专题03:导数及其应用-高考理数二轮复习精品资料

合集下载

专题03导数及其应用(解析版)

专题03导数及其应用(解析版)

专题03 导数及其应用1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.3.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.5.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.7.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.8.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x =-+,21sin ())(1x 'x g x =-++. 当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π⎥⎝⎦有唯一零点. (iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.9.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点. (2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力. 10.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1若存在,求出,a b 的所有值;若不存在,说明理由. 【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =a =-a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 11.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-, 即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-. 由321()4g x x x =-得23()24g'x x x =-.令()0g'x =得0x =或83x =. (),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 12.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)由已知,有()e (cos sin )x f 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n x n x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且()()()22e cos ecos 2e n n yx n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<. 所以,20022sin c s e o n n n x x x -πππ+-<-.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力. 13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注:e=…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦. 【解析】(1)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a ≤,得0a <≤.当0a <≤()f x ≤2ln 0x -≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x =.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得,11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()10g t g x ⎛+=> ⎝.由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2xf x a .综上所述,所求a 的取值范围是⎛⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==. 列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学2019届高三第二次调研考试数学】函数f(x)=x 2−2lnx 的单调减区间是A .(0,1]B .[1,+∞)C .(−∞,−1]∪(0,1]D .[−1,0)∪(0,1]【答案】A【解析】f′(x)=2x −2x =2x 2−2x(x >0),令f′(x)≤0,解得:0<x ≤1. 故选A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题.16.【江西省南昌市2019届高三模拟考试数学】已知f(x)在R 上连续可导,f ′(x)为其导函数,且f(x)=e x +e −x −f ′(1)x ⋅(e x −e −x ),则f ′(2)+f ′(−2)−f ′(0)f ′(1)= A .4e 2+4e −2 B .4e 2−4e −2 C .0D .4e 2【答案】C【解析】∵()e e (1)()(e e ()x x x x f x f x f x --'-=+=---), ∴()f x 是偶函数,两边对x 求导,得()()f x f x -'-=',即()()f x f x '-=-', 则()f x '是R 上的奇函数,则(0)0f '=,(2)(2)f f '-=-',即(2)(2)0f f '+'-=,则(2)(2)(0)(1)0f f f f ''''+--=. 故选C .【名师点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题.17.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为A .5250x y +-=B .10450x y +-=C .540x y +=D .204150x y --=【答案】B 【解析】()()3321f x f x x x +-=++……①,()()3321f x f x x x ∴-+=--+……②,联立①②,解得()31124f x x x =--+,则()2312f x x '=--, ()11511244f ∴=--+=-,()351122f '=--=-,∴切线方程为:()55142y x +=--,即10450x y +-=. 故选B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e -B .1eC .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12ex -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.19.【四川省内江市2019届高三第三次模拟考试数学】若函数f(x)=12ax 2+xlnx −x 存在单调递增区间,则a 的取值范围是 A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】()ln f x ax x '=+, ∴()0f x '>在x ∈()0+∞,上成立, 即ax+ln x >0在x ∈()0+∞,上成立,即a ln xx->在x ∈()0+∞,上成立. 令g (x )ln x x =-,则g ′(x )21ln xx -=-, ∴g (x )ln xx =-在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )ln x x =-的最小值为g (e )=1e-,∴a >1e-. 故选B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题.20.【山西省太原市2019届高三模拟试题(一)数学】已知定义在(0,+∞)上的函数f(x)满足xf ′(x)−f(x)<0,且f(2)=2,则f (e x )−e x >0的解集是 A .(−∞,ln2) B .(ln2,+∞) C .(0,e 2)D .(e 2,+∞)【答案】A 【解析】令g (x )=f (x )x,g ′(x )=xf ′(x )−f (x )x 2<0,∴g(x)在(0,+∞)上单调递减,且g (2)=f (2)2=1,故f (e x )−e x >0等价为f (e x )e x>f (2)2,即g (e x )>g (2),故e x <2,即x <ln2, 则所求的解集为(−∞,ln2). 故选A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题. 21.【河南省焦作市2019届高三第四次模拟考试数学】已知a =ln √33,b =e −1,c =3ln28,则a,b,c 的大小关系为 A .b <c <a B .a >c >b C .a >b >cD .b >a >c【答案】D【解析】依题意,得ln33a ==,1lne e e b -==,3ln2ln888c ==.令f (x )=ln x x,所以f ′(x )=1−ln x x 2.所以函数f (x )在(0,e )上单调递增,在(e,+∞)上单调递减, 所以[f (x )]max =f (e )=1e =b ,且f (3)>f (8),即a >c , 所以b >a >c . 故选D.【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数()ln xf x x=是解题的关键,属于中档题.22.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知f (x )=lnx +1−ae x ,若关于x 的不等式f (x )<0恒成立,则实数a 的取值范围是 A .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由()0f x <恒成立得ln 1ex x a +>恒成立, 设()ln 1e x x h x +=,则()1ln 1e xx x h x -='-. 设()1ln 1g x x x =--,则()2110g x x x'=--<恒成立,∴g (x )在(0,+∞)上单调递减,又∵g (1)=0,∴当0<x <1时,g (x )>g (1)=0,即ℎ′(x )>0; 当x >1时,g (x )<g (1)=0,即ℎ′(x )<0, ∴ℎ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴ℎ(x)max =ℎ(1)=1e ,∴a >1e . 故选D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.23.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .-2 B .3 C .-2或3D .-3或2【答案】B 【解析】()()()()32222113(3)(132)f x x a x a a f x x x a x a a '=++-=++-+-⇒+-,由题意可知(1)0f '=,即()212(1)303a a a a +-=+⇒-=+或2a =-,当3a =时,()222()2(1)389(9)(1)f x x a x a a x x x x +-'=++-=+-=+-,当1x >或9x <-时,()0f x '>,函数单调递增;当91x -<<时,()0f x '<,函数单调递减, 显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f x x a x x x x +-=-++=-=+-≥',所以函数()f x 是R 上的单调递增函数,没有极值,不符合题意,舍去. 故3a =. 故选B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点. 24.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【解析】设()()2g x x f x =,因为()f x 为R 上的奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上的奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增,则不等式()()()22018+2018420x f x f +-<+即()()()22018+201842x f x f +<--, 即()()()22018+201842x f x f +<, 即()()20182g x g +<,所以20182x +<,解得2016x <-. 故选A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.25.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 【答案】12-【解析】因为21()ln 2f x x x x =+,所以()ln 1f x x x '=++, 因此,曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线斜率为(1)112k f '==+=, 又该切线与直线10ax y --=垂直,所以12a =-. 故答案为12-. 【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】作出函数()f x 的图象如图所示,由()2f x a =⎡⎤⎣⎦,可得()1f x =>, 即1a >,不妨设12x x < ,则2212e x x =(1)t t =>,则12ln x x t ==,12ln x x t ∴+=令()ln g t t =()g t '= ∴当18t <<时,()0g t '>,g t 在()1,8上单调递增;当8t时,()0g t '<,g t 在()8,+∞上单调递减,∴当8t =时,g t 取得最大值,为(8)ln823ln22g =-=-.故答案为3ln 22-.【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 的极值与最值的步骤:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值;(6)如果求闭区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()x g x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞单调递增,在(单调递减,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【解析】(1)由题意3()f x x ax '=-,所以当1a =时,(2)2f =,(2)6f '=, 因此曲线()y f x =在点(2,(2))f 处的切线方程是26(2)y x -=-, 即6100x y --=.(2)因为2()(22)e e ()x g x x x a f x =-+--, 所以2()(22)e (22)e e '()x x g x x x x a f x '=-+-+--232()e e()()(e e )x x x a x ax x a x =---=--,令()e e x h x x =-,则()e e x h x '=-, 令()0h x '=得1x =,当(,1)x ∈-∞时,()0h x '<,()h x 单调递减, 当(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以当1x =时,min ()(1)0h x h ==, 也就说,对于x ∀∈R 恒有()0h x ≥. 当0a ≤时,2()()()0g x x a h x '=-≥,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,令()0g x '=,可得x =当x <x >2()()()0g x x a h x '=-≥,()g x 单调递增,当x <<()0g x '<,()g x 单调递减,因此,当x =()g x 取得极大值2e(2)e4g a =+;当x =()g x 取得极小值2e (4g a =-+. 综上所述:当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞上单调递增,在(上单调递减, 函数既有极大值,又有极小值,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数f(x)=lnx −ax ,g(x)=x 2,a ∈R .(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a 的取值范围.【答案】(1)极大值点为1a ,无极小值点.(2)a ≥−1.【解析】(1)()ln f x x ax =-的定义域为(0,+∞),f ′(x )=1x −a , 当a ≤0时,f ′(x )=1x −a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,解f ′(x )=1x −a >0得0<x <1a ,解f ′(x )=1x −a <0得x >1a , 所以f (x )在(0,1a )上单调递增,在(1a ,+∞)上单调递减,所以函数f (x )有极大值点,为1a ,无极小值点. (2)由条件可得ln x −x 2−ax ≤0(x >0)恒成立, 则当x >0时,a ≥ln x x−x 恒成立,令ℎ(x )=ln x x−x(x >0),则ℎ′(x )=1−x 2−ln xx 2,令k (x )=1−x 2−ln x(x >0),则当x >0时,k ′(x )=−2x −1x <0,所以k (x )在(0,+∞)上为减函数. 又k (1)=0,所以在(0,1)上,ℎ′(x )>0;在(1,+∞)上,ℎ′(x )<0. 所以ℎ(x )在(0,1)上为增函数,在(1,+∞)上为减函数, 所以ℎ(x )max =ℎ(1)=−1,所以a ≥−1.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数f(x)=lnx −xe x +ax(a ∈R).(1)若函数f(x)在[1,+∞)上单调递减,求实数a 的取值范围; (2)若a =1,求f(x)的最大值.【答案】(1)a ≤2e −1;(2)f(x)max =−1.【解析】(1)由题意知,f′(x)=1x −(e x +xe x )+a =1x −(x +1)e x +a ≤0在[1,+∞)上恒成立, 所以a ≤(x +1)e x −1x 在[1,+∞)上恒成立. 令g(x)=(x +1)e x −1x ,则g′(x)=(x +2)e x +1x 2>0,所以g(x)在[1,+∞)上单调递增,所以g(x)min =g(1)=2e −1, 所以a ≤2e −1.(2)当a =1时,f(x)=lnx −xe x +x(x >0). 则f′(x)=1x−(x +1)e x +1=(x +1)(1x−e x ),令m(x)=1x −e x ,则m′(x)=−1x 2−e x <0, 所以m(x)在(0,+∞)上单调递减.由于m(12)>0,m(1)<0,所以存在x 0>0满足m(x 0)=0,即e x 0=1x 0.当x ∈(0,x 0)时,m(x)>0,f′(x)>0;当x ∈(x 0,+∞)时,m(x)<0,f′(x)<0. 所以f(x)在(0,x 0)上单调递增,在(x 0,+∞)上单调递减. 所以f(x)max =f (x 0)=lnx 0−x 0e x 0+x 0, 因为e x 0=1x 0,所以x 0=−lnx 0,所以f(x 0)=−x 0−1+x 0=−1, 所以f(x)max =−1.【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.30.【福建省龙岩市2019届高三5月月考数学】今年3月5日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为(01)p p <<,且各篇学位论文是否被评议为“不合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为()f p ,求()f p ;(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元.现以此方案实施,且抽检论文为6000篇,问是否会超过预算并说明理由.【答案】(1)−3p 5+12p 4−17p 3+9p 2;(2)若以此方案实施,不会超过预算.【解析】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为C 32p 2(1−p )+C 33p 3, 一篇学位论文复评被认定为“存在问题学位论文”的概率为C 31p (1−p )2[1−(1−p )2],所以一篇学位论文被认定为“存在问题学位论文”的概率为f (p )=C 32p 2(1−p )+C 33p 3+C 31p (1−p )2[1−(1−p )2]=3p 2(1−p )+p 3+3p (1−p )2[1−(1−p )2] =−3p 5+12p 4−17p 3+9p 2.(2)设每篇学位论文的评审费为X 元,则X 的可能取值为900,1500.P (X =1500)=C 31p (1−p )2, P (X =900)=1−C 31p (1−p )2, 所以E (X )=900×[1−C 31p (1−p )2]+1500×C 31p (1−p )2=900+1800p (1−p )2. 令g (p )=p (1−p )2,p ∈(0,1),g ′(p )=(1−p )2−2p (1−p )=(3p −1)(p −1). 当p ∈(0,13)时,g ′(p )>0,g (p )在(0,13)上单调递增;当p ∈(13,1)时,g ′(p )<0,g (p )在(13,1)上单调递减,所以g (p )的最大值为g (13)=427.所以实施此方案,最高费用为100+6000×(900+1800×427)×10−4=800(万元). 综上,若以此方案实施,不会超过预算.【名师点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查随机变量的期望的求法,考查利用导数求函数的最大值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数f(x)=m e x −x 2+3,其中m ∈R .(1)当f(x)为偶函数时,求函数ℎ(x)=xf(x)的极值;(2)若函数f(x)在区间[−2 , 4]上有两个零点,求m 的取值范围. 【答案】(1)极小值ℎ(−1)=−2,极大值ℎ(1)=2;(2)−2e <m <13e 4或m =6e 3.【解析】(1)由函数f(x)是偶函数,得f(−x)=f(x), 即m e −x −(−x)2+3=m e x −x 2+3对于任意实数x 都成立, 所以m =0. 此时ℎ(x)=xf(x)=−x 3+3x ,则ℎ′(x)=−3x 2+3. 由ℎ′(x)=0,解得x =±1. 当x 变化时,ℎ′(x)与ℎ(x)的变化情况如下表所示:所以ℎ(x)在(−∞,−1),(1,+∞)上单调递减,在(−1,1)上单调递增. 所以ℎ(x)有极小值ℎ(−1)=−2,极大值ℎ(1)=2. (2)由f(x)=m e x −x 2+3=0,得m =x 2−3e x.所以“f(x)在区间[−2 , 4]上有两个零点”等价于“直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点”.对函数g(x)求导,得g ′(x)=−x 2+2x+3e x.由g ′(x)=0,解得x 1=−1,x 2=3. 当x 变化时,g ′(x)与g(x)的变化情况如下表所示:所以g(x)在(−2,−1),(3,4)上单调递减,在(−1,3)上单调递增. 又因为g(−2)=e 2,g(−1)=−2e ,g(3)=6e 3<g(−2),g(4)=13e 4>g(−1),所以当−2e <m <13e4或m =6e3时,直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点.即当−2e <m <13e 4或m =6e3时,函数f(x)在区间[−2 , 4]上有两个零点.【名师点睛】利用函数零点的情况求参数值或取值范围的方法: (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解. (3)转化为两熟悉的函数图象问题,从而构建不等式求解.。

高考理科数学大二轮专题复习新方略课件导数的简单应用

高考理科数学大二轮专题复习新方略课件导数的简单应用

历年高考真题回顾与解析
01
2022年全国卷导数 大题
通过构造函数,利用导数研究函 数的单调性和最值,解决不等式 恒成立问题。
02
2021年全国卷导数 大题
结合导数的几何意义,考查切线 方程的求解和函数零点存在性定 理的运用。
03
2020年全国卷导数 大题
考查利用导数研究函数的极值和 最值,以及分类讨论思想在解题 中的运用。
应试技巧总结
01
熟练掌握导数的基本公式和运算法则,能够快速准确地求出函数的导 数。
02
理解导数的几何意义,能够灵活运用导数解决切线、法线、单调性、 极值等问题。
03
掌握利用导数研究函数性质的方法,如判断函数的单调性、求函数的 极值和最值等。
04
具备分类讨论思想,能够根据问题的不同情况选择合适的解题方法。
高考理科数学大二轮专题复习新 方略课件导数的简单应用
汇报人:XX 20XX-01-13
目 录
• 导数概念及基本公式 • 导数在函数性质中的应用 • 导数在解决实际问题中的应用 • 微分学基本概念及运算规则 • 高考真题解析与应试技巧
01
导数概念及基本公式
导数定义与几何意义
导数定义
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处 有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量 Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在 ,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x) 在点x0处的导数。
几何意义
函数y=f(x)在点x0处的导数f'(x0)的几何意义表示函数曲线在 点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲 线在这一点上的切线斜率)。

高考理科数学二轮课件专题导数及其应用

高考理科数学二轮课件专题导数及其应用
最优化决策
结合边际分析和弹性分析的结果, 确定经济变量的最优取值范围,为 制定经济政策提供科学依据。
05 微分方程初步知识及其应用
微分方程基本概念和分类
微分方程定义
微分方程是描述自变量、未知函数及其导数之间关系的数学方程。可分为一阶、二阶等微分方程;根据方程形式,可分为线性、非线 性微分方程。
函数能够满足问题的需求。
利用构造函数法证明不等式的步骤
03
首先构造函数,然后求导并判断函数的单调性或最值,最后根
据函数的性质证明不等式。
04 导数在优化问题中的应用
最值问题求解策略
一阶导数测试法
闭区间上连续函数的性质
通过求一阶导数并判断其符号变化来 确定函数的单调性,进而找到函数的 极值点。
对于闭区间上的连续函数,通过比较 区间端点和驻点的函数值来确定函数 的最值。
优化方法的选择
针对不同类型的优化问题 ,选择合适的优化方法, 如梯度下降法、牛顿法等 ,进行求解。
经济学中边际分析和弹性分析
边际分析
利用导数研究经济变量之间的边 际关系,如边际成本、边际收益 等,为经济决策提供定量依据。
弹性分析
通过导数研究经济变量之间的相对 变化率,如需求弹性、供给弹性等 ,揭示经济变量之间的相互影响程 度。
02
01
电路分析问题
电路中的电压、电流等物理量的变化可以通 过电路微分方程进行分析和计算。
04
03
06 总结与提高
知识体系回顾与总结
A
导数的定义与计算
导数描述了函数在某一点处的切线斜率,可以 通过极限的定义进行计算。
导数的几何意义与应用
导数在几何上表示切线斜率,可以用于求 曲线的切线方程和法线方程。

2019年高考数学(理)真题汇编:专题03 导数及其应用

2019年高考数学(理)真题汇编:专题03 导数及其应用

专题03 导数及其应用1、【2019高考全国Ⅲ理数】已知曲线e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+,则( )A .e,1a b ==-B .e,1a b ==C .1e 1,a b -==D .1,e 1b a -==-2、【2019高考全国Ⅲ理数】设函数()sin()(0)5f x x ωωπ=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0,)10π单调递增 ④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3、【2019高考天津卷理数】已知R a ∈,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为( ) A.[]0,1B.[]0,2C.[]0,eD.[]1,e4、【2019高考全国Ⅰ理数】曲线23()e xy x x =+在点(0,0)处的切线方程为_______. 5、【2019高考浙江卷】已知R a ∈,函数3()f x ax x =-,若存在R t ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 6、【2019高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是__________7、【2019高考江苏卷】在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(e,1)--(e 为自然对数的底数),则点A 的坐标是_________8、【2019高考北京卷理数】设函数f (x )=e x+a e −x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.9、【2019高考全国Ⅰ理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:1.()f x '在区间(1,)2π-存在唯一极大值点; 2.()f x 有且仅有2个零点.10、【2019高考全国Ⅱ理数】已知函数()11ln x f x x x -=-+.1.讨论()f x 的单调性,并证明()f x 有且仅有两个零点;2.设0x 是()f x 的一个零点,证明曲线ln y x =在点00l (,)n A x x 处的切线也是曲线exy =的切线.11、【2019高考全国Ⅲ理数】已知函数32()2f x x ax b =-+. 1.讨论()f x 的单调性;2.是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.12、【2019高考天津卷理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.1.求()f x 的单调区间;2.当,42x ⎡⎤∈⎢⎥⎣π⎦π时,证明()()02f x g x x ⎛⎫π+-≥ ⎪⎝⎭;3.设n x 为函数()()1u x f x =-在区间2,242m m ⎛⎫+π+π ⎝π⎪⎭内的零点,其中N n ∈,证明20022sin cos n n n x x e x -ππ+-π<-.13、【2019高考浙江卷】已知实数0a ≠,设函数()=ln 0.f x a x x +>1.当34a =-时,求函数()f x 的单调区间;2.对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e 2.71828=⋯为自然对数的底数.14、【2019高考江苏卷】设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为()f x 的导函数.1.若a b c ==,(4)8f =,求a 的值;2.若,a b b c ≠=,且()f x 和'()f x 的零点均在集合{3,1,3}-中,求()f x 的极小值;3.若0,01,1a b c =<≤=,且()f x 的极大值为M ,求证:427M ≤. 15、【2019高考北京卷理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.答案以及解析1答案及解析: 答案:D解析:详解:'ln 1,xy ae x =++1'|12x k y ae ===+= 1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .2答案及解析: 答案:D解析:()sin (0)5f x wx w π⎛⎫=+> ⎪⎝⎭,在[0,2]π有且仅有5个零点.02x ∴≤≤π,12555wx w ππ≤+≤π+,1229510w ≤<,④正确.如图213,,x x x 为极大值点为3个,①正确;极小值点为2个或3个.∴②不正确.当010x π<<时,5105w wx f πππ<+<+π,当2910w =时,2920491051001001002w +=+=<ππππππ. ∴③正确,故选D .3答案及解析: 答案:C解析:首先(0)0f ≥,即0a ≥, 当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->,当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x =,则2ln 1'()(ln )x g x x -=,易知x e =为函数()g x 在(1,)+∞唯一的极小值点、也是最小值点, 故max()()g x g e e ==,所以a e ≤。

高考数学二轮总复习 第三部分 专题二 2.3 热点小专题二、导数的应用课件

高考数学二轮总复习 第三部分 专题二 2.3 热点小专题二、导数的应用课件

上恒成立,e 为自然对数的底数,则实数 m 的取值范围是(
A.m>e
答案 B
12/11/2021
e
B.m>2
C.m>1
)
D.m> e
解析


1
f(x)<m- 2 在(0,+∞)上恒成立,即

1
g(x)=f(x)+ 2
=
ln +1
,故只需
2
1 2
· -(ln +1)·2

4
g'(x)=
化简得y=-2x+1.
(2)因为奇函数在关于原点对称的两点处的切线平行,且f'(x)=3ex2-2e-x(x<0),
故f'(1)=f'(-1)=e,f(1)=-f(-1)=-e,故切线为y+e=e(x-1),即y=ex-2e.
12/11/2021
热点二
已知曲线的切线方程求参数的值
【例2】(2020天津河北区线上测试,17)已知函数f(x)=axln x-bx(a,b∈R)在
,则 g(x)在区间
1
,1
2
1
f'(x)= +x-a=0,得

1
a= +x.

上单调递减,在区间(1,3)上单调递
∴g(x)min=g(1)=2,又 g
结合函数
1
2
5
10
= ,g(3)= .
2
3
1
1
g(x)= +x,x∈ ,3

2
5
的图象可得,当2
10
1
≤a< 3 时,y=f'(x)在区间 2,3

高三数学二轮专题复习第3讲 导数及其应用

高三数学二轮专题复习第3讲 导数及其应用

第3讲导数及其应用[考情考向分析] 1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用导数解决函数的单调性与极值(最值)问题是高考的常见题型.3.导数与函数零点、不等式的结合常作为高考压轴题出现.热点一导数的几何意义1.函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0).2.求曲线的切线要注意“过点P的切线”与“在点P处的切线”的不同.例1(1)(2018·全国Ⅰ)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=-2x B.y=-xC.y=2x D.y=x[答案] D[解析]方法一∵f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.方法二∵f(x)=x3+(a-1)x2+ax为奇函数,∴f′(x)=3x2+2(a-1)x+a为偶函数,∴a=1,即f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.(2)若直线y=kx+b是曲线y=ln x+1的切线,也是曲线y=ln(x+2)的切线,则实数b=________.[答案]ln 2[解析]设直线y=kx+b与曲线y=ln x+1和曲线y=ln(x+2)的切点分别为(x1,ln x1+1),(x2,ln(x2+2)).∵直线y=kx+b是曲线y=ln x+1的切线,也是曲线y=ln(x+2)的切线,∴1x1=1x2+2,即x1-x2=2.∴切线方程为y-(ln x1+1)=1x1(x-x1),即为y=xx1+ln x1或y-ln(x2+2)=1x2+2(x-x2),即为y=xx1+2-x1x1+ln x1,∴2-x1x1=0,则x1=2,∴b=ln 2.思维升华(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P 的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.跟踪演练1 (1)(2018·全国Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为________. [答案] 2x -y =0[解析] ∵y =2ln(x +1),∴y ′=2x +1.令x =0,得y ′=2,由切线的几何意义得切线斜率为2,又切线过点(0,0),∴切线方程为y =2x ,即2x -y =0.(2)若函数f (x )=ln x (x >0)与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫ln 12e ,+∞ B .(-1,+∞) C .(1,+∞) D .(-ln 2,+∞)[答案] A[解析] 设公切线与函数f (x )=ln x 切于点A (x 1,ln x 1)(x 1>0), 则切线方程为y -ln x 1=1x 1(x -x 1).设公切线与函数g (x )=x 2+2x +a 切于点B (x 2,x 22+2x 2+a )(x 2<0), 则切线方程为y -(x 22+2x 2+a )=2(x 2+1)(x -x 2), ∴⎩⎪⎨⎪⎧1x 1=2(x 2+1),ln x 1-1=-x 22+a , ∵x 2<0<x 1,∴0<1x 1<2.又a =ln x 1+⎝⎛⎭⎫12x 1-12-1 =-ln1x 1+14⎝⎛⎭⎫1x 1-22-1, 令t =1x 1,∴0<t <2,a =14t 2-t -ln t .设h (t )=14t 2-t -ln t (0<t <2),则h ′(t )=12t -1-1t =(t -1)2-32t<0,∴h (t )在(0,2)上为减函数,则h (t )>h (2)=-ln 2-1=ln 12e, ∴a ∈⎝⎛⎭⎫ln 12e ,+∞. 热点二 利用导数研究函数的单调性1.f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0.2.f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为常函数,函数不具有单调性.例2 (2018·聊城模拟)已知函数f (x )=2e x -kx -2. (1)讨论函数f (x )在(0,+∞)内的单调性;(2)若存在正数m ,对于任意的x ∈(0,m ),不等式|f (x )|>2x 恒成立,求正实数k 的取值范围. 解 (1)由题意得f ′(x )=2e x -k ,x ∈(0,+∞), 因为x >0,所以2e x >2.当k ≤2时,f ′(x )>0,此时f (x )在(0,+∞)内单调递增. 当k >2时,由f ′(x )>0得x >ln k2,此时f (x )单调递增;由f ′(x )<0得0<x <ln k2,此时f (x )单调递减.综上,当k ≤2时,f (x )在(0,+∞)内单调递增; 当k >2时,f (x )在⎝⎛⎭⎫0,ln k2内单调递减, 在⎝⎛⎭⎫ln k2,+∞内单调递增. (2)①当0<k ≤2时,由(1)可得f (x )在(0,+∞)内单调递增,且f (0)=0, 所以对于任意的x ∈(0,m ),f (x )>0. 这时|f (x )|>2x 可化为f (x )>2x , 即2e x -(k +2)x -2>0. 设g (x )=2e x -(k +2)x -2, 则g ′(x )=2e x -(k +2),令g ′(x )=0,得x =ln k +22>0,所以g (x )在⎝ ⎛⎭⎪⎫0,ln k +22内单调递减,且g (0)=0,所以当x ∈⎝ ⎛⎭⎪⎫0,ln k +22时,g (x )<0,不符合题意.②当k >2时,由(1)可得f (x )在⎝⎛⎭⎫0,ln k2内单调递减,且f (0)=0, 所以存在x 0>0,使得对于任意的x ∈(0,x 0)都有f (x )<0. 这时|f (x )|>2x 可化为-f (x )>2x , 即-2e x +()k -2x +2>0. 设h (x )=-2e x +()k -2x +2, 则h ′(x )=-2e x +()k -2.(ⅰ)若2<k ≤4,则h ′(x )<0在(0,+∞)上恒成立, 这时h (x )在(0,+∞)内单调递减,且h (0)=0, 所以对于任意的x ∈(0,x 0)都有h (x )<0,不符合题意. (ⅱ)若k >4,令h ′(x )>0,得x <ln k -22,这时h (x )在⎝ ⎛⎭⎪⎫0,ln k -22内单调递增,且h (0)=0,所以对于任意的x ∈⎝ ⎛⎭⎪⎫0,ln k -22,都有h (x )>0,此时取m =min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x 0,lnk -22,则对于任意的x ∈(0,m ),不等式|f (x )|>2x 恒成立. 综上可得k 的取值范围为()4,+∞.思维升华 利用导数研究函数单调性的一般步骤 (1)确定函数的定义域. (2)求导函数f ′(x ).(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可;②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.跟踪演练2 (1)(2018·河南省中原名校质量考评)已知f (x )=()x 2+2ax ln x -12x 2-2ax 在(0,+∞)上是增函数,则实数a 的取值范围是( ) A .{1} B .{-1} C .(0,1] D .[-1,0) [答案] B[解析] f (x )=()x 2+2ax ln x -12x 2-2ax ,f ′(x )=2(x +a )ln x ,∵f (x )在(0,+∞)上是增函数, ∴f ′(x )≥0在(0,+∞)上恒成立, 当x =1时,f ′(x )=0满足题意,当x >1时,ln x >0,要使f ′(x )≥0恒成立, 则x +a ≥0恒成立.∵x +a >1+a ,∴1+a ≥0,解得a ≥-1, 当0<x <1时,ln x <0,要使f ′(x )≥0恒成立, 则x +a ≤0恒成立,∵x +a <1+a ,∴1+a ≤0,解得a ≤-1. 综上所述,a =-1.(2)(2018·资阳三诊)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎫x -12+f (x +1)=0,e 3f (2 018)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1e x 的解集为( )A .(-∞,3)B .(3,+∞)C .(-∞,0)D .(0,+∞)[答案] B[解析] ∵f (x )是偶函数,∴f (x )=f (-x ),f ′(x )=[]f (-x )′=-f ′(-x ),∴f ′(-x )=-f ′(x ),f (x )>f ′(-x )=-f ′(x ), 即f (x )+f ′(x )>0,设g (x )=e x f (x ), 则[]e x f (x )′=e x []f (x )+f ′(x )>0, ∴g (x )在(-∞,+∞)上单调递增, 由f ⎝⎛⎭⎫x -12+f (x +1)=0, 得f (x )+f ⎝⎛⎭⎫x +32=0,f ⎝⎛⎭⎫x +32+f ()x +3=0, 相减可得f (x )=f ()x +3,f (x )的周期为3,∴e 3f ()2 018=e 3f (2)=1,g (2)=e 2f (2)=1e ,f (x +2)>1e x ,结合f (x )的周期为3可化为e x -1f (x -1)>1e =e 2f (2),g (x -1)>g (2),x -1>2,x >3, ∴不等式的解集为()3,+∞,故选B. 热点三 利用导数求函数的极值、最值1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.例3 (2018·北京)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解 (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x=(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞.思维升华 (1)求函数f (x )的极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号.(2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (3)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.跟踪演练3 (2018·江西省八所重点中学联考)已知f (x )=⎝⎛⎭⎫e +1e ln x +1x -x . (1)求函数f (x )的极值;(2)设g (x )=ln(x +1)-ax +e x ,对于任意x 1∈[0,+∞),x 2∈[1,+∞),总有g (x 1)≥e2f (x 2)成立,求实数a 的取值范围.解 (1)f ′(x )=e +1e x -1x 2-1=-()x -e ⎝⎛⎭⎫x -1e x 2,令f ′(x )=0,可得x =1e或x =e.当x 变化时,f ′(x ),f (x )的变化情况如表所示:所以f (x )的极小值为f ⎝⎛⎭⎫1e =-2e , 极大值为f (e)=2e.(2)由(1)可知,当x ∈[1,+∞)时, 函数f (x )的最大值为2e,对于任意x 1∈[0,+∞),x 2∈[1,+∞),总有g (x 1)≥e2f (x 2)成立,等价于对于任意x ∈[0,+∞),g (x )≥1恒成立,g ′(x )=e x +1x +1-a (x ≥0),①当a ≤2时,因为e x ≥x +1,所以g ′(x )=e x +1x +1-a ≥x +1+1x +1-a ≥2-a ≥0,即g (x )在[0,+∞)上单调递增,g (x )≥g (0)=1恒成立,符合题意. ②当a >2时,设h (x )=e x +1x +1-a (x ≥0), h ′(x )=e x -1(x +1)2=(x +1)2e x -1(x +1)2≥0,所以g ′(x )在[0,+∞)上单调递增, 且g ′(0)=2-a <0,则存在x 0∈(0,+∞), 使得g ′(x 0)=0,所以g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 又g (x 0)<g (0)=1,所以g (x )≥1不恒成立,不符合题意.综合①②可知,实数a 的取值范围是(]-∞,2.真题体验1.(2017·浙江改编)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是________.(填序号)[答案]④[解析]观察导函数f′(x)的图象可知,f′(x)的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f(x)的增减性从左到右依次为减、增、减、增.观察图象可知,排除①③.如图所示,f′(x)有3个零点,从左到右依次设为x1,x2,x3,且x1,x3是极小值点,x2是极大值点,且x2>0,故④正确.2.(2017·全国Ⅱ改编)若x=-2是函数f(x)=(x2+ax-1)·e x-1的极值点,则f(x)的极小值为________.[答案]-1[解析]函数f(x)=(x2+ax-1)e x-1,则f′(x)=(2x+a)e x-1+(x2+ax-1)e x-1=e x-1[x2+(a+2)x+a-1].由x=-2是函数f(x)的极值点,得f′(-2)=e-3(4-2a-4+a-1)=(-a-1)e-3=0,所以a=-1,所以f(x)=(x2-x-1)e x-1,f′(x)=e x-1(x2+x-2).由e x-1>0恒成立,得当x=-2或x=1时,f′(x)=0,且x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当x>1时,f′(x)>0.所以x=1是函数f(x)的极小值点.所以函数f(x)的极小值为f(1)=-1.3.(2017·山东改编)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是______.(填序号)①f(x)=2-x; ②f(x)=x2;③f(x)=3-x; ④f(x)=cos x.[答案]①[解析]若f(x)具有性质M,则[e x f(x)]′=e x[f(x)+f′(x)]>0在f(x)的定义域上恒成立,即f(x)+f′(x)>0在f(x)的定义域上恒成立.对于①式,f(x)+f′(x)=2-x-2-x ln 2=2-x(1-ln 2)>0,符合题意.经验证,②③④均不符合题意.4.(2017·全国Ⅰ)曲线y=x2+1x在点(1,2)处的切线方程为________.[答案]x-y+1=0[解析]∵y′=2x-1x2,∴y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,∴切线方程为y-2=x-1,即x-y+1=0.押题预测1.设函数y =f (x )的导函数为f ′(x ),若y =f (x )的图象在点P (1,f (1))处的切线方程为x -y +2=0,则f (1)+f ′(1)等于( ) A .4 B .3 C .2 D .1押题依据 曲线的切线问题是导数几何意义的应用,是高考考查的热点,对于“在某一点处的切线”问题,也是易错易混点. [答案] A[解析] 依题意有f ′(1)=1,1-f (1)+2=0,即f (1)=3, 所以f (1)+f ′(1)=4.2.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为( )A .-23B .-2C .-2或-23D .2或-23押题依据 函数的极值是单调性与最值的“桥梁”,理解极值概念是学好导数的关键.极值点、极值的求法是高考的热点. [答案] A [解析] 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧ a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故a b =-23.3.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于________.押题依据 函数单调性问题是导数最重要的应用,体现了“以直代曲”思想,要在审题中搞清“在(0,1)上为减函数”与“函数的减区间为(0,1)”的区别. [答案] 2[解析] ∵函数f (x )=x 2-ax +3在(0,1)上为减函数, ∴a2≥1,得a ≥2. 又∵g ′(x )=2x -ax ,依题意g ′(x )≥0在(1,2)上恒成立,得2x 2≥a 在(1,2)上恒成立,∴a ≤2,∴a =2.4.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________.押题依据 不等式恒成立或有解问题可以转化为函数的值域解决.考查了转化与化归思想,是高考的一个热点. [答案] ⎣⎡⎭⎫94,+∞ [解析] 由于f ′(x )=1+1(x +1)2>0, 因此函数f (x )在[0,1]上单调递增, 所以当x ∈[0,1]时,f (x )min =f (0)=-1. 根据题意可知存在x ∈[1,2], 使得g (x )=x 2-2ax +4≤-1, 即x 2-2ax +5≤0,即a ≥x 2+52x 成立,令h (x )=x 2+52x,则要使a ≥h (x )在[1,2]上能成立, 只需使a ≥h (x )min ,又函数h(x)=x2+52x在[1,2]上单调递减,所以h(x)min=h(2)=94,故只需a≥94.A组专题通关1.(2018·株洲质检)设函数y=x sin x+cos x的图象在点()t,f(t)处切线的斜率为g(t),则函数y=g(t)的图象一部分可以是()[答案] A[解析] 因为y ′=x cos x ,所以g (t )=t cos t , 由g (-t )=-t cos t =-g (t )知函数g (t )为奇函数, 所以排除B ,D 选项,当从y 轴右侧t →0时,cos t >0,t >0, 所以g (t )>0,故选A.2.(2018·昆明统考)已知函数f (x )=e xx 2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A.⎝⎛⎦⎤-∞,e24 B.⎝⎛⎦⎤-∞,e2 C .(0,2] D.[)2,+∞[答案] A[解析] 由题意得f ′(x )=e x (x -2)x 3+2k x -k =(x -2)()e x -kx 2x 3,f ′(2)=0,令g (x )=e x -kx 2,则g (x )在区间(0,+∞)内恒大于等于0或恒小于等于0,令g (x )=0,得k =e x x 2,令h (x )=e xx 2,则h ′(x )=e x (x -2)x 3,所以h (x )最小值为h (2)=e 24,无最大值,所以k ≤e 24,故选A.3.(2018·衡水金卷调研)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的解集为( )A.⎝⎛⎭⎫-∞,12 B .(0,+∞) C.⎝⎛⎭⎫12,+∞ D .(-∞,0)[答案] B[解析] 构造函数g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x,因为f ′(x )<f (x ),所以g ′(x )<0, 故函数g (x )在R 上为减函数, 又f (0)=12,所以g (0)=f (0)e 0=12,则不等式f (x )-12e x <0可化为f (x )e x <12,即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).4.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( ) A .a >-3 B .a <-3 C .a >-13D .a <-13[答案] B[解析] 由题意得,y ′=a e ax +3=0在(0,+∞)上有解, 即a e ax =-3, ∵e ax >0,∴a <0.又当a <0时,0<e ax <1,要使a e ax =-3,则a <-3.5.(2018·西南名校联盟月考)设过曲线f (x )=e x +x +2a (e 为自然对数的底数)上任意一点处的切线为l 1,总存在过曲线g (x )=a2(1-2x )-2sin x 上一点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围为( ) A .[-1,1] B .[-2,2] C .[-1,2]D .[-2,1][答案] C[解析] 设y =f (x )的切点为(x 1,y 1),y =g (x )的切点为(x 2,y 2),f ′(x )=e x +1,g ′(x )=-a -2cos x ,由题意得,对任意x 1∈R 总存在x 2使得(1e x+1)(-a -2cos x 2)=-1, ∴2cos x 2=11e x +1-a 对任意x 1∈R 均有解x 2,故-2≤11e x +1-a ≤2对任意x 1∈R 恒成立,则a -2≤11e x +1≤a +2对任意x 1∈R 恒成立.又11e x +1∈(0,1),∴a -2≤0且2+a ≥1,∴-1≤a ≤2.6.(2018·焦作模拟)已知f (x )=x ln x +f ′(1)x ,则f ′(1)=________.[答案] 12[解析] 因为f ′(x )=1+ln x -f ′(1)x 2,令x =1,得f ′(1)=1-f ′(1),解得f ′(1)=12.7.(2018·全国Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________. [答案] -3[解析] ∵y ′=(ax +a +1)e x ,∴当x =0时,y ′=a +1, ∴a +1=-2,得a =-3.8.已知函数f (x )=2ln x 和直线l :2x -y +6=0,若点P 是函数f (x )图象上的一点,则点 P 到直线l 的距离的最小值为________. [答案]855[解析] 设直线y =2x +m 与函数f (x )的图象相切于点P (x 0,y 0)(x 0>0). f ′(x )=2x,则f ′(x 0)=2x 0=2,解得x 0=1.∴P (1,0).则点P 到直线2x -y +6=0的距离d =|2×1-0+6|22+(-1)2=855,即为点P 到直线2x -y +6=0的距离的最小值.9.(2018·衡水金卷调研)已知函数f (x )=mx 2+2x -2e x ,m ∈[]1,e ,x ∈[1,2],g (m )=f (x )max -f (x )min ,则关于m 的不等式g (m )≥4e 2的解集为________.[答案] ⎣⎡⎦⎤24-e ,e[解析] 由f (x )=mx 2+2x -2e x,得f ′(x )=()2mx +2e x-()mx 2+2x -2e x()e x 2=2mx +2-mx 2-2x +2e x=-mx 2+()2-2m x -4e x=-()mx +2(x -2)e x,∵m ∈[]1,e ,x ∈[1,2],∴f ′(x )≥0,因此函数f (x )在区间[1,2]上单调递增, ∴f (x )max =f (2)=4m +2e 2,f (x )min =f (1)=m e ,从而g (m )=f (x )max -f (x )min =4m +2e 2-m e =4m +2-m ee 2, 令4m +2-m e e 2≥4e 2,得m ≥24-e, 又m ∈[1,e],∴m ∈⎣⎢⎡⎦⎥⎤24-e ,e .故不等式g (m )≥4e 2的解集为⎣⎢⎡⎦⎥⎤24-e ,e .10.(2018·吕梁模拟)已知函数f (x )=e x x-a ()x -ln x . (1)当a ≤0时,试求f (x )的单调区间;(2)若f (x )在(0,1)内有极值,试求a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞).f ′(x )=e x (x -1)x 2-a ⎝⎛⎭⎫1-1x =e x (x -1)-ax (x -1)x 2, =()e x -ax (x -1)x 2. 当a ≤0时,对于∀x ∈(0,+∞),e x -ax >0恒成立,所以由f ′(x )>0,得x >1;由f ′(x )<0,得0<x <1.所以f (x )的单调增区间为(1,+∞),单调减区间为(0,1).(2)若f (x )在(0,1)内有极值,则f ′(x )=0在(0,1)内有解.令f ′(x )=()e x-ax (x -1)x 2=0, 即e x-ax =0,即a =e x x . 设g (x )=e x x,x ∈(0,1), 所以 g ′(x )=e x (x -1)x 2, 当x ∈(0,1)时,g ′(x )<0恒成立,所以g (x )单调递减.又因为g (1)=e ,又当x →0时,g (x )→+∞,即g (x )在(0,1)上的值域为(e ,+∞),所以当a >e 时,f ′(x )=()e x-ax (x -1)x 2=0 有解. 设H (x )=e x -ax ,则 H ′(x )=e x -a <0,x ∈(0,1),所以H (x )在(0,1)上单调递减.因为H (0)=1>0,H (1)=e -a <0,所以H (x )=e x -ax =0在(0,1)上有唯一解x 0.当x 变化时,H (x ),f ′(x ),f (x )变化情况如表所示:所以当a >e 时,f (x )在(0,1)内有极值且唯一.当a ≤e 时,当x ∈(0,1)时,f ′(x )≤0恒成立,f (x )单调递减,不成立.综上,a 的取值范围为(e ,+∞).B 组 能力提高11.(2018·山东联盟考试)对于函数f (x )=e x -ln(x +2)-2,以下描述正确的是() A .∃x 0∈(-2,+∞),f (x 0)∈(-∞,-2)B .∀x ∈(-2,+∞),f (x )∈(-∞,-2)C .∀x ∈(-2,+∞),f (x )∈(-2,+∞)D .f (x )min ∈(-1,1)[答案] C[解析] 设函数g (x )=e x -x -1,g ′(x )=e x -1,当x >0时,g ′(x )>0,当x <0时,g ′(x )<0,所以g (x )min =g (0)=0,即e x ≥x +1,设函数h (x )=x +1-ln(x +2)(x >-2),h ′(x )=1-1x +2=x +1x +2,令h ′(x )>0,得x >-1,令h ′(x )<0,得-2<x <-1,所以h (x )min =h (-1)=0,即x +1≥ln(x +2),又等号取不同x 值,所以e x >ln(x +2),e x -ln(x +2)>0,函数f (x )=e x -ln(x +2)-2的值域为(-2,+∞),故选C.12.(2018·齐鲁名校教科研协作体模拟)已知函数f (x )=sin x -x cos x ,现有下列结论: ①当x ∈[0,π]时,f (x )≥0;②当0<α<β<π时,α·sin β>β·sin α;③若n <sin x x <m 对∀x ∈⎝⎛⎭⎫0,π2恒成立,则m -n 的最小值等于1-2π; ④已知k ∈[]0,1,当x i ∈()0,2π时,满足|sin x i |x i=k 的x i 的个数记为n ,则n 的所有可能取值构成的集合为{0,1,2,3}.其中正确的个数为( )A .1B .2C .3D .4[答案] C[解析] 当x ∈[0,π]时,f ′(x )=x sin x ≥0,函数f (x )在[0,π]上为增函数,所以f (x )≥f (0)=0,①正确;令g (x )=sin x x,由①知, 当x ∈(0,π)时,g ′(x )=x ·cos x -sin x x 2<0, 所以g (x )在(0,π)上为减函数,所以g ()α>g ()β,sin αα>sin ββ, 所以α·sin β<β·sin α,②错误;由②可知g (x )=sin x x在⎝⎛⎭⎫0,π2上为减函数, 所以g (x )=sin x x >g ⎝⎛⎭⎫π2=2π,则n ≤2π, 令φ(x )=sin x -x ,当x ∈⎝⎛⎭⎫0,π2时, φ′(x )=cos x -1<0,所以φ(x )在⎝⎛⎭⎫0,π2上为减函数, 所以φ(x )=sin x -x <φ(0)=0,所以sin x x<1,所以m ≥1, 则()m -n min =m min -n max =1-2π,③正确; 令h (x )=|sin x |,k 表示点(x i ,h (x i ))与原点(0,0)连线的斜率,结合图象(图略)可知,当k ∈[]0,1,x ∈(0,2π)时,n 的所有可能取值有0,1,2,3,④正确.13.(2018·齐齐哈尔模拟)已知函数f (x )=k ln x -x -1x,且曲线y =f (x )在点(1,f (1))处的切线与y 轴垂直.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,1)∪(1,e)(其中e 为自然对数的底数),都有f (x )x -1+1x >1a(a >0)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),∵f (x )=k ln x -x -1x,定义域为(0,+∞), ∴f ′(x )=k x -1x 2=kx -1x 2(x >0). 由题意知f ′(1)=k -1=0,解得k =1,∴f ′(x )=x -1x 2(x >0), 由f ′(x )>0,解得x >1;由f ′(x )<0,解得0<x <1,∴f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞).(2)由(1)知f (x )=ln x -1+1x, ∴f (x )x -1+1x =ln x x -1-1x -1+1x (x -1)+1x =ln x x -1. 方法一 设m (x )=ln x x -1,则m ′(x )=x -1-x ln x x (x -1)2, 令n (x )=x -1-x ln x ,则n ′(x )=1-ln x -1=-ln x ,∴当x >1时,n ′(x )<0,n (x )在[1,+∞)上单调递减,∴当x ∈(1,e)时,n (x )<n (1)=0,∴当x ∈(1,e)时,m ′(x )<0,m (x )单调递减,∴当x ∈(1,e)时,m (x )>m (e)=1e -1, 由题意知1a ≤1e -1,又a >0, ∴a ≥e -1.下面证明:当a ≥e -1,0<x <1时,ln x x -1>1a成立, 即证a ln x <x -1成立,令φ(x )=a ln x -x +1,则φ′(x )=a x -1=a -x x(0<x <1), 由a ≥e -1,0<x <1,得φ′(x )>0,故φ(x )在(0,1)上是增函数,∴x ∈(0,1)时,φ(x )<φ(1)=0,∴a ln x <x -1成立,即ln x x -1>1a成立, 故正数a 的取值范围是[)e -1,+∞.方法二 ①当x ∈(0,1)时,ln x x -1>1a(a >0)可化为a ln x -x +1<0(a >0), 令g (x )=a ln x -x +1(a >0),则问题转化为证明g (x )<0对任意x ∈(0,1)恒成立.又g ′(x )=a x -1=a -x x(a >0), 令g ′(x )>0,得0<x <a ,令g ′(x )<0,得x >a ,∴函数g (x )在(0,a )上单调递增,在(a ,+∞)上单调递减. (ⅰ)当0<a <1时,下面验证g (a )=a ln a -a +1>0(a ∈(0,1)).设T(x)=x ln x-x+1(0<x<1),则T′(x)=ln x+1-1=ln x<0(0<x<1).所以T(x)在(0,1)上单调递减,所以T(x)>T(1)=0.即g(a)>0(a∈(0,1).故此时不满足g(x)<0对任意x∈(0,1)恒成立;(ⅱ)当a≥1时,函数g(x)在(0,1)上单调递增.故g(x)<g(1)=0对任意x∈(0,1)恒成立,故a≥1符合题意.综合(ⅰ)(ⅱ),得a≥1.②当x∈(1,e)时,ln xx-1>1a(a>0),令h(x)=a ln x-x+1(a>0),则问题转化为证明h(x)>0对任意x∈(1,e)恒成立.又h′(x)=ax -1=a-xx(a>0),令h′(x)>0得0<x<a;令h′(x)<0,得x>a,∴函数h(x)在(0,a)上单调递增,在(a,+∞)上单调递减.(ⅰ)当a≥e时,h(x)在(1,e)上是增函数,所以h(x)>h(1)=0,(ⅱ)当1<a<e时,h(x)在(1,a)上单调递增,在(a,e)上单调递减,所以只需h(e)≥0,即a≥e-1,(ⅲ)当0<a≤1时,h(x)在(1,e)上单调递减,则h(x)<h(1)=0,不符合题意.综合(ⅰ)(ⅱ)(ⅲ)可得a≥e-1.由①②得正数a的取值范围是[)e-1,+∞.。

(完整版)高考数学二轮复习名师知识点总结:导数及其应用

(完整版)高考数学二轮复习名师知识点总结:导数及其应用

导数及其应用高考主要考察1.利用导数的几何意义求曲线在某点处的切线方程.2.考查导数的有关计算,尤其是简单的函数求导. 3.利用导数研究函数的单调性,会求函数的单调区间.4.由函数单调性和导数的关系,求参数的范围. 5.利用导数求函数的极值.6.利用导数求函数闭区间上的最值.7.利用导数解决某些实际问题. 8.考查定积分的概念,定积分的几何意义,微积分基本定理. 9.利用定积分求曲边形面积、变力做功、变速运动的质点的运动路程. 【复习指导】复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导. ;复习时,应理顺导数与函数的关系,理解导数的意义,体会导数在解决函数有关问题时的工具性作用,重点解决利用导数来研究函数的单调性及求函数的单;复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等.基础梳理1.函数y =f (x )从x 1到x 2的平均变化率函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1.若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为ΔyΔx .2.函数y =f (x )在x =x 0处的导数 (1)定义称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0 ΔyΔx. (2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地, 切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数:称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x )Δx为f (x )的导函数,导函数有时也记作y ′.4.基本初等函数的导数公式 若f (x )=c ,则f ′(x )=0;若f (x )=x α(α∈R ),则f ′(x )=αx α-1; 若f (x )=sin x ,则f ′(x )=cos x ; 若f (x )=cos x ,则f ′(x )=-sin x ;若f (x )=a x (a >0,且a ≠1),则f ′(x )=a x ln_a ; 若f (x )=e x ,则f ′(x )=e x ;若f (x )=log a x (a >0,且a ≠1),则f ′(x )=1x ln a ;若f (x )=ln x ,则f ′(x )=1x .5.导数四则运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 6.复合函数的求导法则复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′. 注意:一个区别曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别:曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 7.导数的几何意义函数y =f (x )在x =x 0处的导数f ′(x 0)是曲线y =f (x )在点(x 0,f (x 0))处切线l 的斜率,切线l 的方程是y -f (x 0)=f ′(x 0)(x -x 0). 8.导数的物理意义若物体位移随时间变化的关系为s =f (t ),则f ′(t 0)是物体运动在t =t 0时刻的瞬时速度. 9.函数的单调性在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0. f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减. 10.函数的极值(1)判断f (x 0)是极值的方法一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根左右值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点. 11.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.12.定积分(1)定积分的定义及相关概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式i =1n f (ξi )Δx =∑i =1nb -an f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x .在⎠⎛ab f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. (2)定积分的性质①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .③⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).13.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式. 14.定积分的应用(1)定积分与曲边梯形的面积定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来定:设阴影部分面积为S .①S =⎠⎜⎜⎛abf (x )d x ; ②S =-⎠⎜⎜⎛ab f (x )d x ; ③S =⎠⎜⎜⎛ac f (x )d x -⎠⎜⎜⎛cb f (x )d x ; ④S =⎠⎜⎜⎛ab f (x )d x -⎠⎜⎜⎛ab g (x )d x = ⎠⎜⎜⎛ab [f (x )-g (x )]d x .(2)匀变速运动的路程公式作变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即 s =⎠⎜⎜⎛ab v(t)d t .双基自测1.(人教A 版教材习题改编)函数f (x )=(x +2a )(x -a )2的导数为( ). A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2) D .3(x 2+a 2)解析 f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2). 答案 C2.(2011·湖南)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ). A .-12 B.12 C .-22 D.22解析 本小题考查导数的运算、导数的几何意义,考查运算求解能力.y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12.答案 B3.(2011·江西)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ).A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)解析 令f ′(x )=2x -2-4x =2(x -2)(x +1)x >0,利用数轴标根法可解得-1<x <0或x >2,又x >0,所以x >2.故选C.答案 C 答案 2 -24.(2011·福建)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ). A .2 B .3 C .6 D .9解析 f ′(x )=12x 2-2ax -2b ,由函数f (x )在x =1处有极值,可知函数f (x )在x =1处的导数值为零,12-2a -2b =0,所以a +b =6,由题意知a ,b 都是正实数,所以ab ≤⎝ ⎛⎭⎪⎫a +b 22=⎝⎛⎭⎫622=9,当且仅当a =b =3时取到等号. 答案 D5.已知函数f (x )=14x 4-43x 3+2x 2,则f (x )( ).A .有极大值,无极小值B .有极大值,有极小值C .有极小值,无极大值D .无极小值,无极大值 解析 f ′(x )=x 3-4x 2+4x =x (x -2)2 f ′(x ),f (x )随x 变化情况如下x (-∞,0)0 (0,2) 2 (2,+∞)f ′(x ) -0 +0 +f (x )43因此有极小值无极大值. 答案 C6.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.解析 ∵f (x )在x =1处取极值,∴f ′(1)=0, 又f ′(x )=2x (x +1)-(x 2+a )(x +1)2,∴f ′(1)=2×1×(1+1)-(1+a )(1+1)2=0,即2×1×(1+1)-(1+a )=0,故a =3. 答案 32.(2011·湖南)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( ).A.12 B .1 C.32 D.3 解析 S =∫π3-π3cos x d x =2∫π30cos x d x = |2sin x π30= 3.答案 D4.如图,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( ).双基自测1.(2011·福建)⎠⎜⎜⎛01(e x+2x )d x 等于( ). A .1 B .e -1 C .e D .e +1 解析⎠⎜⎜⎛01(e x +2x )d x= ⎪⎪⎪(e x +x 2)1=(e +1)-1=e. 答案 C3.(2011·山东)由曲线y =x 2,y =x 3围成的封闭图形面积为 ( ).A.112B.14C.13D.712解析 由⎩⎪⎨⎪⎧y =x 2,y =x 3,得交点坐标为(0,0),(1,1),因此所求图形面积为S =⎠⎜⎜⎛01(x 2-x 3)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-14x 410=112. 答案 AA.1πB.2πC.π4D.3π定积分的计算【例1】 计算下列积分 \\当原函数较难求时,可考虑由其几何意义解得. 解析 阴影部分的面积S =⎪⎪⎪⎠⎜⎜⎛0πsin x d x =-cos x π0=-(-1-1)=2,矩形的面积为2π.概率P =阴影部分的面积矩形面积=22π=1π.故应选A.答案 A考向二 导数的运算【例2】►求下列各函数的导数:(1)y =x +x 5+sin x x 2; (2)y =(x +1)(x +2)(x +3); (3)y =sin x 2⎝⎛⎭⎫1-2cos 2x 4; (4)y =11-x +11+x ; [审题视点] 先把式子化为最简式再进行求导. 解 (1)∵y =x 12+x 5+sin x x 2=x -32+x 3+sin xx2,∴y ′=⎝⎛⎭⎫x -32′+(x 3)′+(x -2sin x )′=-32x -52+3x 2-2x -3sin x +x -2cos x . (2)法一 y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11. 法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)· (x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2) =3x 2+12x +11.(3)∵y =sin x 2⎝⎛⎭⎫-cos x 2=-12sin x , ∴y ′=⎝⎛⎭⎫-12sin x ′=-12(sin x )′=-12cos x . (4)y =11-x +11+x =1+x +1-x (1-x )(1+x )=21-x,∴y ′=⎝⎛⎭⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2. (1)熟记基本初等函数的导数公式及四则运算法则是正确求导的基础.(5)由y =x cos x -5sin x 为奇函数⎠⎜⎜⎛-11(x cos x -5sin x +2)d x = ⎪⎪⎪⎠⎛1-12d x =2x 1-1=4.(2)必要时对于某些求导问题可先化简函数解析式再求导. 【训练2】 求下列函数的导数:(1)y =x n e x ; (2)y =cos xsin x ; (3)y =e x ln x ; (4)y =(x +1)2(x -1).解 (1)y ′=nx n -1e x +x n e x =x n -1e x (n +x ). (2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x . (3)y ′=e x ln x +e x ·1x=e x ⎝⎛⎭⎫1x +ln x . (4)∵y =(x +1)2(x -1)=(x +1)(x 2-1)=x 3+x 2-x -1, ∴y ′=3x 2+2x -1.考向三 求复合函数的导数【例3】►求下列复合函数的导数.(1)y =(2x -3)5;(2)y =3-x ; (3)y =sin 2⎝⎛⎭⎫2x +π3;(4)y =ln(2x +5). [审题视点] 正确分解函数的复合层次,逐层求导.解 (1)设u =2x -3,则y =(2x -3)5,由y =u 5与u =2x -3复合而成, ∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′=5u 4·2=10u 4=10(2x -3)4. (2)设u =3-x ,则y =3-x .由y =u 12与u =3-x 复合而成.y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′=12u -12(-1)=-12u -12=-123-x =3-x 2x -6.(3)设y =u 2,u =sin v ,v =2x +π3,则y x ′=y u ′·u v ′·v x ′=2u ·cos v ·2=4sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3=2sin ⎝⎛⎭⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y x ′=y u ′·u x ′ y ′=12x +5·(2x +5)′=22x +5.由复合函数的定义可知,中间变量的选择应是基本函数的结构,解这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外向内,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程. 【训练3】 求下列函数的导数:(1)y =x 2+1; (2)y =sin 22x ; (3)y =e -x sin 2x; (4)y =ln 1+x 2. 解 (1)y ′=12 x 2+1·2x =xx 2+1,(2)y ′=(2sin 2x )(cos 2x )×2=2sin 4x(3)y ′=(-e -x )sin 2x +e -x (cos 2x )×2=e -x (2cos 2x -sin 2x ). (4)y ′=11+x 2·121+x 2·2x =x 1+x 2.考向四:求曲线上某一点的切线方程【示例】► (2010·山东)已知函数f (x )=ln x -ax +1-ax -1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当a ≤12时,讨论f (x )的单调性.(1)求出在点(2,f (2))处的斜率及f (2),由点斜式写出切线方程;(2)求f ′(x ),再对a 分类讨论.[解答示范] (1)当a =-1时,f (x )=ln x +x +2x-1,x ∈(0,+∞).所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),(1分)因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2, 所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0.(3分) (2)因为f (x )=ln x -ax +1-a x -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞).(4分)令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;②当a ≠0时,由f ′(x )=0, 即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1.a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减;(7分)b .当0<a <12时,1a-1>1>0.x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝⎛⎭⎫1,1a -1时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;x ∈⎝⎛⎭⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;(9分)c .当a <0时,由于1a -1<0,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增.(11分)综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减,函数f (x )在(1,+∞)上单调递增; 当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,函数f (x )在⎝⎛⎭⎫1,1a -1上单调递增, 函数f (x )在⎝⎛⎭⎫1a -1,+∞上单调递减.(12分)考向五 求曲线切线的方程【例1】►已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在x =2处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.[审题视点] 由导数几何意义先求斜率,再求方程,注意点是否在曲线上,是否为切点. 解 (1)f ′(x )=3x 2-8x +5 f ′(2)=1,又f (2)=-2∴曲线f (x )在x =2处的切线方程为 y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4) f ′(x 0)=3x 20-8x 0+5则切线方程为 y -(-2)=(3x 20-8x 0+5)(x -2),又切线过(x 0,x 30-4x 20+5x 0-4)点,则x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2,或x 0=1,因此经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.首先要分清是求曲线y =f (x )在某处的切线还是求过某点曲线的切线.(1)求曲线y =f (x )在x =x 0处的切线方程可先求f ′(x 0),利用点斜式写出所求切线方程; (2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标后再写切线方程. 【训练1】 若直线y =kx 与曲线y =x 3-3x 2+2x 相切,试求k 的值. 解 设y =kx 与y =x 3-3x 2+2x 相切于P (x 0,y 0)则y 0=kx 0,①y 0=x 30-3x 20+2x 0,② 又y ′=3x 2-6x +2,∴k =y ′|x =x 0=3x 20-6x 0+2,③ 由①②③得:(3x 20-6x 0+2)x 0=x 30-3x 20+2x 0,即(2x 0-3)x 20=0.∴x 0=0或x 0=32,∴k =2或k =-14. 考向六 函数的单调性与导数【例2】►已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =3是f (x )的极值点,求f (x )的单调区间.[审题视点] 函数单调的充要条件是f ′(x )≥0或f ′(x )≤0且不恒等于0. 解 (1)对f (x )求导,得f ′(x )=3x 2-2ax -3. 由f ′(x )≥0,得a ≤32⎝⎛⎭⎫x -1x . 记t (x )=32⎝⎛⎭⎫x -1x ,当x ≥1时,t (x )是增函数, ∴t (x )min =32(1-1)=0. ∴a ≤0.(2)由题意,得f ′(3)=0,即27-6a -3=0, ∴a =4.∴f (x )=x 3-4x 2-3x ,f ′(x )=3x 2-8x -3. 令f ′(x )=0,得x 1=-13,x 2=3.当x 变化时,f ′(x )、f (x )的变化情况如下表:∴当x ∈⎝⎛⎦⎤-∞,-13,[3,+∞)时,f (x )单调递增,当x ∈⎣⎡⎦⎤-13,3时,f (x )单调递减.函数在指定区间上单调递增(减),函数在这个区间上的导数大于或等于0(小于或等于0),只要不在一段连续区间上恒等于0即可,求函数的单调区间解f′(x)>0(或f′(x)<0)即可.【训练2】已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,说明理由.解f′(x)=e x-a,(1)若a≤0,则f′(x)=e x-a≥0,即f(x)在R上递增,若a>0,e x-a≥0,∴e x≥a,x≥ln a. 因此f(x)的递增区间是[ln a,+∞).(2)由f′(x)=e x-a≤0在(-2,3)上恒成立.∴a≥e x在x∈(-2,3)上恒成立.又∵-2<x<3,∴e-2<e x<e3,只需a≥e3.当a=e3时f′(x)=e x-e3在x∈(-2,3)上,f′(x)<0,即f(x)在(-2,3)上为减函数,∴a≥e3. 故存在实数a≥e3,使f(x)在(-2,3)上单调递减.考向七利用导数解决不等式问题【例3】►设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.[审题视点] 第(2)问构造函数h(x)=e x-x2+2ax-1,利用函数的单调性解决.(1)解由f(x)=e x-2x+2a,x∈R知f′(x)=e x-2,x∈R.令f′(x)=0,得x=ln 2,于是当x变化时,f′(x),f(x)的变化情况如下表.单调递减单调递增故f(x)f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2(1-ln 2+a).(2)证明设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)的最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对∀x ∈[a ,b ]都有f (x )≥g (x ),可设h (x )=f (x )-g (x )只要利用导数说明h (x )在[a ,b ]上的最小值为0即可.【训练3】 已知m ∈R ,函数f (x )=(x 2+mx +m )e x (1)若函数没有零点,求实数m 的取值范围; (2)当m =0时,求证f (x )≥x 2+x 3. (1)解 由已知条件f (x )=0无解, 即x 2+mx +m =0无实根,则Δ=m 2-4m <0,解得0<m <4,实数m 的取值范围是(0,4) (2)证明 当m =0时,f (x )=x 2e x 设g (x )=e x -x -1,∴g ′(x )=e x -1, g (x ),g ′(x )随x 变化情况如下:由此可知对于x ∈R ,g (x )≥g 2e x ≥x 3+x 2,即f (x )≥x 3+x 2.考向八 函数的极值与导数【例1】设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.[审题视点] 由条件x =-12为y =f ′(x )图象的对称轴及f ′(1)=0求得a ,b 的值,再由f ′(x )的符号求其极值.解 (1)因f (x )=2x 3+ax 2+bx +1,故f ′(x )=6x 2+2ax +b .从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26,即y =f ′(x )的图象关于直线x =-a6对称,从而由题设条件知-a 6=-12,解得a =3.又由于f ′(1)=0,即6+2a +b =0,解得b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1,f ′(x )=6x 2+6x -12=6(x -1)(x +2). 令f ′(x )=0,即6(x -1)(x +2)=0,解得x 1=-2,x 2=1.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,1)时,f ′(x )<0,故f (x )在(-2,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数.从而函数f (x )在x 1=-2处取得极大值f (-2)=21,在x 2=1处取得极小值f (1)=-6.运用导数求可导函数y =f (x )的极值的步骤:(1)先求函数的定义域,再求函数y =f (x )的导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值,如果左负右正,那么f (x )在这个根处取得极小值. 【训练1】 (2011·安徽)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.综合①,可知x ⎝⎛⎭⎫-∞,1212 ⎝⎛⎭⎫12,32 32 ⎝⎛⎭⎫32,+∞ f ′(x ) +0 -0 +f (x )极大值极小值所以,x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立. 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.考向九 函数的最值与导数【例2】►已知a 为实数,且函数f (x )=(x 2-4)(x -a ). (1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值. [审题视点] 先化简再求导,求极值、端点值,进行比较得最值. 解 (1)f (x )=x 3-ax 2-4x +4a ,得f ′(x )=3x 2-2ax -4. (2)因为f ′(-1)=0,所以a =12,有f (x )=x 3-12x 2-4x +2,所以f ′(x )=3x 2-x -4.令f ′(x )=0,所以x =43或x =-1.又f ⎝⎛⎭⎫43=-5027,f (-1)=92,f (-2)=0,f (2)=0, 所以f (x )在[-2,2]上的最大值、最小值分别为92、-5027.一般地,在闭区间[a ,b ]上的连续函数f (x )必有最大值与最小值,在开区间(a ,b )内的连续函数不一定有最大值与最小值,若函数y =f (x )在闭区间[a ,b ]上单调递增,则f (a )是最小值,f (b )是最大值;反之,则f (a )是最大值,f (b )是最小值. 【训练2】 函数f (x )=x 3+ax 2+b 的图象 在点P (1,0)处的切线与直线3x +y =0平行 (1)求a ,b ;(2)求函数f (x )在[0,t ](t >0)内的最大值和最小值. 解 (1)f ′(x )=3x 2+2ax由已知条件⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=-3,即⎩⎪⎨⎪⎧ a +b +1=0,2a +3=-3,解得⎩⎪⎨⎪⎧a =-3,b =2.(2)由(1)知f (x )=x 3-3x 2+2, f ′(x )=3x 2-6x =3x (x -2), f ′(x )与f (x )随x 变化情况如下:x (-∞,0)0 (0,2) 2 (2,+∞)f ′(x )+-+f (x )2-2由f (x )=f (0)解得x =0因此根据f (x )的图象当0<t ≤2时,f (x )的最大值为f (0)=2最小值为f (t )=t 3-3t 2+2; 当2<t ≤3时,f (x )的最大值为f (0)=2,最小值为f (2)=-2; 当t >3时,f (x )的最大值为f (t )=t 3-3t 2+2,最小值为f (2)=-2.考向十 利用定积分求面积【例2】 求下图中阴影部分的面积.[审题视点] 观察图象要仔细,求出积分上下限,找准被积函数.解 解方程组⎩⎪⎨⎪⎧ y =x -4,y 2=2x ,得⎩⎪⎨⎪⎧ x =2y =-2,或⎩⎪⎨⎪⎧x =8y =4S 阴影=⎠⎛082x d x -8+⎠⎛02|-2x |d x +2=2 ⎪⎪⎝⎛⎭⎫23x 3280+2⎪⎪⎝⎛⎭⎫23x 3220-6=18. 求由两条曲线围成的图形的面积的解题步骤(1)画出图形,确定图形的范围,通过解方程组求出交点的横坐标.定出积分的上、下限;(2)确定被积函数,特别要注意分清被积函数的上、下位置;(3)写出平面图形面积的定积分的表达式;(4)运用微积分基本定理计算定积分,求出平面图形的面积.【训练2】 求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解 由⎩⎨⎧y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x y =-13x 得交点B (3,-1).故所求面积S =⎠⎛01⎝⎛⎭⎫x +13x d x +⎠⎛13⎝⎛⎭⎫2-x +13x d x = ⎪⎪⎝⎛⎭⎫23x 32+16x 210+⎪⎪⎝⎛⎭⎫2x -13x 231=23+16+43=136. 【示例】► 已知r >0,则d x =________.二、积分与概率【示例】► (2010·陕西)从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为__________.。

高考二轮复习 导数及其应用

高考二轮复习 导数及其应用

2、函数综合题的求解往往应用多 种知识和技能,因此,必须全面掌握 有关的函数知识,并且严谨审题,弄 清题目中的隐含条件。要认真分析, 处理好各种关系,把握问题的主线, 运用相关的知识和方法逐步化归为基 本问题来解决.
a a
b
b
(2) [ f1 ( x) f 2 ( x)]d x f1 ( x)d x f 2 ( x)d x ;
a a a
b
b
b
(3) f ( x)d x = f ( x)d x f ( x)d x (其中a c b).
a a c
b
c
b
3、微积分基本定理:
【例2】已知函数f ( x) a ( x 2 1) ln x. (1)讨论函数f(x)的单调性; (2)若对任意a (-4,-2)及x [1,3], 恒有ma-f(x)>a 2 成立, 求实数m的取值范围.
【变式练习】已知函数f ( x) x
1 , g ( x) x 2 2ax 4, 若任意x1 [0,1], x+1 存在x2 [1, 2], 使f ( x1 ) g ( x2 ),则实数a的取值范围是 ___________ .
【例3】已知函数f(x)=x-sinx,数列{a n }满足: 0 a1 1, an 1 =f (an ), n 1, 2,3....证明: ( 1) 0 an 1 an 1; (2)an 1 1 3 an . 6

类型四 利用导数研究方程、不等式
导数是研究函数的重要工具,由于函数与方程、 不等式的紧密联系,高考常考查利用导数来研究方 程、不等式的综合题,题型为解答题,通常属于中 档题或难题。解题的基本思路是构造函数,通过导 数的,方法研究这个函数的单调性、极值和特殊点 的函数值,根据函数的性质推断不等式成立的情况 以及方程实根的个数,必要时画出函数的草图辅助思 考。

人教版高三数学二轮复习导数及导数的应用-精品课件 12页PPT文档

人教版高三数学二轮复习导数及导数的应用-精品课件 12页PPT文档
2.函数y x2 2lnx的单调递增区间 为 1,
3 3.函f数 (x)2x31x23x的单调递 增 (-1, 2 区 ) 间 是
32
4 .若 函f(数 x)x3ax24在0( , 2)内单调a递 的取减 值范围, 是 则 3,
5.函数f ( x ) x( x m)2在x 1处取得极小值,则实m数 1
t
t1 2 x
2
2
2
1。 当2 t即t4时 2。 当1 t 2即 2t4时 3。 当 t 1即0 <t 2时
2
2
2
f(x)在1, 2上单调递f (减 x)在1,2t
上单调递减
f(x)在1, 2上单调

t 2
,2上单调递增
例2 (2019年青岛模拟21(2))【已知函数的单调区间求参数范围】
END
2019本定理 函数极值、不等式证明
14分 函数单调性、极值、 不等式证明
课前双基自测
1.(2011山东文)曲线y x3 11在点P(1,12)处的切线与y轴交点的纵坐标C是()
A 9 B 3 C 9 D 1 5
已知函数 f(x) 4 x3 3 t2 x 6 t2x t 1 ,x R 其中 t R
当t 0 时,求 f ( x ) 的单调区间.
f'(x) 6 (t 1 )2 (t 1 )
讨论依据:导函数零点的大小
变式训练:
讨论依据:导函数中最高次项系数的正负
f'(x) 6 (x t)2 (x t)t(0 )
该如何求b的取值范围?f(x)极大值为16 ln 2 - 9, 极小值为32 ln 2 - 21
并且 x 1时, f ( x )

导数概念及几何意义意义-2023届高三数学二轮复习讲义

导数概念及几何意义意义-2023届高三数学二轮复习讲义

目录4.1 导数的概念及运算..................................................................................................................... 1 4.2 导数的几何意义 .. (14)4.1 导数的概念及运算【知识点一】一、导数的基本概念 1.函数的平均变化率:2.函数的瞬时变化率、函数的导数:3.设函数的图象如图所示.为过点与的一条割线.由此割线的斜率是,可知曲线割线的斜率就是函数的平均变化率.当点沿曲线趋近于点时,割线绕点转动,它的最终位置为直线,这条直线叫做此曲线过点的切线,即切线的斜率.由导数意义可知,曲线过点的切线的斜率等于.()y f x =AB 00(,())A x f x 00(,())B x x f x x +∆+∆00()()f x x f x y x x+∆-∆=∆∆B A AB A AD AD A 000()()limx f x x f x x∆→+∆-=∆AD ()y f x =00(,())x f x 0()f x '二:导数公式,为正整数(0,)αα≠∈Q ,为有理数注:,称为的自然对数,其底为,是一个和一样重要的无理数.注意.()y f x =()y f x ''=y c =0y '=n y x =()n +∈N 1n y nx -'=n y x α=1y x αα-'=αx y a =(0,1)a a >≠ln x y a a '=log a y x =(0,1,0)a a x >≠>1ln y x a'=sin y x =cos y x '=cos y x =sin y x '=-e a e e π2.7182818284e =()x x e e '=【典型例题】考点一: 导数的基本概念例1.如图,函数()f x 的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则((0))f f =_____;函数()f x 在1x =处的导数'(1)f =_____.练1.已知函数()f x 在0x x =处可导,则000(3)()lim x f x x f x x∆→+∆-=∆_____0'()f x .练2.设函数2()24f x x =-的图像上一点(1,2)以及邻近一点(1,2)x y +∆+∆,则yx∆∆等于__________.考点二: 导数公式及其应用例1.求下列函数的导数: 3x ,13x ,21x练1.求下列函数的导数: x ,3log x ,cos x练2.下列结论不正确的是 A .若3y =,则'0y = B .若3x y =,则1'3x y x -=-⋅C .若y x =-则'2y x=D .若3y x =,则'3y =【知识点二:导数的四则运算法则】(1)函数和(或差)的求导法则:设()f x ,()g x 是可导的,则(()())()()f x g x f x g x '''±=±,即两个函数的和(或差)的导数,等于这两个函数的导数和(或差). (2)函数积的求导法则:设()f x ,()g x 是可导的,则[()()]()()()()f x g x f x g x f x g x '''=+,即两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数的乘上第二个函数的导数.由上述法则即可以得出[()]()Cf x Cf x ''=,即常数与函数之积的导数,等于常数乘以函数的导数.(3)函数的商的求导法则: 设()f x ,()g x 是可导的,()0g x ≠,则2()()()()()[]()()f xg x f x f x g x g x g x ''-'=. 特别是当()1f x ≡时,有21()[]()()g x g x g x ''=-.【典型例题】例1.求下列函数的导数:(1)()3sin=;f x x x(2)()ln x=;f x e x(3)()sin xf x=;x(4)()tanf x x=.例2.2=+-的导数为()(2)()f x x a x aA.22x a2()+ 2()x a-B.22 C.22x a+3() 3()x a-D.22练习1.求下列函数的导数:2xx e 1ln x211x x ++练习2.求下列函数的导数: (1)()e sin x f x x -=;(2)2()()ln f x x x x =-; (3)2()()e x f x x ax a -=-+⋅;(4)()3ln x f x x =.【知识点三:复合函数求导】一般地,对于两个函数()y f u =和()u g x =,如果通过变量,u y 可以表示成x 的函数.那么称这个函数为函数()y f u =和()u g x =的复合函数,记(())y f g x =.复合函数(())y f g x =的导数和函数(),y f u =()u g x =的导数间的关系为'''x u x y y u =⋅ (注:'x y 表示y 对x 的导数,'u y 表示y 对u 的导数)【典型例题】例1.(1)函数2sin y x =的导数是_____.(2)函数2412x y e +=的导数是_____.(3)函数2(1cos )y x =-的导数是_____.(4)设3121y x =+,则y '=_____.2'2cos y x x =练习1.求下列复合函数的导数:(1)2()ln(5)f x x =+;(2)10(35)()x f x x +=;(3)1()ln()1xf x x+=-.【小试牛刀】1.已知函数()f x 在1x =处可导,则0(1)(1)__________lim3x f x f x∆→+∆-=∆.2.求下列函数的导数: (1)ln y x = (2)53y x = (3)2x y =3.求下列函数导数值: (1)()f x x =,求(1)f ',1()2f '(2)()sin f x x =,求π()4f '(3)2()log f x x =,求1()2f '4.求下列函数的导数: (1)2()2ln f x x x =+(2)3()x f x x e =+【巩固练习——基础篇】1.若小球自由落体的运动方程为21()2s t gt =(g 为常数),该小球在13t t ==到的平均速度为v ,在2t =的舒适速度为2v ,2v v 和关系为A .2v v >B .2v v <C .2v v =D .不能确定2. 已知函数()f x 和()g x 在区间[]a b ,上的图像如图所示,纳闷下列说法正确的是A .()f x 在a 到b 之间的平均变化率大于()g x 在a 到b 之间的平均变化率B .()f x 在a 到b 之间的平均变化率小于()g x 在a 到b之间的平均变化率C .对于任意0()x a b ∈,,函数()f x 在0x x =处的瞬时变化率总大于函数()g x 在0x x =处的瞬时变化率D .存在0()x a b ∈,,使得函数()f x 在0x x =处的瞬时变化率总小于函数()g x 在0x x =处的瞬时变化率3.求下列函数在给定点的导数 (1)34=16y x x =, (2) sin =2y x x π=, (3)cos =2y x x π=,4.已知函数,则的最小正周期是;如果的导函数是,则________.21()sin 23cos 2f x x x =+()f x ()f x ()f x '()6f π'=t 4t 3t 2100t 1tOV5.求下列函数的导数:(1)()sin cos 22x xf x x =-(2)()sin(21)x f x e x =+6.求下列函数的导数: (1)()sin(ln )f x x =;(2)43()(21)f x x +【巩固练习——提高篇】1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()(10)10V t H t =-(H 为常数),其图象如图所示.记此堆雪从融化开始到结束的平均融化速度为3(m /)v h .那么瞬时融化速度等于3(m /)v h 的时刻是图中的A .1tB .2tC .3tD .4t2.已知函数,则A .B .C .D .03.设函数,其中,则导数的取值范围是A .B .C .D .4.设、是上的可导函数,、分别是、的导函数,且,则当时,有A .B .C .D .5.已知是定义在(0,+∞)上的非负可导函数,且满足,对任意正数、,若<,则,的大小关系为A .<B .=C .≤D .≥6.求下列函数的导数:()(1)(2)(3)(100)f x x x x x =----(1)f '=99!-100!-98!-()32sin 3cos tan 3f x x x θθθ=++5π012θ⎡⎤∈⎢⎥⎣⎦,()1f '[]22-,23⎡⎤⎣⎦,32⎡⎤⎣⎦22⎡⎤⎣⎦()f x ()g x R ()f x '()g x '()f x ()g x ()()()()0f x g x f x g x ''+<a x b <<()()()()f x g x f b g b >()()()()f x g a f a g x >()()()()f x g b f b g x >()()()()f x g x f a g a >()f x '()()0xf x f x ->a b a b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b(1)1()sin tan ln cos f x x x x x=++; (2)2()cos(ln(1))f x x =+;(3)121()()xf x e x a x=++.7.已知1()sin cos f x x x =+,记21()'()f x f x =,32()'()f x f x =,…,1()'()(,2)n n f x f x n N n *-=∈≥,则122018()()()_________222f f f πππ+++=.4.2 导数的几何意义【课前诊断】成绩(满分10分):_____ 完成情况: 优/中/差1.曲线在处切线的倾斜角为A .B .C .D .2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.3. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;4.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;313y x =1=x 1π4-π45π4【知识点一:切线的求法】1、曲线的切线的求法:若已知曲线过点00(,)P x y ,求曲线过点P 的切线,则需分点00(,)P x y 是切点和不是切点两种情况求解.(1)当点00(,)P x y 是切点时,切线方程为000()()y y f x x x '-=-; (2)当点00(,)P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标11(,())P x f x ';第二步:写出过11(,())P x f x '的切线方程为111()()()y f x f x x x '-=-; 第三步:将点P 的坐标00(,)x y 代入切线方程求出1x ;第四步:将1x 的值代入方程111()()()y f x f x x x '-=-,可得切线方程. 2、求曲线=()y f x 的切线方程的类型及方法(1)已知切点00(,)P x y ,求=()y f x 过点P 的切线方程:求出切线的斜率0()f x ',由点斜式写出方程;(2)已知切线的斜率为k ,求=()y f x 的切线方程:设切点00(,)P x y ,通过方程0()k f x '=解得0x ,再由点斜式写出方程;(3)已知切线上一点(非切点),求=()y f x 的切线方程:设切点00(,)P x y ,利用导数求得切线斜率0()f x ',再由斜率公式求得切线斜率,列方程(组)解得0x ,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由0()k f x '=求出切点坐标00(,)x y ,最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.【典型例题】考点一:导数的几何意义例1.若过曲线上的点的切线的斜率为, 则点的坐标是.例2. 已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程;练习1.已知函数()()ln 1f x x a x x =+-+.(Ⅰ)若曲线()y f x =在点(e (e))f ,处的切线斜率为1,求实数a 的值;练习2. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;()ln f x x x =P 2P ______例1.曲线在处的切线方程为A .B .C .D .例2.曲线在处切线的倾斜角为A .B .C .D .练习1.曲线在点处的切线方程是 A . B . C . D .练习2.已知函数()(sin )ln f x x a x =+,a ∈R .若0a =,求曲线()y f x =在点(,())22f ππ处的切线方程;练习3.已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值;e ()1xf x x =-0=x 10--=x y 10++=x y 210--=x y 210++=x y 313y x =1=x 1π4-π45π42()1xf x x =+(1,(1))f 1x =12y =1+=x y 1-=x y例1.曲线在点处的切线经过点,则.例2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.练习1. 已知函数ln ()xf x ax x=-,曲线()y f x =在1x =处的切线经过点(2,1)-. (Ⅰ)求实数a 的值;考点四: 切线证明例1.已知函数()e (sin cos )x f x x x =+.(切线斜率)(Ⅱ)求证:曲线()y f x =在区间(0,)2π上有且只有一条斜率为2的切线.练1.已知函数()3(0)ax f x e ax a =--≠.()e x f x =00(,())x f x (1,0)P 0=x ______(Ⅱ)当0a >时,设211()32ax g x e ax x a =--,求证:曲线()y g x =存在两条斜率为1-且不重合的切线.例2.已知函数32()f x x ax =-.(3a >)(切线个数) (Ⅱ)求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切.练2.已知函数321()3()3f x x x ax a =--∈R .(Ⅱ)在直线1x =上是否存在点P ,使得过点P 至少有两条直线与曲线()y f x =相切?若存在,求出P 点坐标;若不存在,说明理由.例3.已知函数()1e 1x x x f x --+=.(公切线问题)(Ⅲ)设0x 是()f x 的一个零点,证明曲线e x y =在点00(,e )x x 处的切线也是曲线ln y x =练3.已知函数()ln,()x==.f x xg x e(Ⅲ)判断曲线()f x与()g x是否存在公切线,若存在,说明有几条,若不存在,说明理由.【小试牛刀】1.若曲线的某一切线与直线垂直,则切线坐标为.2.已知函数()e cos x f x x x =-. (Ⅰ)求曲线在点处的切线方程; 23122y x x =+-134y x =-+______()y f x =(0,(0))f1.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;2.已知函数321()3f x ax x bx c =+++. 曲线()y f x =在点()0,(0)f 处的切线方程为1y x =+.(Ⅰ)求b ,c 的值;3. 已知函数().xe f x x= (Ⅰ)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值;1.已知函数()ln sin(1)f x x a x =-⋅-,其中a ∈R . (Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值;2.设函数32()(1)f x x b x bx =-++.(切线斜率) (Ⅱ)当1b >时,函数()f x 与直线y x =-相切,求b 的值;3.已知函数()ln 1a f x x x =--.(Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;5.已知函数2()(0)f x ax bx a=->和()lng x x=的图象有公共点P,且在点P处的切线相同.(公切线问题)(Ⅰ)若点P的坐标为1(,1)e-,求,a b的值;(Ⅱ)已知a b=,求切点P的坐标.。

导数及其应用(教学案)-2020年高考理数二轮复习精品资料Word版含解析

导数及其应用(教学案)-2020年高考理数二轮复习精品资料Word版含解析

高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现.预测高考仍将利用导数研究方程的根、函数的零点问题、含参数的不等式恒成立、能成立、实际问题的最值等形式考查.1.导数的定义f′(x)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f xΔx.2.导数的几何意义函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).3.导数的运算(1)基本初等函数的导数公式①c′=0(c为常数);②(x m)′=mx m-1;③(sin x)′=cos x; ④(cos x)′=-sin x;⑤(e x)′=e x; ⑥(a x)′=a x ln a;⑦(ln x)′=1x;⑧(log a x)′=1x ln a.(2)导数的四则运算法则①[f(x)±g(x)]′=f′(x)±g′(x);②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);③[f xg x ]′=f′x g x-f x g′xg2x.④设y=f(u),u=φ(x),则y′x=y′u u′x.4.函数的性质与导数在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增.如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.5.利用定积分求曲线围成图形的面积的步骤:①画出图形;②确定被积函数;③求出交点坐标,确定积分的上、下限;④运用微积分基本定理计算定积分,求出平面图形的面积.特别注意平面图形的面积为正值,定积分值可能是负值.被积函数为y=f(x),由曲线y=f(x)与直线x=a,x=b(a<b)和y=0所围成的曲边梯形的面积为S.①当f (x )>0时,S =⎠⎛ab f (x )d x ;②当f (x )<0时,S =-⎠⎛ab f (x )d x ;③当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .高频考点一 导数的几何意义及应用 例1、(2018年全国Ⅲ卷理数)曲线在点处的切线的斜率为,则________.【答案】-3 【解析】,则 所以【变式探究】(1)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 解析:基本法:由题意可得f ′(x )=3ax 2+1, ∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.速解法:∵f (1)=2+a ,由(1,f (1))和(2,7)连线斜率k =5-a1=5-a ,f ′(x )=3ax 2+1,∴5-a =3a +1,∴a =1.答案:1(2)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析:基本法:令f (x )=x +ln x ,求导得f ′(x )=1+1x ,f ′(1)=2,又f (1)=1,所以曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.设直线y =2x -1与曲线y =ax 2+(a +2)x +1的切点为P (x 0,y 0),则y ′|x =x 0=2ax 0+a +2=2,得a (2x 0+1)=0,∴a =0或x 0=-12,又ax 20+(a +2)x 0+1=2x 0-1,即ax 20+ax 0+2=0,当a =0时,显然不满足此方程, ∴x 0=-12,此时a =8.速解法:求出y =x +ln x 在(1,1)处的切线为y =2x -1由⎩⎪⎨⎪⎧y =2x -1y =ax 2+a +2x +1得ax 2+ax +2=0, ∴Δ=a 2-8a =0,∴a =8或a =0(显然不成立).【变式探究】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3解析:基本法:y ′=a -1x +1,当x =0时,y ′=a -1=2,∴a =3,故选D. 答案:D高频考点二 导数与函数的极值、最值例2、(2018年浙江卷)已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】 (1). (1,4) (2). 【解析】由题意得或,所以或,即,不等式f (x )<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。

2015届高考数学二轮复习 专题二 第3讲 导数及其应用配

2015届高考数学二轮复习 专题二 第3讲 导数及其应用配

(2)当x∈[0,4]时,求函数f(x)的最小值.
思维启迪 讨论区间[0,4]和所得单调区间的关系,一般情况下,f(x)
的最值可能在极值点或给定区间的端点处取到.
解 由(1)得,f(x)的单调减区间为(-∞,-a-1); 单调增区间为(-a-1,+∞). 所以当-a-1≤0,
即a≥-1时,f(x)在[0,4]上单调递增, 故f(x)在[0,4]上的最小值为f(x)min=f(0)=a; 当0<-a-1<4,即-5<a<-1时, f(x)在(0,-a-1)上单调递减, f(x)在(-a-1,4)上单调递增, 故f(x)在[0,4]上的最小值为 f(x)min=f(-a-1)=-e-a-1;
b a
热点分类突破
➢ 热点一 导数的运算和几何意义 ➢ 热点二 利用导数研究函数的性质 ➢ 热点三 导数与方程、不等式 ➢ 热点四 定积分
热点一 导数的运算和几何意义
例1 (1)(2014·广东)曲线y=e-5x+2在点(0,3)处的 切线方程为________.
思维启迪 先根据导数的几何意义求出切线的斜率,写出点斜式方
专题二 函数与导数
第 3讲 导数及其应用
主干知识梳理 热点分类突破 真题与押题
1.导数的意义和运算是导数应用的基础,是高考
的一个热点.

情 解
2.利用函数的单调性和最值确定函数的解析式或

参数的值,突出考查导数的工具性作用.
3
主干知识梳理
1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点 (x0,f(x0))处的切线的斜率,其切线方程是y-f(x0)= f′(x0)(x-x0).
思维启迪 直接求f′(x),利用f′(x)的符号确定单调区间;

高考理科数学二轮专题提分教程全国课件导数及其应用

高考理科数学二轮专题提分教程全国课件导数及其应用

可导与连续关系
可导必连续
如果函数在某一点处可导,则该函数 在该点处必定连续。这是因为可导的 定义中已经包含了函数在该点处的连 续性。
连续不一定可导
虽然连续函数在其定义域内具有许多 良好的性质,但并不意味着它在每一 点处都可导。例如,绝对值函数在原 点处连续但不可导。
基本初等函数导数公式
常数函数
幂函数
物理学中速度和加速度计算
要点一
速度计算
要点二
加速度计算
在物理学中,速度是位移对时间的导数。通过求解位移函 数的导数,可以得到物体在任意时刻的速度。
加速度是速度对时间的导数。通过对速度函数求导,可以 得到物体在任意时刻的加速度,进而分析物体的运动状态 。
工程学中最优化问题求解
最值问题
在工程学中,经常需要求解某个函数的最值 问题,如最小成本、最大效益等。通过求解 函数的导数,并令其等于零,可以找到函数 的极值点,进而确定最值。
正弦函数y=sinx的导数 为cosx;余弦函数 y=cosx的导数为-sinx; 正切函数y=tanx的导数 为sec2x。
复合函数、反函数求导法则
复合函数求导法则
如果u=g(x)在点x处可导,且y=f(u)在点u=g(x)处也可导,则复合函数y=f[g(x)]在点x处也可导,且 其导数可由f'和g'通过链式法则求得:dy/dx = f'(u) * g'(x)。
利用中值定理求极限或判断函数性质
利用中值定理求极限
通过中值定理找到满足条件的点,然后利用 该点的性质求出极限。Biblioteka 利用中值定理判断函数单调性
通过中值定理找到满足条件的点,然后利用 该点的性质判断函数的单调性。
利用中值定理判断函数凹凸性
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题03:导数及其应用-高考理数二轮复习精品资料知识梳理高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现.预测高考仍将利用导数研究方程的根、函数的零点问题、含参数的不等式恒成立、能成立、实际问题的最值等形式考查.1.导数的定义f′(x)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f xΔx.2.导数的几何意义函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).3.导数的运算(1)基本初等函数的导数公式①c′=0(c为常数);②(x m)′=mx m-1;③(si nx)′=c os x; ④(c os x)′=-si nx;⑤(e x)′=e x; ⑥(a x)′=a x l na;⑦(l nx)′=1x;⑧(log a x)′=1x ln a.(2)导数的四则运算法则①[f(x)±g(x)]′=f′(x)±g′(x);②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);③[f xg x ]′=f′x g x-f x g′xg2x. ④设y=f(u),u=φ(x),则y′x=y′u u′x.4.函数的性质与导数在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增.如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.5.利用定积分求曲线围成图形的面积的步骤:①画出图形;②确定被积函数;③求出交点坐标,确定积分的上、下限;④运用微积分基本定理计算定积分,求出平面图形的面积.特别注意平面图形的面积为正值,定积分值可能是负值.被积函数为y=f(x),由曲线y=f(x)与直线x=a,x=b(a<b)和y=0所围成的曲边梯形的面积为S.①当f(x)>0时,S=⎠⎛ab f(x)d x;②当f(x)<0时,S=-⎠⎛ab f(x)d x;③当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .考点一 导数的几何意义及应用 例1、(2018年全国Ⅲ卷理数)曲线在点处的切线的斜率为,则________.解析:,则所以【变式1】(1)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 基本法:由题意可得f ′(x )=3ax 2+1,∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.速解法:∵f (1)=2+a ,由(1,f (1))和(2,7)连线斜率k =5-a1=5-a ,f ′(x )=3ax 2+1,∴5-a =3a +1,∴a =1. 答案:1(2)已知曲线y =x +l n x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 基本法:令f (x )=x +l n x ,求导得f ′(x )=1+1x ,f ′(1)=2,又f (1)=1,所以曲线y =x +l n x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.设直线y =2x -1与曲线y =ax 2+(a +2)x +1的切点为P (x 0,y 0),则y ′|x =x 0=2ax 0+a +2=2,得a (2x 0+1)=0,∴a =0或x 0=-12,又ax 20+(a +2)x 0+1=2x 0-1,即ax 20+ax 0+2=0,当a =0时,显然不满足此方程, ∴x 0=-12,此时a =8.速解法:求出y =x +l n x 在(1,1)处的切线为y =2x -1由⎩⎪⎨⎪⎧y =2x -1y =ax 2+a +2x +1得ax 2+ax +2=0,∴Δ=a 2-8a =0,∴a =8或a =0(显然不成立).答案:8【变式2】设曲线y =ax -l n (x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3解析::基本法:y ′=a -1x +1,当x =0时,y ′=a -1=2,∴a =3,故选D.考点二 导数与函数的极值、最值例2、(2018年浙江卷)已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.解析:由题意得或,所以或,即,不等式f (x )<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。

【变式1】 (1)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(1,+∞) C .(-∞,-2) D .(-∞,-1)基本法:a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a .若a >0,则由图象知f (x )有负数零点,不符合题意.则a <0,由图象结合f (0)=1>0知,此时必有f ⎝⎛⎭⎫2a >0,即a ×8a 3-3×4a 2+1>0,化简得a 2>4,又a <0,所以a <-2,故选C .速解法:若a >0,又∵f (0)=1,f (-1)=-a -2<0,在(-1,0)处有零点,不符合题意.∴a <0,若a =-43,则f (x )=-43x 3-3x 2+1f ′(x )=-4x 2-6x =0,∴x =0,或x =-32.此时f ⎝⎛⎭⎫-32为极小值且f ⎝⎛⎭⎫-32<0,有三个零点,排除D.选C (2)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0基本法:由三次函数的值域为R 知,f (x )=0必有解,A 项正确;因为f (x )=x 3+ax 2+bx +c 的图象可由y =x 3平移得到,所以y =f (x )的图象是中心对称图形,B 项正确;若y =f (x )有极值点,则其导数y =f ′(x )必有2个零点,设为x 1,x 2(x 1<x 2),则有f ′(x )=3x 2+2ax +b =3(x -x 1)(x -x 2),所以f (x )在(-∞,x 1)上递增,在(x 1,x 2)上递减,在(x 2,+∞)上递增,则x 2为极小值点,所以C 项错误,D 项正确.选C .速解法:联想f (x )的图象模型如图显然C 错.答案:C【变式2】函数f (x )=ax 3+bx 2+cx -34(a ,b ,c ∈R )的导函数为f ′(x ),若不等式f ′(x )≤0的解集为{x |-2≤x ≤3},且f (x )的极小值等于-115,则a 的值是( )A .-8122B .13C .2D .5基本法:由已知可知f ′(x )=3ax 2+2bx +c ,由3ax 2+2bx +c ≤0的解集为{x |-2≤x ≤3}可知a >0,且-2,3是方程3ax 2+2bx +c =0的两根,由根与系数的关系知-2b 3a =(-2)+3,c3a =-2×3,∴b =-3a 2,c =-18a ,此时f (x )=ax 3-3a2x 2-18ax -34,当x ∈(-∞,-2)时,f ′(x )>0,f (x )为增函数;当x ∈(-2,3)时,f ′(x )<0,f (x )为减函数;当x ∈(3,+∞)时,f ′(x )>0,f (x )为增函数,∴f (3)为f (x )的极小值,∵f (3)=27a -27a2-54a -34=-115,∴a =2,故选C .考点三 导数与函数的单调性 例3、(2018年全国Ⅱ卷理数)若在是减函数,则的最大值是A .B .C .D.解析:因为,所以由得,因此,从而的最大值为。

【变式1】若函数f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)基本法:由题意知f ′(x )≥0对任意的x ∈⎝⎛⎭⎫12,+∞恒成立,又f ′(x )=2x +a -1x 2,所以2x +a -1x 2≥0对任意的x ∈⎝⎛⎭⎫12,+∞恒成立,分离参数得a ≥1x 2-2x ,若满足题意,需a ≥⎝⎛⎭⎫1x 2-2x max .令h (x )=1x 2-2x ,x ∈⎝⎛⎭⎫12,+∞.因为h ′(x )=-2x 3-2,所以当x ∈⎝⎛⎭⎫12,+∞时,h ′(x )<0,即h (x )在⎝⎛⎭⎫12,+∞上单调递减,所以h (x )<h ⎝⎛⎭⎫12=3,故a ≥3.速解法:当a =0时,检验f (x )是否为增函数,当a =0时, f (x )=x 2+1x ,f ⎝⎛⎭⎫12=14+2=94,f (1)=1+1=2,f ⎝⎛⎭⎫12>f (1)与增函数矛盾.排除A 、B 、C .故选D.(2)若函数f (x )=kx -l n x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞) 基本法:依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x 在(1,+∞)上恒成立,∵x >1,∴0<1x<1,∴k ≥1,故选D.速解法:若k =1,则f ′(x )=1-1x =x -1x 在(1,+∞)上有f ′(x )>0,f (x )=kx -l n x 为增函数.答案:D【变式2】对于R 上可导的任意函数f (x ),若满足1-xf ′x ≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)基本法:选A .当x <1时,f ′(x )<0,此时函数f (x )递减,当x >1时,f ′(x )>0,此时函数f (x )递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值,所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1),故选A .历年真题1. (2018年全国Ⅲ卷理数)曲线在点处的切线的斜率为,则________.解析:,则所以2. (2018年浙江卷)已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.解析:由题意得或,所以或,即,不等式f (x )<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。

相关文档
最新文档