最新高考数学总复习-6-3-等比数列但因为测试-新人教B版

合集下载

高考数学总复习 1-3 充分条件与必要条件但因为测试 新人教B版

高考数学总复习 1-3 充分条件与必要条件但因为测试 新人教B版

高考数学总复习 1-3 充分条件与必要条件但因为测试新人教B版1.(文)(2011·福建文,3)若a∈R,则“a=1”是“|a|=1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件[答案] A[解析]a=1成立,则|a|=1成立.但|a|=1成立时a=1不一定成立,所以a=1是|a|=1的充分不必要条件.(理)(2011·大纲全国文,5)下列四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b-1C.a2>b2D.a3>b3[答案] A[解析]∵a>b+1⇒a-b>1⇒a-b>0⇒a>b∴a>b+1是a>b的充分条件又∵a>b⇒a-b>0⇒/a>b+1∴a>b+1不是a>b的必要条件∴a>b+1是a>b成立的充分而不必要条件.[点评]如a=2=b,满足a>b-1,但a>b不成立;又a=-3,b=-2时,a2>b2,但a>b不成立;a>b⇔a3>b3.故B、C、D选项都不对.2.(2011·湖南湘西州联考)已知条件p:a<0,条件q:a2>a,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] B[解析]由a2>a得,a<0或a>1.所以q是p成立的必要不充分条件,其逆否命题綈p也是綈q的必要不充分条件3.(文)(2011·聊城模拟)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案] A[解析]k=1时,圆心O(0,0)到直线距离d=12<1,∴直线与圆相交;直线与圆相交时,圆心到直线距离d=|k|2<1,∴-2<k<2,故选A.(理)(2011·通化模拟)直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的充分不必要条件是() A.-3<m<1 B.-4<m<2C.0<m<1 D.m<1[答案] C[解析] 联立方程得⎩⎪⎨⎪⎧x -y +m =0x 2+y 2-2x -1=0,得x 2+(x +m )2-2x -1=0,即2x 2+(2m -2)x +m 2-1=0,直线与圆有两个不同交点的充要条件为Δ=(2m -2)2-4×2(m 2-1)>0,解得-3<m <1,只有C 选项符合要求.[点评] 直线与圆有两个不同交点⇔-3<m <1,故其充分不必要条件应是(-3,1)的真子集. 4.(文)(2011·太原模考)“α≠β”是“sin α≠sin β”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件[答案] B[解析] 命题“若α≠β,则sin α≠sin β”等价于命题“若sin α=sin β,则α=β”,这个命题显然不正确,故条件是不充分的;命题“若sin α≠sin β,则α≠β”等价于命题“若α=β,则sin α=sin β”,这个命题是真命题,故条件是必要的.故选B.(理)(2011·沈阳二中月考)“θ=2π3”是“tan θ=2cos ⎝⎛⎭⎫π2+θ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 [答案] A[解析] 解法1:∵θ=2π3为方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3是tan θ=2cos ⎝⎛⎭⎫π2+θ成立的充分条件; 又∵θ=8π3也是方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3不是tan θ=2cos ⎝⎛⎭⎫π2+θ的必要条件,故选A. 解法2:∵tan θ=2cos ⎝⎛⎭⎫π2+θ,∴sin θcos θ=-2sin θ, ∴sin θ=0或cos θ=-12,∴方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解集为A =⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π或θ=2k π±23π,k ∈Z , 显然⎩⎨⎧⎭⎬⎫2π3A ,故选A.5.“m =-1”是“直线mx +(2m -1)y +1=0和直线3x +my +3=0垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] 直线mx +(2m -1)y +1=0和直线3x +my +3=0垂直的充要条件是3m +m (2m -1)=0,解得m =0或m =-1.∴“m =-1”是上述两条直线垂直的充分不必要条件.6.(文)已知数列{a n },“对任意的n ∈N *,点P n (n ,a n )都在直线y =3x +2上”是“{a n }为等差数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 [答案] A[解析] 点P n (n ,a n )在直线y =3x +2上,即有a n =3n +2,则能推出{a n }是等差数列;但反过来,{a n }是等差数列,a n =3n +2未必成立,所以是充分不必要条件,故选A.(理)(2011·海南五校联考)下列说法错误..的是( ) A .“sin θ=12”是“θ=30°”的充分不必要条件B .命题“若a =0,则ab =0”的否命题是:“若a ≠0,则ab ≠0”C .若命题p :∃x ∈R ,x 2-x +1<0,则綈p :∀x ∈R ,x 2-x +1≥0D .如果命题“綈p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题 [答案] A[解析] ∵sin θ=12⇒θ=k ·360°+30°,反之当θ=30°时,sin θ=12,∴“sin θ=12”是“θ=30°”的必要不充分条件.故选A.7.(2010·江苏省南通市调研)在平面直角坐标系xOy 中,直线x +(m +1)y =2-m 与直线mx +2y =-8互相垂直的充要条件是m =________.[答案] -23[解析] x +(m +1)y =2-m 与mx +2y =-8垂直⇔ 1·m +(m +1)·2=0, 得m =-23.8.给出下列命题:①“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的充要条件. ②对于数列{a n },“a n +1>|a n |,n =1,2,…”是{a n }为递增数列的充分不必要条件.③已知a ,b 为平面上两个不共线的向量,p :|a +2b |=|a -2b |;q :a ⊥b ,则p 是q 的必要不充分条件. ④“m >n ”是“(23)m <(23)n ”的充分不必要条件.其中真命题的序号是________. [答案] ①②[解析] ①∵m >n >0,∴0<1m <1n ,方程mx 2+ny 2=1化为x 21m +y 21n =1,故表示焦点在y 轴上的椭圆,反之亦成立.∴①是真命题;②对任意自然数n ,a n +1>|a n |≥0,∴a n +1>a n ,∴{a n }为递增数列;当取a n =n -4时,则{a n }为递增数列,但a n +1>|a n |不一定成立,如a 2>|a 1|就不成立.∴②是真命题;③由于|a +2b |=|a -2b |⇔(a +2b )2=(a -2b )2⇔a ·b =0⇔a ⊥b ,因此p 是q 的充要条件,∴③是假命题; ④∵y =⎝⎛⎭⎫23x是减函数,∴当m >n 时,⎝⎛⎭⎫23m <⎝⎛⎭⎫23n ,反之,当(23)m <⎝⎛⎭⎫23n 时,有m >n ,因此m >n ⇔⎝⎛⎭⎫23m <⎝⎛⎭⎫23n ,故④是假命题.9.(2011·济南三模)设p :⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12,q :x 2+y 2>r 2(x ,y ∈R ,r >0),若p 是q 的充分不必要条件,则r的取值范围是________.[答案] (0,125][解析] 设A ={(x ,y )|⎩⎪⎨⎪⎧4x +3y -12≥03-x ≥0x +3y ≤12},B ={(x ,y )|x 2+y 2>r 2,x ,y ∈R ,r >0},则集合A 表示的区域为图中阴影部分,集合B 表示以原点为圆心,以r 为半径的圆的外部,设原点到直线4x +3y -12=0的距离为d ,则d =|4×0+3×0-12|5=125,∵p 是q 的充分不必要条件,∴A B ,则0<r ≤125. 10.(2010·浙江温州十校联考)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若綈p 是綈q 的充分而不必要条件,求实数m 的取值范围.[解析] 由题意p :-2≤x -3≤2,∴1≤x ≤5. ∴綈p :x <1或x >5.q :m -1≤x ≤m +1, ∴綈q :x <m -1或x >m +1.又∵綈p 是綈q 的充分不必要条件,∴⎩⎪⎨⎪⎧ m -1≥1,m +1<5.或⎩⎪⎨⎪⎧m -1>1m +1≤5,∴2≤m ≤4.11.(文)(2011·湖南高考)设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件[答案] A[解析] 显然a =1时一定有N ⊆M ,反之则不一定成立,如a =3.故是充分不必要条件. [点评] 若N ⊆M ,则应有a 2=1或a 2=2,∴a ∈{-1,1,2,-2},由于-1,1,2,-2},∴应选A.(理)(2011·杭州二检)已知α,β表示两个不同的平面,m 是一条直线且m ⊂α,则“α⊥β”是“m ⊥β”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] B [解析]⎭⎪⎬⎪⎫m ⊥βm ⊂α⇒α⊥β;但α⊥β时,设α∩β=l ,当m ∥l 时,m 与β不垂直,故选B. 12.(文)(2011·浙江五校联考)已知不重合的直线a ,b 和不重合的平面α,β,a ⊥α,b ⊥β,则“a ⊥b ”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] ∵⎩⎪⎨⎪⎧a ⊥bb ⊥β,∴a ∥β或a ⊂β,∵a ⊥α,∴α⊥β;反之,由α⊥β也可以推出a ⊥b ,故选C.(理)(2011·山东济宁一模)已知p :x -1x ≤0,q :4x +2x -m ≤0,若p 是q 的充分条件,则实数m 的取值范围是( )A .m >2+ 2B .m ≤2+ 2C .m ≥2D .m ≥6[答案] D[解析] 由x -1x≤0,得0<x ≤1;∵p 是q 的充分条件,设A =(0,1],B 是不等式4x +2x -m ≤0的解集,则A ⊆B , ∴当x ∈A 时,不等式4x +2x -m ≤0恒成立, 由4x +2x -m ≤0得,m ≥4x +2x =(2x +12)2-14,因为0<x ≤1,所以m ≥(2+12)2-14=6,即m ≥6.13.(文)(2011·福建质检)已知i 为虚数单位,a 为实数,复数z =(1-2i)(a +i)在复平面内对应的点为M ,则“a >12”是“点M 在第四象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 注意到z =(1-2i)(a +i)=(a +2)+(1-2a )i 在复平面内对应的点为M (a +2,1-2a ).当a >12时,有a +2>0,1-2a <0,故点M 在第四象限;反过来,当点M 在第四象限时,有a +2>0且1-2a <0,由此解得a >12.所以“a >12”是“点M 在第四象限”的充要条件,故选C.(理)(2011·宁夏三市联考)设x 、y 是两个实数,命题“x 、y 中至少有一个数大于1”成立的充分不必要条件是( ) A .x +y =2 B .x +y >2 C .x 2+y 2>2 D .xy >1[答案] B[解析] 命题“x 、y 中至少有一个数大于1”等价于“x >1或y >1”.若x +y >2,必有x >1或y >1,否则x +y ≤2;而当x =2,y =-1时,2-1=1<2,所以x >1或y >1不能推出x +y >2.对于x +y =2,当x =1,且y =1时,满足x +y =2,不能推出x >1或y >1.对于x 2+y 2>2,当x <-1,y <-1时,满足x 2+y 2>2,不能推出x >1或y >1.对于xy >1,当x <-1,y <-1时,满足xy >1,不能推出x >1或y >1.故选B.14.(文)(2011·广州二测)已知p :k >3;q :方程x 23-k +y 2k -1=1表示双曲线,则p 是q 的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[答案] A[解析] 由k >3得3-k <0,k -1>0,方程x 23-k +y 2k -1=1表示双曲线,因此p 是q 的充分条件;反过来,由方程x 23-k +y 2k -1=1表示双曲线不能得到k >3,如k =0时方程x 23-k +y 2k -1=1也表示双曲线,因此p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件,选A.(理)(2011·黑龙江铁岭六校第二次联考)命题P :不等式lg[x (1-x )+1]>0的解集为{x |0<x <1},命题Q :在△ABC 中,A >B 是cos 2(A 2+π4)<cos 2(B 2+π4)成立的必要不充分条件,则( )A .P 真Q 假B .P ∧Q 为真C .P ∨Q 为假D .P 假Q 真[答案] A[解析] 由lg[x (1-x )+1]>0,得x (1-x )+1>1, 解得0<x <1,即命题p 正确; 由cos 2(A 2+π4)<cos 2(B 2+π4)得,1+A +π22<1+B +π22,化简得sin A >sin B .因为A >B ⇔a >b ⇔sin A >sin B ,即命题q 不正确.15.(2011·日照模拟)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0x 2+2x -8>0,(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围. [解析] (1)a =1时,p :x 2-4x +3<0,即p :1<x <3,q :⎩⎪⎨⎪⎧-2≤x ≤3x <-4或x >2,即q :2<x ≤3, 由p ∧q 为真知,2<x <3.(2)由x 2-4ax +3a 2<0,得(x -a )(x -3a )<0, 若a <0,则3a <x <a ,不合题意; 若a >0,则a <x <3a ,由题意知,a,3a ),∴⎩⎨⎧a ≤23a >3,∴1<a ≤2.*16.(2011·蚌埠质检)设函数f (x )=ln x -px +1.(1)当p >0时,若对任意的x >0,恒有f (x )≤0,求p 的取值范围; (2)证明:当x >0时,1+ln x x≤1.[解析] (1)显然函数定义域为(0,+∞). 且f ′(x )=1x -p =1-px x.当p >0时,令f ′(x )=0,∴x =1p ∈(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:↗↘从上表可以看出:当p >0时,有唯一的极大值点x =1p.当p >0时在x =1p 处取得极大值f ⎝⎛⎭⎫1p =ln 1p ,此极大值也是最大值, 要使f (x )≤0恒成立,只需f ⎝⎛⎭⎫1p =ln 1p ≤0,即p ≥1. ∴p 的取值范围为[1,+∞).(2)当p =1时,f (x )=ln x -x +1.由(1)可知,函数f (x )在x =1处取最大值,即f (x )≤f (1)=0,即ln x ≤x -1. 故当x >0时,1+ln xx≤1.1.△ABC 中“cos A =2sin B sin C ”是“△ABC 为钝角三角形”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 [答案] B[解析] cos A =-cos(B +C )=-cos B cos C +sin B sin C =2sin B sin C ,∴cos(B -C )=0.∴B -C =π2.∴B =π2+C >π2,故为钝角三角形,反之显然不成立,故选B.2.(2010·山东聊城模拟)设不等式|2x -a |<2的解集为M ,则“0≤a ≤4”是“1∈M ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 [答案] B[解析] 解绝对值不等式可得M =⎝⎛⎭⎫a -22,a +22,故0≤a ≤4时,不一定推出1∈M ,反之若1∈M ,则有⎩⎨⎧a -22<1a +22>1⇒0<a <4,故“0≤a ≤4”是“1∈M ”的必要但不充分条件.3.(2010·上海十三校联考)“a =1”是“函数f (x )=|x -a |在区间(-∞,1]上为减函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 [答案] A[解析] 当a =1时,f (x )=|x -1|=⎩⎪⎨⎪⎧x -x 1-xx,所以f (x )在区间(-∞,1]上是减函数;若f (x )在区间(-∞,1]上是减函数,结合图象可得a ≥1,所以前者是后者的充分不必要条件.4.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( )[答案] C[解析] 直线x +y =0与直线x -a y =0垂直⇔1×1+1×(-a )=0⇔a =1. 5.(2010·北京东城区)“x =π4”是“函数y =sin2x 取得最大值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] x =π4时,y =sin2x 取最大值,但y =sin2x 取最大值时,2x =2k π+π2,k ∈Z ,不一定有x =π4.6.若集合A ={1,m 2},B ={2,4},则“m =2”是“A ∩B ={4}”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] 由“m =2”可知A ={1,4},B ={2,4},所以可以推得A ∩B ={4},反之,如果“A ∩B ={4}”可以推得m 2=4,解得m =2或-2,不能推得m =2,所以“m =2”是“A ∩B ={4}”的充分不必要条件.7.(2010·辽宁文,4)已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0) [答案] C[解析] ∵f ′(x )=2ax +b , 又2ax 0+b =0,∴有f ′(x 0)=0 故f (x )在点x 0处切线斜率为0 ∵a >0 f (x )=ax 2+bx +c ∴f (x 0)为f (x )的图象顶点的函数值 ∴f (x )≥f (x 0)恒成立 故C 选项为假命题,选C. [点评] 可以用作差法比较.8.(2011·成都二诊)已知函数f (x )=⎩⎪⎨⎪⎧log 2xxx +cx ,则“c =-1”是“函数f (x )在R 上递增”的( )[答案] A[解析] 当c =-1时,函数f (x )=⎩⎪⎨⎪⎧log 2xxx -x ,易知函数f (x )在(-∞,1)、(1,+∞)上分别是增函数,且注意到log 21=1-1=0,此时函数f (x )在R 上是增函数;反过来,当函数f (x )在R 上是增函数时,不能得出c =-1,如c =-2,此时也能满足函数f (x )在R 上是增函数.综上所述,“c =-1”是“函数f (x )在R 上递增”的充分不必要条件,选A.9.(2011·山东济南一中阶段考试)给出如下四个命题: ①若“p 且q ”为假命题,则p ,q 均为假命题;②命题“若a >b ,则2a >2b -1”的否命题为“若a ≤b ,则2a ≤2b -1”; ③“若x ∈R ,则x 2+1≥1”的逆否命题是真命题; ④在△ABC 中,“A >B ”是“sin A >sin B ”的充要条件. 其中假命题的个数是( )A .4B .3C .2D .1 [答案] D[解析] 若“p 且q ”为假命题,则p 和q 中至少有一个为假命题,故①错;根据否命题的定义,易知②正确;因为原命题为真命题,所以其逆否命题也为真命题,故③正确;在△ABC 中,因为A >B ,所以a >b ,由正弦定理asin A =bsin B,知sin A >sin B ,反之亦成立,故④正确.。

高中数学新人教B版必修5课件:第二章数列2.3习题课——等比数列习题课

高中数学新人教B版必修5课件:第二章数列2.3习题课——等比数列习题课

D典例透析 S随堂演练
目标导航
题型一
题型二
题型三
题型四
1
1

2
1
(2)解:由(1)知 -1= · -1 =
1


1
=
2
1
+1,则

设 Tn= +
2


3
=
1
22
2
2
2
2
1
+
2
2
+…+
3
=
2

1
1-
2
1
12
1
=1-
2


2
1
2
1
2
22
,
+n.

2
+

2 +1
1
,②

+…+
2

2 +1
(2)设等比数列{bn}的公比为q.
因为b2=a1+a2+a3=-24,b1=-8,
所以-8q=-24,q=3.
1 (1- )
所以数列{bn}的前 n 项和公式 Sn=
1-
=4(1-3n).
D典例透析 S随堂演练
目标导航
IANLITOUXI
1
2
3
UITANGLIANXI
4
1等比数列{an}的前n项和为Sn.已知S3=a2+10a1,a5=9,则a1的值为
题型四
等比数列的基本运算
【例1】 (1)已知Sn为等比数列{an}的前n项和,Sn=93,an=48,公比

高考数学总复习 6-1数列的概念课件 新人教B版

高考数学总复习 6-1数列的概念课件 新人教B版

点评:根据数列的前几项写通项时,所求的通项公式不是 唯一的.其中常用方法是观察法.观察 an 与 n 之间的联系, 用归纳法写出一个通项公式,体现了由特殊到一般的思维规 律.联想与转换是有效的思维方法,它是由已知认识未知、将 未知转化为已知的重要思维方法.
(文)写出下列数列的一个通项公式: (1)1,85,175,294,…,an=________. (2)-1,32,-13,34,-15,12,…,an=________.
3 . 已 知 {an} 的 前 n 项 和 Sn 求 an 时 , 用 an =
S1
n=1,
Sn-Sn-1 n≥2.
求解应注意分类讨论.an=Sn-Sn-1 是在
n≥2 条件下求出的,应检验 a1 是否适合.如果适合,则合写
在一块,如果不适合,则分段表示.
思想方法技巧
一、求数列的通项公式常见的有以下三种类型 1.已知数列的前几项,写出一个通项公式. 依据数列前几项的特点归纳出通项公式:方法是依据数 列的排列规律,求出项与项数的关系.一般步骤是:①定符 号,②定分子、分母,③观察前后项的数值特征找规律,④ 综合写出项与项数的关系.
●命题趋势 主要命题热点: 1.an 与 Sn 的关系 2.等差、等比数列的定义、通项公式以及等差、等比数列 的性质、求和公式. 3.简单的递推数列及归纳、猜想、证明问题.
4.数列与函数、方程、不等式、三角、解析几何综合问题. 5.数列应用题. 6.探究性问题.
●备考指南 1.数列是一种特殊的函数,要善于利用函数的思想来解决 数列问题. 2.运用方程的思想解等差(比)数列是常见题型,解决此类 问题需要抓住基本量 a1、d(或 q),常通过“设而不求,整体代入” 来简化运算.
(5)将数列统一为32,55,170,197,…,分子 3,5,7,9,…, 是等差数列,通项公式为 bn=2n+1,对于分母 2,5,10,17,… 联想到数列 1,4,9,16…即数列{n2},可得分母的通项公式为 cn =n2+1,

2024届高考一轮复习数学课件(新人教B版):等比数列

2024届高考一轮复习数学课件(新人教B版):等比数列

跟踪训练2 在数列{an}中, a2n+1 +2an+1=anan+2+an+an+2,且a1=2, a2=5. (1)证明:数列{an+1}是等比数列;
因为 a2n+1+2an+1=anan+2+an+an+2,
所以(an+1+1)2=(an+1)(an+2+1), 即aan+n+1+11=aann+ +21+ +11. 因为a1=2,a2=5,所以a1+1=3,a2+1=6, 所以aa21++11=2, 所以数列{an+1}是以3为首项,2为公比的等比数列.
选②③作为条件证明①: 设Sn+a1=Aqn-1(A≠0),则Sn=Aqn-1-a1, 当n=1时,a1=S1=A-a1,所以A=2a1;
当n≥2时,an=Sn-Sn-1=Aqn-2(q-1), 因为a2=2a1,所以A(q-1)=A,解得q=2, 所以当n≥2时,an=Sn-Sn-1=Aqn-2(q-1)=A·2n-2=a1·2n-1, 又因为aan+n 1=2(n≥2),且 a2=2a1, 所以{an}为等比数列.
教材改编题
1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的 A.充分不必要条件
√B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
教材改编题
若a,b,c,d成等比数列,则ad=bc, 数列-1,-1,1,1.满足-1×1=-1×1, 但数列-1,-1,1,1不是等比数列, 即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.
(2)求数列{an}的前n项和Sn.
由(1)知,an+1=3·2n-1, 所以an=3·2n-1-1, 所以 Sn=311--22n-n=3·2n-n-3.
题型三 等比数列的性质
例 3 (1)(2023·黄山模拟)在等比数列{an}中,a1,a13 是方程 x2-13x+9

人教B版高考总复习一轮数学精品课件 第6章数列 第3节等比数列

人教B版高考总复习一轮数学精品课件 第6章数列 第3节等比数列

考点二 等比数列的判定与证明
例2已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)求{an}与{bn}的通项公式.
(1)证明 由题设得 4(an+1+bn+1)=2(an+bn),即


等比数列.
2.若数列{an}为公比不为1的等比数列,其前n项和
Sn=A·qn+B(A≠0,B≠0,q≠0,q≠1),则必有A+B=0;反之,若某一非常数列的前n项
和Sn=A·qn-A(A≠0,q≠0,q≠1),则数列{an}必为等比数列.
3.若非零数列{an}的前n项和为Sn,且Sn=kan+b(k≠0,k≠1),则数列{an}必为等
1
公比为
.
2
解析 已知{an}为等比数列,设首项为 a1,公比为 q,若 q=1,则 Sn=na1.有
8S6=48a1,7S3=21a1.∵a1≠0,∴q≠1.由
3
8(1+q )=7,解得
1
q=-2.
81 (1-6 )
8S6=7S3,得
1-
=
71 (1-3 )
,整理得
1-
[对点训练1](2023·天津,6)已知{an}为等比数列,Sn为数列{an}的前n项
故假设错误,因此对于任意实数λ,数列{an}不是等比数列.
9=0,矛盾.
(2)解 当λ≠-18时,数列{bn}是等比数列;当λ=-18时,数列{bn}不是等比数列.
证明如下:
若存在实数 λ

高考数学一轮复习全套课时作业6-3等比数列

高考数学一轮复习全套课时作业6-3等比数列

题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。

2022版新高考数学人教B版一轮复习课件:第七章第三节等比数列

2022版新高考数学人教B版一轮复习课件:第七章第三节等比数列

5.等比数列{an}的首项 a1=-1,前 n 项和为 Sn,若SS150 =3312 ,则{an}的通项 公式 an=________.
【解析】因为SS150 =3312 ,所以S10S-5 S5 =-312 , 因为 S5,S10-S5,S15-S10 成等比数列,且公比为 q5, 所以 q5=-312 ,q=-12 , 则 an=-1×-12 n-1 =--12 n-1 . 答案:--12 n-1
【解析】因为 1,a1,a2,4 成等差数列, 所以 3(a2-a1)=4-1, 所以 a2-a1=1. 又因为 1,b1,b2,b3,4 成等比数列,设其公比为 q, 则 b22 =1×4=4,且 b2=1×q2>0,所以 b2=2, 所以a1-b2 a2 =-(ab2-2 a1) =-12 . 答案:-21
,q=2,则 a4 与 a8 的等比中项是(
)
A.±4 B.4 C.±14
D.14
【解析】选
A.设
a4

a8
的等比中项是
x.由等比数列 a n
的性质可得 a26
=a4a8,
所以 x=±a6.
所以 a4 与 a8 的等比中项 x=±a6=±18 ×25=±4.
2.等比数列{an}的前 n 项和为 Sn,已知 S3=a2+10a1,a5=9,则 a1=( )
(6)若a1·a2·…·an=Tn,则Tn,TT2nn
,T3n T2n
,…成等比数列.
【微思考】 将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这 两个等比数列的公比有何关系?
【提示】仍是一个等比数列,这两个数列的公比互为倒数.
【基本技能小测】
1.等比数列 a n

2024届高考一轮复习数学教案(新人教B版):数列中的综合问题

2024届高考一轮复习数学教案(新人教B版):数列中的综合问题

§6.6数列中的综合问题考试要求数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等.题型一等差数列、等比数列的综合运算例1(2023·厦门模拟)已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,递增的等比数列{b n }满足b 1+b 4=18,b 2·b 3=32.(1)求数列{a n },{b n }的通项公式;(2)若c n =a n ·b n ,n ∈N +,求数列{c n }的前n 项和T n .解(1)当n ≥2时,a n =S n -S n -1=32n 2+12n -32(n -1)2+12(n -1)=3n -1,又∵当n =1时,a 1=S 1=2符合上式,∴a n =3n -1.∵b 2b 3=b 1b 4,∴b 1,b 4是方程x 2-18x +32=0的两根,又∵b 4>b 1,∴解得b 1=2,b 4=16,∴q 3=b4b 1=8,∴q =2,∴b n =b 1·q n -1=2n .(2)∵a n =3n -1,b n =2n ,则c n =(3n -1)·2n ,∴T n =2·21+5·22+8·23+11·24+…+(3n -1)·2n ,2T n =2·22+5·23+8·24+11·25+…+(3n -1)·2n +1,将两式相减得-T n =2·21+3(22+23+24+…+2n )-(3n -1)·2n +1=4+322(1-2n -1)1-2-(3n -1)·2n +1=(4-3n )·2n +1-8,∴T n =(3n -4)·2n +1+8.思维升华数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.跟踪训练1(2022·全国甲卷)记S n 为数列{a n }的前n 项和.已知2S nn+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.(1)证明由2S nn+n =2a n +1,得2S n +n 2=2a n n +n ,①所以2S n +1+(n +1)2=2a n +1(n +1)+(n +1),②②-①,得2a n +1+2n +1=2a n +1(n +1)-2a n n +1,化简得a n +1-a n =1,所以数列{a n }是公差为1的等差数列.(2)解由(1)知数列{a n }的公差为1.由a 4,a 7,a 9成等比数列,得a 27=a 4a 9,即(a 1+6)2=(a 1+3)(a 1+8),解得a 1=-12.所以S n =-12n +n (n -1)2=n 2-25n2-6258,所以当n =12或13时,S n 取得最小值,最小值为-78.题型二数列与其他知识的交汇问题命题点1数列与不等式的交汇例2(1)已知数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n (n ∈N +),设数列{b n }满足:b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <nn +1λ(n ∈N +)恒成立,则实数λ的取值范围为()A.14,+∞C.38,+∞答案D解析数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n ,①当n ≥2时,a 1+12a 2+13a 3+…+1n -1a n -1=(n -1)2+(n -1),②①-②得1na n =2n ,故a n =2n 2,当n =1时,a 1=2也满足上式.数列{b n }满足:b n =2n +1a n a n +1=2n +14n 2(n +1)2=141n 2-1(n +1)2,则T n =141+…+1n 2-1(n +1)2=141-1(n +1)2,由于T n <nn +1λ(n ∈N +)恒成立,故141-1(n +1)2<n n +1λ,整理得λ>n +24n +4,因为y =n +24n +4=n ∈N +上单调递减,故当n =1=38,所以λ>38.(2)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.{a n }的通项公式;②记{a n }的前n 项和为S n ,求证:1271S n <7528.①解由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3a n +1-3,即1a n +1-1又因为1a 1-1=73-1=43,所以数列是首项为43,公比为43的等比数列,所以1a n-1,所以a n =11.②证明由①可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271n,a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-3<7528.综上所述,1271n≤S n <7528成立.命题点2数列与函数的交汇例3(1)(2023·龙岩模拟)已知函数f (x )=13x 3+4x ,记等差数列{a n }的前n 项和为S n ,若f (a 1+2)=100,f (a 2022+2)=-100,则S 2022等于()A .-4044B .-2022C .2022D .4044答案A解析因为f (-x )=-13x 3-4x =-f (x ),所以f (x )是奇函数,因为f (a 1+2)=100,f (a 2022+2)=-100,所以f (a 1+2)=-f (a 2022+2),所以a 1+2+a 2022+2=0,所以a 1+a 2022=-4,所以S 2022=2022(a 1+a 2022)2=-4044.(2)数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为________.答案-12解析因为a 4+λa 10+a 16=15,所以a 1+3d +λ(a 1+9d )+a 1+15d =15,令λ=f (d )=151+9d -2,因为d ∈[1,2],所以令t =1+9d ,t ∈[10,19],因此λ=f (t )=15t -2,当t ∈[10,19]时,函数λ=f (t )是减函数,故当t =10时,实数λ有最大值,最大值为f (10)=-12.思维升华(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.跟踪训练2(1)设{a n }是等比数列,函数y =x 2-x -2023的两个零点是a 2,a 3,则a 1a 4等于()A .2023B .1C .-1D .-2023答案D解析由题意a 2,a 3是x 2-x -2023=0的两根.由根与系数的关系得a 2a 3=-2023.又a 1a 4=a 2a 3,所以a 1a 4=-2023.(2)数列{a n }满足a 1=1,a n +1=2a n (n ∈N +),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.①求数列{a n },{b n }的通项公式;②设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.①解由题意知,{a n }是首项为1,公比为2的等比数列,所以a n =a 1·2n -1=2n -1.所以S n =2n-1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7,所以d =2,b n =1+(n -1)×2=2n -1.②证明因为log 2a 2n +2=log 222n +1=2n +1,所以c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=所以T n -13+13-15+…+12n -1-因为n ∈N +,所以T n <12,=n 2n +1.当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0,所以数列{T n }是一个递增数列,所以T n ≥T 1=13.综上所述,13≤T n <12.课时精练1.(2022·汕头模拟)已知各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1等于()A .52-5B .52+5C .52D .5答案A解析设各项均为正数的等比数列{a n }的公比为q ,q >0,由前4项和为15,4a 1,2a 3,a 5成等差数列,可得a 1+a 1q +a 1q 2+a 1q 3=15,4a 3=4a 1+a 5,即4a 1+a 1q 4=4a 1q 2,即q 2-2=0,解得q =2,a 1=52-5.2.(2023·焦作模拟)直播带货是一种直播和电商相结合的销售手段,目前受到了广大消费者的追捧,针对这种现状,某传媒公司决定逐年加大直播带货的资金投入,若该公司今年投入的资金为2000万元,并在此基础上,以后每年的资金投入均比上一年增长12%,则该公司需经过____年其投入资金开始超过7000万元()(参考数据:lg 1.12≈0.049,lg 2≈0.301,lg 7≈0.845)A .14B .13C .12D .11答案C解析设该公司经过n 年投入的资金为a n 万元,则a 1=2000×1.12,由题意可知,数列{a n }是以2000×1.12为首项,以1.12为公比的等比数列,所以a n =2000×1.12n ,由a n =2000×1.12n >7000可得n >log 1.1272=lg 7-lg 2lg 1.12≈11.1,因此,该公司需经过12年其投入资金开始超过7000万元.3.在正项等比数列{a n }中,3为a 6与a 14的等比中项,则a 3+3a 17的最小值为()A .23B .89C .6D .3答案C解析因为{a n }是正项等比数列,且3为a 6与a 14的等比中项,所以a 6a 14=3=a 3a 17,则a 3+3a 17=a 3+3·3a 3≥2a 3·3·3a 3=6,当且仅当a 3=3时,等号成立,所以a 3+3a 17的最小值为6.4.(2023·岳阳模拟)在等比数列{a n }中,a 2=-2a 5,1<a 3<2,则数列{a 3n }的前5项和S 5的取值范围是()-118,--338,-答案A解析设等比数列{a n }的公比为q ,则q 3=a 5a 2=-12,数列{a 3n }是首项为a 3,公比为q 3=-12的等比数列,则S 51+12=1116a 35.(多选)(2023·贵阳模拟)已知函数f (x )=lg x ,则下列四个命题中,是真命题的为()A .f (2),f (10),f (5)成等差数列B .f (2),f (4),f (8)成等差数列C .f (2),f (12),f (72)成等比数列D .f (2),f (4),f (16)成等比数列答案ABD解析对于A ,f (2)+f (5)=lg 2+lg 5=lg 10=1,2f (10)=2lg 10=1,故f (2),f (10),f (5)成等差数列,故是真命题;对于B ,f (2)+f (8)=lg 2+lg 8=lg 16,2f (4)=2lg 4=lg 16,故f (2),f (4),f (8)成等差数列,故是真命题;对于C ,f (2)·f (72)=lg 2×lg =lg 212=f 2(12),故f (2),f (12),f (72)不成等比数列,故是假命题;对于D ,f (2)f (16)=lg 2×lg 16=4lg 22=(2lg 2)2=lg 24=f 2(4),故f (2),f (4),f (16)成等比数列,故是真命题.6.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了F n =22n+1(n =0,1,2,…)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 4(F n -1)(n =1,2,…),S n 表示数列{a n }的前n 项和.若32S n =63a n ,则n 等于()A .5B .6C .7D .8答案B解析因为F n =22n+1(n =0,1,2,…),所以a n =log 4(F n -1)=log 4(22n+1-1)=log 422n=2n -1,所以{a n }是等比数列,首项为1,公比为2,所以S n =1(1-2n )1-2=2n -1.所以32(2n -1)=63×2n -1,解得n =6.7.宋元时期我国数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中“落—形”就是每层为“三角形数”的三角锥垛,三角锥垛从上到下最上面是1个球,第二层是3个球,第三层是6个球,第四层是10个球,…,则这个三角锥垛的第十五层球的个数为________.答案120解析∵“三角形数”可写为1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,…,∴“三角形数”的通项公式为a n =1+2+3+…+n =n (n +1)2,∴这个三角锥垛的第十五层球的个数为a 15=15×162=120.8.已知数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,则p 的取值范围为________.答案ln 33,+∞解析数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,故p ,设f (x )=ln x x ,则f ′(x )=1x ·x -ln x x 2,令f ′(x )=1-ln x x 2=0,解得x =e ,故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞),所以函数在x =e 处取最大值,由于n ∈N +,所以当n =3时函数最大值为ln 33.所以p 的取值范围是ln 33,+9.记关于x 的不等式x 2-4nx +3n 2≤0(n ∈N +)的整数解的个数为a n ,数列{b n }的前n 项和为T n ,满足4T n =3n +1-a n -2.(1)求数列{b n }的通项公式;(2)设c n =2b n -,若对任意n ∈N +,都有c n <c n +1成立,试求实数λ的取值范围.解(1)由不等式x 2-4nx +3n 2≤0可得,n ≤x ≤3n ,∴a n =2n +1,T n =14×3n +1-12n -34,当n =1时,b 1=T 1=1,当n ≥2时,b n =T n -T n -1=12×3n -12,∵b 1=1适合上式,∴b n =12×3n -12.(2)由(1)可得,c n =3n -1+(-1)n -1,∴c n +1=3n +1-1+(-1)n +1,∵c n <c n +1,∴c n +1-c n =2×3n +52(-1)n >0,∴(-1)n λ>-45×2n ,当n 为奇数时,λ<45×2n ,由于45×2n 随着n 的增大而增大,当n =1时,45×2n 的最小值为85,∴λ<85,当n 为偶数时,λ>-45×2n ,由于-45×2n 随着n 的增大而减小,当n =2时,-45×2n 的最大值为-165,∴λ>-165,综上可知,-165<λ<85.10.设n ∈N +,有三个条件:①a n 是2与S n 的等差中项;②a 1=2,S n +1=a 1(S n +1);③S n =2n +1-2.在这三个条件中任选一个,补充在下列问题的横线上,再作答.若数列{a n }的前n 项和为S n ,且________.(1)求数列{a n }的通项公式;(2)若{a n ·b n }是以2为首项,4为公差的等差数列,求数列{b n }的前n 项和T n .注:如果选择多个条件分别解答,那么按第一个解答计分.解(1)选择条件①:因为a n 是2与S n 的等差中项,所以2a n =2+S n ,所以当n ≥2时,2a n -1=2+S n -1,两式相减得,2a n -2a n -1=a n ,即a n =2a n -1(n ≥2),在2a n =2+S n 中,令n =1,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件②:由a 1=2,S n +1=a 1(S n +1),知S n +1=2(S n +1),当n =1时,可求得a 2=4,所以当n ≥2时,S n =2(S n -1+1),两式相减得,a n +1=2a n (n ≥2),又a 1=2,a 2=4也满足上式,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件③:在S n =2n +1-2中,令n =1,则a 1=21+1-2=2,当n ≥2时,有S n -1=2n -2,两式相减得,a n =2n (n ≥2),当n =1时,a 1=2满足上式,所以a n =2n .(2)因为{a n ·b n }是以2为首项,4为公差的等差数列,所以a n ·b n =2+(n -1)·4=4n -2,由(1)知,a n =2n ,所以b n =2n -12n -1,所以T n =1+3+5+…+2n -12n -1,12T n =1+3+…+2n -32n -1+2n -12n ,两式相减得,12T n =1+2+2+…+2-1-2n -12n =1+2×21-12-2n -12n =3-2n +32n,所以T n =6-2n +32n -1.11.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在正整数N 0,当n >N 0时,a n >0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析设无穷等差数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d =dn +a 1-d .若{a n }为递增数列,则d >0,则存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,所以充分性成立;若存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,即d >d -a 1n对任意的n >N 0,n ∈N +均成立,由于n →+∞时,d -a 1n→0,且d ≠0,所以d >0,{a n }为递增数列,必要性成立.故选C.12.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4答案B 解析因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0.又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,所以ln(a 1+a 2+a 3)>0,矛盾.因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0,所以a 1>a 3,a 2<a 4.13.函数y =f (x ),x ∈[1,+∞),数列{a n }满足a n =f (n ),n ∈N +,①函数f (x )是增函数;②数列{a n }是递增数列.写出一个满足①的函数f (x )的解析式________.写出一个满足②但不满足①的函数f (x )的解析式________.答案f (x )=x 2f (x )(答案不唯一)解析由题意,可知在x ∈[1,+∞)这个区间上是增函数的函数有许多,可写为f (x )=x 2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为f (x ).则这个函数在1,43上单调递减,在43,+∴f (x )在[1,+∞)上不是增函数,不满足①.而对应的数列为a n 在n ∈N +上越来越大,属于递增数列.14.设函数f (x )-4,x ≤-3,x 2+2,x >-3,数列{a n }满足a n +1=f (a n )(n ∈N +),若{a n }是等差数列.则a 1的取值范围是__________.答案(-∞,-3]∪{-2,1}解析画出函数f (x )的图象如图所示,当a 1≤-3时,a 2=f (a 1)=a 1-4≤-7,a 3=f (a 2)=a 2-4≤-11,…,数列{a n }是首项为a 1,公差为-4的等差数列,符合题意,当a 1>-3时,因为{a n }是等差数列,①若其公差d >0,则∃k 0∈N +,使得0k a >2,这与a n +1=f (a n )=2-a 2n ≤2矛盾,②若其公差d =0,则a 2=-a 21+2=a 1,即a 21+a 1-2=0,解得a 1=-2或a 1=1,则当a 1=-2时,a n =-2为常数列,当a 1=1时,a n =1为常数列,此时{a n }为等差数列,符合题意,③若其公差d <0,则∃k 0∈N +,使得0k a >-3且01k a +≤-3,则等差数列的公差必为-4,因此001k k a a +-=-4,所以2-002k k a a -=-4,解得0k a =-3(舍去)或0k a =2.又当0k a =2时,000123k k k a a a +++===…=-2,这与公差为-4矛盾.综上所述,a 1的取值范围是(-∞,-3]∪{-2,1}.15.若数列{a n }对于任意的正整数n 满足:a n >0且a n a n +1=n +1,则称数列{a n }为“积增数列”.已知“积增数列”{a n }中,a 1=1,数列{a 2n +a 2n +1}的前n 项和为S n ,则对于任意的正整数n ,有()A .S n ≤2n 2+3B .S n ≥n 2+4nC .S n ≤n 2+4nD .S n ≥n 2+3n 答案D 解析∵a n >0,∴a 2n +a 2n +1≥2a n a n +1,∵a n a n +1=n +1,∴{a n a n +1}的前n 项和为2+3+4+…+n +1=n (2+n +1)2=n (n +3)2,∴数列{a 2n +a 2n +1}的前n 项和为S n ≥2×n (n +3)2=n 2+3n .16.设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的正整数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)求数列{a n }的通项公式;(2)令b nn ∈N +),求证:b 1+b 2+b 3+…+b n <1+n .(1)解由已知a n +22=2S n (n ∈N +),整理得S n =18(a n +2)2,所以S n +1=18(a n +1+2)2.所以a n +1=S n +1-S n =18[(a n +1+2)2-(a n +2)2]=18(a 2n +1+4a n +1-a 2n -4a n ),整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,所以a n +1-a n =4,而a 1=2,即数列{a n }是a 1=2,d =4的等差数列,所以a n =a 1+(n -1)d =4n -2.(2)证明令c n =b n -1,则c n +a n a n +1-=12n -1-12n +1.故b 1+b 2+…+b n -n =c 1+c 2+…+cn…1-12n +1<1.故b 1+b 2+…+b n <1+n .。

高考数学(人教B版 文科)总复习课件:6-3等比数列及其前n项和

高考数学(人教B版 文科)总复习课件:6-3等比数列及其前n项和
列.这个常数叫做等比数列公的比______,通常用q字母___
表示.
2 .等比数列的有关公式
(1)等比数列的通项公式
设等比数列{an }的首项为a1 ,公比为q ,q ≠0 ,则它 的通项公式ana=1 ·_q_n_-__1 _______.
(4)公比不为-1 的等比数列{an }的前n 项和为Sn ,则 Sn ,S2 n -Sn ,S3 n -S2 n 仍成等比数列,其公q比n 为_____
【答案】 1 022
题型一 等比数列基本量的运算
【例1 】 (1)(2016· 天津河西模拟)在等比数列{an }中 ,若公比q =4 ,S3 =21 ,则该数列的通项公式an =(
)
A .4 n-1 B.4 n
C .3 n
.3 n-1 D
(2)在等比数列{an }中,若a4 -a2 =6 ,a5 -a1 =15 , 则a3 =________.
42 ,故选B.
【答案】 B
【答案】 A
3 .等比数列{an }中,a4 =2 ,a5 =5 ,则数列{lg an }
的前8 项和等于( )
A .6
.5
B
C .4
.3
D
【解析】 数列{lg an }的前8 项和S8 =lg a1 +lg a2 + …+lg a8 =lg(a1 · a2 · …· a8 )=lg(a1 · a8 )4
【方法规律】 (1)在等比数列的基本运算问题中,一
般利用通项公式与前n 项和公式,建立方程组求解,但 如果能灵活运用等比数列的性质“若m +n =p +q ,则 有am an =ap aq ”,可以减少运算量.(2)等比数列的项经
过适当的组合后构成的新数列也具有某种性质,例如等

高考数学一轮总复习第六章数列6.3等比数列课件理新人教B版

高考数学一轮总复习第六章数列6.3等比数列课件理新人教B版

1 q
1 q
数列的前n项和公式涉及对公比q的分类讨论,此处是常考的易错点.
突破方法
方法1 等比数列的基本运算
等比数列的基本运算方法:
(1)等比数列可以由首项a1和公比q确定,所有关于等比数列的计算和证明,都可围绕a1和q进行.
(2)对于等比数列问题,一般给出两个条件,就可以通过列方程(组)求出a1,q.如果再给出第三个条 件就可以完成an,a1,q,n,Sn的“知三求二”问题.
解得a1=4,q= 1 或-1 (舍去),
23
所以S5= a 1 (1= q 5 )
4
=
,1故 3选12 B .
3
1
1 q
1 1
4
2
答案 (1)D (2)B
1-1 (2016广西玉林3月模拟,7,5分)已知数列{an}的首项a1=1,an+1=3Sn(n≥1),则下列结论正确的 是( )
A.数列{an}是等比数列 B.数列a2,a3,…,an是等比数列
1-2 (2016辽宁沈阳质检,15,5分)数列{an}是等比数列,若a2=2,a5= 1 ,则a1a2+a2a3+…+anan+1=
4
.
答案 3 2 (1-4-n)
3
解析 由题意得q3= a 5 =1 ⇒q=1 ,
a2 8
2
∴an=a2·qn-2= 1 ,n 3
2
∴anan+1= 1 ·n 3 =1 n 2 =8 ×1 2 n 5 ,
高考理数
§6.3 等比数列
知识清单
一、等比数列的有关概念
1.通项公式:如果等比数列{an}的首项为a1,公比为q,则它的通项公式是 an=a1qn-1(q≠0) .

高考数学总复习 10-6 排列与组合(理)但因为测试 新人教B版

高考数学总复习 10-6 排列与组合(理)但因为测试 新人教B版

高考数学总复习 10-6 排列与组合(理)但因为测试新人教B版1.(2011·福州三中月考)某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名女生,则不同的选法种数为()A.120B.84C.52D.48[答案] C[解析]间接法:C38-C34=52种.2.(2011·成都模拟)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种[答案] A[解析]分三类:甲在周一,共有A24种排法;甲在周二,共有A23种排法;甲在周三,共有A22种排法;∴A24+A23+A22=20.3.(2011·沧州模拟)10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2个站前排,其他人的相对顺序不变,则不同调整方法的种数为() A.C27A55B.C27A22C.C27A25D.C27A35[答案] C[解析]从后排抽2人的方法种数是C27;前排的排列方法种数是A25,由分步计数原理知不同调整方法种数是C27A25.4.(2011·广东揭阳模拟)一个汽车牌照号码共有五位,某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B、C、D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3、5、6、8、9中选择,其他号码只想在1、3、6、9中选择,则他的车牌号码可选的所有可能情况有() A.180种B.360种C.720种D.960种[答案] D[解析]按照车主的要求,从左到右第一个号码有5种选法,第二位号码有3种选法,其余三位各有4种选法,因此该车主的车牌号码可选的所有可能情况共有A 15·A 13·A 14·A 14·A 14=960种,故选D.5.(2011·柳州模拟)如图所示的几何体是由一个正三棱锥P -ABC 与正三棱柱ABC -A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A 1B 1C 1不涂色),要求相邻的面均不同色,则不同的染色方案共有( )A .24种B .18种C .16种D .12种[答案] D[解析] 先涂三棱锥P -ABC 的三个侧面,然后涂三棱柱的三个侧面,共有C 13×C 12×C 11C 12=3×2×1×2=12种不同的涂法.6.(2011·菏泽模拟)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8[答案] D[解析] 当公比为2时,等比数列可为1、2、4,2、4、8. 当公比为3时,等比数列可为1、3、9. 当公比为32时,等比数列可为4、6、9.同时,4、2、1,8、4、2,9、3、1和9、6、4也是等比数列,共8个.7.(2011·昆明模拟)将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A 班,那么不同的分配方案有________.[答案] 24种[解析] 将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排一名学生有C 24A 33种分配方案,其中甲同学分配到A 班共有C 23A 22+C 13A 22种方案.因此满足条件的不同方案共有C 24A 33-C 23A 22-C 13A 22=24(种).8.有6个大小不同的数按如图的形式随机排列,设第一行的数为M1,第二、三行中的最大数分别为M2、M3,则满足M1<M2<M3的所有排列的个数是________.[答案]240[解析]设6个数按从小到大顺序依次为a1、a2、a3、a4、a5、a6.据题设条件知M3=a6,可依第二行最大数M2分类讨论.①若M2=a5,有排法C14·C13·A22·A33=144种.②若M2=a4,则a5必在第三行有排法C13·C12·A22A33=72种.③若M2=a3,则a4、a5都在第三行有排法C12·A22A33=24种,据条件知M2不能小于a3.∴满足题设条件的所有不同排列的个数为144+72+24=240个.9.在空间直角坐标系O-xyz中有8个点:P1(1,1,1)、P2(-1,1,1)、…、P7(-1,-1,-1)、P8(1,-1,-1)(每个点的横、纵、竖坐标都是1或-1),以其中4个点为顶点的三棱锥一共有________个(用数字作答).[答案]58[解析]这8个点构成正方体的8个顶点,此题即转化成以正方体的8个顶点中的4个点为顶点的三棱锥一共有多少个,则共有三棱锥C14C34+(C24C24-2×4-2)+C34C14=58个.[点评]用间接法求解更简便些,从正方体的8个顶点中任取4个,有不同取法C48种,其中这四点共面的(6个对角面、6个表面)共12个,∴这样的三棱锥有C48-12=58个.10.(2011·苏州调研)某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?[解析]根据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2个项目,然后再分配给4个城市中的2个,共有C23A24种方案;另一类1个城市1个项目,即把3个元素排在4个不同位置中的3个,共有A34种方案.由分类加法计数原理可知共有C23A24+A34=60(种)方案.11.(2011·广东广州综合测试)将18个参加青少年科技创新大赛的名额分配给3个学校,要求每校至少有一个名额且各校分配的名额互不相等,则不同的分配方法种数为()A.96 B.114C.128 D.136[答案] B[解析]若某一学校的最少人数是1,2,3,4,5,则各有7,5,4,2,1种不同的分组方案.故不同的分配方法种数是(7+5+4+2+1)A33=19×6=114.12.(2011·甘肃兰州高手诊断)某位高三学生要参加高校自主招生考试,现从6所高校中选择3所报考,其中两所学校的考试时间相同.则该学生不同的报名方法种数是() A.12 B.15C.16 D.20[答案] C[解析]若该考生不选择两所考试时间相同的学校,有C34=4种报名方法;若该考生选择两所考试时间相同的学校之一,有C24C12=12种报名方法,故共有4+12=16种不同的报名方法.13.(2010·天津理)如图,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种[答案] B[解析]当涂四色时,先排A、E、D为A34,再从B、F、C三点选一个涂第四种颜色,如B,再F,若F与C同色,则涂C有2种方法,若F与C异色则只有一种方法,故A34A13 (2+1)=216种.当涂三色时,先排A、E、D为C34A33,再排B有2种,F、C各为一种,故C34A33×2=48,故共有216+48=264种,故选B.14.(2010·洛阳模拟)一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有()A.6种B.8种C.36种D.48种[答案] D[解析]如图所示,三个区域按参观的先后次序共有A23种参观方法,对于每一种参观次序,每一个植物园都有2类参观路径,∴共有不同参观路线2×2×2×A23=48种.15.(2010·重庆一中)为配合即将开幕的2010年上海世博会,某大学拟成立由4名同学组成的志愿者招募宣传队,经过初选,2名男同学,4名女同学成为了候选人,每位候选人当选正式队员的机会是相等的.(1)求当选的4名同学中恰有1名男同学的概率.(2)求当选的4名同学中至少有3名女同学的概率.[解析]从2男4女共6名同学中选取4人,不同选法共有C46=15种,(1)恰有1名男同学当选的情况有C12·C34=8种,∴所求概率P=815.(2)当选的4名同学中至少有3名女同学的情况有C34C12+C44=9种,∴所求概率P=9 15=35. 16.(2011·深圳模拟)用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?(1)被4整除; (2)比21034大的偶数;(3)左起第二、四位是奇数的偶数.[解析] (1)被4整除的数,其特征应是末两位数是4的倍数,可分为两类:当末两位数是20、40、04时,其排列数为3A 33=18,当末两位数是12、24、32时,其排列数为3A 12·A 22=12.故满足条件的五位数共有18+12=30(个).(2)①当末位数字是0时,首位数字可以为2或3或4,满足条件的数共有3×A 33=18个. ②当末位数字是2时,首位数字可以为3或4,满足条件的数共有2×A 33=12个. ③当末位数字是4时,首位数字是3的有A 33=6个,首位数字是2时,有3个,共有9个.综上知,比21034大的偶数共有18+12+9=39个. (3)方法一:可分为两类: 末位数是0,有A 22·A 22=4(个); 末位数是2或4,有A 22·A 12=4(个);故共有A 22·A 22+A 22·A 12=8(个). 方法二:第二、四位从奇数1,3中取,有A 22个;首位从2,4中取,有A 12个;余下的排在剩下的两位,有A 22个,故共有A 22A 12A 22=8(个).1.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A .85B .56C .49D .28[答案] C[解析] 分两类计算,C 22C 17+C 12C 27=49,故选C.2.(2010·安徽芜湖一中)从编号为1,2,3,4,5,6,7,8,9,10的10个球中,任取5个球,则这5个球的编号之和为偶数的概率是( )A.16B.13C.12D.23[答案] C[解析] 从10个球中选5个有C 510种选法,取出的5个球编号之和为偶数的取法有:1偶4奇C 15C 45,3偶2奇C 35C 25,5偶C 55,∴所求概率P =C 15C 45+C 35C 25+C 55C 510=12. 10个球的编号5奇5偶,从中任取5个,编号之和为奇数的与编号之和为偶数的一样多,∴P =12.3.定义整数集合A 与B 的运算A *B 如下:A *B ={(x ,y )|x ∈A ,y ∈B ,且x +y 为偶数},若A ={-1,0,1},B ={1,2,3,4},则集合A *B 中的元素个数为( )[来源:]A .12B .6C .4D .2[答案] B[解析] x =-1时,y =1,3;x =0时,y =2,4;x =1时,y =1,3.故选B.4.(2010·全国Ⅱ)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种[答案] B[解析] 先从三个信封中选取一个放数字1,2,有C 13种选法,再从3,4,5,6中选取两个放入一个信封中,则剩下的两个数字在另一个信封中,有放法C 24种,∴共有不同放法,C 13·C 24=18种.5.(2011·广西桂林调研考试)从9名学生中选出4人参加辨论比赛,其中甲、乙、丙三人至少有两人入选的不同选法的种数为( )A .36B .96C .63D .51[答案] D[解析] 若甲、乙、丙三人均入选,只需再从其余的6人中任选1人即可,有C 16种选法,若甲、乙、丙三人中只有2人入选,有C 23种方法,然后再从其余的6人中任选2人即可,有C 26种选法,所以一共有C 16+C 23C 26=51种选法.6.若三角形的三边长均为正整数,其中一边长为4,另外两边长分别为b 、c ,且满足b ≤4≤c ,则这样的三角形有( )A .10个B .14个C .15个D .21个[答案] A[解析]当b=1时,c=4;当b=2时,c=4,5;当b=3时,c=4,5,6;当b=4时,c =4,5,6,7.故共有10个这样的三角形.选A.[点评]注意三角形两边之和大于第三边,两边之差小于第三边.7.(2010·绵阳市模拟)某地为上海“世博会”招募了20名志愿者,他们的编号分别是1号、2号、…,19号、20号.若要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的在另一组.那么确保5号与14号入选并被分配到同一组的选取种数是()A.16 B.21C.24 D.90[答案] B[解析]由题意知5号和14号在所选4人中,且在同一组,故再从其余志愿者中选2人,如果5号和14号是编号较大的一组,则另二人只能从编号为1至4号的志愿者中选取,有C24种方法;如果5号和14号是编号较小的一组,则另二人只能从15至20号中选,有C26种选法,∴不同选法共有C24+C26=21种.8.身穿兰、黄两种颜色衣服的各有两人,身穿红色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有()A.48种B.72种C.78种D.84种[答案] A[解析]解法一:两种穿相同颜色衣服的人相邻的排法有A33A22A22=24种,只有一种穿相同颜色衣服的人相邻的排法有2(A44A22-24)=48,则穿相同颜色衣服的人不能相邻的排法有A55-24-48=48,故选A.解法二:按穿兰衣服的两人站位分有以下6类:对于①②⑤⑥排上穿黄衣服的两人都只有两类方法.第③类中排上穿黄衣服的两人只有一类方法.第④类中排上穿黄衣服的两人有三类方法.对于上述每一类安排方法,五人的不同站法共有A22A22=4种,∴共有不同排法(4×2+1+3)×4=48种.。

高考数学总复习 3.3等比数列课件 文 新人教版B版

高考数学总复习 3.3等比数列课件 文 新人教版B版

(1)∵a3+a6=36;a4+a7=18 1 1 两式相除得:q= ,代入上式得 a1=128,由 an= 2 2 n-1 1 ⇔a1q = ⇔28-n=2-1⇔n=9 2 (2)∵a2a8=36,∴a3· a7=36,又∵a3+a7=15
a+c [解析] 由 2b=a+c,∴b= ,由 2 2 2 c 2 1 1 2 c =bd,∴d= ,由 = + , d c e a+c a+c c+e ∴ 2 = ,∴c2=ae, c ce 即 a,c,e 成等比数列.
[答案] B
例 2 数列{an}为等比数列,求下列各值. 1 (1) 已知 a3+a6=36,a4+a7=18,an= ,求 n. 2 (2)已知 a2a8=36,a3+a7=15,求公比 q. (3)已知 q=- 2,S8=15(1- 2),求 a1.
• 一、选择题 • 1.(2009广东卷文)已知等比数列{an}的公比为正数,且a3·a9 =2a ,a2=1,则a1= • ( ) • A. B. C. D. 2 • [解析] 设公比为q,由已知得a1q2·a1q8=2(a1q4)2,即q2=2, 又因为等比数列{an}的公比为正数,所以q= ,故a1= = = ,选B. • [答案] B
• 5.若数列{an}的前n项和为Sn=3n+a,若数列{an}为等比数列, 则实数a的取值是 • ( ) • A.3 B.1 C.0 D.-1
[答案] D
• 二、填空题 • 6.(2009浙江理)设等比数列{an}的公比q= ,前n项和为Sn,则 =________.
[答案] 15
• • • •
• • • •
最新考纲解读 1.理解等比数列的概念. 2.掌握等比数列的通项公式与前n项和公式. 3.并能解决简单的实际问题.

高考数学总复习 6-3 等比数列课件 新人教B版

高考数学总复习 6-3 等比数列课件 新人教B版

3.等比数列的设项技巧 a (1)对于连续奇数项的等比数列,通常可设为„, 2, q a ,a,aq,aq2,„; q (2)对于连续偶数项的等比数列,若公比大于 0,则 a a 通常可设为„, 3, ,aq,aq3,„. q q
等比数列的概念与通项公式
[例 1] (2011· 龙岩质检)已知数列{an}是首项为 a1 的
4.等比中项 如果三个数 a、G、b 成等比数列,那么 G 叫做 a 和 b 的等比中项,即 G2=ab.
5.等比数列的主要性质 (1){an}是等比数列⇒{c·n}是等比数列(c≠0). a an (2){an}{bn}均为等比数列⇒{an· n}、{ }是等比数列. b bn am qm-n (3){an}为等比数列,则 = . an
(6)a2=an- k·n+ k (1≤k<n,n、k∈N*). a n (7){an}是等比数列,则{a2}、{ n 均为等比数列. (8)非零常数列既是等差数列,也是等比数列. (9)若{an}是等差数列,b>0,则{ban}是等比数列. 若{an}是正项等比数列,则{lgan}是等差数列. 1 an}(an>0)、{ }、{|an|} an
二、分类讨论思想 当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时, a11-qn a1-anq {an}的前 n 项和 Sn= = .等比数列的前 n 1-q 1-q 项和公式涉及对公比 q 的分类讨论,此处是常考易错点.
三、解题技巧 1.等比数列的判定方法 an+ 1 (1) =q(q 是不为 0 的常数,n∈N*,an≠0)⇔{an} an 是等比数列,证明一个数列是等比数列时主要用此方法. (2)an=cqn 1(c,q 均是不为 0 的常数,n∈N*)⇔{an} 是等比数列.

【新高考】高三数学一轮基础复习讲义:第六章 6.3等比数列-(学生版+教师版)

【新高考】高三数学一轮基础复习讲义:第六章 6.3等比数列-(学生版+教师版)

等比数列1、判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( )(2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )(4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( )2、已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A .-12B .-2C .2 D.123、设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( )A .31B .32C .63D .644、在9与243中间插入两个数,使它们同这两个数成等比数列,则插入的两个数分别为________.5、设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________. 无题型一 等比数列基本量的运算例1 (1)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( ) A .2 B .1 C.12 D.18(2)在各项均为正数的等比数列{a n }中,a 2,a 4+2,a 5成等差数列,a 1=2,S n 是数列{a n }的前n 项的和,则S 10-S 4等于( )A .1 008B .2 016C .2 032D .4 032【同步练习】 (1)已知等比数列{a n }的首项a 1=1,且a 2,a 4,a 3成等差数列,则数列{a n }的公比q =________,数列{a n }的前4项和S 4=________.(2)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.引申探究若将例2中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式.【同步练习】1、已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n <32. 1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. 5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q. 6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .【知识拓展】等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列. (2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧ a 1<0,q >1时,{a n }是递减数列. (3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________. 【同步练习】(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( )A .4B .3C .2D .1(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18 B .-18 C.578 D.558题型四 分类讨论思想在等比数列中的应用典例 (15分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列. (1)求数列{a n }的通项公式;(2)证明:S n +1S n ≤136(n ∈N *). 一、等比数列的证明(1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.二、等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.1.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( )A .4B .6C .8D .8-4 22.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( )A.32B.23 C .-23 D.23或-233.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .154.在各项均为正数的等比数列{a n }中,a 1=2,且a 2,a 4+2,a 5成等差数列,记S n 是数列{a n }的前n 项和,则S 5等于( )A .32B .62C .27D .815.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则15793log ()++a a a 的值是( )A .-15B .-5C .5 D.156.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( ) A.12B.32 C .1 D .-327.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________.8.设各项都是正数的等比数列{a n },S n 为前n 项和且S 10=10,S 30=70,那么S 40=________.9.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________.10.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 11.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和.12.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.13.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .等比数列1、判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × )(2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × )(4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )2、已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A .-12B .-2C .2D.12答案 D解析 由题意知q 3=a 5a 2=18,∴q =12. 3、设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( )A .31B .32C .63D .64答案 C解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.4、在9与243中间插入两个数,使它们同这两个数成等比数列,则插入的两个数分别为________. 答案 27,81解析 设该数列的公比为q ,由题意知,243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.5、设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________. 答案 -11解析 设等比数列{a n }的公比为q ,∵8a 2+a 5=0,∴8a 1q +a 1q 4=0.∴q 3+8=0,∴q =-2,∴S 5S 2=a 1(1-q 5)1-q ·1-q a 1(1-q 2)=1-q 51-q 2=1-(-2)51-4=-11. 无题型一 等比数列基本量的运算例1 (1)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( ) A .2 B .1 C.12 D.18(2)在各项均为正数的等比数列{a n }中,a 2,a 4+2,a 5成等差数列,a 1=2,S n 是数列{a n }的前n 项的和,则S 10-S 4等于( )A .1 008B .2 016C .2 032D .4 032答案 (1)C (2)B解析 (1)由{a n }为等比数列,得a 3a 5=a 24,又a 3a 5=4(a 4-1),所以a 24=4(a 4-1),解得a 4=2.设等比数列{a n }的公比为q ,则由a 4=a 1q 3,得2=14q 3,解得q =2, 所以a 2=a 1q =12.故选C. (2)由题意知2(a 4+2)=a 2+a 5,即2(2q 3+2)=2q +2q 4=q (2q 3+2),得q =2,所以a n =2n ,S 10=2(1-210)1-2=211-2=2 046,S 4=2(1-24)1-2=25-2=30, 所以S 10-S 4=2 016.故选B.思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.【同步练习】(1)已知等比数列{a n }的首项a 1=1,且a 2,a 4,a 3成等差数列,则数列{a n }的公比q =________,数列{a n }的前4项和S 4=________.(2)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.答案 (1)1或-12 4或58(2)3n -1 解析 (1)由a 2,a 4,a 3成等差数列得2a 1q 3=a 1q +a 1q 2,即2q 3=q +q 2,解得q =1或q =-12. 当q =1时,S 4=4a 1=4,当q =-12时,S 4=1-(-12)41-(-12)=58.(2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,所以公比q =3, 故等比数列的通项a n =a 1q n -1=3n -1. 题型二 等比数列的判定与证明 例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.(1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2.∴a 2=5,∴b 1=a 2-2a 1=3. 又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列.(2)解 由(1)知b n =a n +1-2a n =3·2n -1, ∴a n +12n +1-a n 2n =34, 故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14,故a n =(3n -1)·2n -2.引申探究若将例2中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n .∴S n +1-S n =2S n -2S n -1+1,∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,又a 1=1,S 2=a 1+a 2=2a 1+2,a 2=3,当n =1时上式也成立,故{a n +1}是以2为首项,以2为公比的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.【同步练习】1、已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n <32. 证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12). 又a 1+12=32, 所以{a n +12}是首项为32,公比为3的等比数列. 所以a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1. 因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1 =32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32. 1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. 5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q. 6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .【知识拓展】等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列. (2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧ a 1<0,q >1时,{a n }是递减数列. (3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列. (4)当q <0时,{a n }为摆动数列.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________. 答案 (1)50 (2)34解析 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln [(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.(2)方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1.由a 1(1-q 6)1-q ÷a 1(1-q 3)1-q=12,得q 3=-12, ∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1, ∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34. 【同步练习】(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( )A .4B .3C .2D .1(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18 B .-18 C.578 D.558答案 (1)C (2)A解析 (1)前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.(2)因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18. 题型四 分类讨论思想在等比数列中的应用典例 (15分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列. (1)求数列{a n }的通项公式;(2)证明:S n +1S n ≤136(n ∈N *). 思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式;(2)求出前n 项和,根据函数的单调性证明.规范解答(1)解 设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12. [3分]又a 1=32,所以等比数列{a n }的通项公式为 a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n . [5分] (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n =1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n =⎩⎨⎧ 2+12n (2n +1),n 为奇数,2+12n (2n -1),n 为偶数. [8分]当n 为奇数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136. [11分]当n 为偶数时,S n +1S n随n 的增大而减小, 所以S n +1S n ≤S 2+1S 2=2512. [13分]故对于n ∈N *,有S n +1S n ≤136(n ∈N *). [15分]一、等比数列的证明 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.二、等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.1.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( )A .4B .6C .8D .8-4 2答案 C解析 在等比数列中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.2.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( )A.32B.23 C .-23 D.23或-23答案 C解析 由⎩⎪⎨⎪⎧ a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧ a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23. 又a 1<0,因此q =-23. 3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .15答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.4.在各项均为正数的等比数列{a n }中,a 1=2,且a 2,a 4+2,a 5成等差数列,记S n 是数列{a n }的前n 项和,则S 5等于( )A .32B .62C .27D .81答案 B解析 设正项等比数列{a n }的公比为q ,则q >0,由a 2,a 4+2,a 5成等差数列,得a 2+a 5=2(a 4+2),即2q +2q 4=2(2q 3+2),(q -2)(1+q 3)=0,解得q =2或q =-1(舍去),∴S 5=2(1-25)1-2=62,故选B. 5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则的值是( )A .-15B .-5C .5 D.15答案 B解析 由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1,即log 3a n +1a n =1,解得a n +1a n =3,所以数列{a n }是公比为3的等比数列.因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3,所以a 5+a 7+a 9=9×33=35.所以==-5.6.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为() A.12 B.32C .1D .-32答案 B解析 因为a 3a 4a 5=3π=a 34,所以 15793log ()++a a a 15793log ()++a a a 513log 3π343.=alog 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74==7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 因为⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ② 由①-②,得3a 3=a 4-a 3,即4a 3=a 4,则q =a 4a 3=4. 8.设各项都是正数的等比数列{a n },S n 为前n 项和且S 10=10,S 30=70,那么S 40=________. 答案 150解析 依题意,知数列{a n }的公比q ≠-1,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30;又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80,S 40=150.9.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 答案 12n解析 ∵a n +S n =1,① ∴a 1=12,a n -1+S n -1=1(n ≥2), ② 由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2), ∴数列{a n }是首项为12,公比为12的等比数列, π337log 3则a n =12×(12)n -1=12n . 10.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 答案 1 024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2, ∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3, ∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1,∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.11.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和.解 (1)设等差数列的公差为d ,由题意得d =a 4-a 13=12-33=3, 所以a n =a 1+(n -1)d =3n (n ∈N *).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. 所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n ∈N *).(2)由(1)知b n =3n +2n -1(n ∈N *),数列{3n }的前n 项和为32n (n +1), 数列{2n -1}的前n 项和为1×1-2n1-2=2n -1. 所以数列{b n }的前n 项和为32n (n +1)+2n -1. 12.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1. 13.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1,∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12⇒b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝⎛⎭⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .。

高考数学总复习 6-4 数列的综合问题与数列的应用但因为测试 新人教B版

高考数学总复习 6-4 数列的综合问题与数列的应用但因为测试 新人教B版

高考数学总复习 6-4 数列的综合问题与数列的应用但因为测试新人教B 版1.(文)(2011·德州模拟)等比数列{a n }的前n 项和为S n ,若a 1=1,且4a 1、2a 2、a 3成等差数列,则S 4=( )A .7B .8C .15D .16[答案] C[解析] ∵4a 1,2a 2,a 3成等差数列, ∴4a 2=4a 1+a 3,∵{a n }是等比数列,a 1=1, ∴4q =4+q 2,解之得,q =2, ∴S 4=1× 24-1 2-1=15.(理)(2011·丹东模拟)已知{a n }为等差数列,{b n }为等比数列,其公比q≠1,且b i >0(i =1,2,…,n),若a 1=b 1,a 11=b 11,则( )A .a 6>b 6B .a 6=b 6C .a 6<b 6D .a 6>b 6或a 6<b 6[答案] A[解析] 由条件知,a 6=a 1+a 112=b 1+b 112>b 1b 11=b 6.2.(2011·淄博模拟)已知{a n }是递增数列,且对任意n ∈N *都有a n =n 2+λn 恒成立,则实数λ的取值范围是( )A .(-72,+∞)B .(0,+∞)C .[-2,+∞)D .(-3,+∞)[答案] C[解析] a n =n 2+λn =(n +λ2)2-λ24,∵对任意n ∈N *,a n +1>a n , ∴-λ2≤1,∴λ≥-2,故选C.3.(文)(2011·福建质检)在各项均为正数的等比数列{a n }中,a 3a 5=4,则数列{log 2a n }的前7项和等于( )A .7B .8C .27D .28[答案] A[解析] 在各项均为正数的等比数列{a n }中,由a 3a 5=4,得a 24=4,a 4=2. 设b n =log 2a n ,则数列{b n }是等差数列,且b 4=log 2a 4=1. 所以{b n }的前7项和S 7=7 b 1+b 72=7b 4=7.(理)设函数f(x)=x m +ax 的导函数f ′(x)=2x +1,则数列{1f n }(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n[答案] A[解析] f ′(x)=mx m -1+a =2x +1,∴a =1,m =2,∴f(x)=x(x +1),1f n =1n n +1 =1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=n n +1.4.(文)(2011·山西运城教学检测)已知数列{a n }的前n 项和为S n ,过点P(n ,S n )和Q(n +1,S n +1)(n ∈N *)的直线的斜率为3n -2,则a 2+a 4+a 5+a 9的值等于( )A .52B .40C .26D .20[答案] B[解析] 由题意得S n +1-S nn +1 -n =3n -2,∴S n +1-S n =3n -2,即a n +1=3n -2,∴a n =3n -5,因此数列{a n }是等差数列,a 5=10,而a 2+a 4+a 5+a 9=2(a 3+a 7)=4a 5=40,故选B.(理)两个正数a 、b 的等差中项是72,一个等比中项是23,且a<b ,则双曲线x 2a 2-y 2b 2=1的离心率e 等于( )A.34 B.152 C.54 D.53[答案] D[解析] ∵a +b =7,a·b =12,b>a>0, ∴a =3,b =4.∴e =c a =a 2+b 2a =53.5.(2011·江西新余四中期末)在△ABC 中,sinA cosA =2cosC +cosA2sinC -sinA 是角A 、B 、C 成等差数列的( )A .充分非必要条件B .充要条件C .必要非充分条件D .既不充分也不必要条件[答案] A[来源:学#科#网] [解析]sinA cosA =2cosC +cosA2sinC -sinA⇒2sinAsinC -sin 2A =2cosAcosC +cos 2A ⇒2cos(A +C)+1=0⇒cosB =12⇒B =π3⇒A +C =2B ⇒A 、B 、C 成等差数列.但当A 、B 、C 成等差数列时,sinA cosA =2cosC +cosA 2sinC -sinA 不一定成立,如A =π2、B =π3、C =π6.故是充分非必要条件.故选A. 6.(文)(2011·哈师大附中、东北师大附中、辽宁省实验中学联考)已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4000,O 为坐标原点,点P(1,a n ),点Q(2011,a 2011),则OP →·OQ →=( )A .2011B .-2011C .0D .1[答案] A[解析] 由S 21=S 4000得到S n 关于n =21+40002=2010.5对称,故S n 的最大(或最小)值=S 2010=S 2011,故a 2011=0,OP →·OQ →=2011+a n ·a 2011=2011+a n ×0=2011,故选A.(理)(2011·北京西城期末)已知各项均不为零的数列{a n },定义向量c n =(a n ,a n +1),b n =(n ,n +1),n ∈N *.则下列命题中为真命题的是( )A .若对于任意n ∈N *总有c n ∥b n 成立,则数列{a n }是等差数列B .若对于任意n ∈N *总有c n ∥b n 成立,则数列{a n }是等比数列C .若对于任意n ∈N *总有c n ⊥b n 成立,则数列{a n }是等差数列D .若对于任意n ∈N *总有c n ⊥b n 成立,则数列{a n }是等比数列 [答案] A[解析] 若对任意n ∈N *,有c n ∥b n ,则a n n =a n +1n +1=a n +2n +2,所以a n +1-a n =a n +2-a n +1,即2a n +1=a n +a n +2,所以数列{a n }为等差数列.7.(文)(2010·浙江杭州)如图,是一个算法的程序框图,该算法输出的结果是( )A.12B.23 C.34 D.45[答案] C[解析] 循环过程为i =1<4→i =2,m =1,n =11×2;i =2<4→i =3,m =2,n =11×2+12×3;i =3<4→i =4,m =3,n =11×2+12×3+13×4;i =4<4不成立,输出n 的值. 故n =11×2+12×3+13×4=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14=1-14=34. (理)(2010·北京延庆县模考)某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7[答案] D[解析] 由程序框图可知,S =1+2+22+…+2k =2k +1-1,由S<100得,2k +1<101,∵26=64,27=128,∴k +1=7,∴k =6,结合语句k =k +1在S =S +2k 后面知,当k =6时,S =127,k 的值再增加1后输出k 值为7.[点评] 这是最容易出错的地方,解这类题时,既要考虑等比数列求和,在k 取何值时,恰满足S≥100,又要顾及S 与k 的赋值语句的先后顺序.8.(文)(2011·临沂模拟)数列{a n }、{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60,则{a n +b n }的前20项和为( )A .700B .710C .720D .730[答案] C[解析] ∵{a n }与{b n }均为等差数列, ∴{a n +b n }为等差数列,首项a 1+b 1=12, 又a 20+b 20=60,∴前20项和为S 20=20× 12+60 2=720.(理)(2010·湖北质检)若数列{a n }满足1a n +1-1a n =d(n ∈N *,d 为常数),则称数列{a n }为调和数列.已知数列{1x n}为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=________.[答案] 20[解析] 由题意,若{a n }为调和数列,则{1a n }为等差数列,∵{1x n}为调和数列,∴数列{x n }为等差数列,由等差数列的性质可知,x 5+x 16=x 1+x 20=x 2+x 19=…=x 10+x 11=20010=20.故填20.9.(文)(2011·潍坊模拟)已知等比数列中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列{1b n b n +1}的前n 项和S n =________.[答案]n n +1[解析] ∵a 4=a 1q 3,∴81=3q 3,∴q =3, ∴a n =3n ,∴b n =log 3a n =n , 令c n =1b n b n +1,则c n =1n n +1 =1n -1n +1, ∴{c n }的前n 项和S n =c 1+c 2+…+c n =(1-12)+(12-13)+…+(1n -1n +1)=nn +1.(理)(2011·杭州二检)已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=2,b 1=1,a 2=b 2,2a 4=b 3,且存在常数α、β,使得a n =log αb n +β对每一个正整数n 都成立,则αβ=________.[答案] 4[解析] 设{a n }的公差为d ,{b n }的公比为q ,则⎩⎪⎨⎪⎧ 2+d =q 2 2+3d =q 2,解得⎩⎪⎨⎪⎧q =2d =0(舍去)或⎩⎪⎨⎪⎧q =4d =2,所以a n =2n ,b n =4n -1.若a n =log αb n +β对每一个正整数n 都成立,则满足2n =log α4n -1+β,即2n =(n -1)log α4+β,因此只有当α=2,β=2时上式恒成立,所以αβ=4. 10.(文)(2011·江苏镇江市质检)已知1,x 1,x 2,7成等差数列,1,y 1,y 2,8成等比数列,点M(x 1,y 1),N(x 2,y 2),则线段MN 的中垂线方程是________.[答案] x +y -7=0[解析] 由条件得x 1=3,x 2=5,y 1=2,y 2=4,∴MN 的中点(4,3),k MN =1,∴MN 的中垂线方程为y -3=-(x -4),即x +y -7=0. (理)(2010·哈尔滨模拟)已知双曲线a n -1y 2-a n x 2=a n -1a n (n≥2,n ∈N *)的焦点在y 轴上,一条渐近线方程是y =2x ,其中数列{a n }是以4为首项的正项数列,则数列{a n }的通项公式是________.[答案] a n =2n +1[解析] 双曲线方程为y 2a n -x 2a n -1=1,∵焦点在y 轴上,又渐近线方程为y =2x ,∴a na n -1=2,又a 1=4,∴a n =4×2n -1=2n +1.11.在圆x 2+y 2=10x 内,过点(5,3)有n 条长度成等差数列的弦,最短弦长为数列{a n }的首项a 1,最长弦长为a n ,若公差d ∈(13,23],那么n 的取值集合为( )A .{4,5,6}B .{6,7,8,9}C .{3,4,5}D .{3,4,5,6}[答案] A[解析] ∵圆x 2+y 2=10x ,∴(x -5)2+y 2=5,圆心为(5,0),半径为5.故最长弦长a n =10,最短弦长a 1=8,∴10=8+(n -1)d ,∴d =2n -1, ∵d ∈(13,23],∴13<2n -1≤23,∴4≤n<7,又∵n ∈N *,∴n 的取值为4,5,6,故选A.12.(文)(2011·安徽百校论坛联考)已知a>0,b>0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab≥AGC .ab≤AGD .不能确定 [答案] C[解析] 由条件知,a +b =2A ,ab =G 2,∴A =a +b 2≥ab =G>0,∴AG≥G 2,即AG≥ab ,故选C.[点评] 在知识交汇点处命题是常见命题方式,不等式与数列交汇的题目要特别注意等差(等比)数列的公式及性质的运用.(理)已知等比数列{a n }的各项均为正数,公比q≠1,设P =12(log 0.5a 5+log 0.5a 7),Q =log 0.5a 3+a 92,P 与Q 的大小关系是( ) A .P≥Q B .P<Q C .P≤Q D .P>Q [答案] D[解析] P =log 0.5a 5a 7=log 0.5a 3a 9,Q =log 0.5a 3+a 92,∵q≠1,∴a 3≠a 9,∴a 3+a 92>a 3a 9又∵y =log 0.5x 在(0,+∞)上递减, ∴log 0.5a 3+a 92<log 0.5a 3a 9,即Q<P.故选D.13.(文)(2011·南昌一模)小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本和息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为_____元.[答案] 78ar[解析] 依题意得,小王存款到期利息为12ar +11ar +10ar +…+3ar +2ar +ar =12 12+1 2ar =78ar 元.(理)(2011·湖北荆门调研)秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.[答案] 255[解析] ∵a n +2-a n =1+(-1)n (n ∈N *),∴n 为奇数时,a n +2=a n ,n 为偶数时,a n +2-a n =2,即数列{a n }的奇数项为常数列,偶数项构成以2为首项,2为公差的等差数列.故这30天入院治疗流感人数共有15+(15×2+15×142×2)=255人.14.(文)(2011·江苏,13)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是_____.[答案]33[解析] ∵a 1,a 3,a 5,a 7成公比为q 的等比数列,且a 1=1, ∴a 3=q ,a 5=q 2,a 7=q 3,∵a 2,a 4,a 6成公差为1的等差数列, ∴a 4=a 2+1,a 6=a 2+2, ∵a 2≥1,q =a 3≥a 2≥1,∴q 2=a 5≥a 4=a 2+1≥2,q 3=a 7≥a 6=a 2+2≥3, ∵q≥1,∴q≥2且q≥33,∴q≥33, ∴q 的最小值为33.(理)(2011·福州市期末、河北冀州期末)已知实数a 、b 、c 、d 成等比数列,且函数y =ln(x +2)-x 当x =b 时取到极大值c ,则ad 等于________.[答案] -1[分析] 利用导数可求b 、c ,由a 、b 、c 、d 成等比数列可得ad =bc.[解析] y′=1x +2-1,令y′=0得x =-1,当-2<x<-1时,y′>0,当x>-1时,y′<0,∴b =-1,c =ln(-1+2)-(-1)=1,∴ad =bc =-1.15.(2011·蚌埠质检)已知数列{a n }满足,a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.[解析] (1)b 1=a 2-a 1=1,当n≥2时, b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1, 所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝⎛⎭⎫-12n -1, 当n≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+1+⎝⎛⎭⎫-12+…+⎝⎛⎭⎫-12n -2=1+1-⎝⎛⎭⎫-12n -11-⎝⎛⎭⎫-12 =1+23⎣⎡⎦⎤1-⎝⎛⎭⎫-12n -2=53-23⎝⎛⎭⎫-12n -1, 当n =1时,53-23⎝⎛⎭⎫-121-1=1=a 1. 所以a n =53-23⎝⎛⎭⎫-12n -1(n ∈N *). 16.(文)(2011·焦作模拟)已知函数f(x)=a x 的图象过点(1,12),且点(n -1,a nn 2)(n ∈N +)在函数f(x)=a x 的图象上.(1)求数列{a n }的通项公式;(2)令b n =a n +1-12a n ,若数列{b n }的前n 项和为S n ,求证:S n <5.[解析] (1)∵函数f(x)=a x 的图象过点(1,12),∴a =12,f(x)=(12)x .又点(n -1,a n n 2)(n ∈N +)在函数f(x)=a x的图象上,从而a n n 2=12n -1,即a n =n 22n -1.(2)由b n =n +1 22n -n 22n =2n +12n 得,S n =32+522+…+2n +12n ,则12S n =322+523+…+2n -12n +2n +12n +1, 两式相减得:12S n =32+2(122+123+…+12n )-2n +12n +1,∴S n =5-2n +52n ,∴S n <5.(理)(2011·山东文,20)等比数列{a n }中,a 1、a 2、a 3分别是下表第一、二、三行中的某一个数,且a 1、a 2、a 3中的任何两个数不在下表的同一列.n (2)若数列{b n }满足:b n =a n +(-1)n lna n ,求数列{b n }的前2n 项和S 2n . [解析] (1)依次验证知a 1=2,a 2=6,a 3=18时符合题意,∴a n =2·3n -1(2)∵b n =a n +(-1)n lna n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n (ln2-ln3)+(-1)n nln3∴S 2n =b 1+b 2+…+b 2n =2(1+3+…+32n -1)+[-1+1-1+…+(-1)2n ](ln2-ln3)+[-1+2-3+…+(-1)2n ·2n]ln3=2×1-32n 1-3+nln3=32n +nln3-1.1.(2011·湖南六校联考)已知{a n }是等差数列,S n 是其前n 项和,a 5=19,S 5=55,则过点P(3,a 3),Q(4,a 4)的直线的斜率是( )A .4 B.14 C .-4 D .-14[答案] A[解析] ⎩⎪⎨⎪⎧a 1+4d =195a 1+5×42d =55,∴⎩⎪⎨⎪⎧a 1=3d =4,∴k PQ =4. 2.在直角坐标系中,O 是坐标原点,P 1(x 1,y 1),P 2(x 2,y 2)是第一象限的两个点,若1,x 1,x 2,4依次成等差数列,而1,y 1,y 2,8依次成等比数列,则△OP 1P 2的面积是( )A .1B .2C .3D .4[答案] A[解析] 由条件知x 1=2,x 2=3,y 1=2,y 2=4,∴S =12×4×3-12×2×2-12(2+4)×1=1.3.数列{a n }是公差d≠0的等差数列,数列{b n }是等比数列,若a 1=b 1,a 3=b 3,a 7=b 5,则b 11等于( )A .a 63B .a 36C .a 31D .a 13[答案] A[解析] 设数列{b n }的首项为b 1,公比为q ,则⎩⎪⎨⎪⎧a 1+2d =a 1q 2a 1+6d =a 1q4,得d =a 14(q 4-q 2). ∴a 1+a 12(q 4-q 2)=a 1q 2,∵q≠1,∴q 2=2,d =a 12,于是b 11=a 1q 10=32a 1.设32a 1=a 1+(n -1)·a 12,则n =63,∴b 11=a 63.4.(2011·黄冈月考)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38[答案] C[解析] ∵a 1=1,a n a n -1=a n -1+(-1)n , ∴a 2a 1=a 1+1,∴a 2=2,; ∵a 3a 2=a 2-1,∴a 3=12;∵a 4a 3=a 3+1,∴a 4=3;∵a 5a 4=a 4-1,∴a 5=23,∴a 3a 5=34.5.等差数列{a n }的公差d≠0,且a 1、a 4、a 8成等比数列,则a 1+a 4+a 8a 2+a 5+a 9=________.[答案]3740[分析] 此类问题一般依据条件和等差(比)数列的通项(或前n 项和)公式列方程求解.解方程时,注意等比数列的首项和公比都不能为0.[解析] ∵a 1、a 4、a 8成等比数列,∴a 24=a 1·a 8, 又{a n }成等差数列,公差d ,∴(a 1+3d)2=a 1(a 1+7d),∴a 1=9d≠0, ∴原式=9d +12d +16d 10d +13d +17d =37d 40d =3740.6.(2011·上饶市四校联考)设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n+2成等差数列,则q 的值为________. [答案] -2[解析] 若q =1,则由2S n =S n +1+S n +2⇒2na 1=(n +1)a 1+(n +2)a 1⇒2n =2n +3矛盾, ∴q≠1,由2S n =S n +1+S n +2可得2a 11-q n 1-q=a 11-q n +11-q +a 11-q n +21-q⇒q n +2+q n +1-2q n =0⇒q 2+q -2=0(∵q≠1),解得q =-2.7.(2011·天津市二十区县联考)已知S n 是数列{a n }的前n 项和,向量a =(a n -1,-2),b =(4,S n )满足a ⊥b ,则S 5S 3=________.[答案]317[解析] ∵a =(a n -1,-2),b =(4,S n )满足a ⊥b , ∴a·b =0,∴4a n -4-2S n =0,即S n =2a n -2, ∴S n -1=2a n -1-2(n≥2). 两式相减得a n =2a n -1,∴a na n -1=2. 由S n =2a n -2(n ∈N *),得a 1=2.∴{a n }是以2为首项,2为公比的等比数列,∴a n =2n .∴S5S3=2 1-251-22 1-231-2=317.8.(2011·苏州检测)正整数按下列方法分组:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…,记第n组中各数之和为A n;由自然数的立方构成下列数组:{03,13},{13,23},{23,33},{33,43},…,记第n组中后一个数与前一个数的差为B n,则A n +B n=________.[答案]2n3[解析]由题意知,前n组共有1+3+5+…+(2n-1)=n2个数,所以第n-1组的最后一个数为(n-1)2,第n组的第一个数为(n-1)2+1,第n组共有2n-1个数,所以根据等差数列的前n项和公式可得A n=[ n-1 2+1]+[ n-1 2+2n-1]2(2n-1)=[(n-1)2+n](2n-1),而Bn=n3-(n-1)3,所以A n+B n=2n3.。

2023版高考数学一轮总复习6-3等比数列习题

2023版高考数学一轮总复习6-3等比数列习题

6.3 等比数列基础篇固本夯基考点一等比数列及其前n项和1.(2019课标Ⅲ,5,5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( )A.16B.8C.4D.2答案 C2.(2021安徽安庆一模,6)数列{a n}是各项均为正数的等比数列,3a2是a3与2a4的等差中项,则{a n}的公比等于( )A.2B.32C.3D.√2答案 B3.(2021黑龙江齐齐哈尔一模,6)已知等比数列{a n}中,a n a n+1=4n,则公比为( )A.√2B.2C.±2D.±√2答案 B4.(2020课标Ⅱ,6,5分)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215-25,则k= ( )A.2B.3C.4D.5答案 C5.(2022届河北衡水一中调研一,7)在公差不为0的等差数列{a n}中,a1,a2,a a1,a a2,a a3成公比为4的等比数列,则k3=( )A.84B.86C.88D.96答案 B6.(2021哈尔滨六中期中,3)已知{a n}为等比数列,若a2a3=2a1,且a4与2a7的等差中项为54,则a1=( )A.35B.33C.16D.29答案 C7.(2022届四川绵阳第一次诊断,9)已知首项为1的数列{a n}的前n项和为S n,4a n a n+1=16n,则下列说法不正确的是( )A.数列{a n}是等比数列B.数列{S n }为单调递增数列C.a 5=256D.4a n =3S n +4n-1答案 D8.(2022届太原期中,9)已知{a n }为等比数列,且首项为31,公比为12,则数列的前n 项积取得最大值时,n=( )A.15B.16C.5D.6 答案 C9.(2021陕西渭南一模,10)已知等比数列{a n }的前n 项和为S n ,若a 2a a a =3332,a a +3a 3=a -45a +7,则数列{a n }的公比q=( )A.2B.-2C.12 D.-12 答案 C10.(2019课标Ⅰ,14,5分)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5= . 答案121311.(2021陕西宝鸡一模,15)记S n 为等比数列{a n }的前n 项和.若S 3=6,S 4=a 1-3,则S 6= . 答案21412.(2021河南、湖南名校联考,15)已知等比数列{a n }满足a 1-a 3=-827,a 2-a 4=-89,则使a 1a 2…a n取得最小值的n 为 . 答案 3或413.(2018课标Ⅲ,17,12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m.解析 (1)设{a n }的公比为q,由题设得a n =q n-1.由已知得q 4=4q 2,解得q=0(舍去)或q=-2或q=2.故a n =(-2)n-1或a n =2n-1. (2)若a n =(-2)n-1,则S n =1-(-2)a3.由S m =63得(-2)m =-188.此方程没有正整数解.若a n =2n-1,则S n =2n-1.由S m =63得2m=64,解得m=6.综上,m=6.14.(2020新高考Ⅰ,Ⅱ,18,12分)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)(新高考Ⅰ)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100. (新高考Ⅱ)求a1a2-a2a3+…+(-1)n-1a n a n+1.解析(1)设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q1=12(舍去),q2=2.由题设得a1=2.所以{a n}的通项公式为a n=2n.(2)(新高考Ⅰ)由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×2 4+5×25+6×(100-63)=480.(新高考Ⅱ)a1a2-a2a3+…+(-1)n-1a n a n+1=23-25+27-29+…+(-1)n-1·22n+1=23[1-(-22)a]1-(-22)=85-(-1)n22a+35.考点二等比数列的性质1.(2021江西红色七校联考,6)在各项均为正数的等比数列{a n}中,a1a11+2a6a8+a3a13=25,则a1a13的最大值是( )A.25B.254C.5 D.25答案 B2.(2021云南名校检测,3)设等比数列{a n}的前n项和为S n,若S2=4,S4=16,则S6= ( )A.52B.75C.60D.70答案 A3.(2020南昌模拟,4)在公比不为1的等比数列{a n}中,若a1a5=a m a n,则mn不可能...为( ) A.5 B.6 C.8 D.9答案 B4.(2021河南名校联考,6)已知等比数列{a n}的前n项和S n=2λ+(λ-3)·2n(λ为常数),则λ=()A.-2B.-1C.1D.2答案 C5.(2021全国甲,7,5分)等比数列{a n}的公比为q,前n项和为S n.设甲:q>0,乙:{S n}是递增数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 答案 B6.(2022届吉林东北师范大学附属中学摸底,8)若正项等比数列{a n }中的a 5,a 2017是方程x 2-4x+2=0的两根,则log 2a 1+log 2a 2+log 2a 3+…+log 2a 2021=( ) A.20223B.1010C.20212D.1011答案 C7.(2022届河南重点中学模拟一,8)已知公比不等于1的等比数列{a n }的前n 项乘积为T n ,若a 2a 82=a 62,则( )A.T 5=T 7B.T 3=T 6C.T 4=T 7D.T 3=T 9 答案 C8.(2021安徽黄山重点高中月考,10)已知函数f(x)=21+a 2(x∈R),若等比数列{a n }满足a 1a 2019=1,则f(a 1)+f(a 2)+f(a 3)+…+f(a 2019)= ( ) A.2019 B.20192C.2D.12答案 A9.(2021宁夏名校月考,7)已知数列{x n }满足lgx n+1=1+lgx n (n∈N *),且x 1+x 2+x 3+…+x 100=1,则lg(x 101+x 102+…+x 200)= . 答案 100综合篇 知能转换考法 等比数列的判定与证明 1.(2021皖江名校联盟考试,4)若数列{a n }的各项均为正数,满足a a 2a a +1=a n-1(n∈N *,n≥2),且a 2020=215,a 2022=25,则a 2021=( )A.25B.65C.2√315D.2√35答案 C2.(2021安徽安庆重点高中月考,16)已知数列{a n }是等比数列,有下列四个命题: ①数列{|a n |}是等比数列;②数列{1a a}是等比数列;③数列{lg a a 2}是等比数列; ④数列{a n ·a n+1}是等比数列. 其中正确命题的序号为 . 答案 ①②④3.(2022届河北衡水一中调研一,18)设数列{a n }的前n 项和为S n ,已知2S n =a n+1-2n+1+1(n∈N *),且a 2=5. (1)证明{a a 2a+1}为等比数列,并求数列{a n }的通项公式;(2)设b n =log 3(a n +2n),若对于任意的n∈N *,不等式b n (1+n)-λn(b n +2)-6<0恒成立,求实数λ的取值范围.解析 (1)由题可得2S n-1=a n -2n+1(n≥2),则2a n =2S n -2S n-1=a n+1-2n+1+1-(a n -2n+1)=a n+1-a n -2n,则a n+1=3a n +2n,从而有a a +12a +1+1=32(aa2a +1),n≥2,又当n=1时,2a 1=2S 1=a 2-22+1=5-4+1=2,所以a 1=1,且满足a 222+1=32(a 121+1),则a a +12a +1+1=32(aa 2a +1),n∈N *,故{a a2a +1}是以32为首项,32为公比的等比数列,则a a2a +1=(32)a,故a n =3n-2n.(2)由(1)知,b n =log 3(a n +2n)=n,则∀n∈N *,n(1+n)-λn(n+2)-6<0恒成立,即λ>a (1+a )-6a (a +2)=a 2+n -6a 2+2n =1-a +6a 2+2n =1-a +6(a +6)2-10(n +6)+24=1-1a +6-10+24a +6,令f(t)=1-1a -10+24a,t=n+6≥7,易知f(t)在[7,+∞)上单调递增,且t→+∞时,f(t)→1,则λ≥1. 4.(2021云南曲靖第二中学二模,17)已知数列{a n }的前n 项和为S n .(1)请从①2S n =3a n -3-4n,②a 1=-3,a n+1=-a n -4这两个条件中任选一个,证明数列{a n +2}是等比数列;(2)数列{b n }为等差数列,b 3=5,b 5=9,记c n =(a n +2)b n ,求数列{c n }的前n 项和T n .解析 (1)选条件①.当n=1时,2a 1=2S 1=3a 1-3-4,解得a 1=7.当n≥2时,由2S n =3a n -3-4n,可得2S n-1=3a n-1-3-4(n-1),两式相减,可得2a n =3a n -3a n-1-4,即a n =3a n-1+4,∴a n +2=3(a n-1+2),∴数列{a n +2}是以9为首项,3为公比的等比数列.选条件②.当n=1时,a 1+2=-3+2=-1,当n≥2时,a n+1+2=-a n -4+2=-(a n +2),∴数列{a n +2}是以-1为首项,-1为公比的等比数列. (2)设等差数列{b n }的公差为d,则d=a 5-a 35-3=2,b 1=b 3-2d=1,∴b n =1+2(n-1)=2n-1,n∈N *.选条件①.由(1)可得a n +2=9·3n-1=3n+1,则c n =(a n +2)b n =(2n-1)·3n+1,∴T n =c 1+c 2+c 3+…+c n , 即T n =1×32+3×33+5×34+…+(2n -1)·3n+1,3T n =1×33+3×34+…+(2n -3)·3n+1+(2n-1)·3n+2,两式相减,可得-2T n =1×32+2×33+2×34+…+2·3n+1-(2n-1)·3n+2=9+2×33-3a +21-3-(2n-1)·3n+2=-18-2(n-1)·3n+2,∴T n =(n-1)·3n+2+9,n∈N *.选条件②.由(1)可得a n +2=-1·(-1)n-1=(-1)n,则c n =(a n +2)b n =(2n-1)·(-1)n,∴T n =c 1+c 2+c 3+…+c n =-1+3-5+…+(2n -1)·(-1)n,当n 为偶数时,T n =-1+3-5+…+(2n -1)=2+2+…+2=2×a2=n,当n 为奇数时,T n =-1+3-5+…-(2n-1)=2+2+…+2-(2n-1)=2×a -12-(2n-1)=-n,∴T n ={-a ,a 为奇数,a ,a 为偶数.。

高考数学总复习 6-3 等比数列但因为测试 新人教B版

高考数学总复习 6-3 等比数列但因为测试 新人教B版

高考数学总复习 6-3 等比数列但因为测试 新人教B 版1.(2011·北京朝阳一模)已知{a n }是由正数组成的等比数列,S n 表示{a n }的前n 项的和,若a 1=3,a 2a 4=144,则S 5的值是( )A.692B .69C .93D .189[答案] C[解析] 由a 2a 4=a 23=144得a 3=12(a 3=-12舍去),又a 1=3,各项均为正数,则q =2. 所以S 5=a 11-q 51-q =3× 1-32 1-2=93.2.(2011·潍坊一中期末、湖南湘西联考)各项都是正数的等比数列{a n }的公比q≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.1-52B.5+12C.5-12D.5+12或5-12[答案] B[解析] ∵a 2,12a 3,a 1成等差数列,∴a 3=a 2+a 1,∵{a n }是公比为q 的等比数列,∴a 1q 2=a 1q +a 1, ∴q 2-q -1=0,∵q>0,∴q =5-12. ∴a 3+a 4a 4+a 5=1q=5+12.3.(文)(2011·青岛一模)在等比数列{a n }中,若a 2=9,a 5=243,则数列{a n }的前4项和为( )A .81B .120C .168D .192[答案] B[解析] 设等比数列{a n }的公比为q ,根据题意及等比数列的性质可知:a 5a 2=27=q 3,所以q =3,所以a 1=a 2q =3,所以S 4=3 1-341-3=120.(理)(2011·吉林长春模拟)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为( )A.8532B.3116C.158D.852[答案] B[解析] ∵9S 3=S 6,∴8(a 1+a 2+a 3)=a 4+a 5+a 6, ∴8=q 3,∴q =2, ∴a n =2n -1,∴1a n =(12)n -1,∴{1a n }的前5项和为1-1251-12=3116,故选B. 4.(2011·江西抚州市高三模拟)等比数列{a n }的前n 项和为S n ,若S 1、S 3、S 2成等差数列,则{a n }的公比等于( )A.1B.12C.-12D.1+52[答案] C[解析] 2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=a 1+a 1+a 1q , 得q =-12,故选C.5.(文)(2011·哈尔滨九中模拟)已知数列{a n }的前n 项和S n =2n -1,则数列{a n }的奇数项的前n 项和为( )A.2n +1-13B.2n +1-23C.22n -13D.22n -23[答案] C[解析] 当n =1时,a 1=S 1=1, 当n≥2时,a n =S n -S n -1=2n -2n -1=2n -1.∴a n =2n -1(n ∈N *),则数列{a n }的奇数项的前n 项和为1-22n 1-22=22n -13,故选C.(理)(2011·泉州市质检)等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则项数n 为( )A .12B .14C .15D .16[答案] D [解析]a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=q 4=2,由a 1+a 2+a 3+a 4=1.得a 1(1+q +q 2+q 3)=1, 即a 1·1-q 41-q =1,∴a 1=q -1,又S n =15,即a 11-q n 1-q =15,∴q n =16,又∵q 4=2,∴n =16.故选D.6.(2011·安徽皖南八校联考)设{a n }是公比为q 的等比数列,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-43B .-32C .-23或- 32D .-34或-43[答案] C[解析] 集合{-53,-23,19,37,82}中的各元素减去1得到集合{-54,-24,18,36,81},其中-24,36,-54,81或81,-54,36,-24成等比数列,∴q =-32或-23.7.已知f(x)是一次函数,若f(3)=5,且f(1)、f(2)、f(5)成等比数列,则f(1)+f(2)+…+f(100)的值是________.[答案] 10000[解析] 设f(x)=kx +b ,f(3)=3k +b =5,由f(1)、f(2)、f(5)成等比数列得(2k +b)2=(k +b)·(5k +b),可得k =2,b =-1.∴f (n)=2n -1,则f(1)+f(2)+…+f(100)=100×1+100×992×2=10000.8.(文)(2010·安徽皖西四校联考)在公差不为零的等差数列{a n }中,a 1、a 3、a 7依次成等比数列,前7项和为35,则数列{a n }的通项a n =________.[答案] n +1[解析] 设等差数列首项a 1,公差d ,则∵a 1、a 3、a 7成等比,∴a 23=a 1a 7,∴(a 1+2d)2=a 1(a 1+6d),∴a 1=2d ,又S 7=7a 1+7×62d =35d =35,∴d =1,∴a 1=2,∴a n =n +1.(理)(2010·浙江金华)如果一个n 位的非零整数a 1a 2…a n 的各个数位上的数字a 1,a 2,…,a n 或适当调整次序后能组成一个等比数列,则称这个非零整数a 1a 2…a n 为n 位“等比数”.如124,913,333等都是三位“等比数”.那么三位“等比数”共有________个.(用数字作答)[答案] 27[解析] 适当调整次序后能组成一个三位“等比数”的非零整数可分为以下几类:(1)111,222,…,999;(2)124,248,139.其中第(1)类“等比数”有9个;第(2)类“等比数”有3×6=18个;因此,满足条件的三位“等比数”共有27个.9.(2011·锦州模拟)在等比数列{a n }中,若公比q>1,且a 2a 8=6,a 4+a 6=5,则a 5a 7=________.[答案] 23[解析] ∵a 2a 8=6,∴a 4a 6=6,又∵a 4+a 6=5,且q>1,∴a 4=2,a 6=3, ∴a 5a 7=a 4a 6=23. 10.(文)(2011·大纲全国文,17)设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n .[解析] 设{a n }的公比为q ,由已知有:⎩⎪⎨⎪⎧ a 1q =66a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧ a 1=3q =2或⎩⎪⎨⎪⎧a 1=2q =3(1)当a 1=3,q =2时,a n =a 1·q n -1=3×2n -1S n =a 11-q n 1-q =3× 1-2n 1-2=3×(2n -1)(2)当a 1=2,q =3时,a n =a 1·q n -1=2×3n -1S n =a 11-q n 1-q =2× 1-3n 1-3=3n -1.综上,a n =3×2n -1,S n =3×(2n -1)或a n =2×3n -1,S n =3n -1.(理)(2011·山东临沂一模)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4=32(1a 3+1a 4).(1)求{a n }的通项公式;(2)设b n =a 2n +log 2a n ,求数列{b n }的前n 项和T n .[解析] (1)设等比数列{a n }的公比为q ,则a n =a 1q n -1,由已知得a 1+a 1q =2(1a 1+1a 1q ),a 1q 2+a 1q 3=32(1a 1q 2+1a 1q3).化简得⎩⎪⎨⎪⎧ a 21q q +1 =2 q +1 ,a 21q 5q +1 =32 q +1 ,即⎩⎪⎨⎪⎧a 21q =2,a 21q 5=32.又∵a 1>0,q>0,解得⎩⎪⎨⎪⎧a 1=1,q =2.∴a n =2n -1.(2)由(1)知b n =a 2n +log 2a n =4n -1+(n -1), ∴T n =(1+4+42+…+4n -1)+(1+2+3+…+n -1)=4n -14-1+n n -1 2=4n -13+n n -1 2.11.(文)(2011·辽宁六校模考)设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n[答案] D[解析] 数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n,其值与n 有关,故选D. (理)(2011·浙江温州质检)一个直角三角形的三内角的正弦成等比数列,其最小角的正弦值为( )A.5-12 B.12 C.5-14D.5+14[答案] A[解析] 设三内角A<B<C , ∵sinA 、sinB 、sinC 成等比数列, ∴a 、b 、c 成等比数列,∴b 2=ac , ∴c 2-a 2=ac ,∴⎝⎛⎭⎫a c 2+ac -1=0.∵a c >0,∴ac =5-12=sinA ,故选A. [点评] 在△ABC 中,由正弦定理a =2RsinA 、b =2RsinB 可知,a<b ⇔A<B ⇔sinA<sinB. 12.(文)(2011·辽宁沈阳二中检测,辽宁丹东四校联考)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5 D.15[答案] A[分析] 根据数列满足log 3a n +1=log 3a n +1(n ∈N *).由对数的运算法则,得出a n +1与a n的关系,判断数列的类型,再结合a 2+a 4+a 6=9得出a 5+a 7+a 9的值.[解析] 由log 3a n +1=log 3a n +1(n ∈N *)得,a n +1=3a n ,∵a n >0,∴数列{a n }是公比等于3的等比数列,∴a 5+a 7+a 9=(a 2+a 4+a 6)×33=35, ∴log 13(a 5+a 7+a 9)=-log 335=-5.(理)已知等比数列{a n }的公比q>0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( ) A .S 4a 5<S 5a 4 B .S 4a 5>S 5a 4 C .S 4a 5=S 5a 4 D .不确定[答案] A[解析] (1)当q =1时,S 4a 5-S 5a 4=4a 21-5a 21=-a 21<0.(2)当q≠1且q>0时,S 4a 5-S 5a 4=a 211-q (q 4-q 8-q 3+q 8)=a 21q 31-q (q -1)=-a 21q 3<0.[点评] 作差,依据前n 项和与通项公式化简后判断符号是解决这类问题的基本方法,应注意对公比分类讨论,请再做下题:已知等比数列{a n }中,a 1>0,q>0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[解析] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q>0且q≠1时,S 3a 3-S 5a 5=a 11-q 3a 1q 21-q -a 11-q 5a 1q 41-q=q 21-q 3-1-q 5q 41-q=-q -1q 4<0,所以有S 3a 3<S 5a 5.综上可知有S 3a 3<S 5a 5.13.(文)(2011·长春模拟)已知正项等比数列{a n }的前n 项和为S n ,b n =a 3na 2n +1,且{b n }的前n 项和为T n ,若对一切正整数n 都有S n >T n ,则数列{a n }的公比q 的取值范围是( )A .0<q<1B .q>1C .q> 2D .1<q< 2[答案] B[解析] 由于{a n }是等比数列,公比为q ,所以b n =a 3na 2n +1=1q 2a n ,于是b 1+b 2+…+b n =1q 2(a 1+a 2+…+a n ),即T n =1q 2·S n .又S n >T n ,且T n >0,所以q 2=S nT n >1.因为a n >0对任意n ∈N *都成立,所以q>0,因此公比q 的取值范围是q>1.(理)(2011·榆林模拟)在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn最大时,n 的值等于( ) A .8 B .9 C .8或9 D .17[答案] C[解析] ∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5, ∵a 3a 5=4,∴a 3=4,a 5=1,∴q =12,a 1=16,a n =16×(12)n -1=25-n ,b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n 9-n 2,∴S n n =9-n2, ∴当n≤8时,S n n >0;当n =9时,S n n =0;当n>9时,S nn <0,∴当n =8或9时,S 11+S 22+…+S nn最大.14.(2011·新课标全国文,17)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2; (2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式. [解析] (1)因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n) =-n n +1 2.所以{b n }的通项公式为b n =-n n +12.15.(文)(2011·山东淄博一模)设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =lna 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . [解析] (1)设数列{a n }的公比为q(q>1), 由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1+3 +a 3+4 2=3a 2,即⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1-6a 2+a 3=-7,⎩⎪⎨⎪⎧a 11+q +q 2=7,a 11-6q +q 2=-7, 解得⎩⎪⎨⎪⎧a 1=1,q =2.故数列{a n }的通项为a n =2n -1(2)由(1)得a 3n +1=23n ,∴b n =lna 3n +1=ln23n =3nln2, 又b n +1-b n =3ln2,∴{b n }是以b 1=3ln2为首项,以3ln2为公差的等差数列. ∴T n =b 1+b 2+…+b n =n b 1+b n 2=n 3ln2+3nln2 2=3n n +1 l n22即T n =3n n +12ln2. (理)(2011·安庆模拟)已知数列{a n }中,a 1=12,点(n,2a n +1-a n )在直线y =x 上,其中n =1,2,3….(1)令b n =a n +1-a n -1,求证数列{b n }是等比数列; (2)求数列{a n }的通项.[解析] (1)由已知得2a n +1=a n +n ,又a 1=12,∴a 2=34,b 1=a 2-a 1-1=34-12-1=-34,又∵b n =a n +1-a n -1,∴b n +1=a n +2-a n +1-1, ∴b n +1b n =a n +2-a n +1-1a n +1-a n -1=a n +1+n +1 2-a n +n2-1a n +1-a n -1=a n +1-a n -12a n +1-a n -1=12. ∴{b n }是以-34为首项,以12为公比的等比数列.(2)由(1)知,b n =-34×(12)n -1=-3×(12)n +1∴a n +1-a n =1-3×(12)n +1,∴a 2-a 1=1-3×(12)2a 3-a 2=1-3×(12)3……a n -a n -1=1-3×(12)n各式相加得a n =n -1-3×[(12)2+(12)3+…+(12)n ]+12=n -12-3×14×[1-12n -1]1-12=32n +n -2.1.(2010·常德市检测)已知数列{a n }的前n 项的和S n 满足S n =2n -1(n ∈N *),则数列{a 2n }的前n 项的和为( )A .4n -1 B.13(4n -1) C.43(4n -1) D .(2n -1)2[答案] B[解析] n≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1,又a 1=S 1=21-1=1也满足,∴a n =2n -1(n ∈N *).设b n =a 2n ,则b n =(2n -1)2=4n -1, ∴数列{b n }是首项b 1=1,公比为4的等比数列,故{b n }的前n 项和T n =1× 4n -1 4-1=13(4n -1).2.(2010·宁波市模拟)等比数列的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为( )A .4B .6C .8D .10[答案] C[解析] 由题意知,85q =170,∴q =2, ∴85+170=1×2n -12-1,∴n =8.3.(2011·山东济南模拟)已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8等于( )A .2B .4C .8D .16[答案] D[解析] 由题意可知,a 27=2(a 3+a 11)=4a 7.∵a 7≠0,∴a 7=4,∴b 6b 8=b 27=a 27=16.4.已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则a x +c y =________.[答案] 2[解析] 由条件知x =a +b 2,y =b +c 2,c =bq ,a =bq ,∴a x +c y =2a a +b +2c b +c =2b q b q+b +2bqb +bq=21+q +2q 1+q=2. 5.已知{a n }是首项为a 1、公比q(q≠1)为正数的等比数列,其前n 项和为S n ,且有5S 2=4S 4,设b n =q +S n .(1)求q 的值;(2)数列{b n }能否是等比数列?若是,求出a 1的值;若不是,请说明理由.[解析] (1)由题意知5S 2=4S 4,S 2=a 11-q 21-q ,S 4=a 11-q 41-q, ∴5(1-q 2)=4(1-q 4),又q>0,∴q =12. (2)∵S n =a 11-q n 1-q=2a 1-a 1⎝⎛⎭⎫12n -1, 于是b n =q +S n =12+2a 1-a 1⎝⎛⎭⎫12n -1, 若{b n }是等比数列,则12+2a 1=0, ∴a 1=-14.此时,b n =⎝⎛⎭⎫12n +1. ∵b n +1b n =⎝⎛⎭⎫12n +2⎝⎛⎭⎫12n +1=12,∴数列{b n }是等比数列. 所以存在实数a 1=-14,使数列{b n }为等比数列. 6.(2010·福建龙岩一模)已知数列{a n }和{b n },数列{a n }的前n 项和记为S n .若点(n ,S n )在函数y =-x 2+4x 的图象上,点(n ,b n )在函数y =2x 的图象上.(1)求数列{a n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解析] (1)由已知得S n =-n 2+4n ,当n≥2时,a n =S n -S n -1=-2n +5,又当n =1时,a 1=S 1=3,符合上式.∴a n =-2n +5.(2)由已知得b n =2n ,a n b n =(-2n +5)2n .T n =3×21+1×22+(-1)×23+…+(-2n +5)×2n ,2T n =3×22+1×23+…+(-2n +7)×2n +(-2n +5)×2n +1, 两式相减可得T n =-6+(23+24+…+2n +1)+(-2n +5)×2n +1=231-2n-11-2+(-2n+5)×2n+1-6=(7-2n)×2n+1-14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年高考数学总复习 6-3 等比数列但因为测试 新人教B 版1.(2011·北京朝阳一模)已知{a n }是由正数组成的等比数列,S n 表示{a n }的前n 项的和,若a 1=3,a 2a 4=144,则S 5的值是( )A.692B .69C .93D .189[答案] C[解析] 由a 2a 4=a 23=144得a 3=12(a 3=-12舍去),又a 1=3,各项均为正数,则q =2. 所以S 5=a 1-q 51-q=-1-2=93.2.(2011·潍坊一中期末、湖南湘西联考)各项都是正数的等比数列{a n }的公比q≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.1-52B.5+12C.5-12D.5+12或5-12[答案] B[解析] ∵a 2,12a 3,a 1成等差数列,∴a 3=a 2+a 1,∵{a n }是公比为q 的等比数列,∴a 1q 2=a 1q +a 1, ∴q 2-q -1=0,∵q>0,∴q =5-12. ∴a 3+a 4a 4+a 5=1q=5+12.3.(文)(2011·青岛一模)在等比数列{a n }中,若a 2=9,a 5=243,则数列{a n }的前4项和为( )A .81B .120C .168D .192[答案] B[解析] 设等比数列{a n }的公比为q ,根据题意及等比数列的性质可知:a 5a 2=27=q 3,所以q =3,所以a 1=a 2q =3,所以S 4=-341-3=120.(理)(2011·吉林长春模拟)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为( )A.8532B.3116C.158D.852[答案] B[解析] ∵9S 3=S 6,∴8(a 1+a 2+a 3)=a 4+a 5+a 6, ∴8=q 3,∴q =2, ∴a n =2n -1,∴1a n =(12)n -1,∴{1a n }的前5项和为1-1251-12=3116,故选B. 4.(2011·江西抚州市高三模拟)等比数列{a n }的前n 项和为S n ,若S 1、S 3、S 2成等差数列,则{a n }的公比等于( )A.1B.12C.-12D.1+52[答案] C[解析] 2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=a 1+a 1+a 1q , 得q =-12,故选C.5.(文)(2011·哈尔滨九中模拟)已知数列{a n }的前n 项和S n =2n -1,则数列{a n }的奇数项的前n 项和为( )A.2n +1-13B.2n +1-23C.22n -13D.22n -23[答案] C[解析] 当n =1时,a 1=S 1=1, 当n≥2时,a n =S n -S n -1=2n -2n -1=2n -1.∴a n =2n -1(n ∈N *),则数列{a n }的奇数项的前n 项和为1-22n 1-22=22n -13,故选C.(理)(2011·泉州市质检)等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则项数n 为( )A .12B .14C .15D .16[答案] D [解析]a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=q 4=2,由a 1+a 2+a 3+a 4=1.得a 1(1+q +q 2+q 3)=1, 即a 1·1-q 41-q =1,∴a 1=q -1,又S n =15,即a 1-q n1-q=15,∴q n =16,又∵q 4=2,∴n =16.故选D.6.(2011·安徽皖南八校联考)设{a n }是公比为q 的等比数列,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-43B .-32C .-23或- 32D .-34或-43[答案] C[解析] 集合{-53,-23,19,37,82}中的各元素减去1得到集合{-54,-24,18,36,81},其中-24,36,-54,81或81,-54,36,-24成等比数列,∴q =-32或-23.7.已知f(x)是一次函数,若f(3)=5,且f(1)、f(2)、f(5)成等比数列,则f(1)+f(2)+…+f(100)的值是________.[答案] 10000[解析] 设f(x)=kx +b ,f(3)=3k +b =5,由f(1)、f(2)、f(5)成等比数列得(2k +b)2=(k +b)·(5k +b),可得k =2,b =-1.∴f (n)=2n -1,则f(1)+f(2)+…+f(100)=100×1+100×992×2=10000.8.(文)(2010·安徽皖西四校联考)在公差不为零的等差数列{a n }中,a 1、a 3、a 7依次成等比数列,前7项和为35,则数列{a n }的通项a n =________.[答案] n +1[解析] 设等差数列首项a 1,公差d ,则∵a 1、a 3、a 7成等比,∴a 23=a 1a 7,∴(a 1+2d)2=a 1(a 1+6d),∴a 1=2d ,又S 7=7a 1+7×62d =35d =35,∴d =1,∴a 1=2,∴a n =n +1.(理)(2010·浙江金华)如果一个n 位的非零整数a 1a 2…a n 的各个数位上的数字a 1,a 2,…,a n 或适当调整次序后能组成一个等比数列,则称这个非零整数a 1a 2…a n 为n 位“等比数”.如124,913,333等都是三位“等比数”.那么三位“等比数”共有________个.(用数字作答)[答案] 27[解析] 适当调整次序后能组成一个三位“等比数”的非零整数可分为以下几类:(1)111,222,…,999;(2)124,248,139.其中第(1)类“等比数”有9个;第(2)类“等比数”有3×6=18个;因此,满足条件的三位“等比数”共有27个.9.(2011·锦州模拟)在等比数列{a n }中,若公比q>1,且a 2a 8=6,a 4+a 6=5,则a 5a 7=________.[答案] 23[解析] ∵a 2a 8=6,∴a 4a 6=6,又∵a 4+a 6=5,且q>1,∴a 4=2,a 6=3, ∴a 5a 7=a 4a 6=23. 10.(文)(2011·大纲全国文,17)设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n .[解析] 设{a n }的公比为q ,由已知有:⎩⎪⎨⎪⎧ a 1q =66a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧ a 1=3q =2或⎩⎪⎨⎪⎧a 1=2q =3(1)当a 1=3,q =2时,a n =a 1·q n -1=3×2n -1S n =a 1-q n1-q =-2n1-2=3×(2n -1)(2)当a 1=2,q =3时,a n =a 1·q n -1=2×3n -1 S n =a 1-q n1-q=-3n1-3=3n -1.综上,a n =3×2n -1,S n =3×(2n -1)或a n =2×3n -1,S n =3n -1.(理)(2011·山东临沂一模)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4=32(1a 3+1a 4).(1)求{a n }的通项公式;(2)设b n =a 2n +log 2a n ,求数列{b n }的前n 项和T n .[解析] (1)设等比数列{a n }的公比为q ,则a n =a 1q n -1,由已知得a 1+a 1q =2(1a 1+1a 1q ),a 1q 2+a 1q 3=32(1a 1q 2+1a 1q3).化简得⎩⎪⎨⎪⎧ a 21+=+,a 21q5+=+,即⎩⎪⎨⎪⎧a 21q =2,a 21q 5=32. 又∵a 1>0,q>0,解得⎩⎪⎨⎪⎧a 1=1,q =2.∴a n =2n -1.(2)由(1)知b n =a 2n +log 2a n =4n -1+(n -1), ∴T n =(1+4+42+…+4n -1)+(1+2+3+…+n -1)=4n -14-1+-2=4n -13+-2.11.(文)(2011·辽宁六校模考)设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3B.S 5S 3 C.a n +1a n D.S n +1S n[答案] D[解析] 数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n,其值与n 有关,故选D. (理)(2011·浙江温州质检)一个直角三角形的三内角的正弦成等比数列,其最小角的正弦值为( )A.5-12 B.12 C.5-14D.5+14[答案] A[解析] 设三内角A<B<C , ∵sinA 、sinB 、sinC 成等比数列, ∴a 、b 、c 成等比数列,∴b 2=ac , ∴c 2-a 2=ac ,∴⎝⎛⎭⎫a c 2+ac -1=0.∵a c >0,∴ac =5-12=sinA ,故选A. [点评] 在△ABC 中,由正弦定理a =2RsinA 、b =2RsinB 可知,a<b ⇔A<B ⇔sinA<sinB. 12.(文)(2011·辽宁沈阳二中检测,辽宁丹东四校联考)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5 D.15[答案] A[分析] 根据数列满足log 3a n +1=log 3a n +1(n ∈N *).由对数的运算法则,得出a n +1与a n的关系,判断数列的类型,再结合a 2+a 4+a 6=9得出a 5+a 7+a 9的值.[解析] 由log 3a n +1=log 3a n +1(n ∈N *)得,a n +1=3a n ,∵a n >0,∴数列{a n }是公比等于3的等比数列,∴a 5+a 7+a 9=(a 2+a 4+a 6)×33=35, ∴log 13(a 5+a 7+a 9)=-log 335=-5.(理)已知等比数列{a n }的公比q>0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( ) A .S 4a 5<S 5a 4 B .S 4a 5>S 5a 4 C .S 4a 5=S 5a 4 D .不确定[答案] A[解析] (1)当q =1时,S 4a 5-S 5a 4=4a 21-5a 21=-a 21<0.(2)当q≠1且q>0时,S 4a 5-S 5a 4=a 211-q (q 4-q 8-q 3+q 8)=a 21q 31-q (q -1)=-a 21q 3<0.[点评] 作差,依据前n 项和与通项公式化简后判断符号是解决这类问题的基本方法,应注意对公比分类讨论,请再做下题:已知等比数列{a n }中,a 1>0,q>0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[解析] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q>0且q≠1时, S 3a 3-S 5a 5=a 1-q 3a 1q 2--a 1-q 5a 1q 4-=q 2-q 3--q 5q 4-=-q -1q 4<0,所以有S 3a 3<S 5a 5.综上可知有S 3a 3<S 5a 5.13.(文)(2011·长春模拟)已知正项等比数列{a n }的前n 项和为S n ,b n =a 3na 2n +1,且{b n }的前n 项和为T n ,若对一切正整数n 都有S n >T n ,则数列{a n }的公比q 的取值范围是( )A .0<q<1B .q>1C .q> 2D .1<q< 2[答案] B[解析] 由于{a n }是等比数列,公比为q ,所以b n =a 3na 2n +1=1q 2a n ,于是b 1+b 2+…+b n =1q 2(a 1+a 2+…+a n ),即T n =1q 2·S n .又S n >T n ,且T n >0,所以q 2=S nT n >1.因为a n >0对任意n ∈N *都成立,所以q>0,因此公比q 的取值范围是q>1.(理)(2011·榆林模拟)在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn最大时,n 的值等于( ) A .8 B .9 C .8或9 D .17[答案] C[解析] ∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5, ∵a 3a 5=4,∴a 3=4,a 5=1,∴q =12,a 1=16,a n =16×(12)n -1=25-n ,b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =-2,∴S n n =9-n 2,∴当n≤8时,S n n >0;当n =9时,S n n =0;当n>9时,S nn <0,∴当n =8或9时,S 11+S 22+…+S nn最大.14.(2011·新课标全国文,17)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2; (2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式. [解析] (1)因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n) =-+2.所以{b n }的通项公式为b n =-+2.15.(文)(2011·山东淄博一模)设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =lna 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . [解析] (1)设数列{a n }的公比为q(q>1), 由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,1++3+2=3a 2,即⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1-6a 2+a 3=-7,⎩⎪⎨⎪⎧a 1+q +q 2=7,a 1-6q +q 2=-7,解得⎩⎪⎨⎪⎧a 1=1,q =2.故数列{a n }的通项为a n =2n -1(2)由(1)得a 3n +1=23n ,∴b n =lna 3n +1=ln23n =3nln2, 又b n +1-b n =3ln2,∴{b n }是以b 1=3ln2为首项,以3ln2为公差的等差数列. ∴T n =b 1+b 2+…+b n =1+b n2=+2=+2即T n =+2ln2.(理)(2011·安庆模拟)已知数列{a n }中,a 1=12,点(n,2a n +1-a n )在直线y =x 上,其中n =1,2,3….(1)令b n =a n +1-a n -1,求证数列{b n }是等比数列; (2)求数列{a n }的通项.[解析] (1)由已知得2a n +1=a n +n ,又a 1=12,∴a 2=34,b 1=a 2-a 1-1=34-12-1=-34,又∵b n =a n +1-a n -1,∴b n +1=a n +2-a n +1-1, ∴b n +1b n =a n +2-a n +1-1a n +1-a n -1 =a n +1++2-a n +n2-1a n +1-a n -1=a n +1-a n -12a n +1-a n -1=12. ∴{b n }是以-34为首项,以12为公比的等比数列.(2)由(1)知,b n =-34×(12)n -1=-3×(12)n +1∴a n +1-a n =1-3×(12)n +1,∴a 2-a 1=1-3×(12)2a 3-a 2=1-3×(12)3……a n -a n -1=1-3×(12)n各式相加得a n =n -1-3×[(12)2+(12)3+…+(12)n ]+12=n -12-3×14×[1-12n -1]1-12=32n +n -2.1.(2010·常德市检测)已知数列{a n }的前n 项的和S n 满足S n =2n -1(n ∈N *),则数列{a 2n }的前n 项的和为( )A .4n -1 B.13(4n -1) C.43(4n -1) D .(2n -1)2[答案] B[解析] n≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1,又a 1=S 1=21-1=1也满足,∴a n =2n -1(n ∈N *).设b n =a 2n ,则b n =(2n -1)2=4n -1, ∴数列{b n }是首项b 1=1,公比为4的等比数列,故{b n }的前n 项和T n =n-4-1=13(4n-1). 2.(2010·宁波市模拟)等比数列的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为( )A .4B .6C .8D .10[答案] C[解析] 由题意知,85q =170,∴q =2, ∴85+170=1×2n -12-1,∴n =8.3.(2011·山东济南模拟)已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8等于( )A .2B .4C .8D .16[答案] D[解析] 由题意可知,a 27=2(a 3+a 11)=4a 7.∵a 7≠0,∴a 7=4,∴b 6b 8=b 27=a 27=16.4.已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则a x +c y =________.[答案] 2[解析] 由条件知x =a +b 2,y =b +c 2,c =bq ,a =bq ,∴a x +c y =2a a +b +2c b +c =2b q b q +b +2bqb +bq=21+q +2q 1+q=2. 5.已知{a n }是首项为a 1、公比q(q≠1)为正数的等比数列,其前n 项和为S n ,且有5S 2=4S 4,设b n =q +S n .(1)求q 的值;(2)数列{b n }能否是等比数列?若是,求出a 1的值;若不是,请说明理由.[解析] (1)由题意知5S 2=4S 4,S 2=a 1-q 21-q ,S 4=a 1-q 41-q,∴5(1-q 2)=4(1-q 4),又q>0,∴q =12. (2)∵S n =a 11-q n 1-q =2a 1-a 1⎝⎛⎭⎫12n -1, 于是b n =q +S n =12+2a 1-a 1⎝⎛⎭⎫12n -1,若{b n }是等比数列,则12+2a 1=0, ∴a 1=-14.此时,b n =⎝⎛⎭⎫12n +1. ∵b n +1b n =⎝⎛⎭⎫12n +2⎝⎛⎭⎫12n +1=12,∴数列{b n }是等比数列. 所以存在实数a 1=-14,使数列{b n }为等比数列. 6.(2010·福建龙岩一模)已知数列{a n }和{b n },数列{a n }的前n 项和记为S n .若点(n ,S n )在函数y =-x 2+4x 的图象上,点(n ,b n )在函数y =2x 的图象上.(1)求数列{a n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解析] (1)由已知得S n =-n 2+4n ,当n ≥2时,a n =S n -S n -1=-2n +5,又当n =1时,a 1=S 1=3,符合上式.∴a n =-2n +5.(2)由已知得b n=2n,a n b n=(-2n+5)2n.T n=3×21+1×22+(-1)×23+…+(-2n+5)×2n,2T n=3×22+1×23+…+(-2n+7)×2n+(-2n+5)×2n+1,两式相减可得T n=-6+(23+24+…+2n+1)+(-2n+5)×2n+1=23-2n-11-2+(-2n+5)×2n+1-6=(7-2n)×2n+1-14.。

相关文档
最新文档