2.5.1平面几何中的向量方法

合集下载

平面向量题型归类及解题方法

平面向量题型归类及解题方法

平面向量题型归类及解题方法1. 平面向量的定义和性质平面向量是指在平面上具有大小和方向的量,用箭头来表示。

平面向量通常用一个字母加上一个箭头(如a→)来表示。

平面向量有以下性质: - 零向量的方向是任意的,大小为0。

- 向量的大小等于其模长,记作∥a∥。

- 向量可以相等,相等的向量有相同的大小和方向。

- 向量可以相反,相反的向量大小相等,方向相反。

- 向量可以相加,向量相加满足三角形法则。

- 向量可以缩放,即乘以一个标量。

- 向量可以平移,即使原点发生变化。

2. 平面向量的基本运算2.1 向量的加法向量a和b的和记作a + b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的终点。

2.2 向量的减法向量a和b的差记作a - b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的起点。

2.3 向量的数乘向量a与一个实数k的积记作k a,其几何意义是将向量a的长度缩放为原来的k 倍,方向不变(当k>0时)或反向(当k<0时)。

2.4 平行向量和共线向量如果两个向量的方向相同(可能大小不同),那么它们是平行向量。

如果两个向量共线,即一个向量是另一个向量的倍数,那么它们是共线向量。

2.5 两个向量的数量积(点积)设a = (x1, y1)和b = (x2, y2),则向量a和b的数量积(点积)定义为:a·b= x1x2 + y1y2。

2.6 向量的模长和方向角设向量a = (x, y),则向量a的模长定义为∥a∥= √(x^2 + y^2)。

向量a的方向角定义为与x轴的正方向之间的夹角θ,其中tanθ = y / x。

3. 平面向量的题型归类及解题方法平面向量的题型主要包括平面向量的加减法、数量积、平行向量和共线向量、模长和方向角等。

3.1 平面向量的加减法题型•已知两个向量,求其和或差向量。

•已知一个向量和其和或差向量,求另一个向量。

利用向量解决平面几何问题的方法与技巧

利用向量解决平面几何问题的方法与技巧

利用向量解决平面几何问题的方法与技巧平面几何是数学中的一个重要分支,它研究平面上的点、直线、圆等几何图形及其性质。

解决平面几何问题时,常常可以运用向量的概念和运算来简化计算和分析过程。

本文将介绍一些利用向量解决平面几何问题的方法与技巧。

一、向量的基本概念与运算在讨论向量解决平面几何问题之前,首先需要了解向量的基本概念和运算。

向量是具有大小和方向的量,可以表示为箭头形式或坐标形式。

向量的加法满足交换律和结合律,即(a+b)+c=a+(b+c),a+b=b+a。

向量的数乘是将向量的长度进行拉伸或压缩的操作,结果仍是一个向量。

二、利用向量进行辅助构造1. 向量平移在解决平面几何问题时,有时可以通过向量平移来简化问题。

设有一个平面几何问题,已知点A,B,C等多个点,需要求得某个点D。

可以选择一个已知向量,用它将所有的点平移,然后通过平移后的点的位置关系来确定点D的位置。

2. 向量加法构造向量当需要得到几何图形中的一个向量时,可以利用已知向量进行向量加法构造。

例如,已知直线上的两个点A和B,需要求得直线上的另一个点C,可以利用已知向量AB和一条与直线垂直的向量得出向量AC,从而确定点C在直线上的位置。

三、利用向量进行问题的求解1. 直线和向量的关系在平面几何中,直线可以由点和向量唯一确定。

已知直线上的两点A和B,通过向量AB可以得到直线上的一个特征向量。

2. 平行和共线的判定利用向量的平行性质,可以方便地判定两条直线是否平行或共线。

若两个向量的方向相同或相反,则两条直线平行;若两个向量共线,则两条直线共线。

3. 角度和向量的夹角利用向量的内积,可以求得两个向量之间的夹角。

已知两个向量a和b,它们的夹角θ满足公式cosθ=(a·b)/(|a||b|)。

4. 平面和向量的关系在解决平面几何问题时,有时可以通过平面的法线向量来简化问题。

已知平面上的三个点A、B、C,可以通过向量AB和向量AC求得平面的法线向量,从而得到平面的方程。

新人教A版必修4高中数学2.5.1平面几何中的向量方法限时训练

新人教A版必修4高中数学2.5.1平面几何中的向量方法限时训练

1高中数学 2.5.1平面几何中的向量方法限时训练新人教A 版必修41.在△ABC 中,若AB =AC ,D 、E 分别是AB 、AC 的中点,则( ). A.BD →=CE → B.BD →与CE →共线 C.BE →=BC → D.DE →与BC →共线2.在四边形ABCD 中,AB →=-CD →,AC →·BD →=0,则四边形为( ). A .平行四边形 B .矩形 C .等腰梯形D .菱形3.若物体在共点力F 1=(lg 2,lg 2),F 2=(lg 5,lg 2)的作用下产生位移s =(2lg 5,1),则共点力对物体所做的功W 为( ).A .lg 2B .lg 5C .1D .24.已知在△ABC 中,AB →=a ,AC →=b ,且a ·b <0,则△ABC 的形状为( ). A .钝角三角形 B .直角三角形 C .锐角三角形D .等腰直角三角形25.点O 是三角形ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( ). A .三个内角的角平分线的交点 B .三条边的垂直平分线的交点 C .三条中线的交点 D .三条高的交点8.一个重20 N 的物体从倾斜角30°,斜面长1 m 的光滑斜面顶端下滑到底端,则重力做的功是________.9.已知作用于原点的两个力F 1=(3,4),F 2=(2,-5),现增加一个力F ,使这三个力F 1,F 2,F 的合力为0,则F =________. 10.已知点A (1,0),直线l :y =2x -6,点R 是直线l 上的一点,若RA →=2AP →,求点P 的轨迹方程.11.已知Rt△ABC,∠C=90°,设AC=m,BC=n,(1)若D为斜边AB的中点,求证:CD=12AB;(2)若E为CD的中点,连接AE并延长交BC于F,求AF的长(用m、n表示).12.(创新拓展)如图所示,用两根分别长5 2 m和10 m的绳子将100 N的物体吊在水平屋顶AB上,平衡后G点距屋顶的距离恰好为5 m,求A处受力的大小.3。

《平面几何中的向量方法》 知识清单

《平面几何中的向量方法》 知识清单

《平面几何中的向量方法》知识清单一、向量的基本概念向量是既有大小又有方向的量。

在平面几何中,我们通常用有向线段来表示向量。

向量的大小称为向量的模,记作\(\vert\vec{a}\vert\)。

两个向量相等,当且仅当它们的大小相等且方向相同。

零向量是模为\(0\)的向量,记作\(\vec{0}\),其方向是任意的。

单位向量是模为\(1\)的向量。

二、向量的运算1、加法向量的加法满足三角形法则和平行四边形法则。

三角形法则:已知向量\(\vec{a}\),\(\vec{b}\),将\(\vec{b}\)的起点平移到\(\vec{a}\)的终点,连接\(\vec{a}\)的起点与\(\vec{b}\)的终点,得到的向量就是\(\vec{a} +\vec{b}\)。

平行四边形法则:以同一点\(O\)为起点的两个已知向量\(\vec{a}\),\(\vec{b}\),以\(\vec{a}\),\(\vec{b}\)为邻边作平行四边形\(OACB\),则对角线\(\overrightarrow{OC}\)就是\(\vec{a}\)与\(\vec{b}\)的和。

向量加法的运算律:交换律:\(\vec{a} +\vec{b} =\vec{b} +\vec{a}\)结合律:\((\vec{a} +\vec{b})+\vec{c} =\vec{a} +(\vec{b} +\vec{c})\)2、减法与向量\(\vec{a}\)长度相等,方向相反的向量,叫做\(\vec{a}\)的相反向量,记作\(\vec{a}\)。

向量的减法是向量加法的逆运算,\(\vec{a} \vec{b} =\vec{a} +(\vec{b})\)。

3、数乘实数\(\lambda\)与向量\(\vec{a}\)的积是一个向量,记作\(\lambda\vec{a}\)。

当\(\lambda > 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)的方向相同;当\(\lambda < 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)的方向相反;当\(\lambda = 0\)时,\(\lambda\vec{a} =\vec{0}\)。

高中数学第二章平面向量2.5.1平面几何中的向量方法全国公开课一等奖百校联赛微课赛课特等奖PPT课件

高中数学第二章平面向量2.5.1平面几何中的向量方法全国公开课一等奖百校联赛微课赛课特等奖PPT课件

22
2
2
思索:能否用向量 坐标形式证实?
a b a b
r2 r2 0
即 AC CB 0 ,∠ACB=90°
9/10

小结: 用向量方法处理平面几何问题“三步曲”:
(1)建立平面几何与向量联络,用向量表示 问题中包括几何元素,将平面几何问题转化 为向量问题; (2)经过向量运算,研究几何元素之间关系, 如距离、夹角等问题; (3)把运算结果“翻译”成几何元素。
2
2
AB2 BC 2 CD2 DA2 2( a b )
AC2
BD2
2
ab
ab
2
a
2
2ab
2
b
2
a
2ab
2
b
2
2
a
2
b
2
a
2
b
2
∴ AB2 BC 2 CD2 DA2 AC 2 BD2
4/10
你能总结一下利用向量法处理平面几何问题 基本思绪吗?
用向量方法处理平面几何问题 “三步曲”:
(1)建立平面几何与向量联络,用向量表示 问题中包括几何元素,将平面几何问题转化 为向量问题;
(2)经过向量运算,研究几何元素之间关系, 如距离、夹角等问题;
(3)把运算结果“翻译”成几何元素。
简述:形到向量
向量运算 向量和数到形
5/10
例2 如图, ABCD中,点E、F分别 是AD 、 DC边中点,BE 、 BF分别与 AC交于R 、 T两点,你能发觉AR 、 RT 、TC之间关系吗?
猜测: AR=RT=TC
D
F
C
ER
T
A
B
6/10
解:设 AB a, AD b , AR r , 则 AC a b

平面几何中的向量方法

平面几何中的向量方法

平面几何中的向量方法一、向量的定义和运算在平面几何中,向量可以用带方向的线段来表示。

向量的表示常用字母的小写形式,如a、b,放在一个有顺序的大括号中,如{a},表示向量a。

向量的运算包括向量的加法、减法、数乘和点乘等。

向量的加法:向量的加法满足:{a}+{b}={c}即向量a和向量b的和为向量c,向量的加法满足平行四边形法则。

向量的减法:向量的减法可以用向量的加法和数乘来表示:{a}-{b}={a}+(-1){b}。

向量的数乘:向量的数乘满足:k{a} = {ka}即向量a和实数k的乘积为向量ka,其中k为实数。

向量的点乘:向量a和b的点乘表示为a·b,满足:a·b = ,a,b,cosθ其中,a,和,b,分别为向量a和b的模长,θ为a和b之间的夹角。

二、向量的性质和定理1.向量的零向量:零向量是长度为0的向量,用0或{0}表示,它的任何向量和都等于它本身。

2.向量的相等:向量a和b相等,当且仅当它们的模长相等且方向相同。

3.向量的平行:向量a和b平行,当且仅当它们的夹角θ为0或π。

4.向量的共线:向量a和b共线,当且仅当它们可以表示成同一向量的倍数。

5.向量的模长公式:a,=√(a·a)向量a的模长等于a与自己的点乘的平方根。

6.向量的加法交换律和结合律:向量的加法满足交换律:{a}+{b}={b}+{a};和结合律:{a}+({b}+{c})=({a}+{b})+{c}。

以上是平面几何中常用的向量性质和定理,这些性质和定理为后续向量方法的应用提供了基础。

三、向量方法的应用1.向量的坐标表示:在平面直角坐标系中,向量可以表示成坐标形式,即用有序数对表示。

设向量a的起点为A(x1,y1),终点为B(x2,y2),则向量a可以表示为:{a}={AB}={x2-x1,y2-y1}。

2.向量的线性组合:向量的线性组合是指将若干个向量按一定比例相加所得到的新向量。

设有n个向量a1, a2, ..., an和n个实数k1, k2, ..., kn,则它们的线性组合为:k1{a1} + k2{a2} + ... + kn{an}。

平面几何中的向量方法

平面几何中的向量方法

平面几何中的向量方法引言平面几何是数学中的一个重要分支,研究平面上的点、线、面等几何对象以及它们之间的关系与性质。

向量方法是解决平面几何问题的一种常用方法,通过引入向量概念,可以简化计算过程,提高问题求解的效率。

本文将介绍平面几何中的向量方法,并通过具体例子进行说明,帮助读者更好地理解和应用这一方法。

向量的定义和表示向量定义在平面几何中,向量是具有大小和方向的量。

它可以表示从一个点到另一个点的箭头,并且箭头长度表示向量大小,箭头方向表示向量方向。

向量表示在平面几何中,通常使用字母加上箭头来表示一个向量。

例如,AB ⃗⃗⃗⃗⃗ 表示从点A 指向点B 的向量。

另外,还可以使用坐标来表示一个向量。

假设有两个点A(x1, y1)和B(x2, y2),则从A 指向B 的向量可以表示为AB⃗⃗⃗⃗⃗ =(x2−x1,y2−y1)。

向量运算向量加法在平面几何中,两个向量可以进行加法运算。

假设有两个向量AB ⃗⃗⃗⃗⃗ 和CD ⃗⃗⃗⃗⃗ ,它们的加法结果可以表示为AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ 。

即将第二个向量的起点放在第一个向量的终点,连接第一个向量的起点和第二个向量的终点,得到一个新的向量。

向量减法在平面几何中,两个向量可以进行减法运算。

假设有两个向量AB ⃗⃗⃗⃗⃗ 和CD ⃗⃗⃗⃗⃗ ,它们的减法结果可以表示为AB ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ 。

即将第二个向量取负后进行加法运算。

向量数量乘法在平面几何中,一个向量可以与一个实数相乘。

假设有一个向量AB ⃗⃗⃗⃗⃗ 和一个实数k ,则它们的数量乘积可以表示为k ⋅AB ⃗⃗⃗⃗⃗ =(kx,ky ),其中x 和y 是向量AB ⃗⃗⃗⃗⃗ 的坐标。

内积在平面几何中,两个非零向量之间定义了内积运算。

假设有两个非零向量A=(x 1,y 1)和B⃗ =(x 2,y 2),它们的内积可以表示为A ⋅B ⃗ =x 1x 2+y 1y 2。

高中数学 人教A版必修4 第2章 2.5.1平面几何中的向量方法

高中数学 人教A版必修4    第2章 2.5.1平面几何中的向量方法
本 课 时 栏 目 开 关
2.5.1
2.5.1
平面几何中的向量方法
本 课 时 栏 目 开 关
【学习要求】 1.经历用向量方法解决某些简单的平面几何问题及其它一些实际 问题的过程. 2.体会向量是一种处理几何问题的有力工具. 3.培养运算能力、分析和解决实际问题的能力. 【学法指导】 由于向量涉及共线、夹角、垂直、长度等基本问题,而这些问题 正是平面几何研究的对象,因此可以用向量来处理平面几何问题. 用向量方法解决平面几何问题的“三步曲”: ①建立平面几何与向量的联系,用向量表示问题中涉及的几何元 素,将平面几何问题转化为向量问题; ②通过向量运算,研究几何元素之间的关系; ③把运算结果“翻译”成几何关系.
研一研·问题探究、课堂更高效
2.5.1
探究点三
平面向量在几何中的应用
用向量法处理有关直线平行、垂直、线段相等、点共线、线 共点以及角度等问题时有独到之处,且解法思路清晰、简洁 直观.其基本方法是:
当 v1⊥v2,即 v1· v2=1+k1k2=0 时,l1⊥l2,夹角为直角;当 k1k2≠-1 时,v1· v2≠0,直线 l1 与 l2 的夹角为 θ(0° <θ<90° ).不 难推导利用 k1、k2 表示 cos θ 的夹角公式: |1+k1k2| |v1· v2 | cos θ= = 2 2. |v1||v2| 1+k1· 1+k2
填一填·知识要点、记下疑难点
2.5.1
1.向量方法在几何中的应用
本 课 时 栏 目 开 关
(1)证明线段平行问题,包括相似问题,常用向量平行 (共
a=λb ⇔ x1y2-x2y1=0 线)的等价条件:a∥b(b≠0)⇔_____
.
(2)证明垂直问题,如证明四边形是矩形、正方形等,常用

2.5.1平面几何中的向量方法

2.5.1平面几何中的向量方法

2.5.1平面几何中的向量方法由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以用向量的线性运算及数量积表示出来,因此,可以用向量方法解决平面几何中的一些问题。

下面通过几个具体实例,说明向量方法在平面几何中的运用。

问题探究:例1平行四边形是表示向量加法与减法的几何模型.如图,=+,=-,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?分析:不妨设=,=,则=+,=-,。

与解= ·=(+)·(-)=a·a+a·b+b·a+b·b+2a·b。

同理-2a·b。

观察(1)、(2)两式的特点,我们发现,(1)+(2)得+=2)=2+)。

即平行四边形两条对角线的平方和等于两条邻边平方和的两倍。

思考如果不用向量的方法,能证明上述关系吗?平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用下列方法解决部分几何问题。

解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素;然后通过向量的运算,特别是数量积来研究电、线段等元素之间的关系;最后再把运算结果“翻译”成几何关系得到几何问题的结论。

这就是用向量方法解决几何问题的“三部曲”:(1) 建立皮面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3) 把运算结果“翻译”成几何关系。

例2 如图2.5-2,连接□ABCD 的一个顶点至AD 、DC 边的中点E 、F ,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?分析:由于R 、T 是对角线AC 上的两点要判断AR 、RT 、TC 之间的关系,只需分别判断AR 、RT 、TC 与AC 的关系即可。

平面几何中的向量方法

平面几何中的向量方法

平面几何中的向量方法首先,我们来看一下向量的定义。

在平面几何中,向量通常用有向线段来表示,记作→AB。

其中A称为向量的起点,B称为向量的终点。

向量的模表示为|→AB|,即有向线段的长度。

而方向则由起点指向终点的方向确定。

两个有相同模和相同方向的向量被认为是相等的。

接下来,我们来介绍一些向量的基本性质。

向量具有可加性,即两个向量可以相加得到一个新的向量。

设有向线段→AB和→BC,则它们的和记作→AC,即两个向量相加的结果是一个新的向量,其起点为第一个向量的起点,终点为第二个向量的终点。

此外,向量还具有数量乘法的性质,即一个向量可以与一个实数相乘得到一个新的向量,其模的大小为原向量模的大小与实数的绝对值的乘积,方向与原向量相同(若实数为正)或相反(若实数为负)。

在几何问题中,向量方法可以简化求解过程,使得问题的解决变得更加直观。

例如,在求解平面几何图形的重心时,可以利用向量的方法来进行计算。

设有一个三角形ABC,其顶点坐标分别为A(x1, y1)、B(x2, y2)、C(x3, y3),则三角形的重心G的坐标可以表示为G((x1+x2+x3)/3, (y1+y2+y3)/3)。

通过向量的方法,我们可以简洁地得到三角形的重心坐标,而不需要进行繁琐的计算。

此外,向量方法还可以用于证明几何关系。

例如,在证明平行四边形的对角线互相平分的问题中,可以利用向量的方法进行证明。

设有平行四边形ABCD,其对角线AC和BD的中点分别为M和N,则可以利用向量的加法和数量乘法来证明向量AM等于向量MC,向量BM等于向量MD,从而得到对角线互相平分的结论。

在平面几何中,向量方法具有广泛的应用,可以简化问题的求解过程,使得复杂的几何关系变得清晰而直观。

通过向量方法,我们可以更加方便地进行几何问题的分析和求解,为我们的几何学习和研究提供了有力的工具。

希望本文对你在平面几何中的向量方法有所帮助。

人教a版必修4学案:2.5.1平面几何中的向量方法(含答案)

人教a版必修4学案:2.5.1平面几何中的向量方法(含答案)

2.5.1平面几何中的向量方法自主学习知识梳理1.向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔________⇔____________.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:a⊥b ⇔__________⇔__________.(3)求夹角问题,往往利用向量的夹角公式cos θ=_______________=_______________.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|=______.2.直线的方向向量和法向量(1)直线y=kx+b的方向向量为____________,法向量为__________.(2)直线Ax+By+C=0的方向向量为__________,法向量为__________.自主探究在平行四边形中有下列的结论:平行四边形两条对角线的平方和等于两条邻边平方和的2倍.请用向量法给出证明.对点讲练知识点一利用向量证明平行问题例1如图所示,若ABCD为平行四边形,EF∥AB,AE与BF相交于点N,DE与CF 相交于点M.求证:MN∥AD.回顾归纳(1)本题利用平行向量基本定理证明两直线平行,解题时要注意灵活运用已知条件.(2)向量法证明直线平行,恰是向量平行问题的一种存在形式—它们的基线无公共点.与前面例1比较,最大的区别在于,此处共线的两个向量没有公共端点.变式训练1△ABC中,M、N分别为AB、AC的中点.求证:MN∥BC.知识点二 利用向量证明垂直问题例2 如图所示,在平行四边形ABCD 中,BC =2BA ,∠ABC =60°,作AE ⊥BD 交BC于E ,求BEEC的值.回顾归纳 利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.变式训练2 已知P 是正方形ABCD 对角线BD 上一点,PFCE 为矩形.求证:P A =EF 且P A ⊥EF .知识点三 直线方向向量的应用例3 在△ABC 中,A (4,1),B (7,5),C (-4,7),求∠A 的平分线的方程.回顾归纳 直线Ax +By +C =0的方向向量为v =(B ,-A ),法向量n =(A ,B ).这两个概念在求直线方程、判断两条直线位置关系.求两条直线的夹角时非常有用.变式训练3 在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上且|OC →|=2,则OC →=________.1.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.2.在直线l :Ax +By +C =0(A 2+B 2≠0)上任取两点P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→就是直线l 的一个方向向量,λP 1P 2→(λ∈R 且λ≠0)也是直线l 的方向向量.所以,一条直线的方向向量有无数多个,它们都共线.同理,与直线l :Ax +By +C =0 (A 2+B 2≠0)垂直的向量都叫直线l 的法向量.一条直线的法向量也有无数多个.熟知以下结论,在解题时可以直接应用.①y =kx +b 的方向向量v =(1,k ),法向量为n =(k ,-1).②Ax +By +C =0(A 2+B 2≠0)的方向向量v =(B ,-A ),法向量n =(A ,B ).课时作业一、选择题1.在△ABC 中,已知A (4,1)、B (7,5)、C (-4,7),则BC 边的中线AD 的长是( )A .2 5 B.52 5 C .3 5 D.7252.点O 是三角形ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点3.如图,非零向量OA →=a ,OB →=b 且BC ⊥OA ,C 为垂足,若OC →=λa ,则λ等于( )A.a·b |a|2B.a·b |a||b|C.a·b |b |2D.|a||b|a·b4.若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形5.已知点A (3,1),B (0,0),C (3,0),设∠BAC 的平分线AE 与BC 相交于E ,那么有BC →=λCE →,其中λ等于( )A .2 B.12 C .-3 D .-13二、填空题6.过点(1,2)且与直线3x -y +1=0垂直的直线的方程是 ____________.7.已知平面上三点A 、B 、C 满足|AB →|=3,|BC →|=4,|CA →|=5.则AB →·BC →+BC →·CA →+CA →·AB →=______.8.设平面上有四个互异的点A 、B 、C 、D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 的形状一定是______.三、解答题9. 如图所示,已知四边形ABCD 是菱形,AC 和BD 是它的两条对角线. 求证:AC ⊥BD .10.三角形ABC 是等腰直角三角形,∠B =90°,D 是BC 边的中点,BE ⊥AD ,延长BE 交AC 于F ,连结DF .求证:∠ADB =∠FDC .§2.5 平面向量应用举例 2.5.1 平面几何中的向量方法答案知识梳理1.(1)a =λb x 1y 2-x 2y 1=0 (2)a·b =0 x 1x 2+y 1y 2=0(3)a·b|a||b | x 1x 2+y 1y 2x 21+y 21 x 22+y 22(4)x 2+y 22.(1)(1,k ) (k ,-1) (2)(B ,-A ) (A ,B ) 自主探究证明 在平行四边形ABCD 中, AC →=AB →+AD →,BD →=AD →-AB → ∴AC →2=(AB →+AD →)2=AB →2+AD →2+2AB →·AD →; BD →2=(AD →-AB →)2=AD →2+AB →2-2AB →·AD →. ∴AC →2+BD →2=2AB →2+2AD →2. 即|AC →|2+|BD →|2=2(|AB →|2+|AD →|2).∴平行四边形两条对角线的平方和等于两条邻边平方和的2倍. 对点讲练例1 证明 ∵EF ∥AB ,∴△NEF ∽△NAB ,设AB →=μEF →(μ≠1),则AN EN=μ,AE →=(μ-1)EN →,同理,由EF →∥CD →,可得DE →=(μ-1)EM →, ∴AD →=ED →-EA →=AE →-DE →=(μ-1)MN →,∵μ≠1,令λ=μ-1,∴AD →=λMN →,∴AD ∥MN .变式训练1 证明 设AB →=a ,AC →=b ,则BC →=AC →-AB →=b -a ,又M 、N 分别为AB 、AC 的中点.∴AM →=12a ,AN →=12b .△AMN 中,MN →=12b -12a =12(b -a ),∴MN →=12BC →,即MN →与BC →共线,∴MN ∥BC .例2 解 方法一 (基向量法) 设BA →=a ,BC →=b ,|a |=1,|b |=2.a·b =|a||b |cos 60°=1,BD →=a +b . 设BE →=λBC →=λb ,则AE →=BE →-BA →=λb -a .由AE ⊥BD ,得AE →·BD →=0. 即(λb -a )·(a +b )=0.解得λ=25,∴BE EC =2535=23.方法二 以B 为坐标原点,直线BC 为x 轴建立平面直角坐标系,根据条件,设B (0,0),C (2,0),A ⎝⎛⎭⎫12,32,D ⎝⎛⎭⎫52,32.又设E (m,0),则BD →=⎝⎛⎭⎫52,32,AE →=⎝⎛⎭⎫m -12,-32.由AE ⊥BD ,得AE →·BD →=0.即52⎝⎛⎭⎫m -12-32×32=0, 得m =45,∴BE EC =4565=23.变式训练2 证明以D 为坐标原点,DC 所在直线为x 轴,DA 所在直线为y 轴,建立平面直角坐标系Oxy (如图所示),设正方形边长为1,|OP →|=λ,则A (0,1),P ⎝⎛⎭⎫2λ2,2λ2,E ⎝⎛⎭⎫1,22λ,F ⎝⎛⎭⎫22λ,0, 于是P A →=⎝⎛⎭⎫-22λ,1-22λ,EF →=⎝⎛⎭⎫22λ-1,-22λ.∵|P A →|=⎝⎛⎭⎫-22λ2+⎝⎛⎭⎫1-22λ2=λ2-2λ+1,同理|EF →|=λ2-2λ+1, ∴|P A →|=|EF →|,∴P A =EF .P A →·EF →=⎝⎛⎭⎫-22λ⎝⎛⎭⎫2λ2-1+⎝⎛⎭⎫1-22λ⎝⎛⎭⎫-22λ=0,∴P A →⊥EF →.∴P A ⊥EF .例3 解 AB →=(3,4),AC →=(-8,6), ∠A 的平分线的一个方向向量为: AB →|AB →|+AC →|AC →|=⎝⎛⎭⎫35,45+⎝⎛⎭⎫-45,35 =⎝⎛⎭⎫-15,75. ∵∠A 的平分线过点A .∴所求直线方程为-75(x -4)-15(y -1)=0.整理得:7x +y -29=0.变式训练3 ⎝⎛⎭⎫-105,3105解析已知A (0,1),B (-3,4), 设E (0,5),D (-3,9), ∴四边形OBDE 为菱形.∴∠AOB 的角平分线是菱形OBDE 的对角线OD .设C (x 1,y 1),|OD →|=310,∴OC →=2310OD →.∴(x 1,y 1)=2310(-3,9)=⎝⎛⎭⎫-105,3105,即OC →=⎝⎛⎭⎫-105,3105.课时作业1.B [BC 中点为D ⎝⎛⎭⎫32,6,AD →=⎝⎛⎭⎫-52,5, ∴|AD →|=525.]2.D [∵OA →·OB →=OB →·OC →.∴OB →·CA →=0.∴OB ⊥AC .同理OA ⊥BC , OC ⊥AB ,∴O 为垂心.]3.A [BC →=OC →-OB →=λa -b .∵BC ⊥OA ,∴BC →·OA →=(λa -b )·a =0,即λa 2-a·b =0.∴λ=a·b|a |2.]4.B [∵|OB →-OC →|=|CB →|=|AB →-AC →|, |OB →+OC →-2OA →|=|AB →+AC →|, ∴|AB →-AC →|=|AB →+AC →|,∴A ,B ,C 是同一矩形的三个顶点,且∠BAC =90°. ∴△ABC 是直角三角形.] 5.C[如图所示,由题知∠ABC =30°,∠AEC =60°,CE =33,∴|BC ||CE |=3,∴BC →=-3CE →.] 6.x +3y -7=0解析 设P (x ,y )是所求直线上任一点,直线3x -y +1=0的方向向量为(-1,-3), 由(x -1,y -2)·(-1,-3)=0得x +3y -7=0. 7.-25解析 △ABC 中,B =90°,cos A =35,cos C =45,∴AB →·BC →=0,BC →·CA →=4×5×⎝⎛⎭⎫-45=-16; CA →·AB →=5×3×⎝⎛⎭⎫-35=-9. ∴AB →·BC →+BC →·CA →+CA →·AB →=-25. 8.等腰三角形解析 ∵(DB →+DC →-2DA →)·(AB →-AC →)=[(DB →-DA →)+(DC →-DA →)]·(AB →-AC →) =(AB →+AC →)·(AB →-AC →)=AB →2-AC →2 =|AB →|2-|AC →|2=0, ∴|AB →|=|AC →|,∴△ABC 是等腰三角形.9.证明 ∵四边形ABCD 是菱形,∴|AB →|=|AD →|,又∵AC →=AB →+AD →,BD →=AD →-AB →, ∴AC →·BD →=(AB →+AD →)·(AD →-AB →)∴AC →⊥BD →,即AC ⊥BD . 10.证明如图所示,建立直角坐标系,设A (2,0),C (0,2),则D (0,1),于是AD →=(-2,1), AC →=(-2,2),设F (x ,y ),由BF →⊥AD →, 得BF →·AD →=0, 即(x ,y )·(-2,1)=0, ∴-2x +y =0①又F 点在AC 上,则FC →∥AC →, 而FC →=(-x,2-y ),因此2×(-x )-(-2)×(2-y )=0, 即x +y =2.②由①、②式解得x =23,y =43,∴F ⎝⎛⎭⎫23,43,DF →=⎝⎛⎭⎫23,13,DC →=(0,1) DF →·DC →=13,又DF →·DC →=|DF →||DC →|cos θ=53cos θ,∴cos θ=55,即cos ∠FDC =55,又cos ∠ADB =|BD →||AD →|=15=55,∴cos ∠ADB =cos ∠FDC , 故∠ADB =∠FDC .。

2.5.1平面几何的向量方法

2.5.1平面几何的向量方法

A
1
r b
)
B
2
2
D
F
C
ER
T
A
即(n
m)ar
B
(n
m
1)br
r 0
2
线 由于向量ar
,
r b
不共
n m 0

n
m 1 2
0
解得:n= m = 1
3
uuur 所以AR
1
uuur AC
uuur ,同理TC
1
uuur AC
,
uuur 于是 RT
1
uuur AC
3
3
3
故AT=RT=TC
练习:
例1、证明平行四边形四边平方和等于两对角线平方和
已知:平行四边形ABCD。
D
求证:AB2 BC2 CD2 DA2 AC2 BD2
分析:因为平行四边形对边平行且相
等,故设 AB a, AD b 其它线段对应向 A
量用它们表示。
C B
解:设 AB a, AD b ,则 BC b, DA a, AC a b; DB a b
(3)把运算结果“翻译”成几何元素。
作业: 课本P125 1,2
问题:平行四边形是表示向量加法与减法 的几何模型。如图,你能发现平行四边形 对角线的长度与两条邻边长度之间的关系
吗?
uuur uuur uuur uuur uuur uuur DB AB AD, AC AB AD,
猜想:
D
C
1.长方形对角线的长度
与两条邻边长度之间有
何关系?
A
B
2.类比猜想,平行四边形有相似关系吗?
A
F

平面几何的向量方法

平面几何的向量方法

平面几何的向量方法平面几何是数学中的一个重要分支,它研究了平面上点、直线、多边形等几何图形的性质和相互关系。

而向量方法则是一种重要的工具,可以用来解决平面几何中的许多问题。

本文将介绍平面几何中的向量方法,包括向量的定义、向量的运算、向量的应用以及一些相关的定理和公式。

首先,我们来看一下向量的定义。

在平面几何中,向量通常用有向线段来表示,它具有大小和方向。

一般来说,我们用两个点A和B来表示一个向量,记作AB。

向量AB的大小通常用|AB|来表示,方向则可以用一个角度来描述。

此外,向量还可以用坐标来表示,比如向量AB可以表示为( x2 x1, y2 y1 )。

接下来,我们来介绍一些向量的基本运算。

向量的加法和减法都比较直观,它们的运算规则与有向线段的相加和相减类似。

另外,我们还可以定义向量的数量乘法和数量除法,即一个向量乘以(或除以)一个标量。

这些基本运算可以帮助我们进行平面几何中的向量计算。

在平面几何中,向量方法可以应用于许多问题的解决。

比如,我们可以利用向量的加法和减法来求解平面图形的重心、中点、向量的夹角等问题。

此外,向量还可以用来表示平面图形的面积、判定共线、判定垂直等性质。

通过向量方法,我们可以更加直观地理解和解决平面几何中的问题。

除了基本的向量运算和应用,平面几何中还有一些重要的定理和公式与向量方法密切相关。

比如,平面向量的数量积可以用来求解夹角余弦,从而判定向量的方向关系;平面向量的叉积可以用来求解平行四边形的面积,从而判定向量的共线关系。

这些定理和公式为我们提供了更多的工具,帮助我们更好地利用向量方法解决平面几何中的问题。

综上所述,平面几何的向量方法是数学中的一个重要工具,它可以帮助我们更直观、更高效地解决平面几何中的问题。

通过向量的定义、运算、应用以及相关的定理和公式,我们可以更好地理解和掌握平面几何中的知识,提高数学问题的解决能力。

希望本文对您有所帮助,谢谢阅读!。

2.5.1平面几何中的向量方法

2.5.1平面几何中的向量方法

§2.5.1平面几何中的向量方法【学习目标】1. 掌握向量理论在平面几何中的初步运用;会用向量知识解决几何问题;2. 能通过向量运算研究几何问题中点,线段,夹角之间的关系.【学习过程】一、自主学习(预习教材P109—P111) 问题1:平行四边形是表示向量加法与减法的几何模型. 如下图,AC AB AD =+ ,DB AB AD =- ,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?结论:问题2:平行四边形ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?结论:问题3:用向量方法解决平面几何问题的“三步曲”是怎样的?⑴ ;⑵ ;⑶ 。

二、合作探究 1、在ABC ∆中,若()()0CA CB CA CB +⋅-= ,判断ABC ∆的形状.2、设ABCD 是四边形,若AC BD ⊥,证明:2222AB CD BC DA +=+三、交流展示1、在梯形ABCD 中,CD ∥AB,E 、F 分别是AD 、BC 的中点,且EF =12(AB +CD ). 求证:EF ∥AB ∥CD.2、求证:直角三角形斜边上的中线等于斜边上的一半。

四、达标检测(A 组必做,B 组选做) A 组:1. 在ABC ∆中,若()()0CA CB CA CB +⋅-= ,则ABC ∆为( )A.正三角形B.直角三角形C.等腰三角形D.无法确定2. 已知在ABC ∆中,()2,1A -,()3,2B ,()3,1C --,AD 为BC 边上的高,则点D 的坐标为( )A.()1,1B.()1,1-C.()1,1-D.()1,1--3. 已知()1,2A ,()4,1B ,()0,1C -,则△ABC 的形状为 .4. 求通过点()1,2A ,且平行于向量()3,2a =的直线方程.5. 已知△ABC 是直角三角形,CA =CB ,D 是CB 的中点,E 是AB 上的一点, 且AE =2EB .求证:AD ⊥CE .B 组:1. 已知直线ax +by +c =0与圆O :x 2+y 2=4相交于A 、B 两点,且|AB |=23,则OA →·OB →=________.2. (2010·江苏)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3), C (-2,-1)(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.。

2020版人教A版高中数学必修四导练课件:2.5.1 平面几何中的向量方法2.5.2 向量在物理中的

2020版人教A版高中数学必修四导练课件:2.5.1 平面几何中的向量方法2.5.2 向量在物理中的

错解二:因为a·b=b·c=c·a,所以a·b=b·c,即(a-c)·b=0,而b≠0,所以a-c=0,得到a=c.同 理由b·c=c·a得到a=b.所以a=b=c,故三角形ABC是等边三角形. 错解三:因为a·b=b·c=c·a,所以a·b=b·c,而b≠0,所以a=c.同理可得a=b.所以 a=b=c,故三角形ABC是等边三角形. 纠错:以上三种解法都犯了推理不严谨的错误.解法一中,只有在a,b同向共线时,才有 a·b=|a||b|成立;解法二错在“即(a-c)·b=0,而b≠0,所以a-c=0,得到a=c”,这里由(ac)·b=0只能得出(a-c)⊥b,而不能得到a=c;解法三错在“a·b=b·c,而b≠0,所以 a=c”,向量具有方向,不能像数量那样,在进行计算时可以约分. 正解:因为a·b=b·c,所以(a-c)·b=0,而由向量加法的三角形法则可知a+b+c=0,所以 b=-a-c,所以(a-c)·(-a-c)=0,即(a-c)·(a+c)=0,得到a2-c2=0,a2=c2,即|a|2=|c|2,也就 是|a|=|c|.同理可得|a|=|b|,所以
[备用例 2] 已知向量 OA =(k,12), OB =(4,5), OC =(10,k),且 A,B,C 三点共
线,当 k<0 时,若 k 为直线的斜率,则过点(2,-1)的直线方程为
.
解析:因为 AB = OB - OA =(4-k,-7), BC = OC - OB =(6,k-5),且 AB ∥ BC , 所以(4-k)(k-5)+6×7=0,
第十二页,编辑于星期日:一点 十四分。
P( 2 λ, 2 λ),E(1, 2 λ),F( 2 λ,0),
2
2
2

平面几何中的向量方法 高一数学课件(人教A版2019必修第二册)

平面几何中的向量方法 高一数学课件(人教A版2019必修第二册)

向量具有“几何”与“代数”的双重身份
1、我们学了向量的线性运算与数量积运算,你能说出它们的 几何意义吗?这与平面几何哪些内容可以相互联系与转化?
B A
O D
A
B C
O B
A B
)
O
A
数量积性质?
求模 求夹角 证垂直
2、向量的代数身份是通过什么来实现的?坐标表示
当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数” 的计算
又有公共点 P,则 A,C, P 三点共线.所以 B 正确.
故选:B
5.(多选)点 P 是ABC 所在平面内一点,满足
PB PC PB PC 2PA 0 ,则ABC 的形状不可能是
A.钝角三角形
B.直角三角形
C.等腰三角形
D.等边三角形
【详解】∵P 是 ABC 所在平面内一点,且
,∴ , | PB PC | | PB PC 2PA | 0
例 7.如图,已知正方形 ABCD 的边长为 1, 点 E 是 AB 边上的动点,求:
(1) DE CB 的值;(2) DE DC 的最大值.
(2)因为 DE 1, x, DC 0,1 ,所以 DE CB 1 0 x 1 x , 因为0 x 1, 所以 DE DC 的最大值是 1.
例 8.如图,在
(1)当 a , b 满足什么条件时,a b a b ? (2)当 a ,b 满足什么条件时, a b a b ?
(2)由(1)可得, a b AC, a b BD a b a b ,即 AC BD ,此时四边形 ABCD 为矩 形从而可得 AB AD a b 时, a b a b .
(5)、两向量垂直的充要条件:向量 a b a •b 0

高中数学 平面向量应用举例

高中数学  平面向量应用举例

分割 A(0, 0), B(1, 0), 则下面说法正确的是 ( )
(A) C 可能是线段 AB 的中点
(B) D 可能是线段 AB 的中点
(C) C, D 可能同时在线段 AB 上
(D) C, D 不可能同时在线段 AB 的延长线上
分析: 点 C, D 调和分割 A, B, 则
AC = l AB,
证明: ∵∠A 是直角,
A
AB AC = 0.
BD, BC 同向,
2 BD
C
BDBC = |BD||BC | = AB .
于是 ADBC = (AB BD)BC
= ABBC BDBC
2
= ABBC AB
= AB(BC AB)
= AB AC =0. ∴AD⊥BC.
例1. 平行四边形是表示向量加法与 减法的几何模型. 如图, AC = AB AD, A
在向量中判定平行, 可用共线的条件 b=la, 可
用坐标 x1y2-x2y1=0. 判定垂直, 用向量的数量积为零. 平面几何用的几何方法, 几乎完全在图形中找关
系. 向量方法是将几何问题转化为代数问题, 用代数 计算的方法解决几何问题.
例(补充). 如图, 在直角三角形ABC中, 角A是直 角, D是BC边上一点, AB2=BD·BC. 求证: AD⊥BC.
(B) D 可能是线段 AB 的中点
(C) C, D 可能同时在线段 AB 上
(D) C, D 不可能同时在线段 AB 的延长线上
分析: 点 C, D 调和分割 A, B, 则
AC = l AB,
AD = AB,
1
l
1
=
2.
即 (c, 0)=l(1, 0), (d, 0)=(1, 0).

2.5.1平面几何中的向量方法

2.5.1平面几何中的向量方法
第二章 平面向量
2.5 平面向量应用举例 2.5.1 平面几何中的向量方法
主讲老师:张广平
2019年6月5号 星期三
一,回顾旧知
(1)向量加法的平行四边形、三角形法则 (2)向量减法的三角形法则 (3)平面向量的数量积、平行与垂直
二、探究新知
问题:平行四边形是表示向量加法与减法的几何模型。如图,
D 在平行于 AB 边的中位线上,且为靠近 BC 边的三等分点处,从而有 S△ABD=
1 2S△ABC.
12345
解析 答案
4.如图,在平行四边形 ABCD 中,已知 AB=8,AD=5,C→P=3P→D,A→P·B→P =2,则A→B·A→D的值是___2_2____.
12345
解析 答案
5.如图所示,在△ABC 中,点 O 是 BC 的中点.过点 O 的直线分别交直线 AB,AC 于不同的两点 M,N,若A→B=mA→M,A→C=nA→N,则 m+n 的值 为____2____.
满足O→P=O→A+12(A→B+A→C),则|A→P|等于
A.2
√B.1
1 C.2
D.4
12345
解析 答案
3.(2017·长春高一检测)在△ABC 中,D 为三角形所在平面内一点,且A→D=13A→B
+12A→C,则SS△△AABBDC等于
2 A.3
1 B.3
1 C.6
√D.12
解析 已知在△ABC 中,D 为三角形所在平面内一点,且A→D=13A→B+12A→C,点
uuur AR
uuur 与 AC
共线,故设
rr
n(ar
r b ),n
R
uuur uuur
又因为 ER与EB共线,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习1.证明直径所对的圆周角是直角.
如图所示,已知⊙O,AB为直径,C 为⊙O上任意一点,求证∠ACB=90°. A 分析:要证∠ACB=90°,只须证向 量 AC CB ,即 AC CB 0 .
C
b
a
B
O
解: 设AO a , OC b, a b , 则AC a b, CB a b,
已知:平行四边形ABCD。求证:
AB BC CD DA AC BD . D
2
2
2
2
2
2
C
解:设AB a, AD b ,则 有
A
2 2
B
BC b, DC a, AC a b, DB a b.
ΑΒ BC CD DA 2 a b
2 2 2
平面向量应用举例
2.5.1平面几何中的向量方法
用有向线段表示向量,使得向 量可以进行线性运算和数量积运算, 并具有鲜明的几何背景,从而沟通 了平面向量与平面几何的内在联系, 在某种条件下,平面向量与平面几 何可以相互转化.
平行、垂直、夹角、距离、全 等、相似等,是平面几何中常见的 问题,而这些问题都可以由向量的 线性运算及数量积表示出来.因此, 平面几何中的某些问题可以用向量 方法来解决,但解决问题的数学思 想、方法和技能,需要我们在实践 中去探究、领会和总结.
2 2
思考:能否用向量 坐标形式证明?
AC CB a b a b a b 0. 故ACB 90.
a
练习2 平行四边形ABCD中,E为AB的中点,用向量方 AB a , AD b 法,求EF:FD的值(可选 为基底 ). 解:设EF FD, D C 1 1 AF a b. F 1 2 1 B A E 又因为A、F、C共线,可设 AF AC.
2 2 2 2
AC BD a b a b 2 2 2 2 2 2 2 a 2a b b a 2a b b 2α β 2 a b
2





AB2 BC2 CD 2 DA2 AC2 BD2
用向量方法解决平面几何问题的“三步曲”:
A
1 1 所以na b b m a b . 2 2
m 1 化 简 得 n m a n b 0. 2 由 于 向 量 a、b不 共 线 , 所 以 有
D F n m 0, n m 1 0 E R T 2 1 解 得nm . B A 3 1 1 1 所 以 AR AC,同 理 TC AC, RT AC. 3 3 3 故AR RT TC. C
(1)建立平面几何与向量的联系,用向量表示问题中涉及 的几何元素,将平面几何问题转化为向量问题;常设基底向 量或建立向量坐标。 (2)通过向量运算,研究几何元素之间的关系,如距离、 夹角等问题; (3)把运算结果“翻译”成几何元素。
简述为:形到向量
向量的运算
向量和数到形
例2 如图,平行四边形 ABCD中,点E、F分别是AD 、 DC边的中点,BE 、 BF分别与AC交于R 、 T两点,你 能发现AR 、 RT 、TC之间的关系吗? D F C
猜想:
E A
AR=RT=TC
R
T
B
解: AB a, AD b, AR r, 则AC a b. D 又因为 ER 与 EB共线,
1 所以设 ER m EB m a b . 2
F
C
E
R
T B
因为AR AE ER, 1 1AR n AC,
问题:平行四边形是表示向量加法与减法的几何模
型。如图,你能发现平行四边形对角线的长与两条 邻边长度之间的关系吗? D C
猜想:
1.长方形对角线的长度与两 条邻边长度之间有何关系? 2.类比猜想,平行四边形 有相似关系吗?
A
B
DB AB AD,
AC AB AD,
例1.证明平行四边形四边平方和等于两对角线平方和.
AF a b. 由向量相等知识得,
1 , 1 2(1 ) . 2 , 1
所以EF:FD =1:2.
作业:
课本P113 A组 1,2
相关文档
最新文档