染色体免疫共沉淀
染色质免疫共沉淀
染色质免疫共沉淀染色质免疫共沉淀(chromatin Immunoprecipitation,ChIP)是一种将DNA和相应的转录因子组装到染色质上的一项技术,可用于彻底研究基因表达调节机制。
1. 什么是染色质免疫共沉淀?染色质免疫共沉淀(ChIP)是一种将DNA和相应的转录因子组装到染色质上的实验方法,用于研究染色质的结构和功能,进而理解基因的表达如何受调控。
它是一种特别有效的去解析染色质和基因表达调节之间的联系的方法,被用于通过生物信息学等方法,研究基因表达调节的蛋白质组织关系。
2. 染色质免疫共沉淀的原理染色质免疫共沉淀的技术根据抗体结合模式可以分为单克隆抗体和聚合物抗体两种,单克隆抗体结合定向抗原,可以较好地用于基因组定点分析,它通过固定DNA模板和抗原抗体相互作用将它们结合到一起,再行沉淀,从而获取DNA模板及其相互作用位点。
聚合物抗体可以扩大辨识特异性,能够克服单克隆抗体的特异性限制,可应用于普适性抗原,可以用于核组学分析,利用共沉淀的方法结合PCR的扩增效应,将小量的DNA模板复制成更多的DNA碱基,以能够清晰地获得与染色质有关的重要信息。
3. 染色质免疫共沉淀的步骤染色质免疫共沉淀的步骤主要有:细胞培养分离、肽激活细胞和抗体免疫沉淀、PCR扩增、核酸电泳分析、数据分析。
首先,要进行细胞培养,用适当的分离方法分离出细胞,接着,激活肽将细胞激活,以提高活细胞中的蛋白质和DNA的表达、组装以及相互作用;然后,添加抗体,抗体结合模板和相应的转录因子,这样可以将抗体和DNA-转录因子复合物结合在一起,继而进行沉淀;接着,将沉淀物进行PCR 扩增,从而将少量的模板复制成多份;接着,使用DNA电泳分析来检测分析结果;最后,利用生物信息学对实验测得的数据进行分析,探索调节染色质和基因表达的蛋白质组织关系及其机制。
以上就是染色质免疫共沉淀的实验步骤。
4. 染色质免疫共沉淀的应用染色质免疫共沉淀在生物学研究方面具有重要的应用价值,在基因组学、核组学、基因表达分析、生物信息学、代谢组学、表观遗传学等方面有着广泛的应用,可用于研究染色质结构,探索基因组变异,鉴定并且定位生物体内转录因子等,是一项重要的新技术。
染色质免疫共沉淀测序技术
染色质免疫共沉淀测序技术
染色质免疫共沉淀测序技术(ChIP-seq)是一种用于研究基因组中蛋白质与DNA相互作用的高通量测序技术。
该技术可以帮助我们了解基因表达、转录调控、染色质结构和功能等方面的信息。
在ChIP-seq技术中,首先需要将某种特定的蛋白质与DNA结合,然后使用抗体将这种蛋白质与DNA复合物捕获下来。
接着,将复合物中的DNA分离出来,并进行高通量测序。
最后,通过对测序结果的分析,可以确定蛋白质与DNA结合的位置和数量,从而了解染色质结构和功能的相关信息。
ChIP-seq技术的应用非常广泛。
例如,可以用于研究转录因子与DNA结合的位置和数量,从而了解基因的转录调控机制。
此外,还可以用于研究组蛋白修饰与基因表达的关系,以及研究染色质结构和功能的变化与疾病的关系等。
虽然ChIP-seq技术具有很多优点,但也存在一些局限性。
例如,该技术需要使用抗体来捕获蛋白质与DNA复合物,因此需要选择合适的抗体,并且可能存在抗体特异性和交叉反应的问题。
此外,该技术也存在一定的误差和假阳性率,需要进行严格的数据分析和验证。
总的来说,ChIP-seq技术是一种非常有用的高通量测序技术,可以帮助我们了解基因组中蛋白质与DNA相互作用的信息,从而深入研
究基因表达、转录调控、染色质结构和功能等方面的问题。
随着技术的不断发展和完善,相信ChIP-seq技术将在生命科学研究中发挥越来越重要的作用。
染色质免疫共沉淀测序技术
染色质免疫共沉淀测序技术
1染色质免疫共沉淀
染色质免疫共沉淀(ChIP-seq)是一种使用测序技术来研究染色质蛋白结合DNA及与基因表达的调控的新兴基因组学技术。
它是染色质免疫沉淀(ChIP)技术与高通量测序技术的结合。
通过染色质免疫共沉淀测序技术,可以确定细胞中的基因组上的结合位点,研究特定的蛋白质和DNA,及基因转录的调控机制,以及参与蛋白质-DNA结合的相关机制。
染色质免疫共沉淀测序是将蛋白质-DNA复合物通过染色质免疫沉淀(ChIP)技术进行收集,然后根据分子标记的位点将其测序,并且将其无功的部分暴露出来进行测序分析。
依靠ChIP-seq,可以以一种高效的方式查看某种特定蛋白质在基因组上结合的位置,并且可以分析复杂结构DNA区域位点间结合关系,也可以确定转录因子调控基因表达的路径。
染色质免疫共沉淀技术在进行基因组组学研究、基因组区域结构分析、功能元件检测、基因调控研究及转录组分析中发挥着重要作用。
传统的ChIP技术是所有细胞中的结合位点的相对分析,它们的数据可以用于描述和验证转录调控的路径,但是不能给出定性的结论,而ChIP-Seq则能够获得定性的位置并进行深入的分析。
染色质免疫共沉淀测序技术在研究复杂基因调控网络中发挥了重要作用,它可以更有效地捕捉基因表达状态,帮助研究者对研究对象
的基因表达调控进行深入的研究,使科研数据更为准确可靠,揭示出机体细胞调控的生物学机制。
免疫共沉淀和免疫沉淀
免疫共沉淀和免疫沉淀
“免疫沉淀”一般是指采用固定在固相支持物上的结合蛋白,进行小规模的蛋白质亲和纯化的实验。
将蛋白通过微珠(纯化介质)进行富集。
免疫沉淀根据检测的目的可以分为免疫沉淀、免疫共沉淀(Co-IP)、染色质免疫沉淀(ChIP)和RNA免疫沉淀(RIP)。
免疫共沉淀分析(Co-IP)是免疫沉淀的延伸,基本的技术都是采用目标抗原特异性的固相化抗体;但IP的目标是纯化单一抗原,而Co-IP旨在分离抗原及与抗原结合的蛋白质或配体,主要用于蛋白-蛋白相互作用检测。
如果样品溶液中存在与靶蛋白相互作用的目的蛋白,也会被一同捕获及纯化得到,通过SDS-PAGE、Western 和质谱等方法鉴定与靶蛋白结合的蛋白。
染色质免疫沉淀(ChIP)用于鉴定基因组中与靶蛋白(如转录
因子和组蛋白)结合的区域。
将蛋白质与DNA暂时交联固定并剪切DNA,目标蛋白与核酸序列一起被沉淀后通过高通量测序、Southern和PCR等方法进行DNA鉴定。
确定与靶蛋白结合的DNA 片段。
RNA免疫沉淀(RIP)原理与ChIP相似,与靶蛋白结合的RNA被沉淀后,用高通量测序、RT-PCR或Northern等方法对沉淀进行RNA 鉴定。
随着技术的发展,目前磁性微粒已经取代琼脂糖成为免疫沉
淀的首选方法,由于磁性微粒明显小于琼脂糖,因此可以与更多的抗体结合,纯化是可以使用磁力架进行,避免了离心分离可能导致的抗原-抗体结合的破坏,避免了检测目的的损失。
上述各种免疫沉淀的异同总结如下:。
染色质免疫共沉淀实验步骤
染色质免疫共沉淀实验步骤英文回答:Chromatin immunoprecipitation (ChIP) is a widely used experimental technique that allows researchers to investigate the interactions between proteins and DNA in the context of chromatin. It is commonly used to study protein-DNA interactions, such as transcription factor binding, histone modifications, and chromatin remodeling.The ChIP experiment involves several key steps:1. Cross-linking: The first step is to cross-link the proteins to the DNA in living cells or tissues to preserve their interactions. This is typically done by treating the cells with a cross-linking agent such as formaldehyde. The cross-linking reaction is stopped by adding glycine, which quenches the formaldehyde.2. Cell lysis and chromatin fragmentation: The cross-linked cells are then lysed to release the chromatin. The chromatin is fragmented into smaller pieces by sonicationor enzymatic digestion. The goal is to obtain chromatin fragments of a suitable size range for subsequent immunoprecipitation.3. Immunoprecipitation: The fragmented chromatin is incubated with antibodies specific to the protein of interest. These antibodies recognize and bind to theprotein-DNA complexes. The protein-DNA complexes are then pulled down using protein A/G beads or magnetic beads coupled with antibodies. This step allows for the selective enrichment of the protein-DNA complexes of interest.4. Washing and elution: The pulled-down complexes are washed to remove any non-specifically bound proteins or DNA. The protein-DNA complexes are then eluted from the beads, usually by heat or enzymatic digestion, to release the DNA fragments.5. Reversal of cross-links: The cross-links between proteins and DNA are reversed by incubating the elutedprotein-DNA complexes at high temperature. This step dissociates the proteins from the DNA and allows for the recovery of the DNA fragments.6. DNA purification and analysis: The recovered DNA fragments are purified and can be further analyzed by various techniques, such as PCR, qPCR, microarrays, ornext-generation sequencing. These analyses can provide information about the protein-DNA interactions and the genomic regions bound by the protein of interest.ChIP experiments require careful optimization of various parameters, such as cross-linking conditions, chromatin fragmentation, antibody specificity, and washing conditions, to ensure the accuracy and reliability of the results. It is also important to include appropriate controls, such as negative controls (no antibody or non-specific antibody) and positive controls (known protein-DNA interactions), to validate the experimental conditions and results.中文回答:染色质免疫共沉淀(ChIP)是一种广泛应用的实验技术,可以帮助研究人员在染色质的背景下探究蛋白质与DNA之间的相互作用。
ChIP实验精讲(做科研的必看)
ChIP实验精讲(做科研的必看)染色质免疫共沉淀(ChIP)概述ChIP:chromatinimmunoprecipitation assay,染色质免疫沉淀技术。
研究蛋白质与DNA在染色质环境下的相互作用是阐明真核生物基因表达机制的基本途径。
ChIP是目前唯一研究体内DNA与蛋白质相互作用的方法原理在活细胞状态下固定“蛋白质-DNA”复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
ChIP应用1、检测体内反式因子与DNA的动态作用,研究组蛋白的各种共价修饰与基因表达的关系;2、CHIP与基因芯片相结合建立的CHIP-on-ChIP 方法已广泛用于特定反式因子靶基因的高通量筛选;3、CHIP与体内足迹法相结合,用于寻找反式因子的体内结合位点;4、RNA-CHIP用于研究RNA在基因表达调控中的作用。
试验流程一、交联染色质免疫沉淀技术1. 细胞甲醛交联和收集注意事项:①需要优化甲醛使蛋白质和DNA交联的时间。
②交联的时间很关键。
交联的时间一般为2-30 分钟。
③交联过度会降低抗原的可结合性和超声的效率,也会被遮盖抗原的表位。
④甘氨酸可抑制甲醛的作用,终止交联反应。
1.1 取1直径10cm培养皿的细胞。
加入甲醛至终浓度为0.75%(V/V),使蛋白和DNA 交联。
1.2 室温下,轻摇10 分钟。
1.3 加入甘氨酸至终浓度为125 mM,室温下放置5 分钟,以终止交联。
1.4 吸去培养基,用冰冷PBS 洗细胞2 次。
1.5 使用细胞刮刀,加入5ml 冰冷PBS,刮下细胞,收集至一个50 ml 离心管中。
1.6 再用 3 ml 冰冷PBS 洗培养皿2次,至50ml 离心管中。
1.7 4℃,1000 g,离心5分钟收集细胞。
1.8 吸弃上清,用SDSLysis Buffer重悬沉淀(每1 X 107 个细胞加800 μl)。
染色质免疫共沉淀技术
染色质免疫共沉淀技术染色质免疫共沉淀技术(ChIP)是一种广泛应用于生物学研究的技术,它可以用来检测蛋白质与染色质之间的相互作用。
该技术能够帮助研究人员确定蛋白质在基因表达中的作用,以及探究细胞的调节机制。
本文将详细介绍染色质免疫共沉淀技术的原理、步骤、优缺点和应用。
一、原理染色质免疫共沉淀技术是基于抗体特异性识别蛋白质的原理。
在该技术中,首先将抗体与磁珠或琼脂糖等载体结合,形成免疫复合物。
接着,将该免疫复合物加入到含有细胞或组织的裂解液中,使其与目标蛋白结合。
随后,使用磁力或离心等手段将免疫复合物与与其结合的蛋白、核酸等分离出来。
最后,利用PCR、微阵列芯片等技术对分离出来的蛋白、核酸等进行检测和分析。
二、步骤染色质免疫共沉淀技术的步骤主要包括:1. 细胞或组织的裂解:将细胞或组织加入到含有蛋白酶抑制剂、核酸酶抑制剂、盐和缓冲液等的裂解液中,使其破裂并释放出蛋白、DNA等。
2. 免疫复合物的制备:将抗体与磁珠或琼脂糖等载体结合,形成免疫复合物。
3. 免疫复合物与目标蛋白的结合:将免疫复合物加入到裂解液中,与目标蛋白结合。
4. 免疫复合物的分离:使用磁力或离心等手段将免疫复合物与与其结合的蛋白、核酸等分离出来。
5. 分析:利用PCR、微阵列芯片等技术对分离出来的蛋白、核酸等进行检测和分析。
三、优缺点染色质免疫共沉淀技术具有以下优点:1. 高特异性:该技术可以通过抗体特异性识别蛋白质,具有高特异性。
2. 高灵敏度:该技术可以检测到极低浓度的蛋白质。
3. 可重复性:该技术具有较高的可重复性,可以用于多次实验。
4. 可广泛应用:该技术可以应用于不同种类的细胞和组织。
然而,染色质免疫共沉淀技术也存在以下缺点:1. 受抗体质量限制:抗体的质量、特异性和亲和力等因素会影响该技术的结果。
2. 受组织分解程度限制:组织分解不彻底会导致目标蛋白无法完全释放,从而影响该技术的结果。
3. 受背景干扰影响:免疫复合物的制备和分离过程中,可能会出现背景干扰,影响结果的准确性。
染色质免疫共沉淀技术
染色质免疫共沉淀技术
染色质免疫共沉淀技术(ChIP)是一种常用的分子生物学技术,也是
研究细胞基因组结构和功能的重要方法。
该技术可以用来鉴定某个转录因
子或其他核蛋白与某个特定DNA序列的结合关系,从而确定这个DNA序列
在基因表达调控中的重要性。
该技术包括以下步骤:(1)交联;(2)裂解;(3)免疫沉淀;(4)洗涤;(5)离解交联;(6)DNA提取。
在这个过程中,首先将细胞进行交联,使得染色质固定在原位。
之后,将染色质进行裂解并进行免疫沉淀,这里是将特定的抗体与目标蛋白质结合,从而使得目标蛋白质与某些DNA序列结合,并保持在染色质中。
然后
对免疫沉淀后的复合物进行洗涤,去除杂质物质,以提高免疫沉淀的特异
性和纯度。
之后,对免疫沉淀后的复合物进行离解交联,使免疫沉淀的蛋
白质与DNA分别被分解为单独的分子。
最后,从免疫沉淀复合物中提取DNA,用于进一步的分析,例如PCR扩增、Southern blotting、测序等。
该技术的优点是可以在整个基因组范围内寻找目标DNA序列的结合蛋白,相对快速、成本低、灵敏度高,并且可以直接从原位染色质富集DNA
序列。
缺点是免疫沉淀的特异性和纯度可能受到影响,需要对实验进行严
谨控制。
染色质免疫沉淀(ChIP)实验指南及技术总结
染色质免疫沉淀(ChIP)实验指南及技术总结第一篇:染色质免疫沉淀(ChIP)实验指南及技术总结染色质免疫沉淀(ChIP)实验指南及技术总结ChIP是一项比较流行的研究转录因子(transcription factor, TF)与启动子(promoter)相互结合的实验技术。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
在PCR分析这一块,比较传统的做法是半定量-PCR。
但是现在随着荧光定量PCR的普及,大家也越来越倾向于Q-PCR了。
此外还有一些由ChIP衍生出来的方法。
例如RIP(其实就是用ChIP的方法研究细胞内蛋白与RNA的相互结合,具体方法和ChIP差不多,只是实验过程中要注意防止RNase,最后分析的时候需要先将RNA逆转录成为cDNA);还有ChIP-chip(其实就是ChIP富集得到的DNA-片段,拿去做芯片分析,做法在ChIP的基础上有所改变,不同的公司有不同的做法,要根据公司的要求来准备样品)。
第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。
chip-seq染色质免疫共沉淀原理
1. 概述chip-seq技术1.1 chip-seq是一种用于研究染色质蛋白与DNA相互作用的技术 1.2 蛋白与DNA的相互作用对于基因表达和细胞功能非常重要1.3 chip-seq技术的原理是利用染色质免疫共沉淀(ChIP)和高通量测序(sequencing)相结合2. ChIP-seq技术的步骤2.1 细胞或组织的交联2.2 细胞或组织的裂解和核的提取2.3 免疫共沉淀2.4 DNA纯化2.5 测序和数据分析3. 染色质免疫共沉淀原理3.1 免疫共沉淀是指利用特异性抗体将靶蛋白与DNA结合并进行共沉淀3.2 抗体的具体选择非常重要,需要保证抗体能够特异性结合到目标蛋白3.3 免疫共沉淀的原理是利用抗体与靶蛋白的特异性结合来将靶蛋白与DNA结合物沉淀下来3.4 靶蛋白和DNA结合物的提取可以通过酸碱或酶的方法进行4. ChIP-seq技术的应用4.1 在研究基因表达调控中的应用4.2 在研究细胞分化和组织发育中的应用4.3 在研究疾病发生和发展中的应用4.4 在药物研发中的应用5. ChIP-seq技术的优势和局限性5.1 优势包括高灵敏度、高特异性和全基因组覆盖5.2 局限性包括实验操作复杂、数据分析费时费力6. 结语6.1 chip-seq技术作为一种重要的分子生物学技术,在基因组学和表观遗传学研究中发挥着重要作用6.2 虽然其原理复杂,但结合高通量测序技术,能够为科研工作者提供丰富的信息资源6.3 随着技术的不断发展和完善,chip-seq技术在生命科学领域的应用前景将更加广阔。
7. ChIP-seq 技术在生物学研究中的应用ChIP-seq 技术在生物学研究中展现出了广泛的应用价值,特别是在基因表达调控的研究中发挥了重要作用。
通过 ChIP-seq 技术,研究人员可以对特定转录因子与 DNA 的结合位点进行高通量测序,从而获得全基因组范围内的转录因子结合位点的信息。
这种技术的应用可以帮助研究人员更深入地理解基因表达调控的机制,发现新的转录因子结合位点以及破解染色质的三维结构和动态变化。
染色质免疫共沉淀步骤
染色质免疫共沉淀步骤
染色质免疫共沉淀(Chromatin Immunoprecipitation,ChIP)是一种用于研究蛋白质与DNA 相互作用的技术。
以下是一般的染色质免疫共沉淀的基本步骤:
1. 细胞固定:将细胞培养物在适当的条件下进行固定,以维持DNA-蛋白质复合物的结构。
2. 细胞裂解:使用细胞裂解液将细胞破碎,释放出染色质。
3. 抗体结合:将特异性抗体加入到裂解液中,使其与目标蛋白质结合。
4. 免疫沉淀:使用抗体-抗原复合物的特异性结合,通过免疫沉淀的方法将与抗体结合的染色质-蛋白质复合物沉淀下来。
5. 洗涤:对沉淀进行多次洗涤,以去除非特异性结合的物质。
6. DNA 提取:将沉淀中的DNA 提取出来。
7. DNA 分析:对提取的DNA 进行分析,例如PCR、芯片分析或高通量测序等,以确定与目标蛋白质结合的DNA 区域或基因。
需要注意的是,具体的实验步骤可能会因实验目的、细胞类型和使用的试剂而有所不同。
在进行染色质免疫共沉淀实验时,建议遵循相关的实验方案和标准操作流程,并根据实际情况进行优化和调整。
此外,染色质免疫共沉淀技术需要一定的实验技能和经验,包括细胞培养、抗体选择、洗涤条件的优化等。
CHIP(染色质免疫共沉淀)
一、超声剪切染色质1.用37℃预温的1%PFA固定10-20min,使DNA与蛋白质交联2.终止交联,加入终浓度为0.125M的甘氨酸3.用预冷的PBS洗2次4.用PBS将细胞刮下(5mlPBS+1mMPMSF+1mg/ml抑肽酶)5.4500rpm5min(此阶段细胞沉淀可储存于-80℃)6.弃上清,按200ul/106个细胞加入SDS lysis buffer(现加PMSF&coktail),冰上10min(4℃rotation 30min)7.27G针头注射器吹打3遍,若有气泡离心8.超声:不可有气泡,超两次后放到冰上9.离心:4℃,12000rpm,20min,上清转移到15ml离心管二、Ab沉淀目的染色质1.用dilution buffer稀释至1ml2.取50ul Input(也可取少量做lgG阴性对照,RNaseⅡ阴性对照)备注:取450ul做lgGcontrol,剩余500ul3.剩下的加一抗(5ul/ml),4℃rotate过夜4.向样品中加入50ul ProteinA+Gbeads,4℃rotate2h,之后可在冰上沉淀一会5.离心,1000rpm1min,留上清6.洗珠子,1ml/5min/次,在4℃rotate,再在冰上静置5min,1000rpm1min。
洗涤顺序为:低盐溶液→高盐溶液→LicL(之前在4℃)→TE→TE(室温)三、去除蛋白质1.Elution buffer(1%SDS、0.1MNaHCO3;0.5gSDS,0.42gNaHCO3 in 50ml ddH20)+250uL RT15min rotate →离心1000rpm1min→上清(收集)→+250ulRT 10min →金属65℃5min→上清(收集)2.上清+20ul5M NaClInput+450ul elution buffer+20ul 5M NaCl65℃6-7h或过夜3.10ul0.5MEDTA,20ul1MTris-HCl +2ul 10mg/ml 蛋白酶K(50℃1h)?四、提纯DNA1.加等体积(500ul)Tris-饱和酚,剧烈混匀,14500rpm10min,取上清,加入500ulCHCl3混匀后14500rpm10min,取上清后再加入tRNA60ug (200ug/ml,3ul),加异丙醇500ul,离心14500rpm20min 弃上清2.加70%酒精洗一遍,14500rpm5min,(要去掉上清,先倒掉,倒掉之后离心一下再扔掉液体)将管子倒扣空气晾干。
染色质免疫共沉淀技术原理
染色质免疫共沉淀技术原理一、前言染色质免疫共沉淀技术(ChIP)是生物学研究中常用的一种方法,它通过利用抗体特异性识别染色质上的特定蛋白质,进而从复杂的细胞核提取物中富集这些蛋白质,并对其进行鉴定和分析。
本文将详细介绍染色质免疫共沉淀技术的原理。
二、实验步骤1. 交联首先,需要对活细胞进行交联处理,以稳定染色质和蛋白质之间的相互作用。
常用的交联剂有甲醛和二氧化硅等。
2. 染色质片段化接下来,需要将交联后的细胞进行裂解,并将DNA片段化。
这可以通过超声波或者限制性内切酶等方法实现。
3. 免疫共沉淀然后,在裂解液中加入与目标蛋白特异性结合的抗体,并进行免疫共沉淀。
在共沉淀过程中,目标蛋白和与其结合的DNA片段会被富集到抗体上。
4. 分离DNA片段接下来,需要将DNA片段从抗体上分离出来。
这可以通过加入盐或者进行热处理等方法实现。
5. 鉴定和分析最后,对富集的DNA片段进行鉴定和分析。
这可以通过PCR扩增、测序或者芯片技术等方法实现,以确定目标蛋白在染色质中的作用位置和作用方式。
三、原理解析1. 抗体选择ChIP技术的核心是抗体的选择。
抗体需要特异性识别目标蛋白,并保持其活性。
通常情况下,使用多个不同来源的抗体可以提高富集效率和准确性。
2. 交联原理交联是通过甲醛或二氧化硅等化学物质与细胞核内的DNA、蛋白质发生共价结合而实现的。
交联后的染色质会更加稳定,避免了在裂解过程中DNA和蛋白质之间失去相互作用。
3. 片段化原理染色质片段化是为了将长链DNA切成适当大小的小片段,以便于后续步骤中与抗体结合并富集目标蛋白。
超声波法利用高频声波震荡使DNA分子破碎,而限制性内切酶法则利用特定的酶切割位点切割DNA分子。
4. 免疫共沉淀原理免疫共沉淀是利用抗体与目标蛋白之间的特异性结合,将目标蛋白及其相关DNA片段从裂解液中富集到抗体上。
这一步骤需要注意选择合适的抗体和免疫共沉淀条件,以提高富集效率和准确性。
5. DNA片段分离原理将DNA片段从抗体上分离出来是为了进一步进行后续鉴定和分析。
免疫共沉淀试及染色质免疫共沉淀试剂
免疫共沉淀试及染色质免疫共沉淀试剂
免疫共沉淀试及染色质免疫共沉淀试剂是生命科学中常用的实验方法之一,用于研究蛋白质和DNA/RNA之间的相互作用及其在细胞功能和调控中的作用。
免疫共沉淀试剂是一种利用抗体特异性结合目的蛋白质的方法,可用于分离和富集免疫沉淀物。
该方法包括将含有目的蛋白质的细胞裂解液与对应的免疫抗体预先结合,形成细胞裂解物-抗体复合物。
接着,将复合物与免疫沉淀剂(例如蛋白A-agarose或蛋白G-agarose)混合,复合物可与免疫沉淀剂结合并沉淀下来,从而分离和富集免疫沉淀物。
染色质免疫共沉淀试剂则是在免疫共沉淀试的基础上发展出的方法,用于研究蛋白质与染色质之间的相互作用及其在染色质结构与功能调控中的作用。
该方法与免疫共沉淀试的步骤相似,只是在免疫抗体-目的蛋白复合物与免疫沉淀剂混合前,先对细胞裂解物进行特定的前处理,例如交联剂处理和核酸酶处理等,以稳定蛋白质与染色质之间的相互作用并减少非特异性结合。
免疫共沉淀试和染色质免疫共沉淀试是研究蛋白质功能和染色质结构与调控的重要工具,也有助于深入理解许多疾病的发病机制及其治疗策略的开发。
染色质免疫共沉淀结果解析
染色质免疫共沉淀结果解析
染色质免疫共沉淀(ChIP)是一种常用的分子生物学技术,用于检测特定蛋白质与基因组DNA的相互作用。
通过该技术,可以确定某种特定的蛋白质是否与某一特定的DNA序列结合,并能够分析这种结合的模式和位置。
ChIP的实验步骤大致分为以下几步:交联、裂解、抗体免疫沉淀、洗涤和提取。
其中,交联是将细胞中的蛋白质与DNA“固定”在一起,裂解则是将细胞核内的染色质分解成小碎片以便于后续的操作。
抗体免疫沉淀是利用特定的抗体将要检测的蛋白质与DNA结合物质
免疫沉淀出来,洗涤则是将非特异性的蛋白质和DNA从结合物质中洗去,提取则是将免疫沉淀得到的物质提取出来以便于后续的分析。
对于ChIP实验的结果解析,需要进行数据处理和分析。
最常用
的方法是将ChIP所得的DNA片段进行PCR扩增,然后进行基因测序
和比对分析。
通过对比对结果的分析,可以确定特定的蛋白质与DNA 序列的结合情况,并确定它们的相互作用模式和位置。
另外,还可以利用一些计算机软件如MACS和HOMER等进行数据处理和分析,以及
进行统计学分析和可视化展示。
综上所述,染色质免疫共沉淀技术是一种重要的分子生物学技术,能够帮助我们了解蛋白质与DNA相互作用的模式和位置,从而为后续的基因功能研究和临床诊断提供重要的参考依据。
- 1 -。
CHIP染色质免疫共沉淀实验 Protocol
CHIP染色质免疫共沉淀实验是一种在全基因组水平上研究蛋白质与DNA相互作用的技术方法。
其实验原理是基于抗原抗体反应的特异性,从而实现对DNA结合蛋白及其DNA靶标的富集。
实验所需试剂和耗材包括:细胞培养及提取试剂、生物素标记试剂盒、抗体、蛋白质A琼脂糖珠、Triton X-100、ECL显影液等。
实验仪器包括:二氧化碳培养箱、倒置显微镜、离心机、染色质免疫沉淀仪等。
实验准备工作的要点包括:首先,要确认所用试剂和耗材的型号和保质期;其次,要确保细胞株和抗体的选择合适;最后,准备好实验所需的仪器设备并调试至最佳状态。
实验方法主要包括以下步骤:1.将细胞进行培养并提取染色质。
2.在染色质中加入对应于一个特定组蛋白标记的生物抗体,并用Triton X-100将抗原抗体混合物进行稀释。
3.在混合物中加入蛋白质A琼脂糖珠,以便吸附多余的抗体和未结合的蛋白质。
4.用洗涤液洗涤沉淀物,去除未结合的蛋白质和抗体,最后用变性液洗脱DNA。
5.用电泳法和显影法检测提取出的DNA片段。
注意事项包括:要保持细胞生长状态良好,并确保抗原抗体反应的时间和温度准确适宜;在加入蛋白质A琼脂糖珠后,要充分混匀以避免影响实验结果;最后,要注意控制好电泳参数和显影条件以保证结果的准确性和可靠性。
常见问题及解决方法包括:如果抗原抗体反应不充分,可以尝试增加抗体浓度或延长反应时间;如果未结合的蛋白质不能被有效清除,可以尝试增加洗涤次数或更换洗涤液;如果电泳条带不清晰或出现异常,可以尝试调整电泳参数或更换电泳液。
总之,CHIP染色质免疫共沉淀实验是一种研究蛋白质与DNA相互作用的有效方法,需要注意保持细胞生长状态良好、准确控制抗原抗体反应条件、充分洗涤未结合的蛋白质等关键点。
同时,针对实验中可能遇到的问题,要积极采取相应的解决方法,以保证实验结果的准确性和可靠性。
染色质免疫共沉淀技术ChIP介绍
染色质免疫共沉淀技术ChIP介绍
1.ChIP的分类
ChIP-Seq:将ChIP与**代测序技术相结合的技术,能够高效地在全基因组范围内检测与组蛋白、转录因子等相互作用的DNA区段。
ChIP-chip:将ChIP与DNA芯片相结合的技术,主要用于特定反式因子靶基因的高通量筛选以及组蛋白修饰和染色体重建。
RIP:RNA结合蛋白**沉淀技术,是研究细胞内RNA与蛋白质相互作用的一项技术。
主要用于研究RNA在基因表达调控中的作用。
ChIP-Re-ChIP:在次ChIP的基础上不解交联,而继续进行另一个目的蛋白的**沉淀,从而得到与两种目的蛋白都结合的DNA序列。
2.染色质免疫共沉淀测序技术优势:
检测覆盖范围广:全基因组范围内扫描目标区域;
检测分辨率高:更利于定位目标区域;
样本需要量低:需要的**沉淀后的DNA量可低至5-10ng;
可靠性好:避免了非特异性杂交,背景低;
性价比高:花费较少即可检测全基因组,获取准确丰富的信息。
3.ChIP试剂盒的选择
由于ChIP实验的操作繁琐、每一步反应需要注意的细节很多,常常需要花费实验者很长的时间才能完成整个实验,而且回收得到的DNA片段可能出现各种各样的问题。
因此,为了帮助广大科研用户解决这些问题,许多商业化的ChIP试剂盒问世。
染色质免疫共沉淀(ChIP)实验
染色质免疫共沉淀(ChIP)染色质免疫共沉淀可以:(1)组蛋白修饰酶的抗体作为“生物标记”;(2)转录调控分析;(3)药物开发研究;(4)DNA损失与凋亡分析。
1实验方法原理:在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。
IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。
目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。
2实验材料、试剂、仪器耗材:细胞样品甲醛、甘氨酸、PBS、SDS、Lysis Buffer、洗脱液、RNaseA、蛋白酶K、omega胶回收试剂盒等离心管、超声仪、电泳仪、离心机等3实验步骤:一、细胞的甲醛交联与超声破碎(第一天)1. 取出1平皿细胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的终浓度为1%(培养基共有9 ml)。
2. 37℃孵育10 min。
3. 终止交联:加甘氨酸至终浓度为0.125 M。
450 ul 2.5 M甘氨酸于平皿中。
混匀后,在室温下放置5 min即可。
4. 吸尽培养基,用冰冷的PBS清洗细胞2次。
5. 细胞刮刀收集细胞于15 ml离心管中(PBS依次为5 ml,3 ml和3 ml)。
预冷后2 000 rpm 5 min收集细胞。
6. 倒去上清。
按照细胞量,加入SDS Lysis Buffer。
使得细胞终浓度为每200ul含2×106个细胞。
这样每100 ul溶液含1×106个细胞。
再加入蛋白酶抑制剂复合物。
假设MCF7长满板为5×106个细胞。
本次细胞长得约为80%。
即为4×106个细胞。
因此每管加入400 ul SDS Lysis Buffer。
免疫沉淀、免疫共沉淀、染色质免疫共沉淀
免疫沉淀是指用抗体把抗原(包括单体、复合物)沉淀下来,是一种抗原纯化、浓集的方法;免疫共沉淀指用抗体把抗原复合物沉淀下来,常用来研究蛋白质的相互作用免疫沉淀(Immunoprecipitation, IP)免疫沉淀是利用抗体特异性反应纯化富集目的蛋白的一种方法。
抗体与细胞裂解液或表达上清中相应的蛋白结合后,再与蛋白A/G(ProteinA/G)或二抗偶联的agaose或Sepharose珠子孵育,通过离心得到珠子-蛋白A/G或二抗-抗体-目的蛋白复合物,沉淀经过洗涤后,重悬于电泳上样缓冲液,煮沸5-10min,在高温及还原剂的作用下,抗原与抗体解离,离心收集上清,上清中包括抗体、目的蛋白和少量的杂蛋白。
基本实验步骤(1)收获细胞,加入适量细胞IP裂解缓冲液(含蛋白酶抑制剂),冰上或者4℃裂解30min, 12,000g离心30 min后取上清;(2)取少量裂解液以备Western blot分析,剩余裂解液将1μg相应的抗体和10-50 μl protein A/G-beads加入到细胞裂解液,4°C缓慢摇晃孵育过夜;(3)免疫沉淀反应后,在4°C 以3,000 g速度离心 5 min,将protein A/G-beads离心至管底;将上清小心吸去,protein A/G-beads用1ml裂解缓冲液洗3-4次;最后加入15μl的2×SDS 加样缓冲液,沸水煮10分钟;(4)SDS-PAGE, Western blotting或进行质谱分析。
一、样品处理:免疫沉淀实验成功与否,第一步处理样品非常关键。
免疫沉淀实验本质上是处于天然构象状态的抗原和抗体之间的反应,而样品处理的质量决定了抗原抗体反应中的抗原的质量,浓度以及抗原是否处于天然构象状态。
所以制备高质量的样品以用于后续的抗体-agarose beads孵育对免疫沉淀实验是否成功非常关键。
在这个环节中,除了要控制所有操作尽量在冰上或者4°完成外,最为关键的是裂解液的成份。
论述染色质免疫共沉淀技术的作用
论述染色质免疫共沉淀技术的作用染色质免疫共沉淀技术是一种研究蛋白质与DNA相互作用的实验技术。
该技术通过将细胞内的染色质破碎成小片段,然后利用特异性抗体对目标蛋白质进行免疫沉淀,从而获得与目标蛋白质相互作用的DNA片段。
染色质免疫共沉淀技术在研究基因表达调控、组蛋白修饰、染色质结构等领域具有重要作用。
本文将从以下几个方面论述染色质免疫共沉淀技术的作用。
一、研究基因表达调控基因表达调控是生物体内细胞分化和发育的基础。
染色质免疫共沉淀技术可以用来研究转录因子、共激活因子和组蛋白修饰等在基因表达调控中的作用。
通过该技术,研究者可以确定这些蛋白质在基因组中的结合位点,从而揭示它们如何调控基因表达。
例如,利用染色质免疫共沉淀技术研究组蛋白乙酰化修饰在基因表达调控中的作用,发现组蛋白乙酰化水平与基因表达活性呈正相关。
此外,该技术还可以用于研究染色质重塑复合物、转录抑制因子等在基因表达调控中的作用。
二、揭示组蛋白修饰的生物学功能组蛋白修饰是染色质调控基因表达的重要方式。
染色质免疫共沉淀技术可以用来研究组蛋白修饰的类型、分布和功能。
通过该技术,研究者可以确定特定组蛋白修饰在基因组中的分布模式,以及它们如何影响基因表达。
例如,利用染色质免疫共沉淀技术研究组蛋白甲基化修饰在基因表达调控中的作用,发现组蛋白甲基化水平与基因表达活性呈负相关。
此外,该技术还可以用于研究组蛋白磷酸化、泛素化等其他修饰类型的生物学功能。
三、探索染色质结构变化染色质结构变化在基因表达调控和细胞分化过程中具有重要作用。
染色质免疫共沉淀技术可以用来研究染色质结构变化与基因表达调控的关系。
通过该技术,研究者可以确定染色质结构变化在基因组中的分布模式,以及它们如何影响基因表达。
例如,利用染色质免疫共沉淀技术研究染色质凝聚状态与基因表达的关系,发现染色质凝聚程度与基因表达活性呈负相关。
此外,该技术还可以用于研究染色质重塑复合物、核小体组装等在染色质结构变化中的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染色体免疫共沉淀(Chromatin Immunoprecipitation,ChIP)是基于体内分析发展起来的方法,也称结合位点分析法,在过去十年已经成为表观遗传信息研究的主要方法。
这项技术帮助研究者判断在细胞核中基因组的某一特定位置会出现何种组蛋白修饰。
ChIP不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。
它的原理是在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。
实验步骤:第一步:用甲醛把细胞内的DNA结合蛋白与DNA交联起来
具体步骤与注意事项
1. 准备好一盘细胞量达到1 x 106的培养皿(注意:培养细胞时要适当处理细胞使得目的基因处于被转录的状态)
2. 于培养基中加入适量的甲醛,使甲醛终浓度达到1%,37℃下交联10分钟。
(注意:交联的时间太短或太长都会影响最终的结果)
3. 尽量的去掉培养基,然后用加了蛋白酶抑制剂的预冷PBS清洗细胞两次;
4. 把细胞刮下,置于离心管中,4°C 2000 rpm 离心4分钟;
5. 去掉上清液,加入200微升裂解液(注意:每1 x 106个细胞加200微升裂解液),冰上裂解10分钟;
第二步:用超声波的方法把DNA破碎成合适的大小(250bp至800bp),因为在第一步中用甲醛交联了细胞内的大分子,所以结合蛋白质的DNA片段相对没那么容易被打断。
具体步骤与注意事项
6. 用超声波破碎细胞裂解液中的DNA至DNA的长度为250bp至800bp(注意:整个操作过程必须在冰上进行,破碎中途不断的跑胶检测DNA分子长度是否达到250bp至800bp)
第三步:用特异性抗体与DAN结合蛋白结合,用免疫沉淀的方法法分离出复合体。
纯化出复合体中的小片段DNA
具体步骤与注意事项
7. 把破碎好的细胞裂解液置于冰冻离心机中4°C 13000 rpm 离心10分钟,再把上清转移到2ml的离心管中;
8. 用CHIP稀释液把细胞裂解液稀释10倍,并将此液称为原液(注意:稀释后取出200微升原液作为Input样品);
9. 为了更好的去掉结果背景,往原液中加入75微升的蛋白A/G琼脂糖珠,4°C孵育30分钟,再稍微离心一下,收集上清液(以下称为A液);
10. 把A液分为两份,一份加入结合目的基因的蛋白的抗体,一份加入Fl ag标签抗体,4°C孵育过夜;
11. 分别加入40微升的蛋白A/G琼脂糖,4°C摇晃孵育1小时;(注意:孵育的时间不能太长,而且摇晃的速度要快)
12. 700 至1000 r pm 4°C冰冻离心1分钟,去掉上清,反复清洗琼脂糖珠四次(注意:务必把上清液彻底的去掉,否则残留的上清液会造成假阳性);第四步:用PCR扩增特异DNA序列,以确定目的基因是否与抗原蛋白结合并最终被沉淀下来。
具体步骤与注意事项
13. 即时制备El ution Buffer (1%SDS, 0.1M NaHCO3);
14. 往琼脂糖珠里加入120微升的Elution Buffer,室温下剧烈摇晃15分钟,2000g离心1分钟取上清液(以下称为B液);
15. 用PCR纯化试剂盒纯化B液,
16. 纯化过的B液可以进行PCR分析(注意:检测时要带上之前取出的部分原液作为Input对照);
注意:12步以后的结果可以加入25微升3 x上样缓冲液,沸水变性5分钟,离心取上清做Western Bl ot检测。
染色体免疫共沉淀(Chromatin Immunoprecipitation,ChIP)是基于体内分析发展起来的方法,也称结合位点分析法,在过去十年已经成为表观遗传信息研究的主要方法。
这项技术帮助研究者判断在细胞核中基因组的某一特定位置会出现何种组蛋白修饰。
ChIP不仅可以检测体内反式因子与DNA 的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。
近年来,这种技术得到不断的发展和完善。
采用结合微阵列技术在染色体基因表达调控区域检查染色体活性,是深入分析癌症、心血管疾病以及中央神经系统紊乱等疾病的主要代谢通路的一种非常有效的工具。
它的原理是在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。
IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。
目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。
实验最需要注意点就是抗体的性质。
抗体不同和抗原结合能力也不同,免染能结合未必能用在IP反应。
建议仔细检查抗体的说明书。
特别是多抗的特异性是问题。
其次,要注意溶解抗原的缓冲液的性质。
多数的抗原是细胞构成的蛋白,特别是骨架蛋白,缓冲液必须要使其溶解。
为此,必须使用含有强界面活性剂的缓冲液,尽管它有可能影响一部分抗原抗体的结合。
另一面,如用弱界面活性剂溶解细胞,就不能充分溶解细胞蛋白。
即便溶解也产生与其它的蛋白结合的结果,抗原决定族被封闭,影响与抗体的结合,即使IP成功,也是很多蛋白与抗体共沉的悲惨结果。
再次,为防止蛋白的分解,修饰,溶解抗原的缓冲液必须加蛋白每抑制剂,低温下进行实验。
每次实验之前,首先考虑抗体/缓冲液的比例。
抗体过少就不能检出抗原,过多则就不能沉降在beads上,残存在上清。
缓冲剂太少则不能溶解抗原,过多则抗原被稀释。