2+2y的值是3,则多项式x2+2y+4的值是.15.绝对值大于1而小于4的整数有个.16.已知x=2是关于x的方程+k=k(x+2)的解,则k的值等于.17.已知轮船在静水中前进的速度是m千米/时,水流的速度是2千米/时,则这轮船在逆水中航行的速度是千米/时;顺水中航行的速度是千米/时.18.根据规律填空:1+3=4;1+3+5=9;1+3+5+7=16;1+3+5+7+9=25;…1+3+5+7+9+…+99=.1+3+5+7+9+…+99++(2n+1)=.三、计算题(本题共16分,每小题16分)19.计算题:(1)30﹣11+(﹣10)﹣(﹣12)(2)(﹣3)×(﹣)÷(﹣1)(3)(+﹣)×(﹣12)(4)﹣32﹣(﹣2)4÷(﹣)﹣(﹣1)2013.四、解下列方程(本题共12分,每小题12分)20.解下列方程:(1)6x﹣7=4x﹣5(2)﹣6=x(3)﹣2=x﹣.五、解答题(本题共5个小题,每小题4分,共20分)21.合并同类项:3a2﹣2a+4a2﹣7a.22.化简:3(x﹣3y)﹣2(y﹣2x)﹣x.23.先化简,再求值:(1﹣4a2b)﹣2(ab2﹣a2b),其中a=﹣1,b=.24.已知x2﹣3x+2=0,求代数式(x2﹣3x)2﹣2x2+6x+1的值.30.(4分)(2015秋校级期中)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:筐号 1 2 3 4 5 6 7 8①这8筐白菜中,最接近25千克标准的是第几筐?重多少千克?②以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?③若白菜每千克售价2.6元,则出售这8筐白菜可卖多少钱?六、解答题(本题共2分)31.(2分)(2015秋校级期中)阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数X围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.2015-2016学年七中七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.在2,0,﹣1,﹣2这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.1【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出在2,0,﹣1,﹣2这四个数中,最小的数是哪个即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<2,故在2,0,﹣1,﹣2这四个数中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.时间21日晚间,法国电力公司(E D F)正式宣布,中国广核集团将在英国欣克利角核电项目中投资约58 800 000 000元人民币,所投资的该工程被称为“地球上最昂贵的工程”.将数字58 800 000 000用科学记数法表示为()A.58.8×108B.5.88×109C.5.88×1010D.0.588×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:58 800 000 000=5.88×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.(﹣3)﹣(﹣5)=﹣8 B.﹣32=﹣9 C.(﹣3)3=﹣9 D.(﹣3)+(﹣5)=+8【考点】有理数的乘方;有理数的加法;有理数的减法.【专题】计算题.【分析】A、原式利用减法法则变形,计算得到结果,即可做出判断;B、原式表示3平方的相反数,计算得到结果,即可做出判断;C、原式表示3个﹣3的乘积,计算得到结果,即可做出判断;D、原式利用同号两数相加的法则计算的结果,即可做出判断.【解答】解:A、(﹣3)﹣(﹣5)=﹣3+5=2,错误;B、﹣32=﹣9,正确;C、(﹣3)3=﹣27,错误;D、(﹣3)+(﹣5)=﹣8,错误,故选B【点评】此题考查了有理数的乘方,有理数的加减法,熟练掌握运算法则是解本题的关键.4.下列各数是方程2x﹣3=5x﹣15的解的是()A.x=3 B.x=4 C.x=﹣3 D.x=﹣4【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:方程2x﹣3=5x﹣15,移项合并得:3x=12,解得:x=4.故选B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.若|x﹣|+(y+2)2=0,则(xy)2015的值为()A.1 B.﹣1 C.﹣2015 D.2015【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣=0,y+2=0,解得x=,y=﹣2,所以,(xy)2015=[×(﹣2)]2015=﹣1.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.有理数﹣32,(﹣3)2,|﹣33|,按从小到大的顺序排列是()A.<﹣32<(﹣3)2<|﹣33| B.|﹣33|<﹣32<<(﹣3)2C.﹣32<<(﹣3)2<|﹣33| D.<﹣32<|﹣33|<(﹣3)2【考点】有理数大小比较.【专题】计算题.【分析】先根据乘方的意义得到﹣32=﹣9,(﹣3)2,=9,|﹣33|=|﹣27|=27,由|﹣9|=9,|﹣|=得到﹣9<﹣,则所给四个数的大小关系为﹣32<<(﹣3)2<|﹣33|.【解答】解:﹣32=﹣9,(﹣3)2,=9,|﹣33|=|﹣27|=27,∵|﹣9|=9,|﹣|=,∴﹣9<﹣,∴有理数﹣32,(﹣3)2,|﹣33|,按从小到大的顺序排列为﹣32<<(﹣3)2<|﹣33|.故选C.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.在ab2与b2a,﹣2x3与﹣2y3,4abc与cab,a3与43,﹣与5,4a2b3c与4a2b3中,同类项有()A.5组B.4组C.3组D.2组【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,几个常数项也是同类项.同类项与字母的顺序无关,与系数无关.【解答】解: ab2与b2a所含字母相同,相同字母的指数相同,是同类项;﹣2x3与﹣2y3所含字母不相同,不是同类项;4abc与cab所含字母相同,相同字母的指数相同,是同类项;a3与43,所含字母不相同,不是同类项;﹣与5是同类项;4a2b3c与4a2b3中所含字母不相同,不是同类项;则同类项有3组.故选:C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同;是易混点.同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④【考点】数轴.【分析】数轴可知b<0<a,|b|>|a|,求出ab<0,a﹣b>0,a+b<0,根据以上结论判断即可.【解答】解:∵从数轴可知:b<0<a,|b|>|a|,∴①正确;②错误,∵a>0,b<0,∴ab<0,∴③错误;∵b<0<a,|b|>|a|,∴a﹣b>0,a+b<0,∴a﹣b>a+b,∴④正确;即正确的有①④,故选B.【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.9.若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为()A.0 B.﹣1 C.1 D.﹣2【考点】代数式求值;相反数.【分析】根据相反数得出a+b=0, =﹣1,代入求出即可.【解答】解:∵a,b互为相反数,且都不为零,∴a+b=0, =﹣1,∴(a+b﹣1)(+1)=(0﹣1)×(﹣1+1)=0,故选A.【点评】本题考查了相反数,求代数式的值的应用,解此题的关键是能求出a+b=0, =﹣1.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本题共20分,每空2分)11.﹣4的倒数是.【考点】倒数.【分析】根据倒数的定义,直接解答即可.【解答】解:∵ =1,∴﹣4的倒数是﹣.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.“m与n的平方差”用式子表示为m2﹣n2.【考点】列代数式.【分析】根据题意利用两数平方后再相减得出即可.【解答】解:由题意可得:m2﹣n2.故答案为:m2﹣n2.【点评】此题主要考查了列代数式,正确把握关键术语是解题关键.13.若﹣x2y m是关于x、y的五次单项式,则m为 3 .【考点】单项式.【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:因为﹣﹣x2y m是五次单项式,所以2+m=5,解得m=3.故答案为:3.【点评】此题主要考查了单项式的指数定义,做题时首先看准单项式里有哪几个字母,再把指数加起来即可.14.已知多项式x2+2y的值是3,则多项式x2+2y+4的值是7 .【考点】代数式求值.【专题】计算题.【分析】把已知多项式的值代入计算即可求出值.【解答】解:∵x2+2y=3,∴原式=3+4=7.故答案为:7.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.绝对值大于1而小于4的整数有 4 个.【考点】绝对值.【专题】常规题型.【分析】求绝对值大于1且小于4的整数,即求绝对值等于2或3的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.【解答】解:绝对值大于1且小于3的整数有±2,±3.故答案为:4.【点评】主要考查了绝对值的性质,绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.16.已知x=2是关于x的方程+k=k(x+2)的解,则k的值等于.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算即可求出k的值.【解答】解:把x=2代入方程得: +k=4k,解得:k=,故答案为:【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.已知轮船在静水中前进的速度是m千米/时,水流的速度是2千米/时,则这轮船在逆水中航行的速度是m﹣2 千米/时;顺水中航行的速度是m+2 千米/时.【考点】列代数式.【分析】利用顺水速度=静水速度+水流速度,逆水速度=静水速度﹣水流速度,列出代数式即可.【解答】解:顺水中航行的速度是(m+2)千米/时.逆水速度是(m﹣2)千米/时.故答案为:m+2,m﹣2.【点评】此题考查列代数式,掌握基本数量关系解决问题.18.根据规律填空:1+3=4;1+3+5=9;1+3+5+7=16;1+3+5+7+9=25;…1+3+5+7+9+…+99=2500 .1+3+5+7+9+…+99+…+(2n+1)= (n+1)2.【考点】规律型:数字的变化类.【分析】根据已知等式知,从1开始的连续n个奇数的和等于序数加1和的平方,据此可知第49个等式的和为502,第n个等式的和为(n+1)2.【解答】解:∵第1个等式:1+3=4=22;第2个等式:1+3+5=9=32;第3个等式:1+3+5+7=16=42;第4个等式:1+3+5+7+9=25=52;…∴第n个等式:1+3+5+7+9+…+(2n+1)=(n+1)2,当2n+1=99,即n=49时,1+3+5+7+…+99=502=2500,故答案为:(1)2500,(2)(n+1)2.【点评】本题主要考查数字的变化规律,根据已知等式发现规律并会用代数式表示是关键.三、计算题(本题共16分,每小题16分)19.计算题:(1)30﹣11+(﹣10)﹣(﹣12)(2)(﹣3)×(﹣)÷(﹣1)(3)(+﹣)×(﹣12)(4)﹣32﹣(﹣2)4÷(﹣)﹣(﹣1)2013.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=30﹣11﹣10+12=21;(2)原式=﹣3××=﹣2;(3)原式=﹣5﹣8+9=﹣4;(4)原式=﹣9+16×+1=﹣9+7+1=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解下列方程(本题共12分,每小题12分)20.解下列方程:(1)6x﹣7=4x﹣5(2)﹣6=x(3)﹣2=x﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=2,解得:x=1;(2)去分母得:2x﹣24=3x,移项合并得:x=﹣24;(3)去分母得:2x+4﹣20=10x﹣5x+5,移项合并得:3x=﹣21,解得:x=﹣7.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.五、解答题(本题共5个小题,每小题4分,共20分)21.合并同类项:3a2﹣2a+4a2﹣7a.【考点】合并同类项.【分析】根据合并同类项的法则,即可解答.【解答】解:3a2﹣2a+4a2﹣7a=7a2﹣9a.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.22.化简:3(x﹣3y)﹣2(y﹣2x)﹣x.【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=3x﹣9y﹣2y+4x﹣x=6x﹣11y.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.先化简,再求值:(1﹣4a2b)﹣2(ab2﹣a2b),其中a=﹣1,b=.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=﹣2a2b﹣2ab2+2a2b=﹣2ab2,当a=﹣1,b=时,原式=+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知x2﹣3x+2=0,求代数式(x2﹣3x)2﹣2x2+6x+1的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式变形后,将已知等式整理后代入计算即可求出值.【解答】解:∵x2﹣3x+2=0,即x2﹣3x=﹣2,∴原式=(x2﹣3x)2﹣2(x2﹣3x)+1=4+4+1=9.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.30.(4分)(2015秋校级期中)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:筐号 1 2 3 4 5 6 7 8①这8筐白菜中,最接近25千克标准的是第几筐?重多少千克?②以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?③若白菜每千克售价2.6元,则出售这8筐白菜可卖多少钱?【考点】正数和负数.【分析】(1)与标准重量比较,绝对值越小的越接近标准重量;(2)与标准重量比较,8筐白菜总计超过或不足的重量即是正负数相加的结果;(3)白菜每千克售价2.6元,再计算出8筐白菜的总重量即可求出出售这8筐白菜可卖多少元.【解答】解:(1)该组数据中,﹣0.5的绝对值最小,最接近25千克的标准,是第4筐,这筐白菜重25﹣0.5=24.5千克.答:这8筐白菜中,最接近25千克标准的是第4筐,重24.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克).答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(3)(25×8﹣5.5)×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.【点评】本题考查了有理数的运算在实际中的应用.体现了正负数的意义,解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.六、解答题(本题共2分)31.(2分)(2015秋校级期中)阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数X围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.【考点】绝对值.【专题】计算题;阅读型.【分析】(1)分为x<﹣2、﹣2≤x<4、x≥4三种情况化简即可;(2)分x<﹣1、﹣1≤x≤1、x>1分别化简,结合x的取值X围确定代数式值的X围,从而求出代数式的最大值.【解答】解:(1)当x<﹣2时,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=x+2+4﹣x=6;当x≥4时,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;(2)当x<﹣1时,原式=3x+5<2,当﹣1≤x≤1时,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,当x>1时,原式=﹣3x﹣5<﹣8,则|x﹣1|﹣4|x+1|的最大值为2.【点评】本题主要考查了绝对值,解题的关键是能根据材料所给信息,找到合适的方法解答.。

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。

【6套打包】北京市七年级上册数学期中考试测试卷(含答案解析)

【6套打包】北京市七年级上册数学期中考试测试卷(含答案解析)

七年级上学期期中考试数学试题(答案)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108 4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣16.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2 7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为.10.比较大小:﹣(﹣3.14)﹣|﹣π|.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).16.(6分)计算:(﹣+﹣)×(﹣24).17.(6分)计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有个★,第六个图形共有个★;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2020个★?23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为;到乙商场购买所需的费用为;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?2018-2019学年吉林省长春市长春新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=9,不符合题意;B、原式=﹣3,不符合题意;C、原式=6x+4,不符合题意;D、原式=a,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.【点评】本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.【分析】根据多项式的次数和项数,同类项,单项式及单项式的系数的定义作答.【解答】解:A、1﹣a﹣ab是二次三项式,正确;B、符合同类项的定义,故是同类项,正确;C、不符合单项式的定义,错误;D、,正确.故选:C.【点评】单项式的系数应包含完整的数字因数,多项式里次数最高项的次数叫做这个多项式的次数,单项式中,所有字母的指数和叫做这个单项式的次数.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.6.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.【点评】此题考查了列代数式,弄清题意是解本题的关键.7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)【分析】三个连续的奇数中,最大的一个是2n+3,由于奇数是不能被2除尽的整数,即连续奇数的相邻两项之间相差2,所以中间的那个奇数为2n+3﹣2=2n+1,那么最小的一个是2n+1﹣2=2n﹣1.【解答】解:由题意得:三个连续奇数中最小的一个为:2n+3﹣2﹣2=2n﹣1,故选:A.【点评】本题主要考查了代数式的求值,关键在于熟练掌握奇数的含义,明确相邻两个奇数之间的差为2,属于中考中的常考考点.8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为 3.0.【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:将这个结果精确到十分位,即对百分位的数字进行四舍五入,是3.0.故答案为3.0.【点评】本题考查了近似数和有效数字,精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的7入了后,百分位的是9,满了10后要进1.10.比较大小:﹣(﹣3.14)>﹣|﹣π|.【分析】根据相反数的性质,绝对值的性质把两个数化简,根据正数大于负数比较即可.【解答】解:﹣(﹣3.14)=3.14,﹣|﹣π|=﹣π.3.14>﹣π,则﹣(﹣3.14)>﹣|﹣π|,故答案为:>.【点评】本题考查的是相反数的概念,实数的大小比较,掌握正数大于负数是解题的关键.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是c ﹣a.【分析】由数轴知c<a<0<b且|a|<|b|,据此得a﹣b>0、c+b<0,再根据绝对值性质去绝对值符号、合并即可得.【解答】解:由数轴知c<a<0<b,且|a|<|b|,则a﹣b>0、c﹣b<0,∴|a﹣b|﹣|c﹣b|=b﹣a+c﹣b=c﹣a,故答案为:c﹣a.【点评】此题考查了数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为1.【分析】根据题意确定出x2+2x的值,原式变形后代入计算即可求出值.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,则2x2+4x﹣1=2(x2+2x)﹣1=2×1﹣1=2﹣1=1,故答案为:1.【点评】此题考查了代数式求值,解题的关键是熟练掌握整体代入思想的运用.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于﹣3.【分析】先求出各个整数,再相加即可.【解答】解:数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)为﹣3,﹣2,﹣1,0,1,2,和为﹣3﹣2﹣1+0+1+2=﹣3,故答案为:﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能求出符合的所有整数是解此题的关键.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=3.【分析】根据规定运算法则,分别把a、b换成1、(﹣2),然后进行计算即可求解.【解答】解:根据题意,1★(﹣2)=12﹣1×(﹣2)=1+2=3.故答案为:3.【点评】本题考查了有理数的混合运算问题,根据规定新运算代入进行计算即可,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【分析】先凑成整数,再相加即可求解.【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点评】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.(6分)计算:(﹣+﹣)×(﹣24).【分析】原式利用乘法分配律计算即可求出值.【解答】解:原式=4﹣18+2=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)计算.【分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【解答】解:原式=9﹣60÷4×+2=9﹣60××+2=9﹣1.5+2=9.5.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)【分析】根据绝对值、相反数的意义得到﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,再利用数轴表示出6个数,然后利用数轴上右边的数总比左边的数大确定它们的大小关系.【解答】解:﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,用数轴表示为:用“>”把这些数连接起来:2>+1>﹣1.5>﹣|﹣2.5|>﹣3>﹣(+6).【点评】本题考查了有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.【分析】先去括号,再合并,最后再把x的值代入计算即可.【解答】解:原式=5x2﹣3x+2(2x﹣3)﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.【点评】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.【分析】首先利用绝对值以及相反数的定义得出x,y的值,再去括号,利用整式加减运算法则合并同类项,将x,y的值代入求出答案.【解答】解:∵x,y互为相反数,且|y﹣3|=0,∴y=3,x=﹣3,2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+3y﹣x+3y2﹣2x3=﹣y2﹣2x+3y,当x=﹣3,y=3时,原式=﹣32﹣2×(﹣3)+3×3=6.【点评】此题主要考查了绝对值的性质以及整式加减运算法则,正确求出x,y 的值是解题关键.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.【分析】(1)a的5倍表示为5a,b的平方表示为b2,然后把它们相减即可;(2)m与n平方的和表示为m2+n2;(3)x、y两数的平方和表示为x2+y2,它们积的2倍表示为2xy,然后把两者相减即可;(4)百位数乘100,十位数乘10,个位数乘1,相加即可得.【解答】解:(1)a的5倍与b的平方的差可表示为5a﹣b2;(2)m的平方与n的平方的和可表示为m2+n2;(3)x、y两数的平方和减去它们积的2倍可表示为x2+y2﹣2xy;(4)此三位数为100a+10b+c.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有13个★,第六个图形共有19个★;(2)第n个图形中有★3n+1个;(3)根据(2)中的结论,第几个图形中有2020个★?【分析】(1)根据题目中的图形,可以得到第四个图形和第六个图形中★的个数;(2)根据题目中的图形,可以得到第n个图形中有★的个数;(3)根据(2)中的结论,可以解答本题.【解答】解:(1)由图可知,第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第四个图形中有★:1+3×4=13,第六个图形中有★:1+3×6=19,故答案为:13,19;(2)第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第n个图形中有★:1+3×n=3n+1,故答案为:3n+1;(3)设第x个图形中有2020个★,3x+1=2020,解得,x=673,答:第673个图形中有2020个★.【点评】本题考查图形的变化类,解答本题的关键是明确图形中★的个数的变化规律,利用数形结合的思想解答.23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.3可得答案.【解答】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是繁荣路站;(2)(5+2+6+8+3+4+9+8)×1.3=45×1.3=58.5(千米).答:这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为(1560+70x)元;到乙商场购买所需的费用为(1920+56x)元;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?【分析】(1)根据题意表示出甲乙两商场的费用即可;(2)计算出甲乙两个商场的费用,比较即可.【解答】解:(1)则到甲商场购买所需的费用为:12×200+70(x﹣12)=(1560+70x)元;到乙商场购买所需的费用为:(12×200+70x)×0.8=(1920+56x)元;故答案为:(1560+70x)元;(1920+56x)元;(2)到甲商场购买所需的费用为:15×200+70×(30﹣15)=4050(元),到乙商场购买所需的费用为:(15×200+70×30)×80%=4080(元),4050元<4080元答:到甲商场购买划算.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.人教版七年级(上)期中模拟数学试卷(10)一、选择题(本大题共8小题,每小题3分,共24分)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.42.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×1034.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab25.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.16.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.1987.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.78.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是.10.已知(a﹣2)2+|b﹣1|=0,则a b=.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是.13.若a﹣1与3互为相反数,则a=.14.比较大小:﹣8 ﹣5(填“>”或“<”)15.a是某数的十位数字,b是它的个位数字,则这个数可表示为.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×418.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是、.(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)参考答案与试题解析一.选择题(共8小题)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.4【分析】根据有理数的加法法则即可得.【解答】解:∵2+1=3,∴与1的和是3的数是2,故选:C.2.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy【分析】根据同类项的定义、合并同类项法则对四个选项进行判断即可.【解答】解:A.4x与3y不是同类项,不能合并,此选项错误;B.4x2与3x不是同类项,不能合并,此选项错误;C.4x3与﹣3x2不是同类项,不能合并,此选项错误;D.﹣4xy+3yx=﹣xy,此选项正确;故选:D.3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42195=4.2195×104,故选:C.4.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab2【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A.3xy与2xy是同类项,符合题意;B.2ab与2abc所含字母不相同,不符合题意;C.x2y与x2z所含字母不相同,不符合题意;D.a2b与ab2相同字母的指数不相同,不符合题意;故选:A.5.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.1【分析】可借助数轴,直接数数得结论,也可通过加减法计算得结论.【解答】解:因为点B与点A的距离为4,当点A表示的数为﹣3时,点B表示的数为﹣3+4=1.故选:D.6.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.198【分析】把x=1代入计算程序中计算即可求出所求.【解答】解:把x=1代入计算程序得:1+1+1=3<50,把x=3代入计算程序得:9+3+1=13<50,把x=13代入计算程序得:169+13+1=183>50,则输出的数为183,故选:C.7.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.7【分析】由题意确定出m+2n的值,原式变形后代入计算即可求出值.【解答】解:∵m+2n+2=3,即m+2n=1,∴原式=3(m+2n)+1=3+1=4,故选:A.8.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年【分析】根据题意可以分别写出世界运动会、亚运会、奥运会举行的时间,从而可以判断选项中的哪一个年份不符合题意,从而可以解答本题.【解答】解:由题意可得,世界运动会、亚运会、奥运会分别举行的时间为2013+4n,2014+4n,2016+4n,当n=14时,2013+4n=2019,2014+4n=2070,2016+4n=2072,当n=15时,2013+4n=2073,故选:B.二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是 3 .【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.已知(a﹣2)2+|b﹣1|=0,则a b= 2 .【分析】直接利用偶次方以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣2)2+|b﹣1|=0,∴a﹣2=0,b﹣1=0,解得:a=2,b=1,故a b=2.故答案为:2.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差0.4 千克.【分析】(50±0.2)的字样表明质量最大为50.2,最小为49.8,二者之差为0.4.依此即可求解.【解答】解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是8排13号.【分析】由“4排5号”记作(4,5)可知,有序数对与排号对应,(8,13)的意义为第8排13号.【解答】解:根据题意知:前一个数表示排数,后一个数表示号数.所以(8,13)表示的座位是8排13号.故答案为:8排13号.13.若a﹣1与3互为相反数,则a=﹣2 .【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a﹣1+3=0,解得:a=﹣2,故答案为:﹣214.比较大小:﹣8 <﹣5(填“>”或“<”)【分析】利用两个负数比较大小,绝对值大的反而小,进而得出答案.【解答】解:∵|﹣8|=8,|﹣5|=5,∴﹣8<﹣5.故答案为:<.15.a是某数的十位数字,b是它的个位数字,则这个数可表示为10a+b.【分析】根据两位数=十位数字×10+个位数字即可得出答案.【解答】解:十位数字为a,个位数字为b的意义是a个10与b个1的和为:10a+b.故答案为:10a+b.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为13 .【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故答案为:13.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×4【分析】(1)将减法转化为加法,再计算加法即可得;(2)先计算乘法和除法,再计算加减可得;(3)先利用乘法分配律展开,再依次计算乘法和加减可得;(4)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣1﹣3+9=﹣4+9=5;(2)原式=﹣24+25=1;(3)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣20+27﹣2=5;(4)原式=1﹣6÷(﹣8)×4=1+×4=1+3=4.18.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).【分析】(1)直接找出同类项进而合并同类项得出答案;(2)直接去括号进而合并同类项得出答案.【解答】解:(1)原式=(2﹣7+3)a=﹣2a;(2)原式=8mn﹣3m2﹣6mn+4m2,=(﹣3+4)m2+(8﹣6)mn=m2+2mn.19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.【分析】(1)先合并同类项化简原式,再将a,b的值代入计算可得;(2)将原式去括号,合并同类项化简,再将x,y的值代入计算可得.【解答】解:(1)原式=6a﹣2b,当a=,b=﹣2时,原式=6×﹣2×(﹣2)=3+4=7;(2)原式=6x2﹣8xy﹣8x2+12xy+4=﹣2x2+4xy+4,当x=﹣1,y=﹣2时,原式=﹣2×(﹣1)2+4×(﹣1)×(﹣2)+4=﹣2+8+4=10.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:22=4,0,﹣2,(﹣1)3=﹣1,如图所示:,故﹣2<(﹣1)3<0<22.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)【分析】(1)用长方形的面积减去2个半径为b的圆的面积,据此可得;(2)将a,b的值代入计算可得.【解答】解:(1)阴影部分的面积为ab﹣2××πb2=ab﹣πb2;(2)当a=10,b=4时,ab﹣πb2=10×4﹣×3.14×16≈14.88.22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x=10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x+120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x+135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元,故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与 4 表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与﹣10 表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是﹣1006 、1012 .(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)。

【6套打包】北京市七年级上册数学期中考试测试卷(含答案)

【6套打包】北京市七年级上册数学期中考试测试卷(含答案)

人教版七年级(上)期中模拟数学试卷【含答案】一、选择题(本题有10个小题,每小题3分,满分30分。

下面每小题给出的四个选项中,只有一个是正确的)1.(3分)如图,A、B、C、D中的图案()可以通过如图平移得到.A.B.C.D.2.(3分)下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(0,﹣2)3.(3分)下列算式正确是()A.±=3B.=±3C.=±3D.=4.(3分)在3.14,,,π,,0.1010010001…中,无理数有()A.1个B.2个C.3个D.4个5.(3分)如图,已知AB∥CD,∠2=125°,则∠1的度数是()A.75°B.65°C.55°D.45°6.(3分)若|x﹣2|+=0,则xy的值为()A.﹣8B.﹣6C.5D.67.(3分)如图,下列条件能判定AB∥CD的是()A.∠1=∠2B.∠1=∠4C.∠2=∠3D.∠2+∠3=180°8.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.9.(3分)已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=﹣1C.x+y=9D.x+y=﹣9 10.(3分)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A.(45,9)B.(45,13)C.(45,22)D.(45,0)二、填空题(本题有6个小题愿,每小题3分,满分18分)11.(3分)﹣8的立方根是.12.(3分)在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度再向上平移1个单位得到的点的坐标是.13.(3分)已知满足方程2x﹣my=4,则m=.14.(3分)点A(2,3)到x轴的距离是.15.(3分)用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=.16.(3分)如图,AB∥CD,∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=.三、解答题(本大题有9小题,满分102分,解答要求写出文字说明,证明过程或计算步骤) 17.(10分)(1)计算:﹣32+||+(2)解方程:(a﹣2)2=1618.(10分)解方程组(1)(2)19.(10分)已知,如图.AD∥BE,∠1=∠2,求证:∠A=∠E.请完成解答过程.证明:∵AD∥BE(已知)∴∠A=∠()又∵∠1=∠2(已知)∴AC∥()∴∠3=∠(两直线平行,内错角相等)∴∠A=∠E(等量代换)20.(10分)已知=x,=2,z是9的算术平方根,求:2x+y﹣z的平方根.21.(12分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,分别求出∠BOE,∠DOF的度数.22.(12分)如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到三角形ABC,求三角形ABC的面积.23.(10分)已知与都是方程y=ax+b的解,求a+b的平方根.24.(14分)如图,在平面直角坐标系中,A(﹣2,0),C(2,2),过C作CB⊥x轴于B.(1)如图(1),则三角形ABC的面积为;(2)如图(2),若过B作BD∥AC交y轴于D,则∠BAC+∠ODB的度数为;若AE,DE分别平分∠CAB,∠ODB,求∠AED的度数.25.(14分)如图1,在平面直角坐标系中,A(m,0),B(n,0),C(﹣1,2),且满足式|m+2|+(m+n﹣2)2=0.(1)求出m,n的值.(2)①在x轴的正半轴上存在一点M,使△COM的面积等于△ABC的面积的一半,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积等于△ABC的面积的一半仍然成立,若存在,请直接在所给的横线上写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.2017-2018学年广东省广州中学七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分。

2023北京市数学七年级上册期中试卷含答案

2023北京市数学七年级上册期中试卷含答案

2023北京市数学七年级上册期中试卷含答案一、选择题1.﹣5的相反数是( ) A .﹣5B .5C .15-D .152.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ) A .1.68×104m B .16.8×103 m C .0.168×104m D .1.68×103m 3.下列计算正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=14.如果()232nx y m x +-是关于x 、y 的三次二项式,则m 、n 的值为( )A .2m =,1n =B .2m ≠,1n =C .2m =,1n ≠D .m 为任意数,1n =5.如图是某一计算程序,例如:当输入150x =时,输出结果是301;当输入101x =时,输出结果是407;若输入x 的值是30时,则输出结果是( )A .1983B .495C .247D .9916.已知226A x ax y =+-+,B=2351bx x y -+-,且A-B 中不含有项2x 和x 项,则22a b +等于( ) A .5B .-4C .13D .-17.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 8.对a ,b 定义运算“*”如下:()()2*2a b a b a b a b a b ⎧+≥⎪=⎨-<⎪⎩,已知*31x =-,则实数x 等于( )A .1B .-2C .1或-2D .不确定9.由点组成的正方形,每条边上的点数n 与总点数s 的关系如图所示,则当n =50时,计算s 的值为( )A .196B .200C .204D .19810.法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数”的证明上.如图为前几个“五边形数”的对应图形,请据此推断,第20个“五边形数”应该为( ),第2020个“五边形数”的奇偶性为( )A .533;偶数B .590;偶数C .533;奇数D .590;奇数二、填空题11.盈利100元记为100+元,则亏损300元记为____元.12.45πax 的系数是_____,多项式xy-pqx 2+95p 3+p+1是____次_____项式.13.定义一种正整数的“H 运算”是:①当它是奇数时,则该数乘以3加13;②当它是偶数时,则取该数得一半,一直取到结果为奇数停止.如:数3经过“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过三次“H 运算”的结果为46,那么28经2019次“H 运算”得到的结果是______.14.一个两位数,个位数字为a ,十位数字为b ,把这两个数的个位数字与十位数字交换,得到一个新的两位数,则新两位数与原两位数的和为______. 15.若m 的相反数是2019,︱n ︱=2018, m- n 的值为_________16.已知a 、b 、c 在数轴上对应的点如图所示,则|a|-|a -b|+|c -a|化简后的结果为_________.17.如图所示,将形状、大小完全相同的“●”放在每一条边都相等的多边形边上,第1个图形中“●”的个数为1a ,第2个图形中“●”的个数为2a ,第3个图形中“●”的个数为3a ,⋅⋅⋅,以此类推,则123101111a a a a +++⋅⋅⋅+的值为______.18.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.三、解答题19.有理数:13-,2-,12-,2(1)将上面各数在数轴上表示出来,并把这些数用“<“连接. (2)在上面的数中是否有相反数?若有,请写出来. 20.计算:(1)8+(﹣11)﹣(﹣5) (2)﹣32×(﹣5)﹣90÷(﹣6)21.已知21,(1)0a b =+=.(1)求2a b +的值;(2)求代数式222233(3)abc a b a b ab abc ab ⎡⎤----+⎣⎦的值.22.化简:(1)()22232x x x +-; (2)()()22225343a b ab ab a b ---+.23.若一个三位数t abc =(其中a ,b ,c 都是正整数且不全相等),如,当1a =,2b =,3c =时,123t =,重新排列各数位上的数字可得到一个最大数和一个最小数,此最大数和最小数的差叫做原数的差数,记为()P t .例如,536的差数为:()536653356297P -=:.(1)()213P =______,()735P =______; (2)若c a b >>,求证:()P t 能被99整除;(3)若s ,v 是各数位上的数字均不为0且互不相等的两个三位自然数,且s v >,s 的百位数字为2,十位数字是其百位数字的3倍,个位数字为x ;v 的百位数字为y ,十位数字与s 的个位数字相同,个位数字是其百位数字的2倍(x ,y 都是正整数且19x ≤≤,19y ≤≤).若()s v +能被3整除,()s v -能被11整除,求()P v 的值.24.从2开始,连续的偶数相加,它们和的情况如下表:(1)当n=6时, S 的值为__________.(2)根据上题的规律计算:26+28+30+…+60的值.25.如图,长方形的长都为a ,宽都为b ,图①中内部空白部分为半圆,图②中2个圆与图③中8个圆大小分别相等,三个图形中阴影部分的面积分别记为1S 、2S 、3S .(结果保留π)(1)计算1S ( 用含a ,b 的代数式表示);(2)根据(1)问的结果,求当4a =,2b =时1S 的值;(3)分别用含a ,b 的代数式表示2S 、3S ,然后判断3个图形中阴影部分面积的大小关系.二26.已知多项式622437x y x y x ---,次数是b ,4a 与b 互为相反数,在数轴上,点A 表示a ,点B 表示数b .(1)a= ,b= ;(2)若小蚂蚁甲从点A 处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B 处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O 处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t 秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t .(写出解答过程)(3)若小蚂蚁甲和乙约好分别从A ,B 两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s 时一起重新回到原出发点A 和B ,设小蚂蚁们出发t(s)时的速度为v(mm/s),v 与t 之间的关系如下图,(其中s 表示时间单位秒,mm 表示路程单位毫米) t (s ) 0<t≤2 2<t≤5 5<t≤16 v (mm/s )10168时,小蚂蚁甲与乙之间的距离是 .②当2<t≤5时,小蚂蚁甲与乙之间的距离是 .(用含有t 的代数式表示)【参考答案】一、选择题 1.B 解析:B 【分析】利用相反数的概念直接计算即可 【详解】解:﹣5的相反数是5. 故选:B . 【点睛】本题考查相反数的定义,了解定义是关键2.A 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n解析:A 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将16800用科学记数法表示为1.68×104. 故选:A . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.C 【分析】先根据同类项的概念进行判断是否是同类项,是同类项的根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断. 【详解】A 、3a 和2b 不是同类项,不能合并,A 错误;B 、2a 3和3a 2不是同类项,不能合并,B 错误;C 、3a 2b-3ba 2=0,C 正确;D 、5a 2-4a 2=a 2,D 错误, 故选C . 【点睛】本题主要考查的是同类项的概念和合并同类项的法则,掌握合并同类项的法则:系数相加作为系数,字母和字母的指数不变. 4.B 【分析】根据题意得出n=1和20m -≠,然后解得m ,n ,即可求得答案. 【详解】∵多项式()232nx y m x +-是三次二项式,∴n=1,20m -≠,则2m ≠, 故选:B . 【点睛】此题主要考查学生对多项式的理解和掌握,要求学生对多项式的概念有正确深入的理解. 5.B 【分析】根据运算程序图进行运算,即可求出结果. 【详解】解:把x=30代入2x+1=61<300, 把x=61代入2x+1=123<300,把x=123代入2x+1=247<300,把x=247代入2x+1=495>300,符合题意.故选:B【点睛】本题考查了求代数式的值的应用,主要培养学生的观察能力和分析能力,能根据程序图计算结果并判断是否输出是解题关键.6.C【分析】直接利用整式的加减运算法则得出a,b的值,进而得出答案.【详解】解:∵A=2x2+ax-y+6,B=bx2-3x+5y-1,且A-B中不含有x2项和x项,∴A-B=2x2+ax-解析:C【分析】直接利用整式的加减运算法则得出a,b的值,进而得出答案.【详解】解:∵A=2x2+ax-y+6,B=bx2-3x+5y-1,且A-B中不含有x2项和x项,∴A-B=2x2+ax-y+6-(bx2-3x+5y-1)=(2-b)x2+(a+3)x-6y+7,则2-b=0,a+3=0,解得:b=2,a=-3,故a2+b2=9+4=13.故选:C.【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.7.B【分析】由题意可得a、b的大小关系和符号关系,从而根据不等式的基本性质和有理数乘除法的符号法则可以得到正确解答.【详解】解:由题意可得:a<b,-a>b,所以由不等式的性质可得:b-a>0解析:B【分析】由题意可得a、b的大小关系和符号关系,从而根据不等式的基本性质和有理数乘除法的符号法则可以得到正确解答.【详解】解:由题意可得:a<b,-a>b,所以由不等式的性质可得:b-a>0,a+b<0,故A、C错误;又由题意可得a、b异号,所以B正确,D错误;故选B . 【点睛】本题考查数轴的应用,利用数形结合的思想方法、不等式的性质和有理数乘除法的符号法则求解是解题关键.8.A 【分析】根据新定义,分和两种情况,然后分别求解即可. 【详解】由新定义,分以下两种情况: (1)当时解得,不符题设,舍去 (2)当时 解得,符合题设 综上,实数x 等于1 故选:A . 【解析:A 【分析】根据新定义,分3x ≥和3x <两种情况,然后分别求解即可. 【详解】由新定义,分以下两种情况: (1)当3x ≥时3*312x x +==-解得2x =-,不符题设,舍去 (2)当3x <时3*312x x -==-解得1x =,符合题设 综上,实数x 等于1 故选:A . 【点睛】本题考查了新定义下的实数运算,理解新定义,正确分两种情况讨论是解题关键.9.A 【分析】观察可得规律:n 每增加一个数,s 就增加四个. 【详解】 解:由题意得:n =2时,s =4=1×4; n =3时,s =8=2×4; n =4时,s =12=3×4; …;n =50时,s =(5解析:A 【分析】观察可得规律:n 每增加一个数,s 就增加四个. 【详解】 解:由题意得: n =2时,s =4=1×4; n =3时,s =8=2×4; n =4时,s =12=3×4; …;n =50时,s =(50﹣1)×4=196. 故选A . 【点睛】本题考查根据图形找规律,根据图形特点找到排布规律是解答本题的关键.10.B 【分析】根据前几个“五边形数”的对应图形找到规律,得出第n 个“五边形数”为,将n=10代入可求得第20个“五边形数”,利用奇偶性判断第2020个“五边形数”的奇偶性. 【详解】 解:第1个“五解析:B 【分析】根据前几个“五边形数”的对应图形找到规律,得出第n 个“五边形数”为23122n n -,将n=10代入可求得第20个“五边形数”,利用奇偶性判断第2020个“五边形数”的奇偶性. 【详解】解:第1个“五边形数”为1=2311122⨯-⨯,第2个“五边形数”为5= 2312222⨯-⨯,第3个“五边形数”为12= 2313322⨯-⨯,第4个“五边形数”为22= 2314422⨯-⨯,第5个“五边形数”为35= 2315522⨯-⨯,···由此可发现:第n 个“五边形数”为23122n n -,当n=20时,23122n n -= 231202022⨯-⨯=590,当n=2020时,232n =3×2020×1010是偶数,12n =1010是偶数,所以23122n n -是偶数,故选:B . 【点睛】本题考查数字类规律探究、有理数的混合运算,通过观察图形,发现数字的变化规律是解答的关键.二、填空题 11.-300. 【分析】根据正负数的意义直接得出结果. 【详解】解:盈利100元记为+100元,则亏损300元记为-300元. 故答案为:-300. 【点睛】此题考查了正数与负数,弄清正负数的意义解析:-300. 【分析】根据正负数的意义直接得出结果. 【详解】解:盈利100元记为+100元,则亏损300元记为-300元. 故答案为:-300. 【点睛】此题考查了正数与负数,弄清正负数的意义是解本题的关键.12.π 四 五 【分析】根据单项式的系数的定义及多项式的次数和项的定义解答即可. 【详解】∵πax 中,数字因式为π, ∴πax 的系数是π, ∵多项式xy-pqx2+p3+p+1中解析:45π 四五【分析】根据单项式的系数的定义及多项式的次数和项的定义解答即可.【详解】∵45πax中,数字因式为45π,∴45πax的系数是45π,∵多项式xy-pqx2+95p3+p+1中,次数最高的项是-pqx2,-pqx2的次数是4,∴多项式xy-pqx2+95p3+p+1的次数是4,∵多项式xy-pqx2+95p3+p+1中有xy、-pqx2、95p3、p、1共5项,∴多项式xy-pqx2+95p3+p+1是四次五项式,故答案为:45π,四,五【点睛】本题考查了单项式的系数的定义及多项式的次数和项的定义,单项式中,字母因式叫做单项式的系数;多项式中,次数最高的项的次数叫做这个多项式的次数,每个单项式叫做多项式的项;熟练掌握定义是解题关键.13.1【分析】根据“H运算”的定义,28经过4次“H运算”后,结果开始循环,找到规律后,即可求解.【详解】28经过一次“H运算”得:7;经过二次“H运算”得:34;经过三次“H运算”,得:17;解析:1【分析】根据“H运算”的定义,28经过4次“H运算”后,结果开始循环,找到规律后,即可求解.【详解】28经过一次“H运算”得:7;经过二次“H运算”得:34;经过三次“H运算”,得:17;经过四次“H运算”,得:64;经过五次“H运算”,得:1;经过六次“H运算”,得:16;……,从第五次“H运算”开始,结果开始1,16循环;2019-4=2015,∴28经2019次“H运算”得到的结果是1.【点睛】根据题意,找到运算结果的规律性是解题的关键.14.【分析】根据题意可以写出原两位数与新两位数,从而可以解答本题.【详解】解:由题意可得,原来的两个位数是:10b+a ,新两位数是:10a+b∴原两位数与新两位数的和为:(10b+a )+解析:1111a b +【分析】根据题意可以写出原两位数与新两位数,从而可以解答本题.【详解】解:由题意可得,原来的两个位数是:10b+a ,新两位数是:10a+b∴原两位数与新两位数的和为:(10b+a )+(10a+b )=11a+11b .故答案为:1111a b +.【点睛】本题考查列代数式,解答此类问题的关键是明确题意,列出相应的代数式.15.-4037 或-1【分析】根据相反数的定义和绝对值的意义求出m 、n 的值,然后得到的值.【详解】解:∵m 的相反数是2019,∴,∵︱n ︱=2018,∴,∴或;故答案为:或.【点睛解析:-4037 或-1【分析】根据相反数的定义和绝对值的意义求出m 、n 的值,然后得到m n -的值.【详解】解:∵m 的相反数是2019,∴2019m =-,∵︱n ︱=2018,∴2018n =±,∴20192018=4037m n -=---或20192018=1m n -=-+-;故答案为:4037-或1-.【点睛】本题考查了求代数式的值,以及相反数的定义、绝对值的意义,解题的关键是正确求出m 、n 的值.16.【分析】先根据、、在数轴上的位置可得,然后进行绝对值的化简,合并求解.【详解】解:由图可得,,原式.故答案为:.【点睛】本题考查了整式的加减,解答本题的关键是掌握绝对值的化简以及解析:a b c --+【分析】先根据a 、b 、c 在数轴上的位置可得0a b c <<<,然后进行绝对值的化简,合并求解.【详解】解:由图可得,0a b c <<<,原式()()a b a c a =---+-a b a c a =--++-a b c =--+.故答案为:a b c --+.【点睛】本题考查了整式的加减,解答本题的关键是掌握绝对值的化简以及去括号法则. 17.【分析】根据题目中的图形可以写出前几个图形中“●”的个数,从而可以发现“●”的个数的变化规律,进而求得所求式子的值.【详解】解:由图可得,第1幅图中,“●”的个数为a1=3=1×3,第2解析:175264【分析】根据题目中的图形可以写出前几个图形中“●”的个数,从而可以发现“●”的个数的变化规律,进而求得所求式子的值.【详解】解:由图可得,第1幅图中,“●”的个数为a 1=3=1×3,第2幅图中,“●”的个数为a 2=8=2×4,第3幅图中,“●”的个数为a 3=15=3×5,第4幅图中,“●”的个数为a 4=24=4×6, ∴11113a =⨯,21124a =⨯,31135a =⨯,41146a =⨯,⋅⋅⋅, ∴13579111111111113355779911a a a a a ++++=++++⨯⨯⨯⨯⨯ 11111111110511233591121121111⎛⎫⎛⎫=⨯-+-+⋅⋅⋅+-=⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭, 24681011111111112446688101012a a a a a ++++=++++⨯⨯⨯⨯⨯ 1111111111155224461012221221224⎛⎫⎛⎫=⨯-+-+⋅⋅⋅+-=⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1210111551751124264a a a ++⋅⋅⋅+=+=. 故答案为:175264. 【点睛】 本题考查图形的变化类,有理数的混合运算,解答本题的关键是明确题意,发现题目中“●”的个数的变化规律,利用数形结合的思想解答.18.【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是的规律,所以第n 个等式(n 为正整数)应为.【详解解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+. 【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-. 故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.三、解答题19.(1)作图见解析,;(2)有相反数,、互为相反数【分析】(1)根据数轴的性质作图,即可得到答案;(2)根据数轴和相反数的性质分析,即可得到答案.【详解】(1)数轴表示如下:;(2)根解析:(1)作图见解析,112223-<-<-<;(2)有相反数,2-、2互为相反数 【分析】(1)根据数轴的性质作图,即可得到答案;(2)根据数轴和相反数的性质分析,即可得到答案.【详解】(1)数轴表示如下:112223-<-<-<; (2)根据(1)的结论,得2-、2到原点的距离相等,符号相反∴2-、2互为相反数.【点睛】本题考查了有理数的知识;解题的关键是熟练掌握数轴、有理数大小比较、相反数的性质,从而完成求解.20.(1)2;(2)60【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数的混合运算法则计算得出答案.【详解】(1)8+(﹣11)﹣(﹣5)=8﹣11+5=2;解析:(1)2;(2)60【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数的混合运算法则计算得出答案.【详解】(1)8+(﹣11)﹣(﹣5)=8﹣11+5=2;(2)﹣32×(﹣5)﹣90÷(﹣6)=﹣9×(﹣5)+15=60.【点睛】本题主要考查有理数的混合运算法则,要注意运算顺序.21.(1);(2)【分析】(1)先根据绝对值的性质,平方的非负性,得到 , ,从而,代入即可求解; (2)去括号化简代数式,再代入求解即可.【详解】解:(1)∵,∴ , ,∴,故;(2解析:(1)0;(2)4【分析】(1)先根据绝对值的性质,平方的非负性,得到1a =± ,10b += ,从而21,1a b ==-,代入即可求解;(2)去括号化简代数式,再代入求解即可.【详解】解:(1)∵21,(1)0a b =+=,∴1a =± ,10b += ,∴21,1a b ==-,故2110a b +=-=;(2)原式=222223334abc a b a b ab abc ab a b --+--=-,∵21,1a b ==-,所以原式=4114.【点睛】本题主要考查了绝对值的性质,平方的非负性,整式的加减混合运算,理解绝对值的性质,平方的非负性,掌握整式的加减混合运算法则是解题的关键. 22.(1);(2)【分析】(1)先去括号,再合并同类项;(2)先去括号,再合并同类项.【详解】解:(1)==;(2)==【点睛】本题考查了整式的加减,掌握合并同类项法则是解决本题解析:(1)26x x -+;(2)223a b ab -【分析】(1)先去括号,再合并同类项;(2)先去括号,再合并同类项.【详解】解:(1)()22232x x x +-=22263x x x +-=26x x -+;(2)()()22225343a b ab ab a b ---+ =2222155412a b ab ab a b -+-=223a b ab -【点睛】本题考查了整式的加减,掌握合并同类项法则是解决本题的关键.23.(1)198,396;(2)见解析;(3)【分析】(1)先找出它们的最大数,与最小数,求差,计算即可;(2)因为且,,都是正整数,用a 、b 、c 表示它的最大数和最小数, 得有99因式即可;(3解析:(1)198,396;(2)见解析;(3)297【分析】(1)先找出它们的最大数,与最小数,求差()213321-123P =,()735753-357P =计算即可;(2)因为c a b >>且a ,b ,c 都是正整数,用a 、b 、c 表示它的最大数和最小数, 得()()()1001010010P t c a b b a c =++-++9999c b =-()99c b =-有99因式即可;(3)表示出260s x =+,10210v y x =+,求出它们,利用19x ≤≤,()s v +能被3整除,且s ,v 各数位上的数字互不相等,将和拆分为()258910222s v x y x +=++++,5x =或8能s v +被3整除,S-V=260-9x-102y=253-11x-99y+7+2x-3y ,当5x =时,7+10-3y 能被11整除,求得y=2,②当8x =时,7+16-3y 能被11整除,y=4,此时v=488各数位上的数字互不相等不符合要求,求出x=5,y=2时P (v )最大值与最小值求差即可.【详解】解:(1)()213321-123=198P =,()735753-357=396P =,答案为:198,396;(2)因为c a b >>且a ,b ,c 都是正整数,所以()()()1001010010P t c a b b a c =++-++,9999c b =-,()99c b =-,所以()P t 能被99整除.(3)由题意,得21002310260s x x =⨯+⨯⨯+=+,10010210210v y x y y x =++=+,所以()26011102258910222s v x y x y x +=++=++++,因为19x ≤≤,()s v +能被3整除,且s ,v 各数位上的数字互不相等,所以5x =或8x =.S-V=260-9x-102y=253-11x-99y+7+2x-3y ,①当5x =时,7+10-3y=17-2y 能被11整除,则y=2,因为s v >,s v -能被11整除,所以2y =,所以10210=1022+105v y x =+⨯⨯254=;②当8x =时,7+16-3y=23-3y 能被11整除,y=4,但v=488,各数位上的数字均不为0且互不相等不符合要求,即8x =不符合题意,综上,()()254542245297P v P ==-=.【点睛】本题考查新定义数问题,认真阅读试题,读懂题目要求,抓住三位自然数的表示,写出符合条件的三位数,会求最大三位数与最小三位数,掌握被3与11整除的特征,会拆分整除与非整除部分,会利用非整除求出符合条件的数字,会将两个三位数差进行因式分解是关键.24.(1)42;(2)774【分析】(1)根据表格规律,当n=6时,和为6×7;(2)根据规律,从2开始的连续偶数的和等于最后一个数的一半乘以它的一半大1的数,得出公式S= n(n+1),再列式计解析:(1)42;(2)774【分析】(1)根据表格规律,当n=6时,和为6×7;(2)根据规律,从2开始的连续偶数的和等于最后一个数的一半乘以它的一半大1的数,得出公式S= n(n+1),再列式计算即可得解.【详解】(1)当n=6时, S=2+4+6+8+10+12=6×7=42故答案为:42(2)S=2+4+6+8+……+2n=n(n+1)26+28+30+...+60=2+4+6+8+......+60﹣(2+4+6+ (24)=30×(30+1)﹣12×(12+1)=930﹣156=774【点睛】本题考查数字变化规律,仔细观察,找出规律,是解题关键.25.(1);(2);(3),,.【分析】(1)图形(1)中阴影部分的面积是长方形与半圆的差;(2),代入(1)的式子即可计算;(2)图(2)中为长方形与两个小圆的差;图(3)中为长方形与八个小圆解析:(1)2112S ab b π=-;(2)82π-;(3)2212S ab b π=-,2312S ab b π=-,123S S S ==.【分析】(1)图形(1)中阴影部分的面积1S 是长方形与半圆的差;(2)4a =,2b =代入(1)的式子即可计算;(2)图(2)中2S 为长方形与两个小圆的差;图(3)中3S 为长方形与八个小圆的差;分别求出它们的值后再比较即可得到结论.【详解】解:(1)2112S ab b π=-(2)由(1)得2112S ab b π=-,当4a =,2b =时,211422822S ππ=⨯-⨯=- (3)22212()22b S ab ab b ππ=-=-,22318()42b S ab ab b ππ=-=-,则123S S S ==. 【点睛】本题主要考查了列代数式及其应用,涉及了长方形与圆的面积公式,阴影部分的面积是两种图形面积的差.此题是代数式在实际生活中的应用.二26.(1)-2,8;(2)秒或10秒;(3)①30mm ;②32t -14【分析】(1)根据多项式的次数的定义可得b 值,再由相反数的定义可得a 值; (2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤解析:(1)-2,8;(2)67秒或10秒;(3)①30mm ;②32t -14 【分析】(1)根据多项式的次数的定义可得b 值,再由相反数的定义可得a 值;(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t ,OB=8-4t ;②甲向左运动,乙向右运动,即t >2时,此时OA=2+3t ,OB=4t-8;(3)①令t=1,根据题意列出算式计算即可;②先得出小蚂蚁甲和乙爬行的路程及各自爬行的返程的路程,则可求得小蚂蚁甲与乙之间的距离.【详解】解:(1)∵多项式4x 6y 2-3x 2y-x-7,次数是b ,∴b=8;∵4a 与b 互为相反数,∴4a+8=0,∴a=-2.故答案为:-2,8;(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t ,OB=8-4t ;∵OA=OB ,∴2+3t=8-4t ,解得:t=67; ②甲向左运动,乙向右运动,即t >2时,此时OA=2+3t ,OB=4t-8;∵OA=OB ,∴2+3t=4t-8,解得:t=10;∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t 为67秒或10秒;(3)①当t为1时,小蚂蚁甲与乙之间的距离是:8+10×1-(-2-10×1)=30mm;②∵小蚂蚁甲和乙同时出发以相同的速度爬行,∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于:10×2+16×3+8×11=156(mm),∵原路返回,刚好在16s时一起重新回到原出发点A和B,∴小蚂蚁甲和乙返程的路程都等于78mm,∴甲乙之间的距离为:8-(-2)+10×2×2+16×(t-2)×2=32t-14.故答案为:32t-14.【点睛】本题考查了一元一次方程在数轴上两点之间的距离问题中的应用,具有方程思想并会分类讨论是解题的关键.。

【6套打包】北京市七年级上册数学期中考试检测试卷及答案

【6套打包】北京市七年级上册数学期中考试检测试卷及答案

七年级上学期期中考试数学试题【含答案】一、选择题(共12小题,每小题3分,满分36分)1.的相反数是()A.﹣B.3C.﹣3D.2.港珠澳大桥于2018年10月24日上午9时正式通车啦是中国境内一座连接香港珠海和澳门的桥隧工程,于2009年12月15日动工建设,2017年7月7日,大桥主体工程全线贯通,2018年2月6日,大桥主体完成验收,港珠澳大桥桥隧全长55千米,工程项目总投资额1269亿元,用科学记数法表示,1269亿元为()A.1269×108B.1.269×1010C.1.269×1011D.1.269×1012 3.以下说法正确的是()A.一个数前面带有“﹣”号,则是这个数是负数B.整数和小数统称为有理数C.数轴上的点都表示有理数D.数轴上表示数a的点在原点的左边,那么a是一个负数4.下列等式变形,正确的是()A.由6+x=7得x=7+6B.由3x+2=5x得3x﹣5x=2C.由2x=3得x=D.由2﹣3x=3得x=5.用四舍五入法对0.4249取近似数精确到百分位的结果是()A.0.42B.0.43C.0.425D.0.4206.以下代数式中不是单项式的是()A.﹣12ab B.C.D.07.下列计算正确的是()A.a+a=a2B.6x3﹣5x2=xC.3x2+2x3=5x5D.3a2b﹣4ba2=﹣a2b8.下列等式,是一元一次方程的是()A.2x+3y=0B.+3=0C.x2﹣3x+2=x2D.1+2=39.以下说法正确的是()A.不是正数的数一定是负数B.符号相反的数互为相反数C.一个数的绝对值越大,表示它的点在数轴上越靠右D.当a≠0,|a|总是大于010.下列去括号正确的是()A.4(x﹣1)=4x﹣1B.﹣5(1﹣x)=﹣5﹣xC.a﹣(﹣2b+c)=a+2b+c D.a+2(﹣2b+c)=a﹣4b+2c11.当x=2时,代数式px3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px3+qx+1值是()A.2017B.2018C.2019D.202012.有理数a,b,c在数轴上的对应点的位置如图所示,若|a|<|b|,则下列结论中一定成立的是()A.b+c>0B.a+c<0C.>1D.abc≥0二、填空题(共12小题,每小题2分,满分24分)13.(2分)下列数(﹣)2,+6,﹣2,0.9,﹣π,﹣(﹣),0,,0.,﹣4.95中,是负分数的有.14.(2分)比大小:﹣﹣(填写“>”或“<”)15.(2分)单项式的系数是.16.(2分)多项式ab﹣2ab2﹣3a2+5b﹣1的次数是.17.(2分)若关于x的方程m﹣3x=x﹣4的解是x=2,则m的值为.18.(2分)如果|x|=2,则x的倒数是.19.(2分)把多项式x2﹣2﹣3x3+5x的升幂排列写成.20.(2分)|a+3|+(b﹣2)2=0,求a b=.21.(2分)一个两位数个位上的数是1,十位上的数是x,把1与x对调,新的两位数比原两位数小18,则依此题意所列的方程为.22.(2分)已知a,b在数轴上的对应点如图所示,则化简|a+b|﹣|2a﹣b|的结果是.23.(2分)《九章算术》是我国古代一部数学专著,其中第八卷《方程》记载:“今有五雀六燕,集称之衝,雀俱重,燕俱轻,一雀一燕交而处,衡视平”,意思是“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x两,则用含x的式子表示一只燕的重量为两.24.(2分)对于有理数a,b定义运算“*”如下:a*b=b,则关于该运算,下列说法正确的有(请填写正确说法的序号)①5*7=9*7②如果a*b=b*a,那么a=b③该运算满足交换律④该运算满足结合律,三、解答题(共1小题,满分20分,每小题20分)25.(20分)(1)计算:12﹣(﹣18)+(﹣7)﹣15(2)计算:﹣52×|1﹣|﹣|﹣|+×[(﹣1)3﹣7](3)计算:﹣÷(﹣)﹣24×(﹣﹣)(4 )解方程:x﹣3=x+1四、解答题:(本题共12分,每题4分26.(4分)先化简下式,在求值:2(﹣x2+3+4x)﹣(5x+4﹣3x2),其中x=.27.(4分)求单项式﹣x2m﹣n y3与单项式x5y m+n可以合并,求多项式4m﹣2n+5(﹣m﹣n)2﹣2(n﹣2m)2的值.28.(4分)将连续的奇数1,3,5,7,排成如下表:如图所示,图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.(1)设T字框内处于中间且靠上方的数是整个数表当中从小到大排列的第n个数,请你用含n的代数式表示T字框中的四个数的和;(2)若将T字框上下左右移动,框住的四个数的和能等于2018吗?如能,写出这四个数,如不能,说明理由.五、解答题[本题共8分,每题4分29.(4分)阅读下面材料并回答问题观察有理数﹣2和﹣4在数轴上对应的两点之间的距离是2=|﹣2﹣(﹣4)|有理数1和﹣3在数轴上对应的两点之间的距离是4=|1﹣(﹣3)|归纳:有理数a、b在数轴上对应的两点A、B之间的距离是|a﹣b|;反之,|a﹣b|表示有理数a、b在数轴上对应点A、B之间的距离,称之为绝对值的几何意义应用(1)如果表示﹣1的点A和表示x点B之间的距离是2,那么x为;(2)方程|x+3|=4的解为;(3)小松同学在解方程|x﹣1|+|x+2|=5时,利用绝对值的几何意义分析得到,该方程的左式表示在数轴上x对应点到1和﹣2对应点的距离之和,而当﹣2≤x≤1时,取到它的最小值3,即为1和﹣2对应的点的距离.由方程右式的值为5可知,满足方程的x对应点在1的右边或﹣2的左边,若x的对应点在1的右边,利用数轴分析可以看出x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3;故原方程的解是x=2或x=﹣3参考小松的解答过程,回答下列问题:(Ⅰ)方程2|x﹣3|+|x+4|=20的解为;(Ⅱ)设x是有理数,令y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+…+100|x﹣100|下列四个结论中正确的是(请填写正确说法的序号)①有多于1个的有限多个x使y取到最小值②只有一个x使y取得最小值③有无穷多个x使y取得最小值④y没有最小值30.(4分)数学是一门充满乐趣的学科,某校七年级小凯同学的数学学习小组遇到一个富有挑战性的探宄问题,请你帮助他们完成整个探究过程;【问题背景】对于一个正整数n,我们进行如下操作:(1)将n拆分为两个正整数m1,m2的和,并计算乘积m1×m2;(2)对于正整数m1,m2,分别重复此操作,得到另外两个乘积;(3)重复上述过程,直至不能再拆分为止,(即折分到正整数1);(4)将所有的乘积求和,并将所得的数值称为该正整数的“神秘值”,请探究不同的拆分方式是否影响正整数n的“神秘值”,并说明理由.【尝试探究】:(1)正整数1和2的“神秘值”分别是(2)为了研究一般的规律,小凯所在学习小组通过讨论,决定再选择两个具体的正整数6和7,重复上述过程探究结论:如图1所示,是小凯选择的一种拆分方式,通过该拆分方法得到正整数6的“神秘值”为15.请模仿小凯的计算方式,在图2中,选择另外一种拆分方式,给出计算正整数6的“神秘值”的过程;对于正整数7,请选择一种拆分方式,在图3中绐出计算正整数7的“神秘值”的过程.【结论猜想】结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数n的“神秘值”与其折分方法无关.请帮助小凯,利用尝试成果,猜想正整数n的“神秘值”的表达式为,(用含字母n的代数式表示,直接写出结果)2018-2019学年北京人大附中七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:根据相反数的定义,得的相反数是﹣.故选:A.【点评】本题主要考查了相反数的求法,比较简单.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1269亿用科学记数法表示为1.269×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】利用有理数的定义、数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴,再结合数轴的性质分析得出答案.【解答】解:A、一个数前面带有“﹣”号,这个数不一定是负数,如﹣(﹣3)=3,故选项错误;B、整数和分数统称为有理数,故选项错误;C、数轴上的点都表示实数,故选项错误;D、数轴上表示数a的点在原点的左边,那么a是一个负数,故选项正确.故选:D.【点评】此题主要考查了有理数、数轴,正确把握数轴的定义是解题关键.4.【分析】根据等式的性质进行判断即可.【解答】解:A、由6+x=7得x=7﹣6,错误;B、由3x+2=5x得3x﹣5x=﹣2,错误;C、由2x=3得x=,正确;D、由2﹣3x=3得x=﹣,错误;故选:C.【点评】本题考查了等式的性质,性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.【分析】把千分位上的数字4进行四舍五入即可.【解答】解:0.4249≈30.42(精确到百分位).故选:A.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.6.【分析】直接利用单项定义分析得出答案.【解答】解:A、﹣12ab,是单项式,不合题意;B、,是单项式,不合题意;C、,是多项式,不是单项式,符合题意;D、0,是单项式,不合题意;故选:C.【点评】此题主要考查了单项式,正确把握单项式的定义是解题关键.7.【分析】根据同类项的定义和合并同类法则进行计算,判断即可.【解答】解:A、a+a=2a,故本选项错误;B、6x3与5x2不是同类项,不能合并,故本选项错误;C、3x2与2x3不是同类项,不能合并,故本选项错误;D、3a2b﹣4ba2=﹣a2b,故本选项正确;故选:D.【点评】本题考查的是合并同类项,掌握同类项的概念、合并同类项法则是解题的关键.8.【分析】根据一元一次方程的定义[只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)]对以下选项进行一一分析、判断.【解答】解:A、本方程中含有两个未知数,不是一元一次方程,故本选项错误;B、该方程不是整式方程,故本选项错误;C、由原方程知﹣3x+2=0,符合一元一次方程的定义;故本选项正确;D、1+2=3中不含有未知数,不是方程,故本选项错误.故选:C.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.9.【分析】A、根据有理数的定义即可作出判断;B、根据相反数的定义即可作出判断;C、根据绝对值的意义即可作出判断;D、根据绝对值的性质即可作出判断.【解答】解:A、0不是正数,也不是负数,故选项错误;B、符号相反的两个数互为相反数,例如,3与﹣5不是相反数,故选项错误;C、一个数的绝对值越大,表示它的点在数轴上离原点越远,不一定越靠右,故选项错误;D、a≠0,不论a为正数还是负数,|a|都大于0,故选项正确.故选:D.【点评】本题考查了相反数、绝对值、数轴,解决本题的关键是熟记相反数、绝对值的性质.10.【分析】根据去括号的方法解答.【解答】解:A、原式=4x﹣4,故本选项错误;B、原式=﹣5+x,故本选项错误;C、原式=a+2b﹣c,故本选项错误;D、原式=a﹣4b+2c,故本选项正确.故选:D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.11.【分析】先将x=2代入代数式,然后求出p与q的关系式,再将x=﹣2代入原式求值即可.【解答】解:当x=2时,8p+2q+1=﹣2018,所以8p+2q=﹣2019,当x=﹣2时,﹣8p﹣2q+1=2019+1=2020.故选:D.【点评】本题考查代数式求值,涉及整体的思想.12.【分析】根据两个数的正负以及加减乘除法法则,对每个选择作出判断,得正确结论.【解答】解:由于|a|<|b|,由数轴知:a<0<b或0<a<b,a<c<b,所以b+c>0,故A成立;a+c可能大于0,故B不成立;可能小于0,故C不成立;abc可能小于0,故D不成立.故选:A.【点评】考查了数轴上点的表示的数的正负及实数的加减乘除法的符号法则.解决本题的关键是牢记实数的加减乘除法则.二、填空题(共12小题,每小题2分,满分24分)13.【分析】直接利用有理数的乘方运算法则以及分数的定义分析得出答案.【解答】解:(﹣)2=,+6,﹣2,0.9,﹣π,﹣(﹣)=,0,,0.,﹣4.95,则是负分数的有:﹣4.95,故答案为:﹣4.95.【点评】此题主要考查了有理数的乘方运算以及分数的定义,正确掌握分数的定义是解题关键.14.【分析】化为同分母的分数后比较大小.【解答】解:﹣=﹣,﹣=﹣,∵|﹣|<|﹣|,∴﹣>﹣,∴﹣>﹣.故答案是:>.【点评】考查了有理数大小比较.比较有理数的大小可以利用数轴,它们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.15.【分析】根据单项式的系数即可求出答案.【解答】解:原式=x2y,所以该单项式的系数为;故答案为:﹣【点评】本题考查单项式的概念,属于基础题型.16.【分析】直接利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【解答】解:多项式ab﹣2ab2﹣3a2+5b﹣1的次数是:三.故答案为:三.【点评】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.17.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:m﹣6=﹣2,解得:m=4,故答案为:4【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.【分析】根据绝对值的意义,可得x的值,根据倒数,可得答案.【解答】解:∵|x|=2,∴x=±2,∴x的倒数是±,故答案为:±.【点评】本题考查了倒数,先求出x值,再求出倒数.19.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:多项式x2﹣2﹣3x3+5x的各项是x2,﹣2,﹣3x3,5x,按x升幂排列为﹣2+5x+x2﹣3x3.故答案为:﹣2+5x+x2﹣3x3.【点评】本题主要考查了多项式的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.20.【分析】根据非负数的性质列出方程,求出a、b的值,代入a b进行计算即可.【解答】解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得a=﹣3,b=2.∴a b=9.【点评】本题考查了初中范围内的两个非负数,转化为解方程的问题,这是考试中经常出现的题目类型.21.【分析】首先表示出这个两位数,然后表示出新的两位数,再根据新两位数比原两位数小18列出方程即可.【解答】解:由题意,可得原数为10x+1,新数为10+x,根据题意,得10x+1=10+x+18,故答案为:10x+1=10+x+18.【点评】考查了由实际问题抽象出一元一次方程,对于这类问题,一般采取设未知数的方法,通过解方程,解决问题.22.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据题意得:a<0<b,且|a|>|b|,∴a+b<0,2a﹣b<0,则原式=﹣a﹣b+2a﹣b=a﹣2b.故答案为:a﹣2b.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.23.【分析】设一只燕的重量为y两,根据“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x两”,列出关于x和y的方程,解之,求得含有x得y,代入求出五只雀的重量和六只燕的重量,如果五只雀比六只燕重,则为所求答案.【解答】解:设一只燕的重量为y两,根据题意得:4x+y=x+5y,4y=3x,y=x,则五只雀的重量为:5x,六只燕的重量为:x×6=x,5x>x,(符合题意),故答案为:x.【点评】本题考查了列代数式,正确找出等量关系列出方程是解题的关键.24.【分析】根据对于有理数a,b定义运算“*”如下:a*b=b,可以判断各个小题中的结论是否成立.【解答】解:∵对于有理数a,b定义运算“*”如下:a*b=b,∴5*7=7,9*7=7,∴5*7=9*7,故①正确,∵a*b=b,b*a=a,a*b=b*a,∴a=b,故②正确,当a≠b时,则a*b≠b*a,故③错误,∵(a*b)*c=b*c=c,a*(b*c)=a*c=c,∴(a*b)*c=a*(b*c),故④正确,故答案为:①②④.【点评】本题考查有理数的混合运算,解答本题的关键是明确题意,可以判断各个小题中的结论是否正确.三、解答题(共1小题,满分20分,每小题20分)25.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣25×﹣﹣6=﹣﹣﹣6=﹣2﹣6=﹣8;(3)原式=﹣16+18+2=4;(4)去分母得:2x﹣6=5x+2,移项合并得:﹣3x=8,解得:x=﹣.【点评】此题考查了解一元一次方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题:(本题共12分,每题4分26.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣2x2+6+8x﹣5x﹣4+3x2=x2+3x+2,当x=时,原式=++2=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.27.【分析】根据同类项的概念即可求出m与n的值,然后将原式化简即可求出答案.【解答】解:依题意知,,解得,m=,n=,4m﹣2n+5(﹣m﹣n)2﹣2(n﹣2m)2=4m﹣2n+5m2+10mn+5n2﹣2n2+8mn﹣8m2=﹣3m2+18mn+3n2﹣2n+4m,当m=,n=时,原式=﹣3×()2+18××+3×()2﹣2×+4×=47.【点评】本题考查的是合并同类项,代数式求值,掌握合并同类项的概念、完全平方公式是解题的关键.28.【分析】(1)根据题意,可用含n的代数式表示T字框中的四个数,相加求和即可;(2)令由(1)中得到的结论等于2018,解一元一次方程,若存在正整数解,则说明有符合题意的四个数,若不是正整数解,则不存在这样四个数.【解答】解:(1)由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.(2)由题意,令框住的四个数的和为2018,则有:8n+6=2018,解得n=251.5由于n必须为正整数,因此n=251.5不符合题意.故框住的四个数的和不能等于2018.【点评】本题考查用字母表示数、代数式的运算及一元一次方程,难度不大,关键在于根据题目中数字对的规律,用含n的代数式表示各数,对于第二问要注意n只能是正整数.五、解答题[本题共8分,每题4分29.【分析】根据绝对值的几何意义即可以解题.【解答】解:(1)依题意得,|x﹣(﹣1)|=2x﹣(﹣1)=±2∴x=﹣3或x=1故答案为:﹣3或1(2)依题意,|x+3|=4得x+3=±4,解得x=1或x=﹣7故答案为:1或﹣7(3)(Ⅰ)当x<﹣4时,则2(3﹣x)+[﹣(x+4)]=20,解得x=﹣6当﹣4≤x<3时,则2(3﹣x)+(x+4)=20,解得x=﹣10(不合题意,舍去)当x≥3时,则2(x﹣3)+(x+4)=20,解得x=∴该方程的解为x=﹣6或x=故答案为:﹣6或(Ⅱ)根据题意,当x=0时,y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+…+100|x﹣100|取得最小值.故只有②正确.故答案为:②【点评】此题考查绝对值的几何意义.有理数a、b在数轴上对应的两点A、B之间的距离是|a﹣b|;反之,|a﹣b|表示有理数a、b在数轴上对应点A、B之间的距离,称之为绝对值的几何意义30.【分析】(1)根据神秘数的定义,将正整数分解,求和即可;(2)将6和7分解,直到不能分解位置,再将所有的乘积求和即可;结论猜想:找出多个数的神秘数,再找出规律即可.【解答】解:(1)根据“神秘数”的定义,1不能在分,∴1的神秘数是1,∵2可以分为1和1,∴2的神秘数是1,故答案为:1,1;(2)如图所示:结论猜想:∵3的神秘数是3,4的神秘数是6,5的神秘数是10,6的神秘数是15,7的神秘数是21,…,∴n的神秘数是(n>1).【点评】本题主要考查数字的变化规律的阅读型题目,解决此题时,要认真阅读分析材料,再根据相关的定义解答即可.人教版七年级第一学期期中模拟数学试卷(含答案)一、选择题(每小题3分,共计36分)1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.24.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a26.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.510.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12 11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.1812.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是.14.a、b互为相反数,c、d互为倒数,则=.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣219.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是.②当|a+2|+|a﹣3|=5时,数a的取值范围是,这样的整数a有个③|a﹣3|+|a+2017|有最小值,最小值是.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?参考答案一、选择题1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据倒数的定义求解.解:﹣6的倒数是﹣.故选:D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.11 000 000=1.1×107.解:11 000 000=1.1×107.故选:B.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为1.1×107.3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.2【分析】把(﹣2)2014写成(﹣2)×(﹣2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.解:(﹣0.5)2013×(﹣2)2014,=(﹣0.5)2013×(﹣2)×(﹣2)2013,=(﹣2)×[(﹣0.5)×(﹣2)]2013,=﹣2×1,=﹣2.故选:C.【点评】本题考查了有理数的乘方,此类题目,转化为同指数幂相乘是解题的关键,也是难点.4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选:B.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a2【分析】根据合并同类项的法则,结合选项进行判断即可.解:A、5a3﹣6a3=﹣a3,故本选项错误;B、3a2+4a2=7a2,故本选项错误;C、7a和3a2不是同类项,不能合并,故本选项错误;D、a2+4a2=5a2,故本选项正确;故选:D.【点评】此题考查了合并同类项的知识,属于基础题,关键是掌握合并同类项的法则.6.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是【分析】直接利用单项式的系数以及多项式的次数与项数确定方法分别分析得出答案.解:A、1﹣a﹣ab是二次三项式,正确,不合题意;B、﹣a2b2c是单项式,正确,不合题意;C、是多项式,正确,不合题意;D、πr2中,系数是:π,故此选项错误,符合题意.故选:D.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据正数和负数的意义,可判断①;根据绝对值的意义,可判断②;根据倒数的意义,可判断③;根据绝对值的性质,可判断④;根据平方的意义,可判断⑤.解:①﹣a可能是负数、零、正数,故①说法错误;②|﹣a|一定是非负数,故②说法错误;③倒数等于它本身的数是±1,故③说法正确;④绝对值等于它本身的数是非负数,故④说法错误;⑤平方等于它本身的数是0或1,故⑤说法错误;故选:A.【点评】本题考查了有理数的乘方,注意0的平方等于0,﹣a不一定是负数,绝对值都是非负数.8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y【分析】根据题意表示另一边的长,进一步表示周长,化简.解:依题意得:周长=2(3x+2y+3x+2y+x﹣y)=14x+6y.故选D.。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

【6套打包】北京市七年级上册数学期中考试单元综合练习卷(含答案解析)

【6套打包】北京市七年级上册数学期中考试单元综合练习卷(含答案解析)

人教版数学七年级上册期中考试试题【含答案】一.选择题(共14小题,满分42分)1.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣32.在代数式,0,m,x+y2,,,中,整式共有()A.7个B.6个C.5个D.4个3.下列关于单项式的说法中,正确的是()A.系数是2,次数是2 B.系数是﹣2,次数是3C.系数是,次数是2 D.系数是,次数是34.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.下列说法中正确的是()A.不是整式B.﹣5是单项式C.πr2的系数1,次数是3D.多项式2x2y﹣xy+1是五次三项式6.下列说法正确的个数有()①﹣|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=b,则a与b互为相反数⑤若|a|+a=0,则a是非正数.A.1个B.2个C.3个D.4个7.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1 B.5 C.﹣5 D.﹣18.若a≠0,则+1的值为()A.2 B.0 C.±1 D.0或29.下列说法正确的是()A.一个数的立方可能是负数B.一个数的平方一定大于这个数的相反数C.一个数的平方只能是正数D.一个数的立方一定大于这个数的相反数10.已知m﹣n=99,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.100 B.98 C.﹣100 D.﹣9811.实数﹣2019的绝对值是()A.B.﹣2019 C.±2019 D.201912.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>013.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz214.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b﹣c|+|c﹣a|的结果是()A.a﹣2c B.2c﹣2a C.2a﹣b﹣c D.a﹣2b+c二.填空题(共5小题,满分15分,每小题3分)15.近似数1.5×105精确到位.16.的相反数是,的倒数是.17.写出一个只含有字母x的二次三项式.18.若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)=.19.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第n个图案需要棋子枚.三.解答题(共7小题,满分63分)20.(5分)把下列各数填入相应的大括号里:﹣7,﹣0.5,﹣,0,﹣98%,8.7,2018.负整数集合:{ };非负整数集合:{ };正分数集合:{ };负分数集合:{ }.21.(15分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+322.(12分)先化简,再求值:2(6x2﹣9xy+12y2)﹣3(x2﹣7xy+8y2),其中x,y满足|x﹣1|+(y+2)2=0.23.(9分)某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?24.(10分)如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.25.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|a+c|26.(12分)列方程解应用题某服装厂生产一种裤子和T恤,裤子每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案,方案一:买一件裤子送一件T恤;方案二:裤子和T 恤都按定价的80%付款.现某客户要到该服装厂购买裤子30件,T恤x件(x>30).(1)按方案一,购买裤子和T恤共需付款元(用含x的式子表示);按方案二,购买裤子和T恤共需付款元(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?若能,请写出你的购买方案,并说明理由.参考答案一.选择题1.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣3【分析】根据正数的定义进行判断.解:正数是2,故选:C.【点评】此题考查正数和负数,关键是根据正数的定义进行判断.2.在代数式,0,m,x+y2,,,中,整式共有()A.7个B.6个C.5个D.4个【分析】根据整式的定义求解可得.解:整式有,0,m,x+y2,这5个,故选:C.【点评】本题主要考查整式,解题的关键是掌握整式的定义.3.下列关于单项式的说法中,正确的是()A.系数是2,次数是2 B.系数是﹣2,次数是3C.系数是,次数是2 D.系数是,次数是3【分析】直接利用单项式次数与系数确定方法分析得出答案.解:单项式的系数是,次数是3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列说法中正确的是()A.不是整式B.﹣5是单项式C.πr2的系数1,次数是3D.多项式2x2y﹣xy+1是五次三项式【分析】直接利用单项式的次数与系数确定方法以及多项式的次数确定方法,进而分析得出答案.解:A、是整式,故此选项错误;B、﹣5是单项式,正确;C、πr2的系数π,次数是2,故此选项错误;D、多项式2x2y﹣xy+1是三次三项式,故此选项错误;故选:B.【点评】此题主要考查了单项式与多项式,正确把握单项式的次数与系数确定方法是解题关键.6.下列说法正确的个数有()①﹣|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=b,则a与b互为相反数⑤若|a|+a=0,则a是非正数.A.1个B.2个C.3个D.4个【分析】本题可通过特殊值法、绝对值及相反数的意义,逐一判断得到正确结论.解:﹣|0|=0,不是负数,故①不正确;|﹣3|=|3|,故②不正确;当a=b时,|a|=b,故④不正确;正数和0的绝对值等于它本身,负数小于它的绝对值,故③正确;当a是非正数时,|a|+a=0,故⑤正确.综上正确的是③⑤.故选:B.【点评】本题考查了有理数的相反数和绝对值.理解绝对值、相反数的意义是解决本题的关键.7.已知a﹣b=﹣3,c+d=2,则(a﹣d)﹣(b+c)的值为()A.1 B.5 C.﹣5 D.﹣1【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.解:根据题意:(a﹣d)﹣(b+c)=(a﹣b)﹣(c+d)=﹣3﹣2=﹣5,故选:C.【点评】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案.8.若a≠0,则+1的值为()A.2 B.0 C.±1D.0或2【分析】对a为正和负的不同情况,分类讨论得结果.解:当a>0时,+1=+1=1+1=2;当a<0时,+1=+1=﹣1+1=0.故选:D.【点评】本题考查了绝对值的化简.掌握绝对值的意义是解决本题的关键.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.9.下列说法正确的是()A.一个数的立方可能是负数B.一个数的平方一定大于这个数的相反数C.一个数的平方只能是正数D.一个数的立方一定大于这个数的相反数【分析】利用相反数,乘方的意义判断即可.解:A、一个数的立方可能是负数,正确;B、一个数的平方一定大于等于这个数的相反数,错误;C、一个数的平方可以是正数或0,错误;D、一个数的立方一定大于或等于这个数的相反数,错误,故选:A.【点评】此题考查了有理数的乘方,以及相反数,熟练掌握各自的性质是解本题的关键.10.已知m﹣n=99,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.100 B.98 C.﹣100 D.﹣98【分析】原式去括号整理后,将已知等式代入计算即可求出值.解:∵m﹣n=99,x+y=﹣1,∴原式=﹣(m﹣n)+(x+y)=﹣99﹣1=﹣100,故选:C.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.实数﹣2019的绝对值是()A.B.﹣2019 C.±2019 D.2019【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.解:实数﹣2019的绝对值=|﹣2019|=2019,故选:D.【点评】本题主要考查了绝对值,解题时注意:一个负数的绝对值是它的相反数.12.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0【分析】根据数轴上点的位置判断即可.解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.【点评】此题考查了数轴,以及有理数的加法,熟练掌握运算法则是解本题的关键.13.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz2【分析】根据同类项的定义即可求出答案.解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:D.【点评】本题考查同类项的定义,解题的关键是正确理解同类项的定义,本题属于基础题型.14.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b﹣c|+|c﹣a|的结果是()A.a﹣2c B.2c﹣2a C.2a﹣b﹣c D.a﹣2b+c【分析】直接利用数轴上a,b,c的位置进而得出a﹣b<0,b﹣c<0,c﹣a>0,再去绝对值即可.解:由数轴可得:a﹣b<0,b﹣c<0,c﹣a>0,故原式=﹣(a﹣b)﹣(b﹣c)+c﹣a=﹣a+b﹣b+c+c﹣a=﹣2a+2c.故选:B.【点评】此题主要考查了数轴以及绝对值,正确得出各式的符号是解题关键.二.填空题(共5小题,满分15分,每小题3分)15.近似数1.5×105精确到万位.【分析】根据近似数的精确度求解.解:近似数1.5×105精确到万位.故答案为:万.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.16.的相反数是﹣,的倒数是 3 .【分析】直接利用相反数以及倒数的定义得出答案.解:的相反数是:﹣,的倒数是:3.故答案为:﹣,3.【点评】此题主要考查了倒数和相反数,正确把握相关定义是解题关键.17.写出一个只含有字母x的二次三项式x2+2x+1(答案不唯一).【分析】二次三项式即多项式中次数最高的项的次数为2,并且含有三项的多项式.答案不唯一.解:由多项式的定义可得只含有字母x的二次三项式,例如x2+2x+1,答案不唯一.【点评】本题考查了多项式的定义,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.18.若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)= 1 .【分析】根据a*b=ab+a﹣b,可以求得所求式子的值,本题得以解决.解:∵a*b=ab+a﹣b,∴1*(﹣2)=1×(﹣2)+1﹣(﹣2)=(﹣2)+1+2=1,故答案为:1.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第n个图案需要棋子3n+2 枚.【分析】观察各图可知,后一个图案比前一个图案多3枚棋子,然后写成第n个图案的通式,再取n=21进行计算即可求解.解:根据图案可知规律如下:图2,2×3+2;图3,2×4+3…图n,2×(n+1)+n=3n+2,故答案为:3n+2.【点评】本题考查了图形的变化类问题,主要考查了学生通过特例分析从而归纳总结出一般结论的能力.三.解答题(共7小题,满分63分)20.(5分)把下列各数填入相应的大括号里:﹣7,﹣0.5,﹣,0,﹣98%,8.7,2018.负整数集合:{ ﹣7 };非负整数集合:{ 0,2018 };正分数集合:{ 8.7 };负分数集合:{ ﹣0.5,﹣,﹣98% }.【分析】利用负整数,非负整数,正分数,负分数的定义判断即可.解:负整数集合:{﹣7,…};非负整数集合:{ 0,2018,…};正分数集合:{ 8.7,…};负分数集合:{﹣0.5,﹣,﹣98%,…}.故答案为:﹣7;0,2018;8.7;﹣0.5,﹣,﹣98%.【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.21.(15分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+3【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式逆用乘法分配律计算即可求出值;(4)原式先计算绝对值运算,再计算加减运算即可求出值.解:(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(12分)先化简,再求值:2(6x2﹣9xy+12y2)﹣3(x2﹣7xy+8y2),其中x,y满足|x﹣1|+(y+2)2=0.【分析】先去括号、合并同类项化简原式,再由非负数的性质得出x和y的值,继而代入计算可得.解:原式=12x2﹣18xy+24y2﹣3x2+21xy﹣24y2=(12x2﹣3x2)+(﹣18xy+21xy)+(24y2﹣24y2)=9x2+3xy.∵|x﹣1|+(y+2)2=0,∴x=1 y=﹣2,则原式=9×12+3×1×(﹣2)=9﹣6=3.【点评】本题主要考查整数的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则及非负数的性质.23.(9分)某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?【分析】让所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.解:总售价为:56×8+(﹣3+7﹣8+9﹣2+0﹣1﹣6)=448﹣4=444元,444﹣400=44元.答:盈利44元.【点评】考查有理数的混合运算;得到总售价是解决本题的突破点.24.(10分)如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.【分析】根据整式的加减混合运算法则把原式变形,根据题意列式计算.解:5x2﹣(2y n+1﹣mx2)﹣3(x2+1)=5x2﹣2y n+1+mx2﹣3x2﹣3=(5+m﹣3)x2﹣2y n+1﹣3=(2+m)x2﹣2y n+1﹣3由题意得,2+m=0,n+1=3,解得,m=﹣2,n=2.【点评】本题考查的是整式的加减运算,掌握整式的加减混合运算法则是解题的关键.25.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|a+c|【分析】根据数轴可得a<0,b>0,c>0,b﹣c<0,a+c>0,a﹣b<0,再根据绝对值的性质去绝对值,然后合并同类项即可.解:由数轴可得a<0,b>0,c>0,b﹣c<0,a+c>0,a﹣b<0,则|b﹣c|+|a﹣b|﹣|a+c|=﹣b+c﹣a+b﹣a﹣c=﹣2a.【点评】此题主要考查了数轴和绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.26.(12分)列方程解应用题某服装厂生产一种裤子和T恤,裤子每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案,方案一:买一件裤子送一件T恤;方案二:裤子和T 恤都按定价的80%付款.现某客户要到该服装厂购买裤子30件,T恤x件(x>30).(1)按方案一,购买裤子和T恤共需付款(1500+50x)元(用含x的式子表示);按方案二,购买裤子和T恤共需付款(2400+40x)元(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?若能,请写出你的购买方案,并说明理由.【分析】(1)根据题意列代数式即可;(2)令两个方案中的付款相等,列方程可得到结论;(3)因为两种优惠方案可同时使用,所以可以先按方案一购买裤子30件,再按方案二只需购买T恤10件,即可得到结论.解:(1)方案一:30×100+50(x﹣30)=1500+50x,方案二:30×100×0.8+50×0.8x=2400+40x,故答案为:1500+50x;2400+40x;(2)1500+50x=2400+40x,x=90,答:购买90件T恤时,两种优惠方案付款一样;(3)当x=40,①按方案一购买所需费用=1500+50×40=3500(元);②按方案二购买所需费用=2400+40×40=4000(元),③按方案一购买30件裤子:30×100=3000(元);按方案二购买10件T恤:10×50×0.8=400(元);总费用:3000+400=3400<3500;则比较省钱的购买方案:可以先按方案一购买裤子30件,再按方案二只需购买T恤10件.【点评】本题考查了列代数式:利用代数式表示文字题中的数量之间的关系.也考查了求代数式的值.七年级上学期期中考试数学试题及答案一、选择题1.如图,由6个相同的小正方体搭成的几何体,那么从左面看几何体的平面图形是2.下列说法中,正确的是A.在数轴上表示-a 的点一定在原点的左边B.有理数a的倒数是1 2C.一个数的相反数一定小于或等于这个数D.如果a a=-那么a是负数或零3.有理数a、b 在数轴上的位置如图所示,那么下列式子中成立的是A. a >bB. a <bC. ab >0D. a b>04.在代数式4a,0,m ,x + y ,1x ,2x yπ+中,整式共有()A.3 个B.6 个C.5 个D.4 个5.下列判断正确的是A. 3a 2bc 与 b ca 2 不是同类项B. 25m n 和2a b+都是单项式C.单项式 - x 3y 2 的次数是 3,系数是-1D. 3x 2 - y + 2 x y 2 是三次三项式6.下列去括号正确的是A. a + (b - c ) = a + b + cB. a - (b - c ) = a - b - cC. a - (- b + c ) = a - b - cD. a - (- b - c ) = a + b + c7.下列说法中正确的是A.角是由两条射线组成的图形B.两点之间的线段叫做两点之间的距离C.如果线段 A B=BC,那么 B 叫做线段 A C 的中点D.两点确定一条直线8.下列说法不正确的是A.若 x = y 则 x + a = y + aB.若 x = y 则 x - b = y - bC.若 x = y 则 a x = ayD.若 x = y 则x y b b =9.如图,点 A 位于点 O 的A.南偏东35°方向上B.北偏西65°方向上C.南偏东65°方向上D.南偏西65°方向上10.如图,∠AOC和∠BOD都是直角,如果∠DOC=28°,则下列判断错误的是A.∠AOD=∠BOCB.∠AOB=148°C.∠AOB+∠DOC=180°D.若∠DOC变小,则∠AOB变大二、填空题1l.有资料显示,被称为“地球之肺”的森林正以毎年15000000公顷的速度从地球上消失, 将15000000用科学记数法表示为.12.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是.第12题第13题13.把一副三角板按照如图所示的位置拼在一起,不重叠也没有缝隙,则∠ABC的度数为.14.时钟的时间是3点30分,时钟面上的时针与分针的夹角是.15.将一个圆分割成三个扇形,它们圆心角度数之间的关系为2:3:4,则这三个扇形中圆心角最小的度数是.16.下列方程中:(1)3x +6y =1;(2)y2 -3y- 4 =0;(3)x2 +2x=1;(4)3x- 2 =4x+1.其中是一元一次方程的是(填写序号即可)17.已知点A、B、C三点在一条直线上,线段A B=6cm,线段B C=8cm,则线段A C的长度为.18.一家商店把一种旅游鞋按成本价a 元提高50%标价,然后再以8折优惠卖出,则这种旅游鞋每双的售价是元(用含a的式子表示).三、解答题19.计算:(1)(-20)+(+3)-(-5)-(+ 7) (2)(-3)⨯(-4)- 48 ÷6-(3)151(12)()236-⨯--(4)-14 +(-2)3⨯(-0.5)-15--20.合并同类项:(1)3a2-2a +4a2 - 7a (2)(x2 +5y)-12(4x2 -3y-1)21.化简求值:2(2x-3y)-(3x+2y +1)其中x= 2,y = 0.5.22.解方程:(1)4(x+0.5)+x = 7 (2)2121 34x x-+=-四、解答题23.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的正方形,问: (1)这个窗户的外框总长为;(2)这个窗户的面积为;(3)当a= 4 时,求这个窗户的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年北京七中七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.如果零上5℃记作+5℃,那么零下5℃记作()A.﹣5 B.﹣10 C.﹣10℃D.﹣5℃2.以下4个有理数中,最小的是()A.﹣1 B.1 C.﹣2 D.03.龙庆峡冰灯于2016年1月中旬接待游客.今年的龙庆峡冰灯以奥运五环、冬奥会运动项目等奥运元素为题材,分为彩灯区、娱乐区、冰展区,总面积达到200 000平方米.将200 000用科学记数法表示应为()A.20×104B.0.20×106C.2.0×106D.2.0×1054.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A.点A与点B B.点B与点C C.点B与点D D.点A与点D5.如果a是有理数,下列各式一定为正数的()A.a B.a+1 C.|a| D.a2+16.下列式子中,是单项式的是()A.﹣x3yz2 B.x+y C.﹣m2﹣n2D.7.下列计算正确的是()A.3a+b=3ab B.3a﹣a=2C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b8.﹣(a﹣b+c)去括号的结果是()A.﹣a+b﹣c B.﹣a﹣b+c C.﹣a+b+c D.a+b﹣c9.现有五种说法:①﹣a表示负数;②绝对值最小的有理数是0;③3×102x2y是5次单项式;④是多项式.其中正确的是()A.①③ B.②④ C.②③ D.①④10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(每题2分,共20分)11.根据要求,用四舍五入法取下列各数的近似数:1.4149≈(精确到千分位)12.用代数式表示“a的3倍与b的差“是.13.比较大小:﹣1 ﹣.14.化简:﹣(﹣5)= ,﹣|﹣5|= .15.若a2m b3和﹣7a2b3是同类项,则m值为.16.任意写一个含有字母a、b的三次二项式,常数项为﹣9,.17.若|x﹣3|+(y﹣2)2=0,则y﹣x= .18.已知:(m﹣2)x﹣1=0是关于x的一元一次方程,则m .19.若a2+ab=5,ab+b2=4,则a2+2ab+b2的值为.20.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第一次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数是,如果点A n与原点的距离不小于20,那么n的最小值是.三、解答题(共50分)21.计算(1)12﹣7+18﹣15(2)÷(﹣)×(﹣1)(3)(﹣+)×(﹣48)(4)﹣24+(﹣5)2÷(﹣1)22.化简(1)5x2+x+3+4x﹣8x2﹣2(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)23.先化简,再求值(1)4x﹣x2+2x3﹣(3x2+x+2x3),其中x=3.(2)4x2﹣xy﹣(y2+2x2)+2(3xy﹣y2),其中x=5,y=.24.解方程(1)﹣2x=4(2)x﹣10=7(3)x+13=5x+37(4)3x﹣x=﹣+1.25.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中,最接近25千克的那筐白菜为千克;(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?26.某学校初一年级参加社会实践课,报名第一门课的有x人,第二门课的人数比第一门课的少20人,现在需要从报名第二门课的人中调出10人学习第一门课,那么:(1)报两门课的共有多少人?(2)调动后,报名第一门课的人数为人,第二门课人数为人.(3)调动后,报名第一门课比报名第二门课多多少人?计算出代数式后,请选择一个你觉得合适的x的值代入,并求出具体的人数.四、附加题(每题4分,共20分)27.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a+b)7的展开式共有项,(a+b)n的展开式共有项,各项的系数和是.28.规定“*”表示一种运算,且a*b=,则3*(4*)的值是.29.已知当x=2时,代数式ax3﹣bx+1的值为﹣17,求当x=﹣1时,代数式12ax﹣3bx3﹣5的值是多少?30.已知|a+2|=﹣b2,求:的值?31.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.2016-2017学年北京七中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如果零上5℃记作+5℃,那么零下5℃记作()A.﹣5 B.﹣10 C.﹣10℃D.﹣5℃【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵“正”和“负”相对,零上5℃记作+5℃,∴零下5℃记作﹣5℃.故选D.2.以下4个有理数中,最小的是()A.﹣1 B.1 C.﹣2 D.0【考点】有理数大小比较.【分析】先计算|﹣1|=1,|﹣2|=﹣2,根据负数的绝对值越大,这个数反而越小得到﹣1>﹣2,然后根据正数大于零,负数小于零即可得到答案.【解答】解:∵|﹣1|=1,|﹣2|=﹣2,∴﹣1>﹣2,∴﹣1、1、﹣2、0的大小关系为﹣2<﹣1<0<1.故选C.3.龙庆峡冰灯于2016年1月中旬接待游客.今年的龙庆峡冰灯以奥运五环、冬奥会运动项目等奥运元素为题材,分为彩灯区、娱乐区、冰展区,总面积达到200 000平方米.将200 000用科学记数法表示应为()A.20×104B.0.20×106C.2.0×106D.2.0×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:200 000=2.0×105;故选D.4.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A.点A与点B B.点B与点C C.点B与点D D.点A与点D【考点】相反数;数轴.【分析】观察数轴,利用相反数的定义判断即可.【解答】解:如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是点A和点D,故选D5.如果a是有理数,下列各式一定为正数的()A.a B.a+1 C.|a| D.a2+1【考点】非负数的性质:偶次方.【分析】根据非负数的性质对各选项分析判断后利用排除法求解.【解答】解:A、a可以是任何有理数,不一定是正数,故本选项错误;B、a+1可以是任何有理数,不一定是正数,故本选项错误;C、当a=0时,|a|=0,既不是正数也不是负数,故本选项错误;D、∵a2≥0,∴a2+1≥1,是正数,故本选项正确.故选D.6.下列式子中,是单项式的是()A.﹣x3yz2 B.x+y C.﹣m2﹣n2D.【考点】单项式.【分析】根据单项式的定义,可得答案.【解答】解:A、是数字与字母的乘积,故A正确;B、是几个单项式的和,故B错误;C、是几个单项式的和,故B错误;D、是几个单项式的和,故B错误;故选:A.7.下列计算正确的是()A.3a+b=3ab B.3a﹣a=2C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b【考点】合并同类项.【分析】本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【解答】解:A、3a与b不是同类项,不能合并.错误;B、3a﹣a=2a.错误;C、2a3与3a2不是同类项,不能合并.错误;D、﹣a2b+2a2b=a2b.正确.故选D.8.﹣(a﹣b+c)去括号的结果是()A.﹣a+b﹣c B.﹣a﹣b+c C.﹣a+b+c D.a+b﹣c【考点】去括号与添括号.【分析】根据去括号规律:括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号可得答案.【解答】解:﹣(a﹣b+c)=﹣a+b﹣c.故选:A.9.现有五种说法:①﹣a表示负数;②绝对值最小的有理数是0;③3×102x2y是5次单项式;④是多项式.其中正确的是()A.①③ B.②④ C.②③ D.①④【考点】多项式;绝对值;单项式.【分析】根据绝对值性质和定义及整式的概念可得.【解答】解:①当a≤0时,﹣a不表示负数,错误;②绝对值最小的有理数是0,正确;③3×102x2y是3次单项式,错误;④是一次二项式,正确;故选:B.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.二、填空题(每题2分,共20分)11.根据要求,用四舍五入法取下列各数的近似数:1.4149≈ 1.415 (精确到千分位)【考点】近似数和有效数字.【分析】把万分位上的数子9进行四舍五入即可.【解答】解:1.4149≈1.415(精确到千分位)故答案为1.415.12.用代数式表示“a的3倍与b的差“是3a﹣b .【考点】列代数式.【分析】直接用a乘3减去b即可.【解答】解:“a的3倍与b的差“是3a﹣b.故答案为:3a﹣b.13.比较大小:﹣1 <﹣.【考点】有理数大小比较.【分析】先计算各数的绝对值,再根据负数大小的比较法则比较两数.【解答】解:因为|﹣1|=1,|﹣|=,∵1>,所以﹣1<﹣故答案为:<14.化简:﹣(﹣5)= 5 ,﹣|﹣5|= ﹣5 .【考点】绝对值;相反数.【分析】根据去括号的法则:负负得正.根据绝对值的意义:负数的绝对值是它的相反数.【解答】解:﹣(﹣5)=5,﹣|﹣5|=﹣5.15.若a2m b3和﹣7a2b3是同类项,则m值为 1 .【考点】同类项.【分析】先根据同类项的定义得出关于m的方程,求出m的值即可.【解答】解:∵a2m b3和﹣7a2b3是同类项,∴2m=2,解得m=1.故答案为:1.16.任意写一个含有字母a、b的三次二项式,常数项为﹣9,2a2b﹣9(答案不唯一).【考点】多项式.【分析】根据题意,结合三次二项式、常数项为﹣9可写出所求多项式,答案不唯一,只要符合题意即可.【解答】解:根据题意,得此多项式是:2a2b﹣9(答案不唯一).故答案是:2a2b﹣9(答案不唯一).17.若|x﹣3|+(y﹣2)2=0,则y﹣x= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,x﹣3=0,y﹣2=0,解得,x=3,y=2,则y﹣x=﹣1,故答案为:﹣1.18.已知:(m﹣2)x﹣1=0是关于x的一元一次方程,则m m≠2 .【考点】一元一次方程的定义.【分析】依据一元一次方程的定义可知m﹣2≠0,从而可求得m的取值范围.【解答】解:∵(m﹣2)x﹣1=0是关于x的一元一次方程,∴m﹣2=0.∴m≠2.故答案为:m≠2.19.若a2+ab=5,ab+b2=4,则a2+2ab+b2的值为9 .【考点】整式的加减.【分析】直接把两式相加即可得出结论.【解答】解:∵a2+ab=5,ab+b2=4,∴a2+2ab+b2=(a2+ab)+(ab+b2)=5+4=9.故答案为:9.20.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第一次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数是7 ,如果点A n与原点的距离不小于20,那么n的最小值是13 .【考点】规律型:数字的变化类;数轴.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为7,13.三、解答题(共50分)21.计算(1)12﹣7+18﹣15(2)÷(﹣)×(﹣1)(3)(﹣+)×(﹣48)(4)﹣24+(﹣5)2÷(﹣1)【考点】有理数的混合运算.【分析】(1)原式结合后,相加即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12+18﹣15﹣7=30﹣22=8;(2)原式=×(﹣)×(﹣)=;(3)原式=﹣12+8﹣4=﹣8;(4)原式=﹣16+25×(﹣)=﹣16﹣20=﹣36.22.化简(1)5x2+x+3+4x﹣8x2﹣2(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)【考点】整式的加减.【分析】(1)首先找出同类项,进而合并得出即可;(2)(3)先去括号,然后找出同类项,进而合并得出即可.【解答】解:(1)原式=﹣3x2+5x+1;(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)=2x3﹣3x2﹣3+x3﹣4x2=3x3﹣7x2﹣3;(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)=3x2﹣15x+3﹣6x+12﹣2x2=x2﹣21x+1523.先化简,再求值(1)4x﹣x2+2x3﹣(3x2+x+2x3),其中x=3.(2)4x2﹣xy﹣(y2+2x2)+2(3xy﹣y2),其中x=5,y=.【考点】整式的加减—化简求值.【分析】(1)首先化简4x﹣x2+2x3﹣(3x2+x+2x3),然后把x=3代入化简后的算式即可.(2)首先化简4x2﹣xy﹣(y2+2x2)+2(3xy﹣y2),然后把x=5,y=代入化简后的算式即可.【解答】解:(1)4x﹣x2+2x3﹣(3x2+x+2x3)=4x﹣x2+2x3﹣3x2﹣x﹣2x3=﹣4x2+3x当x=3时,原式=﹣4×32+3×3=﹣36+9=﹣27(2)4x2﹣xy﹣(y2+2x2)+2(3xy﹣y2)=4x2﹣xy﹣y2﹣2x2+6xy﹣y2=2x2+5xy﹣2y2当x=5,y=时,原式=2×52+5×5×﹣2×=50+﹣=6224.解方程(1)﹣2x=4(2)x﹣10=7(3)x+13=5x+37(4)3x﹣x=﹣+1.【考点】解一元一次方程.【分析】(1)方程x系数化为1,即可求出解;(2)方程移项合并,即可求出解;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程合并后,将x系数化为1,即可求出解.【解答】解:(1)﹣2x=4,解得:x=﹣2;(2)x﹣10=7,解得:x=17;(3)x+13=5x+37,移项合并得:4x=﹣24,解得:x=﹣6;(4)3x﹣x=﹣+1,合并得:2x=,解得:x=.25.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中,最接近25千克的那筐白菜为24.5 千克;(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,可得答案;(2)根据有理数的加法,可得答案;(3)根据单价乘以数量,可得答案.【解答】解:(1)|﹣0.5|最小,最接近标准,最接近25千克的那筐白菜为 24.5千克;故答案为:24.5;(2)1.5+(﹣3)+2+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克)答:不足5.5千克;(3)[1.5+(﹣3)+2+1+(﹣2)+(﹣2)+(﹣2.5)+25×8]×2.6=505.6元,答:出售这8筐白菜可卖505.7元26.某学校初一年级参加社会实践课,报名第一门课的有x人,第二门课的人数比第一门课的少20人,现在需要从报名第二门课的人中调出10人学习第一门课,那么:(1)报两门课的共有多少人?(2)调动后,报名第一门课的人数为(x+10)人,第二门课人数为(x﹣30)人.(3)调动后,报名第一门课比报名第二门课多多少人?计算出代数式后,请选择一个你觉得合适的x的值代入,并求出具体的人数.【考点】列代数式.【分析】根据题中给出的等量关系即可列出式子【解答】解:(1)∵第二门课的人数比第一门课的少20人,∴第二门课的人数为: x﹣20∴两门课的人数为:x+x﹣20=;(2)由题意可知,第一门课多了10人,第二门课少了10人,∴调动后,第一门课的人数为:x+10;第二门课的人数为: x﹣30(3)调动后,第一门课比第二门课多了:(x+10)﹣(x﹣30)=x+40;当x=40时, x+40=48,故答案为:(2)x+10;.四、附加题(每题4分,共20分)27.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a+b)7的展开式共有8 项,(a+b)n的展开式共有n+1 项,各项的系数和是2n.【考点】完全平方公式.【分析】根据“杨辉三角”,寻找解题的规律.【解答】解:根据规律,(a+b)7的展开式共有8项,(a+b)n的展开式共有(n+1)项,各项系数和为2n.故答案为:8,n+1,2n.28.规定“*”表示一种运算,且a*b=,则3*(4*)的值是0 .【考点】有理数的混合运算.【分析】根据*的含义,以及有理数的混合运算的运算方法,求出算式3*(4*)的值是多少即可.【解答】解:3*(4*)=3*=3*1.5==0故答案为:0.29.已知当x=2时,代数式ax3﹣bx+1的值为﹣17,求当x=﹣1时,代数式12ax﹣3bx3﹣5的值是多少?【考点】代数式求值.【分析】将x=2代入得到4a﹣b=﹣9,然后将x=﹣1和4a﹣b=﹣9代入计算即可.【解答】解:当x=2时,ax3﹣bx+1=8a﹣2b+1=﹣17,得4a﹣b=﹣9,当x=﹣1时,12ax﹣3bx3﹣5=﹣12a+3b﹣5=﹣3(4a﹣b)﹣5=27﹣5=2230.已知|a+2|=﹣b2,求:的值?【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由|a+2|=﹣b2,可得|a+2|+b2=0,然后由非负数的性质,可求得a=﹣2,b=0,然后代入+2002b,即可求得答案.【解答】解:∵|a+2|=﹣b2,∴|a+2|+b2=0,∴a+2=0,b=0,∴a=﹣2,b=0,∴+2002b=+0=1.31.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.【考点】绝对值.【分析】(1)分为x<﹣2、﹣2≤x<4、x≥4三种情况化简即可;(2)分x<﹣1、﹣1≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出代数式的最大值.【解答】解:(1)当x<﹣2时,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=x+2+4﹣x=6;当x≥4时,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;(2)当x<﹣1时,原式=3x+5<2,当﹣1≤x≤1时,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,当x>1时,原式=﹣3x﹣5<﹣8,则|x﹣1|﹣4|x+1|的最大值为2.。

相关文档
最新文档