用函数的特征式判断函数的周期性及其周期
初中数学 如何通过函数的图像判断其是否具有周期性
初中数学如何通过函数的图像判断其是否具有周期性在初中数学中,我们学习了函数的周期性,它是指函数在一定的规律下,图像会重复出现的特性。
函数的周期性是数学中非常重要的概念之一,它在许多实际问题的建模和解决中起着关键作用。
在本文中,我们将详细讨论如何通过函数的图像判断其是否具有周期性。
首先,让我们回顾一下函数的概念。
函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数通常用符号表示为f(x),其中 f 是函数的名称,x 是自变量,f(x) 是因变量。
周期函数是指满足f(x + T) = f(x) 的函数,其中T 是正常数。
换句话说,如果将函数的图像沿x 轴平移T 个单位后,得到的图像与原图像完全重合,那么函数就是周期函数。
周期函数的图像具有重复的形状。
要通过函数的图像判断其是否具有周期性,我们可以按照以下步骤进行:第一步是观察函数的图像。
我们可以使用计算机软件或手绘函数的图像。
确保图像的绘制范围包含了我们感兴趣的区间。
以y = f(x) 为例,我们可以绘制出x 和y 的坐标轴,并在坐标轴上标出函数的图像。
第二步是观察图像的重复性。
通过观察函数的图像,我们可以判断函数是否具有周期性。
如果我们发现函数的图像在某个特定的水平线上重复出现,那么函数可能具有周期性。
我们可以观察图像上的特征,如波峰、波谷、交点等,来确定函数是否具有周期性。
第三步是确定函数的周期。
如果我们观察到函数的图像在某个水平线上重复出现,我们需要确定这个重复的距离,即函数的周期。
周期是指函数图像中重复的最小单位长度。
我们可以通过观察函数的图像来估计周期的长度。
举例来说,考虑函数y = sin(x)。
首先,我们绘制出函数的图像。
我们可以看到函数的图像是一条在水平线上波动的曲线。
通过观察图像,我们可以发现函数的图像在每个2π的区间上重复出现,即函数的周期为2π。
在每个2π的区间内,函数的图像会依次经过波峰、波谷和交点等特征点。
函数周期性的判断及应用
函数周期性的判断及应用函数的周期性是指函数在某一范围内呈现出重复的规律性。
周期性的判断主要通过函数的图像或者函数的表达式进行分析。
在数学中,周期性函数是一类非常重要的函数,它们在各个领域有着广泛的应用。
首先我们来讨论如何判断一个函数是否是周期性函数。
一个函数f(x)的周期性可以由以下两种方法进行判断:1. 通过观察函数图像:根据函数图像的规律来判断函数是否具有周期性。
如果函数图像在某一范围内呈现出重复的规律性,则说明函数是周期性函数。
例如,正弦函数sin(x)和余弦函数cos(x)具有周期性,它们的图像在任意区间长度为2π的范围内都重复。
同样的道理,周期为T的函数可以通过观察函数图像在T范围内是否重复来判断。
2. 通过函数表达式:根据函数的表达式来推测函数的周期性。
一些特定的函数在函数表达式中就包含周期性的特征,如三角函数、指数函数和对数函数等。
这些函数具有明确的周期性。
例如,sin(x)和cos(x)的周期都是2π,可以在函数表达式中直接看出。
对数函数ln(x)的周期为e,指数函数e^x的周期为ln(a),其中a是正实数。
除了以上两种方法之外,还可以通过计算周期性函数的周期来判断。
周期性函数的周期可以通过函数图像上两个相邻波峰或者波谷的横坐标差得出。
接下来我们来讨论周期性函数的应用。
周期性函数在各个领域都有广泛的应用,其中包括:1. 信号处理:在电信号处理中,周期性函数被广泛用于信号的表示和分析。
例如,正弦函数和余弦函数可以用来表示周期性电信号的波形。
傅里叶变换是一种常用的信号处理方法,它可以将任意信号分解成不同频率的正弦波的叠加。
周期性函数在傅里叶变换中发挥着重要的作用。
2. 振动和波动现象:周期性函数在物理学中的振动和波动现象的描述中发挥着重要的作用。
例如,弹簧振子的运动可以通过正弦函数来描述。
波动现象如水波、光波以及声波等,也可以通过周期性函数进行描述和分析。
3. 经济学和金融学:周期性函数在经济学和金融学中有很多应用。
第十讲 函数的性质(3)周期性
1 (3) f ( x + 3) = ± , 周期T = ___; f ( x) (4) f ( x + 1) + f ( x ) = 1, 周期T = ___;
(5) f ( x − 1) = f ( x − 3), 周期T = ___; (6) f ( x − m ) = f ( x − n), 周期T = ___; (7) f ( x ) = f ( x − 1) + f ( x + 1), 周期T = ___;
第十讲 函数的基本性质(3) 函数的基本性质( 函数的周期性: 三、函数的周期性: y=f(x), 1.周期函数 对于函数y=f(x) 如果存在一个不为零的常 周期函数: 1.周期函数:对于函数y=f(x),如果存在一个不为零的常 使得当x取定义域内每一个值时 f(x+T)=f(x)都成 数T,使得当x取定义域内每一个值时,f(x+T)=f(x)都成 就把f(x)叫做周期函数 f(x)叫做周期函数. 立,就把f(x)叫做周期函数. 中不为零的常数T. 2.周期 f(x+T)=f(x)中不为零的常数 周期: 2.周期:f(x+T)=f(x)中不为零的常数T. 3.最小正周期 如果在函数的周期中,存在一个最小的正 最小正周期: 如果在函数的周期中, 3.最小正周期: 就把这个正数叫做最小正周期. 数,就把这个正数叫做最小正周期. 4.证明函数为周期函数的步骤 证明函数为周期函数的步骤: 4.证明函数为周期函数的步骤: 在定义域中任取一个自变量x; ①在定义域中任取一个自变量x; 找到一个常数T≠0,证明: T≠0,证明 ②找到一个常数T≠0,证明:f(x+T)=f(x). 5.证明常数 为最小正周期的方法: 证明常数T 5.证明常数T为最小正周期的方法: 验证: ①验证:f(x+T)=f(x); 用反证法证明:不可能有比T还小的正周期. ②用反证法证明:不可能有比T还小的正周期. 6.重要结论 已知常数T≠0,当x取定义域内每一个值时, 重要结论: 已知常数T≠0 T≠0, 取定义域内每一个值时, 6.重要结论:
高三数学周期性知识点归纳
高三数学周期性知识点归纳数学是一门需要不断积累和总结的学科,高三学生在备战高考时,需要理清各个知识点之间的联系和周期性规律。
本文将对高三数学中的周期性知识点进行归纳和总结,帮助同学们更好地理解和掌握相关内容。
一、三角函数的周期性1. 正弦函数:y = A*sin(Bx + C)- 周期:2π/B- 最大值:A- 最小值:-A2. 余弦函数:y = A*cos(Bx + C)- 周期:2π/B- 最大值:A- 最小值:-A3. 正切函数:y = A*tan(Bx + C)- 周期:π/B二、复数的周期性1. 复数的定义:z = a + bi,其中a为实部,b为虚部,i为虚数单位。
2. 欧拉公式:e^ix = cos(x) + isin(x)3. 指数函数的周期性:e^(ix+2kπ) = e^ix (k为整数)三、指数函数和对数函数的周期性1. 指数函数的定义:f(x) = a^x,其中a为底数,x为自变量。
- 当a>1时,函数递增且无周期- 当0<a<1时,函数递减且无周期2. 对数函数的定义:f(x) = loga(x),其中a为底数,x为自变量。
- 当a>1时,函数递增且无周期- 当0<a<1时,函数递减且无周期四、三角函数和指数函数的关系1. 欧拉公式的推导: e^ix = cos(x) + isin(x)2. 指数函数与正弦函数的关系:- e^(ix) = cos(x) + isin(x)- e^(-ix) = cos(-x) + isin(-x) = cos(x) - isin(x) - e^(ix) + e^(-ix) = 2cos(x) (欧拉恒等式) 3. 指数函数与余弦函数的关系:- e^(ix) = cos(x) + isin(x)- e^(-ix) = cos(-x) + isin(-x) = cos(x) - isin(x) - e^(ix) - e^(-ix) = 2isin(x)五、三角函数的和差化积公式1. 正弦函数的和差化积公式:- sin(x + y) = sin(x)cos(y) + cos(x)sin(y)- sin(x - y) = sin(x)cos(y) - cos(x)sin(y)2. 余弦函数的和差化积公式:- cos(x + y) = cos(x)cos(y) - sin(x)sin(y)- cos(x - y) = cos(x)cos(y) + sin(x)sin(y)3. 正切函数的和差化积公式:- tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x)tan(y))- tan(x - y) = (tan(x) - tan(y)) / (1 + tan(x)tan(y))六、高三数学中的周期性问题1. 求解三角函数的周期:- 以给定函数的参数作为周期2. 判断函数的周期性:- 基于函数表达式中的参数和三角函数的特点进行判断3. 应用周期性知识点解决问题:- 求解特定范围内的函数值- 证明两个函数或方程等价性- 推导出其他数学公式通过对高三数学中的周期性知识点进行整理和总结,同学们在备考高考时可以更好地理解和掌握这些知识点。
2.3函数的奇偶性周期性2
f(-x+2)+f(x)=0,则函数f(x)是( B )
A.周期为1的周期函数 B.周期为2的周期函数 C.周期为3的周期函数 D.不是周期函数
分析:f(-x+2)=-f(x)=f(-x),即f(x+2)=f(x)
0.55
考点、题型
考点一 函数周期性的判定
3.已知定义在R上的函数y=f(x)满足
命题角度3:求参数的值(或范围)
3.函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)
=x-1,则不等式xf(x)>0在[-1,3]上的解集为( C )
A.(1,3)
B.(-1,1)
C.(-1,0)∪(1,3)
D.(-1,0)∪(0,1)
2.06
当x∈(-1,0)时,由xf(x)>0得x∈(-1,0); 当x∈(0,1)时,由xf(x)<0得x∈∅. 当x∈(1,3)时,由xf(x)>0得x∈(1,3). 故x∈(-1,0)∪(1,3).
f
(x
1 2
)
f
(x
1 2
),则f(6)=(
D)
2
A.-2 B.-1 C.0 D.2
【小题快练3, 4】
1.93
考点三 函数性质的综合应用
命题角度1:单调性与奇偶性结合
1.【典例3】函数f(x)是R上的偶函数,且在[0,+∞)
上单调递增,则下列各式成立的是 ( B )
A.f(-2)>f(0)>f(1) B.f(-2)>f(1)>f(0)
足:f(x)=f(2a-x),则函数y=f(x)的图象关于直线x=a
分析函数的奇偶性与周期性的分析方法
分析函数的奇偶性与周期性的分析方法函数的奇偶性与周期性是数学中的重要概念,对于分析函数的性质和实际问题的解决具有重要意义。
本文将介绍分析函数奇偶性与周期性的方法与技巧,并探讨如何利用这些方法来解决一些实际问题。
首先,让我们来讨论函数的奇偶性。
一个函数被称为奇函数,如果对于任意实数x,有f(-x)=-f(x)成立;一个函数被称为偶函数,如果对于任意实数x,有f(-x)=f(x)成立。
根据这一定义,我们可以得到以下结论:1. 如果一个函数是奇函数,那么如果在定义域内存在一个数a,使得f(a)=0,那么函数在关于原点的中心对称轴上具有零点。
这是因为f(-a)=-f(a)=0。
2. 如果一个函数是偶函数,那么如果在定义域内存在一个数a,使得f(a)=0,那么函数在关于y轴的中心对称轴上具有零点。
这是因为f(-a)=f(a)=0。
通过判断函数的奇偶性,我们可以更好地了解函数的性质。
例如,如果一个函数是奇函数,那么在计算积分时可以利用对称性简化计算。
此外,如果我们知道一个函数是奇函数,并且已知函数在某一点的取值,那么我们可以根据奇函数的性质推导出其在其他点的取值。
接下来,我们来讨论函数的周期性。
一个函数被称为周期函数,如果存在一个正数T,使得对于任意实数x,有f(x+T)=f(x)成立。
在分析函数的周期性时,我们可以采取以下方法:1. 如果一个函数的图像在x轴上以T为周期重复出现,那么该函数是周期函数,并且T是其最小正周期。
根据这一性质,我们可以通过观察函数的图像来判断其是否具有周期性。
2. 如果一个函数满足f(x+T)=f(x),那么对于任意整数n,也有f(x+nT)=f(x)成立。
这是因为当n为正整数时,f(x+nT)=f((x+T)+(n-1)T)=f(x+T)=f(x),同理可证当n为负整数时也成立。
根据这一性质,我们可以通过将函数的自变量进行平移来判断其是否具有周期性。
利用函数的周期性,我们可以更好地理解函数的行为。
函数性质——对称与周期
函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式)()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
函数的周期性与奇偶性的判定
函数的周期性与奇偶性的判定函数是数学中的一个基本概念,它描述了一种数值之间的关系。
函数的周期性与奇偶性是函数的重要特征之一,对于函数的分析和应用具有重要的意义。
本文将介绍函数的周期性和奇偶性的概念,并讨论判定函数周期性和奇偶性的方法。
一、函数的周期性周期函数在数学中起到了重要的作用,它们具有重复出现的性质。
一个函数f(x)被称为周期函数,如果存在一个正数T,使得对于任意的x,都有f(x+T) = f(x)成立。
这个正数T被称为函数f(x)的周期。
周期函数具有重复出现的形式,可以描述各种重复现象,如正弦函数、余弦函数等。
判定函数周期性的方法:1. 观察函数图像:通过观察函数的图像,可以发现函数是否重复出现。
如果函数的图像在一个特定的间隔内重复出现,并且没有其他额外的变化,那么函数很可能是周期函数。
2. 分析函数公式:有些函数的周期性可以通过函数的公式来判断。
例如,正弦函数和余弦函数的周期为2π,而指数函数和对数函数则没有周期性。
二、函数的奇偶性函数的奇偶性是函数的对称性质,反映了函数的特定规律。
一个函数f(x)被称为奇函数,如果对于任意的x,都有f(-x) = -f(x)成立;一个函数f(x)被称为偶函数,如果对于任意的x,都有f(-x) = f(x)成立。
奇函数和偶函数是两类特殊的函数,它们具有对称性的特征。
判定函数奇偶性的方法:1. 观察函数图像:通过观察函数的图像,可以发现函数是否具有对称性。
奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
因此,通过观察函数的图像可以初步判定函数的奇偶性。
2. 分析函数公式:有些函数的奇偶性可以通过函数的公式来判断。
例如,幂函数的指数为奇数时,函数是奇函数;指数为偶数时,函数是偶函数。
综上所述,函数的周期性和奇偶性是函数的重要特征。
通过观察函数的图像和分析函数的公式,我们可以判定函数的周期性和奇偶性。
这些特征在函数的分析和应用中起着重要的作用,帮助我们理解和描述各种数值之间的关系。
周期函数怎么判断
周期函数怎么判断三角函数的周期根据公式:弦函数的2π/w,切函数的π/w(w为正);一般的函数根据定义来判断,除了三角函数外,没有给出解析式的函数是周期的函数。
推知周期,常见的周期情况有f(x+T)=f(x),周期为T,f(x+a)=-f(x),周期为2a。
扩展资料周期函数的判定方法1、根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的`,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。
例:f(X)=cosx 是非周期函数。
2、一般用反证法证明。
(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。
例:证f(X)=ax+b(a≠0)是非周期函数。
证:假设f(X)=ax+b是周期函数,则存在T(≠0),使true ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。
例:证f(X)= 是非周期函数。
证:假设f(X)是周期函数,则必存在T(≠0)对,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。
例:证f(X)=sinx2是非周期函数证:若f(X)= sinx2是周期函数,则存在T(>0),使之true,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有s in(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2T2=Lπ(L∈Z+),∴与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。
「基础高考」判断函数周期性的方法技巧
定义法:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.判断函数周期,主要是看f(x+T)=f(x)公式例如:已知函数满足f(x+a)=-f(x),问它的性质,怎么推导?f[(x+a)+a]=-f(x+a)=-(- f(x) )= f(x), f(x)为周期为T=2a的函数公式法基本函数的周期性, y=sinx,y=Asin( ω x+ φ),y=cosx,y=Acos( ω x+ φ) T=2π/wy=tanx,y=Atan( ω x+ φ),T=π/w 周期固定,有公式法,但要牢记 y=sinx , y=cosx , y=tanx 的 图像固定结论命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y =f(x)是周期函数.(1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期.(2)函数y=f(x)满足f(x+a)=±1/f(x),则f(x)是周期函数,且2a是它的一个周期.(3)函数y=f(x)满足f(x+a)=f(x-a),则f(x)是周期函数,且2a是它的一个周期.上面这几个公式应用的概率更大,要记熟!方便思路的形成!命题2:若a、b()是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期.(2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期.命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y =f(x)是周期函数.(1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2 a是它的一个周期.(2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4 a是它的一个周期.为了方便您的记忆,您可以联想正弦函数和余弦函数图像和性质,来记忆这些结论图像法判断周期三角函数可以用“五点画图法”,分段函数可以分段做出函数图像,观察图像是否重复出现。
三角函数的周期性及其像特征
三角函数的周期性及其像特征一、三角函数的周期性简介三角函数是高中数学中的一个重要分支,它是描述角度与长度之间关系的数学工具。
而三角函数的周期性是指它们在一定范围内,以一定的规律重复出现。
本文将探讨三角函数的周期性及其像特征,并分析其在实际问题中的应用。
二、正弦函数的周期性及像特征正弦函数是最基本的三角函数之一,它的符号记作sin(x)。
正弦函数的周期性可通过其图像来观察和理解。
在单位圆上,当一个角度x 逐渐增大时,正弦函数的值也会随之变化。
每隔一定的角度,正弦函数的值会重复出现,并呈现出周期性变化的特点。
正弦函数的周期为2π,即sin(x+2π) = sin(x)。
这意味着,当角度增加2π时,正弦函数的值会重新回到初始值。
同时,正弦函数的图像在周期内的变化呈现出对称性,即sin(-x) = -sin(x)。
这种周期性和对称性是正弦函数的重要特征。
三、余弦函数的周期性及像特征余弦函数是另一个基本的三角函数,它的符号记作cos(x)。
与正弦函数类似,余弦函数也具有明显的周期性。
余弦函数的周期也为2π,即cos(x+2π) = cos(x)。
当角度增加2π时,余弦函数的值同样会重新回到初始值。
与正弦函数不同的是,余弦函数的图像在周期内的变化呈现出以x轴为中心的对称性,即cos(-x) = cos(x)。
这种周期性和对称性是余弦函数的特点。
同时,正弦函数与余弦函数之间存在着一个重要的关系:cos(x) = sin(x + π/2),即余弦函数与正弦函数的图像在横轴上的平移。
四、其他三角函数的周期性及像特征除了正弦函数和余弦函数,还有许多其他的三角函数,如正切函数、余切函数、正割函数和余割函数等。
这些函数同样具有周期性和像特征。
正切函数的周期为π,即tan(x+π) = tan(x)。
正切函数的图像在每个周期内会重复变化,呈现出周期性的特点。
正切函数还具有奇偶性特征,即tan(-x) = -tan(x)。
初中数学 什么是函数的周期性 如何判断一个函数是否具有周期性
初中数学什么是函数的周期性如何判断一个函数是否具有周期性
函数的周期性是指函数在一定范围内的输入值上具有重复的输出值的性质。
如果存在一个正数$T$,使得对于函数$f(x)$的定义域内的任意$x$,都有$f(x+T)=f(x)$,那么称函数$f(x)$具有周期$T$,$T$称为函数的周期。
要判断一个函数是否具有周期性,可以采用以下方法:
1. 观察函数的定义式:有些函数的周期性可以从函数的定义式中直接得出。
例如,三角函数(如正弦函数和余弦函数)的定义式中包含角度,而角度的周期是$360$度(或$2\pi$弧度),因此这些三角函数的周期都是$360$度(或$2\pi$弧度)。
2. 推导周期性:对于一些函数,可以通过观察函数图像的形状和性质来推导函数的周期性。
例如,如果函数图像在一定范围内呈现出重复的形状,那么可以推断函数具有周期性。
可以观察函数图像中的波峰和波谷的位置,如果这些波峰和波谷在一定间距内重复出现,那么可以确定函数具有周期性。
3. 计算周期:对于一些函数,可以通过计算来确定函数的周期。
可以选择不同的$x$值,并计算它们对应的函数值,观察这些函数值是否存在重复的模式。
如果存在重复的模式,那么可以计算出函数的周期。
需要注意的是,函数的周期性是函数在一定范围内的输入值上具有重复的输出值的性质。
具体的周期可以根据函数的定义式、函数图像和计算来确定。
希望以上内容能够帮助你理解函数的周期性以及如何判断一个函数是否具有周期性,并提供了一些常用的判断方法和思路。
29. 如何判断函数的周期性?
29. 如何判断函数的周期性?29、如何判断函数的周期性?在数学的学习中,函数的周期性是一个重要的概念。
理解并掌握如何判断函数的周期性对于解决许多数学问题都具有关键作用。
首先,我们来明确一下什么是函数的周期性。
简单来说,如果存在一个非零常数 T ,使得对于函数 f(x)定义域内的任意 x ,都有 f(x + T) =f(x) ,那么我们就称函数f(x) 是周期函数,T 称为函数f(x) 的周期。
那么,如何去判断一个函数是否具有周期性呢?这里有几种常见的方法。
方法一:通过函数的表达式来判断。
有些函数的表达式本身就具有明显的周期性特征。
比如正弦函数f(x) =A sin(ωx +φ) 和余弦函数 f(x) =A cos(ωx +φ) ,它们的周期都是 T =2π/ω 。
再比如正切函数 f(x) =A tan(ωx +φ) ,其周期为 T =π/ω 。
对于一些复合函数,我们可以通过分析其组成部分来判断周期性。
例如,如果 f(x) 是周期函数,周期为 T ,那么 f(ax + b) 的周期就是T/|a| 。
方法二:利用函数的图象来判断。
函数的图象能够直观地反映出其周期性。
如果函数的图象在水平方向上呈现出重复的特征,那么这个函数很可能就是周期函数。
比如正弦函数和余弦函数的图象,都是在水平方向上以一定的间隔不断重复的波浪线。
方法三:通过函数的性质来判断。
如果函数满足 f(x + a) = f(x) ,那么函数的周期就是 2a ;如果函数满足 f(x + a) = 1/f(x) ,那么函数的周期也是 2a 。
另外,如果两个周期函数的周期分别为 T₁和 T₂,且 T₁/T₂为有理数,那么它们的和、差、积、商(分母不为零)也是周期函数。
接下来,我们通过一些具体的例子来加深对函数周期性判断的理解。
例 1:判断函数 f(x) = sin 2x 的周期性。
因为正弦函数的一般形式是 f(x) =A sin(ωx +φ) ,其周期为 T =2π/ω ,在函数 f(x) = sin 2x 中,ω = 2 ,所以周期 T =2π/2 =π 。
函数的奇偶性与周期性函数的奇偶性和周期性的判断与应用
函数的奇偶性与周期性函数的奇偶性和周期性的判断与应用函数是数学中的重要概念之一,它描述了不同数值之间的关系。
在研究函数时,我们可以通过判断其奇偶性和周期性来更深入地了解其性质和应用。
本文将探讨函数的奇偶性与周期性以及判断和应用的方法。
一、函数的奇偶性在数学中,一个函数被称为奇函数,当且仅当对于任意x的取值,f(-x) = -f(x)。
换句话说,奇函数在坐标原点(0,0)处对称。
而如果一个函数满足对于任意x的取值,f(-x) = f(x),则被称为偶函数。
换句话说,偶函数关于坐标原点(0,0)对称。
如何判断一个函数的奇偶性呢?我们可以采取以下方法:1. 利用函数的表达式来判断。
如果函数表达式中的x为奇次幂的情况下,其对应的系数均为负号,那么该函数就是奇函数;如果函数表达式中的x为偶次幂的情况下,其对应的系数均为正号,那么该函数就是偶函数。
例如,函数f(x) = x^3满足f(-x) = -f(x),因此是奇函数。
而函数g(x) = x^2则满足f(-x) = f(x),因此是偶函数。
2. 利用函数的图像来判断。
对于奇函数,其图像是关于原点对称的,也就是左右对称;而对于偶函数,其图像是关于y轴对称的,也就是上下对称。
通过观察函数的图像,我们可以判断其奇偶性。
函数的奇偶性在实际应用中具有重要作用。
例如,奇函数的性质使得在计算积分时,可以简化计算过程。
而偶函数在对称性的应用中,可以帮助我们更好地理解函数的行为。
二、周期性函数的奇偶性和周期性判断与应用周期性函数在数学和自然科学中广泛应用。
周期性函数是指函数在某个区间内满足f(x) = f(x+T),其中T为正常数,称为函数的周期。
对于周期性函数,我们可以利用奇偶性和图像的规律来进行判断和应用。
1. 奇偶性的判断:对于周期性函数,如果其满足f(x) = f(-x),那么它是偶函数;如果其满足f(x) = -f(-x),那么它是奇函数。
2. 周期性的判断:对于周期性函数,我们可以通过观察函数的图像来确定其周期。
专题三函数的奇偶性及周期性(2021年高考数学一轮复习专题)
专题三 函数的奇偶性及周期性一、题型全归纳题型一 函数奇偶性的判断【题型要点】判断函数奇偶性的方法(1)根据定义判断,首先看函数的定义域是否关于原点对称,在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断. (2)利用函数图象特征判断.(3)分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.【例1】判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.的奇偶性。
【解析】法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数. 法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数【例2】已知函数f (x )=x 2x -1,g (x )=x2,则下列结论正确的是( )A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数 【答案】A.【解析】:易知h (x )=f (x )+g (x )的定义域为{x |x ≠0},关于原点对称.因为f (-x )+g (-x )=-x 2-x -1+-x2=-x ·2x 1-2x -x 2=x (1-2x )-x 1-2x -x 2=x 2x -1+x2=f (x )+g (x ),所以h (x )=f (x )+g (x )是偶函数.故选A. 题型二 函数奇偶性的应用【题型要点】与函数奇偶性有关的问题及解决方法(1)已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.(4)应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象并判断另一区间上的单调性. 【例1】(2019·高考全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +1【解析】解法一:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D. 解法二:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D.【例2】已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为 . 【解析】:解法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-221⎪⎭⎫ ⎝⎛+x +14,所以当x <0时,函数f (x )的最大值为14.解法二:当x >0时,f (x )=x 2-x =221⎪⎭⎫ ⎝⎛+x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.题型三 函数的周期性【题型要点】函数周期性的判断与应用(1)判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z ,且k ≠0)也是函数的周期.【例1】(2020·广东六校第一次联考)在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0|2-x |,0≤x <1,其中a∈R ,若f (-5)=f (4.5),则a =( ) A .0.5 B .1.5 C .2.5D .3.5【解析】由f (x +1)=f (x -1),得f (x )是周期为2的函数,又f (-5)=f (4.5),所以f (-1)=f (0.5),即-1+a =1.5,所以a =2.5.故选C.【例2】已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,4]上与x 轴的交点的个数为( ) A .2 B .3 C .4D .5【解析】当0≤x <2时,令f (x )=x 3-x =x (x 2-1)=0,所以y =f (x )的图象与x 轴交点的横坐标分别为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,又f (x )的最小正周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,y =f (x )的图象与x 轴交点的横坐标分别为x 3=2,x 4=3.又f (4)=f (2)=f (0)=0,综上可知,共有5个交点.题型四 函数性质的综合应用【题型要点】函数性质综合应用问题的常见类型及解题策略(1)单调性与奇偶性的综合:注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合:此类问题多考查求值问题,常用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合:解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.【例1】已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( ) A .-50 B .0 C .2 D .50【答案】C【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.【例2】(2020池州联考)已知函数f (x )的定义域为R ,且满足下列三个条件:①∀x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (2 025),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <a <c C .a <c <b D .c <b <a 【答案】B【解析】由条件①知,当x ∈[4,8]时,f (x )为增函数;由条件②知,f (x +8)=-f (x +4)=f (x ),f (x )是周期为8的周期函数;由条件③知,y =f (x )关于直线x =4对称,所以f (11)=f (3)=f (5),f (2025)=f (1)=f (7),故f (5)<f (6)<f (7),即b <a <c .故选B.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【答案】C.【解析】:函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项A 的函数为奇函数,不符合要求;选项B 的函数是偶函数,但其单调性不符合要求;选项D 的函数为非奇非偶函数,不符合要求;只有选项C 符合要求.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( ) A .-3 B .-54C.54 D .3 【答案】A【解析】:.由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4 D .-4 【答案】D【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.已知定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2x -2x ,则f (x )x>0的解集为( )A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-1)∪(1,+∞)【解析】因为当x >0时,函数f (x )单调递增,又f (1)=0,所以f (x )=2x -2x >0的解集为(1,+∞),所以f (x )x >0在(0,+∞)上的解集为(1,+∞).因为f (x )是奇函数,所以f (x )x 是偶函数,则f (x )x >0在R 上的解集为(-∞,-1)∪(1,+∞).5.已知定义域为R 的奇函数f (x )满足⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,且当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f =( ) A .-278B .-18C.18D.278【解析】:因为⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,所以⎪⎭⎫ ⎝⎛25f =⎪⎭⎫ ⎝⎛+123f =⎪⎭⎫ ⎝⎛1-21f =⎪⎭⎫⎝⎛21-f ,又因为函数为奇函数,所以⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21-f =321-⎪⎭⎫⎝⎛=-18.6.已知函数f (x )=2|x |+x 3+12|x |+1的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .8【解析】:f (x )=2|x |+x 3+12|x |+1=1+x 32|x |+1.设g (x )=x 32|x |+1,因为g (x )定义域为R ,关于原点对称,且g (-x )=-g (x ),所以g (x )为奇函数,所以g (x )max +g (x )min =0.因为M =f (x )max =1+g (x )max ,m =f (x )min =1+g (x )min ,所以M +m =1+g (x )max +1+g (x )min =2.7.(2019·沈阳测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( )A .m =1,且f (x )在(0,1)上是增函数B .m =1,且f (x )在(0,1)上是减函数C .m =-1,且f (x )在(0,1)上是增函数D .m =-1,且f (x )在(0,1)上是减函数 【答案】B【解析】因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以⎪⎭⎫ ⎝⎛21f =⎪⎭⎫⎝⎛21-f ,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为当x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数.故选B.8.(2019·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( ) A .1B.45 C .-1D .-45【解析】 因为x ∈R ,且f (-x )=-f (x ),所以函数为奇函数.因为f (x )=f (x +4),所以函数的周期为4.故f (log 220)=f (log 220-4)=⎪⎭⎫ ⎝⎛45log 2f =⎪⎭⎫ ⎝⎛45log --2f =⎪⎭⎫ ⎝⎛54log --2f =⎪⎭⎫ ⎝⎛+-5154log 22=⎪⎭⎫⎝⎛+-5154=-1.故选C.9.(2020·成都八中月考)设函数f (x )=ln(1+|x |)-11+x 2,则使f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎪⎭⎫⎝⎛131,B.⎪⎭⎫ ⎝⎛∞31-,∪(1,+∞)C.⎪⎭⎫ ⎝⎛3131,D.⎪⎭⎫ ⎝⎛∞31-,∪⎪⎭⎫ ⎝⎛∞+,31 【解析】 由题意知f (-x )=f (x ),所以函数f (x )是偶函数,当x ≥0时,易得函数f (x )=ln(1+x )-11+x 2是增函数,所以不等式f (x )>f (2x -1)等价于|2x -1|<|x |,解得13<x <1,则x 的取值范围是⎪⎭⎫⎝⎛131, 10.(2020·福建龙岩期末)设函数f (x )是定义在R 上的奇函数,满足f (x +1)=-f (x -1),若f (-1)>1,f (5)=a 2-2a -4,则实数a 的取值范围是( ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】:由f (x +1)=-f (x -1),可得f (x +2)=-f (x ),则f (x +4)=f (x ),故函数f (x )的周期为4,则f (5)=f (1)=a 2-2a -4,又因为f (x )是定义在R 上的奇函数,f (-1)>1,所以f (1)<-1,所以a 2-2a -4<-1,解得-1<a <3,故答案为A.二、填空题1.已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (17)= ,f (20)= . 【答案】:1 -13【解析】: 因为f (x +2)=-1f (x ), 所以f (x +4)=-1f (x +2)=f (x ),所以函数y =f (x )的周期T =4. f (17)=f (4×4+1)=f (1)=1.f (20)=f (4×4+4)=f (4)=f (2+2)=-1f (2)=-12×2-1=-13.2.(2020·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2 023)=__________. 【答案】 2【解析】因为f (x +6)=f (x )+f (3),令x =-3,f (3)=f (-3)+f (3)=-f (3)+f (3)=0,所以f (x +6)=f (x )+0=f (x ),所以T =6,f (2 023)=f (337×6+1)=f (1)=2.3.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于 . 【答案】:3【解析】:f (-1)+g (1)=2,即-f (1)+g (1)=2①, f (1)+g (-1)=4,即f (1)+g (1)=4②, 由①②得,2g (1)=6,即g (1)=3.4.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g (f (-8))= .【答案】:-1【解析】:因为f (x )是定义在R 上的奇函数, 所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.5.设函数f (x )是定义在R 上周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则⎪⎭⎫⎝⎛23f = .【答案】:32【解析】:依题意得,f (2+x )=f (x ),f (-x )=f (x ),则⎪⎭⎫⎝⎛23f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21f =12+1=32.6.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=x⎪⎭⎫⎝⎛21,则f (1),g (0),g (-1)之间的大小关系是 . 【答案】:f (1)>g (0)>g (-1)【解析】:在f (x )-g (x )=x⎪⎭⎫ ⎝⎛21中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.联立方程组解得f (x )=2-x -2x2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).7.(2019·常德模拟)设f (x )是偶函数,且当x >0时,f (x )是单调函数,则满足f (2x )=⎪⎭⎫⎝⎛++41x x f 的所有x 之和为______。
初三数学函数的周期性判断方法
初三数学函数的周期性判断方法函数是数学中的重要概念之一,而函数的周期性则是数学函数中一个重要的性质。
对于初三的学生来说,掌握函数的周期性判断方法对于解题和应用都起到了关键作用。
本文将介绍几种常见的函数周期性判断方法,帮助初三学生更好地理解和应用函数的周期性。
1. 函数的周期性概念函数的周期性是指函数图像在横轴方向上的重复性。
如果存在一个正数T,对于函数f(x)的所有x值,满足f(x+T) = f(x),则函数f(x)是周期函数,其周期为T。
2. 正弦函数和余弦函数的周期性判断正弦函数和余弦函数是初中阶段最常见的周期函数。
对于正弦函数sin(x)和余弦函数cos(x),它们的周期都是2π。
因此,只需将给定函数和sin(x)或cos(x)进行比较,若满足f(x+2π) = f(x),则函数具有周期性。
3. 多项式函数的周期性判断多项式函数是初中阶段学习的另一类常见函数。
对于多项式函数f(x),我们可以根据其次数和系数判断其周期性。
a. 若f(x)为零次函数(常数函数),即f(x) = a(a为常数),则该函数是周期函数。
由于常数函数的图像是一条水平直线,其重复周期为无穷大。
b. 若f(x)为一次函数,即f(x) = ax + b(a和b为常数),则函数f(x)是非周期函数,其图像是一条直线。
c. 若f(x)为二次及以上次数的多项式函数,即f(x) = ax^n + bx^(n-1) +...+ c(a,b,c为常数,n≥2),则函数f(x)是非周期函数。
由于二次及以上次数的多项式函数的图像通常是曲线,除非具有特殊性质,否则不具有周期性。
4. 指数函数和对数函数的周期性判断指数函数和对数函数也是初中阶段涉及的常见函数类型。
对于指数函数f(x) = a^x(a>0,a≠1),其没有周期性,即不是周期函数。
5. 反比例函数的周期性判断反比例函数也是初中阶段学习的一种函数类型。
对于反比例函数f(x) = k/x(k≠0),其没有周期性,即不是周期函数。
高中数学基础之函数的奇偶性与周期性
D.
考点二 函数奇偶性的应用
【例 2】 (1)(2019·全国卷Ⅱ)设 f(x)为奇函数,且当 x≥0 时,f(x)=ex-1,则
当 x<0 时,f(x)=( D ) A.e-x-1
B.e-x+1
C.-e-x-1
D.-e-x+1
(2)(2020·长沙第一中学期末)若函数 f(x)=xln(x+ a+x2)为偶函数,则 a= ___1_____.
又 x<0,∴-x>0. ∵x≥0 时,f(x)=ex-1,∴-y=e-x-1, ∴y=-e-x+1(x<0),即 f(x)=-e-x+1(x<0). 解法三(赋值法):∵f(x)是奇函数,且 x≥0 时,f(x)=ex-1, ∴f(-1)=-f(1)=-(e1-1)=1-e,即 f(-1)=-e+1,只有 D 符合. (2)因为 f(x)-f(-x)=xln(x+ a+x2)+xln(-x+ a+x2)=xln(a+x2-x2)=xlna =0,所以 a=1.
1.(2020·福州市高三期末)下列函数为偶函数的是( B )
A.y=tan(x+π4)
B.y=x2+e|x|
C.y=xcosx
D.y=ln|x|-sinx
[解析] 对于选项 A,易知 y=tan(x+π4)为非奇非偶函数;对于选项 B,设 f(x)
=x2+e|x|,则 f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以 y=x2+e|x|为偶函数;对于选
ቤተ መጻሕፍቲ ባይዱ
B.最小正周期为 2π 的奇函数
C.最小正周期为 π 的偶函数
D.最小正周期为 2π 的偶函数
(2)(2020·河南南阳模拟)已知函数 f(x)是定义在 R 上的偶函数,并且满足 f(x+
函数的周期性与奇偶性判断
函数的周期性与奇偶性判断在数学中,函数的周期性和奇偶性是两个重要的性质,它们可以帮助我们更好地理解和分析函数的行为。
本文将详细介绍函数的周期性和奇偶性,以及如何判断一个函数是否具有这些性质。
一、函数的周期性周期性是指函数在一定的区间内,以相同的规律不断重复。
如果函数f(x)满足以下条件,则称其具有周期性:f(x + T) = f(x),其中T为正实数。
换句话说,如果对于函数f(x)的任意x值,都有f(x + T) = f(x),那么函数f(x)就是周期函数,其中T称为函数的周期。
常见的周期函数有正弦函数、余弦函数等。
例如,正弦函数sin(x)的周期是2π,即对于任意x,都有sin(x + 2π) = sin(x)。
而余弦函数cos(x)的周期也是2π。
判断一个函数是否具有周期性,可以通过观察函数的图像或使用数学方法来确定。
例如,对于三角函数来说,我们可以观察函数的波形是否在一定区间内不断重复。
对于其他类型的函数,我们可以使用数学方法来求解函数的周期。
二、函数的奇偶性奇偶性是指函数在坐标系中关于原点对称。
具体而言,如果函数f(x)满足以下条件,则称其具有奇偶性:奇函数:f(-x) = -f(x),即函数关于原点对称。
偶函数:f(-x) = f(x),即函数关于y轴对称。
对于奇函数来说,当x取正值时,函数值与对应的负值相等但符号相反。
而对于偶函数来说,无论x为正值还是负值,函数值都相等。
常见的奇函数有正弦函数sin(x),而常见的偶函数有余弦函数cos(x)。
例如,对于正弦函数sin(x),我们可以观察函数的图像是否关于原点对称,即是否在y轴上下对称。
而对于余弦函数cos(x),我们可以观察函数的图像是否关于y轴对称。
判断一个函数是否具有奇偶性,可以使用函数的性质来进行推导。
例如,对于三角函数来说,我们可以根据函数的定义和性质来判断其奇偶性。
对于其他类型的函数,我们可以使用函数的表达式进行分析。
三、函数周期性和奇偶性的应用函数的周期性和奇偶性在数学和物理中有广泛的应用。
函数的奇偶性怎么判断函数的周期性奇函数与偶函数性质
一、判断函数奇偶性的方法1.先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性2.根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)3.若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇4.若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶5.若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇二、函数的奇偶性定义:1.偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称函数f(x)为偶函数。
2.奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),那么函数f(x)是奇函数。
三、函数的周期性:(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的。
(2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。
一般所说的周期是指函数的最小正周期。
周期函数并非都有最小正周期,如常函数f(x)=C。
四、函数的奇偶性:(1)定义:偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称函数f(x)为偶函数。
奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),那么函数f(x)是奇函数。
(2)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积是偶函数;③一个奇函数,一个偶函数的积是奇函数。
函数周期性规律及公式
函数周期性规律及公式函数是数学中的一个重要概念,它描述了一种输入输出的关系。
在实际问题中,很多现象具有一定的周期性规律,而函数周期性规律及公式恰好可以描述这种周期性。
本文将介绍函数的周期性规律以及常见的周期性函数的公式。
一、函数的周期性规律函数的周期性是指函数图像在一定区间内重复出现相同的模式。
具体来说,对于一个周期为T的函数,当自变量x从一个周期的起点变化到终点时,函数的取值会出现一个循环,然后再从起点开始重新循环。
周期性是一种重复性,可以将函数图像想象成一个周期性图像,不断重复。
函数的周期性规律可以由函数的公式来确定。
实际上,函数的周期性规律与函数的周期相关。
周期是函数重复性的基本特征,同时也决定了函数的重复间隔。
对于周期性函数来说,周期性规律可以表达成数学公式,这些公式可以用来描述函数图像的重复性。
二、常见的周期性函数公式1. 正弦函数(Sine Function)正弦函数是最常见的周期性函数之一。
它的图像可以描述成一条连续的曲线,沿着x轴周期性地上下振动。
正弦函数的周期是2π,公式为:y = A * sin(B * x + C) + D其中,A代表振幅(即最大纵向距离),B代表频率(即单位区间内的周期数),C代表相位偏移(即图像的水平位移),D代表垂直位移(即图像在y轴上的位置)。
2. 余弦函数(Cosine Function)余弦函数与正弦函数非常相似,只是相位偏移不同。
余弦函数的周期也是2π,公式为:y = A * cos(B * x + C) + D其中,A、B、C和D的含义与正弦函数相同。
3. 正切函数(Tangent Function)正切函数是另一种常见的周期性函数。
它的图像具有一系列无限多个垂直渐近线,周期为π,公式为:y = A * tan(B * x + C) + D同样,A、B、C和D分别代表振幅、频率、相位偏移和垂直位移。
除了上述三个函数以外,还有很多其他的周期性函数,如指数函数、对数函数等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由函数特征式判断函数的周期性及周期
李圣平
(宜昌市体育运动学校,湖北宜昌 443000)
摘要探讨利用函数的特征式研判函数的周期性和周期,让学生掌握研究和判断的方法很有必要,在此给出了用函数特征式研究和判断函数周期性及周期的一般方法,研究了几种具体情形供师生参考。
关键词函数;特征式;判断;周期函数;周期
函数的周期性是高中数学的一个重要知识点,用函数的特征式判断函数的周期性和周期具有抽象性,可以考察学生的抽象思维能力和想象能力,此类问题在高考题中多年涉及,学生掌握一些类型的研究方法及其结论十分必要,本文做出了一些相关探讨。
1 函数的周期性与周期
1. 1 周期函数及其周期的几何定义
从图象上看,函数的图象能够划分为无数段向左右两边无限重复延伸的全等图象段,分点若为函数图象上的点,则为相邻图象段的公共点,将每一段图象称为重复段,将任一重复段向左右无限重复延伸就得到整个函数的图象,这样的函数称为周期函数。
周期函数的任一重复段夹在某两条直线x=a和x=b之间(a <b﹚,在左或右要么与直线相交,要么可以与直线无限趋近,将这个重复段向左平移b-a个单位或者向右平移b-a个单位得到与其左右紧邻的重复段,将b-a 称为该函数的一个正周期,a-b称为该函数的一个负周期,每一个重复段称为该函数的一个周期内的图象。
如果重复段不能再划分为可重复的小重复段,则把周期b-a称为该函数的最小正周期。
1. 2 周期函数及其周期的代数定义
对于函数f(x),如果存在非零常数k,使f(x+k)=f(x)成立,称函数f (x)为周期函数,把k称为该函数的一个周期。
如果k为正数,该函数不存在比k小的正周期,则把k称为该函数的最小正周期。
把等式f(x+k)=f(x)称为函数f(x)的一个特征式。
2 用函数的特征式判断函数的周期性和周期
定理1 若函数f(x)对其定义域内的任何x的值,都有:f(x+a)=f(x+b)或f(a-x)=f(b-x),其中a、b是常数,且a≠b,则函数f(x)是周期函数,且a-b是f(x)的一个周期。
证明:若f(x+a)=f(x+b),(a≠b),则用此关系有:f(x)=f((x-b)+b)=f((x-b)+a)=f(x+(a-b)),根据周期函数的定义,函数f(x)是周期函数,且a-b是f(x)的一个周期。
若f(a-x)=f(b-x),(a≠b),则用此关系有:f(x)=f(b-(b-x))=f(a-(b-x))=f(x+(a-b)),表明函数f(x)是周期函数,且a-b是函数f(x)的一个周期。
定理2 若函数f(x)对其定义域内的任何x的值,满足下列条件之一,则函数f(x)是周期函数,且2(a-b)是函数f(x)的一个周期,这里a≠b。
条件1:f(x+a)= -f(x+b)或 f(a-x)= -f(b-x);
条件2:f(x+a)=1/f(x+b)或f(a-x)=1/f(b-x),(f(x)≠0);
条件3:f(x+a)= -1/f(x+b)或 f(a-x)=- 1/f(b-x),(f(x)≠0)。
这里只对满足条件3的函数f(x)是周期为2(b-a)的周期函数作证明,其余的用类似的方法(变形法)证明。
证明:若f(x+a)=-1/f(x+b),则f(x+b)= -1/f(x+a),用此关系有:f(x+a)=f((x+a-b)+b)= -1/f((x+a-b)+a)= -1/f(x+2a-b) = -1/f((x+2a-2b)+b)= -1/(-1/f((x+2a-2b)+a))=f(x+3a-2b),由定理1知,函数f(x)是周期函数,且3a-2b-a=2(a-b)是f(x)的一个周期。
若f(a-x)= -1/f(b-x),(f(x)≠0),则f(b-x)=- 1/f(a-x),据此有:f(x)=f(b-(b-x))=- 1/f(a-(b-x))=- 1/f(a-b+x) =-1/f(b-(2b-a-x))=-1/(-1/f(a-(2b-a-x)))=f(x+2(a-b)),∴ f(x)是周期函数,2(a-b)是f(x)的一个周期。
注意:不难发现,f(x+a)与f(x+b)(或者f(a-x)与f(b-x))互为相反数、互为倒数或者互为负倒数,则函数f(x)是周期函数,且2(a-b)=2((x+a)-(x+b))=2((a-x)-(b-x))是函数的周期。
定理3 若函数f(x)对其定义域内的任何x的值,满足下列条件之一,则函数f(x)是周期函数,且2a是函数f(x)的一个周期。
条件1:f(x+a)=f(x-a),(a≠0):
条件2:f(x+a)=-f(x),(a≠0);
条件3:f(x+a)=1/f(x),(a≠0;f(x)≠0);
条件4:f(x+a)=-1/f(x),(a≠0;f(x)≠0)。
推论1可用上面的证明方法证明,也可用定理1中b=-a,定理2中b=0得到。
由条件2、条件3、条件4都可得到条件1关系式,如:f(x+a)=-f(x),则f(x)= - f(x+a),据此有:f(x-a)=-f((x-a)+a)=-f(x),故 f(x+a)=f(x-a)。
定理4 若函数f(x)对其定义域内的任何x的值,都有:f(x)=f(x+a)+f(x-a),(a≠0),则f(x)是周期函数,6a是f(x)的一个周期。
证明:∵f(x)=f(x+a)+f(x-a),用此关系有:f(x+a)=f((x+a)+a)+f((x+a)-a),即f(x+a)=f(x+2a)+f(x)(1)
即f(x)=f(x+a)- f(x+2a),用此关系有:f(x+a)=f((x+a)+a)-f((x+a)+2a),即f(x+a)=f(x+2a)-f(x+3a)(2)
由(1)和(2)得:f(x)=-f(x+3a),由定理3(满足条件2)知,函数f(x)是周期函数,且6a是f(x)的一个周期。
定理5 若函数f(x)对其定义域内的任何x的值,都有:f(x+a)=f(x+b)+f(x+c),(a是b与c的等差中项,a≠b≠c),则函数f(x)是周期函数,且6(a-b)是f(x)的一个周期。
证明:∵a是b和c的等差中项,∴b,a,c成等差数列,设公差为d,则d=c-a=a-b,有 b=a-d,c=a+d,所以f(x+a)=f(x+b)+f(x+c)可化为f(x+a)=f(x+a-d)+f(x+a+d),用此关系有:f(x)=f((x-a)+a)=f((x-a)+a-d)+f((x-a)+a+d),即f(x)=f(x-d)+f(x+d),由定理4知,函数f(x)是周期函数,且6(a-b)是f(x)的一个周期。
【参考文献】:
[1] 李胜编.黄冈高考兵法.数学.第一轮(M).西安:陕西师范大学出版社.2001.第38页.。