光纤通信实验讲义
光纤光学大学物理实验讲义
光纤通信实验 光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。
光纤通信是现代通信网的主要传输手段,主要通过在发送端把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
因此构成光纤通信的基本要素是光源、光纤和光检测器。
半导体激光器可以作为光纤通信的主要光源,其具有超小型、高效率和高速工作的优异特点,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
前香港中文大学校长高锟和G eorge A. Hockha m 首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖<。
光检测器:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号的器件。
【实验目的】1. 了解和掌握半导体激光器的电光特性和测量阈值电流2. 了解和掌握光纤的结构和分类以及光在光纤中传输的基本规律。
3. 对光纤本身的光学特性进行初步的研究,对光纤的使用技巧和处理方法有一定的了解。
4. 了解光纤通信的基本原理。
【实验仪器】导轨,半导体激光器+二维调整,三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功率指示计,一维位移架,专用光纤钳、光纤刀,示波器,音源等。
【实验原理】一、半导体激光器的电光特性实验采用的光源是半导体激光器,由于它的体积小、重量轻、效率高、成本低,已进入了人类社会活动的多个领域。
因此对半导体激光器的了解和使用就显得十分重要。
本实验对半导体激光器进行一些基本的实验研究,以掌握半导体激光器的一些基本特性和使用方法。
光纤通信实验讲义大纲
光纤通信实验讲义大纲实验一.光纤通信基础实验——光发射与光接收实验二.模拟光纤通信系统实验——PFM调制实验三.模拟光纤通信系统实验——PFM解调实验四.系统时钟和同步数字信号发生实验实验五.数字光纤通信系统实验——CMI编/解码实验实验六.PCM光纤数字通信系统实验——PCM编解码实验七.PCM光纤数字通信系统实验——PCM接收幀同步实验八.计算机光纤数据传输联网实验附录一。
光纤通信常用光器件介绍附录二。
数字电路常用器件的三种逻辑(?)方式——TTL、CMOS、ECL 附录三。
光功率计和光可变衰减器实验一. 光发射与光接收实验一.实验目的1.熟悉光纤通信常用的有源无源器件2.掌握光功率的测试方法、掌握光衰耗器等无源器件的使用3.熟悉光发射器件LED的驱动原理和IP特性4.熟悉光接收器件的性能二.实验仪器1.DX-100光纤通信实验箱一台2.20MHz示波器一台3.光功率计一只三.实验说明1.实验电路基本原理框图光发射与接收实验单元的原理框图如下图所示在发射端的半导体发光管LED驱动电路中,电位器W601可以调整LED的直流驱动电流,从而改变LED的光输出功率。
开关K2为单刀双掷开关,首先打到R610位置上测试驱动三级管Q602的驱动电流Ic,然后打到LED上以此电流驱动LED;输入端2.048M的方波信号经Q601射级跟随器输入,开关K1控制该信号对光发射器件LED的交流驱动。
2.有关器件的说明(1)。
半导体发光管LED及其IP特性曲线(2)。
光接收器件PIN-TIA(3)。
光活动连接器,可变衰耗器四.实验内容及步骤1.半导体发光管LED的I-P特性曲线测试(1)打开实验箱电源;将开关K1置于OFF的位置,此时交流脉冲信号不能输入驱动电路,通过双掷K2开关LED只受Q602 I C直流电流的驱动。
(2)R610是一个模拟LED的10Ω电阻,当K2打到左边时,Q602的直流驱动电流流过电阻,用万用表测量其上的电压,就能算出驱动电流的大小。
光纤通信原理实验课件PPT光纤通信原理实验教学课件
实验二 电话光纤传输系统实验
1、若模拟电话光纤传 输时有噪声,可根据 模拟信号光纤传输步 骤进行调试。
2、若数字电话光纤传输时
! 有噪声,可根据数字光纤 传输步骤进行调试。
注意事项
38
实验二 电话光纤传输系统实验
思考题
1、能否用一根光纤传输两路模拟信号,如 果可以,如何实现?如果不行,说明理由。
实
验
2 连接导线:T504与T101连接。
准
备
3
将拨码开关BM1、BM2和BM3分别拨到 数字、1310nm和1310nm。
10
实验一 数字信号光纤传输实验
实验步骤
4
接上交流电源线,先开交流开关,再 开直流开关K01,K02。
实
验 准 备
5
接通数字信号源模块、光发模块(K10) 的直流电源。
6
用万用表监控R110两端电压,调节半导 体激光器驱动电流,使之小于25mA。
实验步骤
模拟电话光纤传输系统实验
1
用实验十一调试方法调节,使1310nm光纤 通信系统能够正常传输模拟信号。
实 验 准
2
连接导线:T401与T111连接,T412与T121 连接,T402与T411连接。并接上电话机。
备
3
用光纤跳线将1310nm光发端机与1310nm 光收端机连接起来。
26
实验二 电话光纤传输系统实验
18
实验二 电话光纤传输系统实验
了解电话及语音信号通过光纤传输的全
实
过程
验
目
的
握模拟电话、数字电话光纤传输的工作
原理
19
实验二 电话光纤传输系统实验
ZY12OFCom13BG3 光纤通信原理实验箱
光纤通信实验报告
光纤通信实验报告实验报告:光纤通信技术引言:光纤通信技术是一种基于光传输原理的高速、大容量、低损耗的通信方式。
光纤通信以其优异的性能和广泛的应用领域受到了广泛的关注。
本次实验旨在探究光纤通信的基本原理和实验方法,以及光纤通信的特点和应用。
一、光纤通信的基本原理1.光纤通信的原理光纤通信是利用光纤作为传输介质,将光信号转换为电信号进行传输。
它主要包括光信号的产生、调制、传输和接收等过程。
光信号通过激光器发射端发出,经过光纤传输到接收端,然后通过光电转换器将光信号转换为电信号。
2.光纤的工作原理光纤是一种具有高折射率的细长光导纤维,主要由芯层、包层和包住层组成。
光信号在传输过程中会发生多次反射,利用全内反射原理将光信号在光纤内损耗尽可能小地传播。
二、光纤通信实验的步骤1.光信号的产生通过激光器发射端发出激光光束,光纤接收端接收光信号。
2.光信号的调制利用调制器对光信号进行调制,使其携带有用信息。
3.光信号的传输利用光纤的高折射率和全内反射的特点,将光信号传输到接收端。
4.光信号的接收通过光电转换器将光信号转换为电信号,进而进行信号处理,如放大、滤波等。
三、光纤通信的特点和应用1.高速传输光纤通信具有高传输速率和大容量的优势,可以满足现代通信的高速要求。
2.低损耗光纤通信中光信号的传输损耗非常小,可以远距离传输无衰减。
3.安全性强光信号在传输过程中不容易被窃听或干扰,保证了通信的安全性。
4.应用广泛结论:通过本次实验,我们深入了解了光纤通信的基本原理和实验方法。
光纤通信具有高速传输、低损耗、安全性强和应用广泛等特点,是现代通信领域的重要技术。
光纤通信的发展势头迅猛,未来有望取代传统的铜线通信,成为主流的通信技术。
光纤通信实验报告讲解
(二 〇 一 五 年 十二 月专题设计实验报告学校代码: 10128 学号:201210204005题 目: 光纤通信实验学生姓名: 赵亚非专 业: 通信工程班 级: 一班指导教师: 纪松波实验一SDH网元基本配置一、实验目的:通过本实验,了解 SDH 光传输的原理和系统组成,了解 ZXMP S325 设备的硬件构成和单板功能,学习ZXONM 300 网管软件的使用方法,掌握 SDH 网元配置的基本操作。
二、实验器材:1、SDH 设备:3 套 ZXMP 325;2、实验用维护终端。
三、实验原理1、SDH 原理同步数字体制(SDH)是为高速同步通信网络制定的一个国际标准,其基础在于直接同步复用。
按照SDH 组建的网络是一个高度统一的、标准化的、智能化的网络,采用全球统一的接口以实现多环境的兼容,管理操作协调一致,组网与业务调度灵活方便,并且具有网络自愈功能,能够传输所有常见的支路信号,应用于多种领域(如光纤传输,微波和卫星传输等)。
SDH 具有以下特点:(1)接口:接口的规范化是设备互联的关键。
SDH 对网络节点接口(NNI)作了统一的规范,内容包括数字信号数率等级、帧结构、复接方法、线路接口、监控管理等。
电接口: STM-1 是 SDH 的第一个等级,又叫基本同步传送模块,比特率为 155.520Mb/s;STM-N 是 SDH 第 N 个等级的同步传送模块,比特率是STM-1 的 N 倍(N=4n=1,4,16,- - -)。
光接口:采用国际统一标准规范。
SDH 仅对电信号扰码,光口信号码型是加扰的 NRZ码,信号数率与SDH 电口标准信号数率相一致。
(2)复用方式a)低速 SDH----高速 SDH,字节间插;b) 低速 PDH-----SDH,同步复用和灵活的映射。
(3) 运行维护:用于运行维护(OAM)的开销多,OAM 功能强——这也是线路编码不用加冗余的原因.(4)兼容性:SDH 具有很强的兼容性,可传送 PDH 业务,异步转移模式信号(ATM)及其他体制的信号。
近代-光纤通信实验课件new
光连接器、光耦合器、光衰减器、光开关、光隔离器、光复用器等
光无源器件的作用: 光学连接
光功率分配
光功率衰减 光信道切换
光信道隔离
光信道复用
3.1 光纤连接器
光纤连接器用于设备(如光端机、光测试仪表等)与光纤之间的连接、
光纤与光纤之间的连实验一 光纤的传输损耗测量 1. 实验目的
了解光纤传输损耗产生的主要原因
了解光纤的衰减及衰减系数的定义
了解光纤传输损耗的测量原理及方法
2.实验设备
DFB-LD激光器 单模通信光纤 光纤跳线 光纤连接器 红外光功率计
3.实验原理
光纤的传输损耗:光波在光纤中传输,随着距离的增加光功率逐渐下降 损耗直接关系到光纤通信系统传输距离的长短,是光纤重要的传输特性之一 光纤损耗的原因主要有吸收损耗和散射损耗
思考题:
(1)光纤损耗产生的主要原因及其危害是什么? (2) 简述光纤连接器、光纤耦合器、光衰减器的工作原理。 (3) 什么叫副载波复用技术?什么叫光波分复用技术?它们各有哪些优点? (4) 光纤通信系统由哪几部分组成?简述各部分作用。
谢 谢!
光纤耦合器按其端口结构类型可分为:
T型耦合器、Y型耦合器、X型耦合器、星形耦合器等
X型22定向光纤耦合器结构图
光纤耦合器的主要技术参数有隔离度、插入损耗、分光比等 (1)隔离度:由端口1输入的光功率P1应从端口2和端口3输出,端口4理论上
应无光功率输出,但实际上端口4还是有少量光功率输出(P4), 其大小 就表示了1、4两个端口的隔离度,隔离度用字母A表示:
( )
A( ) 1 P 10 lg 1 (dB / km) L L P2
测定光纤衰减的测试方法有三种:切断法、插入法和后向散射法
光纤通信实验讲义
目录ZY12OFC OM23BH1光纤通信原理实验系统简介..... 错误!未定义书签。
光纤实验箱使用注意事项..................................... 错误!未定义书签。
实验一半导体激光器P-I特性测试实验........ 错误!未定义书签。
实验二光发射机数字调制实验........................ 错误!未定义书签。
实验三光接收机原理实验................................ 错误!未定义书签。
实验四数字光纤通信系统线路码型编译码实验错误!未定义书签。
实验五电话光纤传输系统实验........................ 错误!未定义书签。
实验六图像光纤传输系统设计实验................ 错误!未定义书签。
实验七波分复用技术实验................................ 错误!未定义书签。
实验八语音+图像+数据光纤传输系统设计实验错误!未定义书签。
附录I无源器件简介........................................... 错误!未定义书签。
- 1 -ZY12OFCom23BH1光纤通信原理实验系统简介实验箱是为配合《光纤通信》课程的理论教学,结合目前光纤通信工程技术最新进展,提高大专院校学生实际操作和动手能力。
一、实验系统特点光纤H1型实验箱整个系统分电接口终端、光接口终端和光传输三大部分,各自独立又相互关联,所有模块在单独进行实验同时又可系统集联,实验灵活丰富,可设计、可比较、可操作、可观测性强。
整个系统采用256K 和2.048M(E1)传输速率,既有利于实验观测,又可以模拟实际光纤传输时的各种性能。
采用大规模的可编程逻辑器件,使得实验系统具有开放性配备制作了二次开发板,并预留大量的I/O 扩展口,可在开发板上独立完成二次开发设计。
所有实验大多采用开关控制。
光纤通信实验
光纤通信实验简介光纤通信是一种利用光纤作为传输介质的通信方式,它具有高带宽、低损耗、抗干扰等优点。
在光纤通信实验中,我们将了解光纤通信的原理、组成部分以及实验步骤。
实验目的本实验旨在让学生了解光纤通信的原理,掌握光纤通信的基本操作。
实验材料•光纤通信实验箱•光纤通信模块•光源•接收器•光纤缆实验步骤第一步:准备工作1.将光纤通信模块安装在实验箱上。
2.将光纤缆连接到光纤通信模块的发光端口和接收端口。
第二步:设置光源和接收器1.将光源连接到发光端口。
2.将接收器连接到接收端口。
第三步:传输数据1.在电脑上打开串口通信软件。
2.将光纤通信模块连接到电脑的串口。
3.输入要传输的数据,并发送给光纤通信模块。
4.在串口通信软件中接收光纤通信模块发送的数据。
第四步:观察实验结果1.观察光纤通信模块发出的光信号。
2.观察接收器接收到的光信号。
3.比较发送的数据和接收到的数据,判断是否传输成功。
实验注意事项1.在操作光纤通信模块时,要注意避免弯折光纤,以免造成光信号的损失。
2.在调试光纤通信模块时,要注意调节光源和接收器的位置,以获取较好的信号接收效果。
3.在传输数据时,要确保光纤通信模块的参数与串口通信软件的参数相匹配,以确保数据传输的正确性。
实验结果分析根据观察到的实验结果,我们可以判断光纤通信模块的性能和传输质量。
如果发送的数据与接收到的数据完全一致,说明光纤通信正常工作。
如果有数据传输错误或丢失,可能需要检查光纤连接是否良好或调整光源和接收器的位置。
结论通过本次实验,我对光纤通信的原理和操作有了更深入的了解。
光纤通信技术具有很多优势,可以应用在许多领域,如通信网络、数据传输等。
同时,我也体会到了在实验中需要仔细操作和严密观察实验结果的重要性。
参考文献参考文献可以列举光纤通信实验的相关教材、学术论文等信息。
光纤通信第五版_第四章讲义01
•
并不是所有大于临界角入射的光都会沿着这样的波导结构 传播
在衬底则有
E E 2e y d / 2 sint z
其中:y d / 2
•
•
只有以一定角ቤተ መጻሕፍቲ ባይዱ入射的光线才会在波导中传播,这些入射
角即与波导中的模式相对应 这些模式的存在,可以类似于第3 章中对谐振腔的分析来加 以理解。
hd m
(4)
5
2015/3/18
4.2 对称平板波导中的模式
4.2.3 TE模式图
对于偶TE模式,方程(4.10)的解为
hd m
hd m 2 hd m 0 2
2 arctan
2 n12 sin2 q1 n2 n1 cos q1
•
式 4.10的解为式4.11
hd tan 2
1 2 2 n cos q (n1 sin q ) n2 1
h k cos q
2n1
光线向下传播时的波前
n1
n2
光线向上传播时的波前
cos q
考察用实线表示的1 和2两条光线,它们属于同一平面波,垂 直于实线的虚线则是它们的等相位面。上图光线1上的A 点与光线 2 上的 C点处于同一等相面上,有相同的相位。
光线 2 从 CD经历的相位变化为: 2
光线 1 从 AB经历的相位变化为: 光线 2 从 C B 经历的相位变化为:
1 AB k0n1 2 2 2 CD k0n1
光线 1在B点反射并向上传播时的波前 光线 2 在D点未经反射时的波前
n2
A C
D
工学光纤通信实验讲义
目录光纤通信系统简介 (1)ZY12OFCOM13BG3光纤通信原理实验系统简介 (4)光纤实验箱使用注意事项 (8)实验一半导体激光器P-I特性测试实验 (9)实验二预失真补偿实验 (13)实验三模拟信号光纤传输实验 (17)实验四数字信号光纤传输实验 (20)实验五光纤通信网中的光波分复用技术实验 (23)附录I 光纤通信系统常用仪表简介 (26)附录Ⅱ ZY12OFCOM13BG3型光纤通信实验箱各模块引脚说明 (36)附录Ⅲ无源器件简介 (43)附录Ⅳ英文缩写及文字符号对照表 (46)附录Ⅴ参考书目 (48)光纤通信系统简介光纤是光导纤维的简称。
光纤通信是以光波为载频,以光导纤维为传输媒质的一种通信方式。
光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。
光纤通信是人类通信史上一重大突破,现今的光纤通信已成为信息社会的神经系统,其主要优点是:1、光波频率很高,光纤传输频带很宽,故传输容量很大,理论上可通过上亿门话路或上万套电视,可进行图像、数据、传真、控制、打印等多种业务;2、不受电磁干扰,保密性好,且不怕雷击,可利用高压电缆架空敷设,用于国防、铁路、防爆等;3、耐高温、高压、抗腐蚀,不受潮,工作十分可靠;4、光纤材料来源丰富,可节约大量有色金属(如铜、铝),且直径小、重量轻、可挠性好。
在20世纪70年代,光纤通信由起步到逐渐成熟,这首先表现为光纤的传输质量大大提高,光纤的传输损耗逐年下降。
1972~1973年,在850nm波段,光纤的传输损耗已下降到2dB/km 左右;与此同时,光纤的带宽不断增加。
光纤的生产从带宽较窄的阶跃型折射率光纤转向带宽较大的渐变型折射率光纤;另外,光源的寿命不断增加,光源和光检测器件的性能也不断改善。
光纤和光学器件的发展为光纤传输系统的诞生创造了有利条件。
光纤通信技术实验
使用光功率计记录发射机和接 收机的光功率值。
记录传输距离
记录光纤传输的距离,分析传 输损耗与距离的关系。
分析信号质量
观察接收机输出的信号质量, 分析信号的失真和噪声情况。
计算误码率
通过比较发送和接收的数据, 计算误码率,评估通信系统的
性能。
04 实验结果与分析
实验数据记录
实验数据记录
在实验过程中,我们详细记录了不同条件下光纤通信系统的传输性 能数据,包括发送端光功率、接收端光功率、光信号消光比等参数。
频带宽
光纤的传输带宽比传统铜 线电缆大得多,支持高速 数据传输。
抗干扰能力强
光纤不受电磁干扰的影响, 传输信号质量稳定。
光纤通信系统的组成
01
02
03
04
光源与光发送机
将电信号转换为光信号,用于 Байду номын сангаас送端。
光纤与光接收机
传输光信号,将光信号转换为 电信号,用于接收端。
光放大器
放大传输过程中的光信号,提 高传输距离和稳定性。
建议一
增加实验环节:为了更好地掌握光纤通信技术,建议在实验中增加更多的环节,如光纤 熔接、光功率计的使用等,以便更全面地了解光纤通信系统的搭建和调试过程。
建议二
加强理论学习:在实验前加强理论学习,让学生们更好地理解光纤通信的基本原理和关 键技术,从而提高实验效果。
建议三
完善实验指导书:进一步完善实验指导书,提供更详细的操作步骤和注意事项,以便学 生们更好地进行实验操作和结果分析。
问题二
调制解调器设置错误:部分学生在配置调制解调器时,参数设置错误导致通信系统无法正常工作。解决方案:检查调 制解调器的参数设置,根据实验原理图进行正确的配置。
光纤通信基础实验指导
光纤通信基础实验指导光纤通信是一种基于光传输的信息传输技术,它利用光纤作为传输媒介,通过光信号的传输实现高速、低衰减的数据通信。
在现代通信领域中,光纤通信已经成为一种重要的通信方式。
为了更好地理解光纤通信的原理和技术,进行实验是非常重要的。
实验一:光纤传输特性实验在这个实验中,我们将通过实验来了解光纤的传输特性,包括衰减特性和色散特性。
首先,准备一根光纤和光源。
将光源连接到光纤的一端,然后在光纤的另一端连接一个光检测器。
通过改变光源的强度和频率,观察光检测器接收到的光信号的变化,并记录实验数据。
通过这个实验,我们可以了解光纤传输的衰减特性和色散特性,以及光源强度和频率对光信号传输的影响。
实验二:光纤通信系统实验在这个实验中,我们将构建一个简单的光纤通信系统,包括光源、光纤和光检测器。
首先,连接光源和光检测器到光纤的两端,然后通过调节光源的强度和频率,发送一个光信号,并在光检测器端接收光信号。
记录实验数据并分析光信号的传输质量。
通过这个实验,我们可以了解光纤通信系统的工作原理和性能特点,以及光信号在光纤传输过程中的损耗和衰减情况。
实验三:光纤通信网络实验在这个实验中,我们将构建一个简单的光纤通信网络,包括多个光源、光纤和光检测器。
通过调节多个光源的强度和频率,实现多个光信号的传输和接收,并通过光纤通信网络传输数据。
记录实验数据并分析光信号在光纤通信网络中的传输效果。
通过这个实验,我们可以了解光纤通信网络的构建和数据传输原理,以及多个光信号在光纤通信网络中的同步传输和接收过程。
在这些实验中,我们可以通过实际操作和数据记录,深入了解光纤通信的基础知识和技术,为进一步学习和应用光纤通信提供基础支持。
希望通过这些实验,能够帮助大家更好地理解光纤通信的原理和应用。
光纤通信实验讲义全
光纤通信实验讲义实验一P-I特性曲线的绘制及光纤熔接机的使用一、实验目的1、学习半导体激光器发光原理2、了解半导体激光器平均输出光功率与注入电流的关系3、掌握半导体激光器P-I曲线的测试及绘制方法4、了解光纤熔接机的操作方法二、实验内容测量半导体激光器功率和注入电流,并画出P-I关系曲线。
使用光纤熔接机实现两根光纤的熔接。
三、实验仪器示波器,RC-GT-III型光纤通信实验系统,光功率计,万用表,光纤熔断器一台。
四、基本原理1、半导体激光器的功率特性及伏安特性图1-1 激光器的功率特性图1-2 激光器的伏安特性半导体激光器的输出光功率与驱动电流的关系如图1-1所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th表示。
在门限电流以下,激光器工作于自发发射,输出荧光功率很小,通常小于100puW;在门限电流以上,激光器工作于受激发射,输出激光,功率随电流迅速上升,基本上成直线关系。
激光器的电流与电压的关系相似于正向二极管的特性,如图1-2所示,但由于双异质结包含两个PN结,所以在正常工作电流下激光器两极间的电压约为1.2V。
阈值条件就是光谐振腔中维持光振荡的条件。
图1-3 LD半导体激光器P-I曲线示意图半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
将开始出现净增益的条件称为阈值条件。
一般用注入电流值来标定阈值条件,也即阈值电流I th,当输入电流小于I th时,其输出光为非相干的荧光,类似于LED 发出光,当电流大于I th时,则输出光为激光,且输入电流和输出光功率成线性关系,该实验就是对该线性关系进行测量,以验证P-I的线性关系.在实验中所用到半导体激光器其输出波长为1310nm,带尾纤及FC型接口。
光纤通信实验指导书含原理
实验1 电光、光电转换传输实验一、实验目的1.了解本实验系统的基本组成结构;2.初步了解完整光通信的基本组成结构;3.掌握光通信的通信原理。
二、实验仪器1.光纤通信实验箱2.20M双踪示波器3.FC-FC单模尾纤 1根4.信号连接线 2根三、基本原理本实验系统重要由两大部分组成:电端机部分、光信道部分。
电端机又分为电信号发射和电信号接受两子部分,光信道又可分为光发射端机、光纤、光接受端机三个子部分。
实验系统基本组成结构(光通信)如下图所示:图1.2.1 实验系统基本组成结构在本实验系统中,电发射部分可以是M 序列,可以是各种线路编码(CMI 、5B6B 、5B1P 等),也可以是语音编码信号或者视频信号等,光信道可以是1550nmLD+单模光纤组成,可以是1310nm 激光/探测器组成,也可以是850nmLED+多模光纤(选配)组成。
本实验系统中提供的1550nmLD 光端机是一体化结构,光端机涉及光发射端机TX (集成了调制电路、自动功率控制电路、激光管、自动温度控制等),光接受端机RX (集成了光检测器、放大器、均衡和再生电路)。
其数字电信号的输入输出口,都由铜铆孔开放出来,可自行连接。
一体化数字光端机的结构示意图如下:图1.2.2 一体化数字光端机结构示意图四、实验环节1. 关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm 的光信道),注意收集好器件的防尘帽。
2. 打开系统电源,液晶菜单选择“码型变换实验—CMI 码PN ”。
确认,即在P101铆孔输出32KHZ 的15位m 序列。
3. 示波器测试P101铆孔波形,确认有相应的波形输出。
4. 用信号连接线连接P101、P203两铆孔,示波器A 通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度,最大不超过P204光接受输入光发射输出5V。
即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
光纤通信原理 精品课 讲义(全套)PPT课件
第二章 光纤和光缆
光纤作为光纤通信系统的物理传输媒 介,有着巨大的优越性。
本章首先介绍光纤的结构与类型,然 后用射线光学理论和波动光学理论重点分 析光在阶跃型光纤中的传输情况,最后简 要介绍光缆的构造、典型结构与光缆的型 号。
2.1 光纤的结构与类型 2.2 光纤的射线理论分析 2.3 均匀光纤的波动理论分析 2.4 光 缆
在高锟理论的指导下,1970年美国的 康宁公司拉出了第一根损耗为20dB/km的 光纤。
1977年美国在芝加哥进行了 44.736Mbit/s的现场实验,1978年,日本开 始了32.064Mbit/s和97.728Mbit/s的光纤通 信实验;1979年,美国AT&T和日本NTT 均研制出了波长为1.35μm的半导体激光器,
2.1 光纤的结构与类型
2.1.1
光纤(Optical Fiber,OF)就是用来导 光的透明介质纤维,一根实用化的光纤是 由多层透明介质构成的,一般可以分为三 部分:折射率较高的纤芯、折射率较低的 包层和外面的涂覆层,如图2.1所示。
图2.1 光纤结构示意图
2.1.2
光纤的分类方法很多,既可以按照光纤截 面折射率分布来分类,又可以按照光纤中 传输模式数的多少、光纤使用的材料或传 输的工作波长来分类。
1.1.1 早期的光通信
到了1880年,贝尔发明了第一个光电 话,这一大胆的尝试,可以说是现代光通 信的开端。
在这里,将弧光灯的恒定光束投射在 话筒的音膜上,随声音的振动而得到强弱 变化的反射光束,这个过程就是调制。
图1.1 贝尔电话系统
贝尔光电话和烽火报警一样,都是利 用大气作为光通道,光波传播易受气候的 影响,在大雾天气,它的可见度距离很短, 遇到下雨下雪天也有影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录光纤通信系统简介 (1)ZY12OFCOM13BG3光纤通信原理实验系统简介 (4)光纤实验箱使用注意事项 (8)实验一半导体激光器P-I特性测试实验 (9)实验二预失真补偿实验 (13)实验三模拟信号光纤传输实验 (17)实验四数字信号光纤传输实验 (20)实验五光纤通信网中的光波分复用技术实验 (23)附录I 光纤通信系统常用仪表简介 (26)附录Ⅱ ZY12OFCOM13BG3型光纤通信实验箱各模块引脚说明 (36)附录Ⅲ无源器件简介 (43)附录Ⅳ英文缩写及文字符号对照表 (46)附录Ⅴ参考书目 (48)光纤通信系统简介光纤是光导纤维的简称。
光纤通信是以光波为载频,以光导纤维为传输媒质的一种通信方式。
光纤通信使用的波长在近红外区,即波长800~1800nm,可分为短波长波段(850nm)和长波长波段(1310nm和1550nm),这是目前所采用的三个通信窗口。
光纤通信是人类通信史上一重大突破,现今的光纤通信已成为信息社会的神经系统,其主要优点是:1、光波频率很高,光纤传输频带很宽,故传输容量很大,理论上可通过上亿门话路或上万套电视,可进行图像、数据、传真、控制、打印等多种业务;2、不受电磁干扰,保密性好,且不怕雷击,可利用高压电缆架空敷设,用于国防、铁路、防爆等;3、耐高温、高压、抗腐蚀,不受潮,工作十分可靠;4、光纤材料来源丰富,可节约大量有色金属(如铜、铝),且直径小、重量轻、可挠性好。
在20世纪70年代,光纤通信由起步到逐渐成熟,这首先表现为光纤的传输质量大大提高,光纤的传输损耗逐年下降。
1972~1973年,在850nm波段,光纤的传输损耗已下降到2dB/km 左右;与此同时,光纤的带宽不断增加。
光纤的生产从带宽较窄的阶跃型折射率光纤转向带宽较大的渐变型折射率光纤;另外,光源的寿命不断增加,光源和光检测器件的性能也不断改善。
光纤和光学器件的发展为光纤传输系统的诞生创造了有利条件。
到1976年,第一条速率为44.7MB/s的光纤通信系统在美国亚特兰大的地下管道中诞生。
80年代是光纤通信大发展的年代。
在这个时期,光线通信迅速由850nm波段转向1310nm波段,由多模光纤传输系统转向单模光纤传输系统。
通过理论分析和实践摸索,人们发现,在较长波段光纤的损耗可以达到更小的值。
经过科学家和工程技术人员的努力,很快在1300nm和1500nm波段分别实现了损耗为0.5dB/km和0.2dB/km的极低损耗的光纤传输。
同时,石英光纤在1300nm波段时色度色散为零,这就促使1300nm波段单模光纤通信系统的迅速发展。
各种速率的光纤通信系统如雨后春笋般在世界各地建立起来,显示出光纤通信优越的性能和强大的竞争力,并很快替代电缆通信,成为电信网中重要的传输手段。
光纤通信技术的发展,大致可以分为三个阶段:第一阶段(1970~1979年):光导纤维与半导体激光器的研制成功,使光纤通信进入实用化。
1977年美国亚特兰大的光纤市话局间中继系统称为世界上第一个光纤通信系统。
第二阶段(1979~1989年):光纤技术取得进一步突破,光纤损耗降至0.5dBm/km以下。
由多模光纤转向单模光纤,由短波长向长波长转移。
数字系统的速率不断提高,光纤连接技术与器件寿命问题都得到解决,光纤传输系统与光缆线路建设逐渐进入高速发展时期。
第三阶段(1989年至今):光纤数字系统由PDH向SDH过渡,传输速率进一步提高。
1989年掺铒光纤放大器(EDFA)的问世给光纤通信技术带来巨大变革。
EDFA的应用不仅解决了长途光纤传输损耗的放大问题,而且为光源的外调制、波分复用器件、色散补偿元件等提供能用技术的实用化。
随着我国国民经济建设的持续、快速发展,通信业务的种类越来越多,信息传送的需求量也越来越大,我国光通信的产业规模不断壮大,产品结构覆盖了光纤传输设备、光纤与光缆、光器件以及各类施工、测试仪表与专用工具。
可以展望:光纤通信作为一高新技术产业,将以更快的速度发展,光纤通信技术将逐步普及,光纤通信的应用领域将更加广阔。
一个实用的光纤通信系统,要配置各种功能的电路、设备和辅助设施才能投入运行。
如接口电路、复用设备、管理系统以及供电设施等等。
根据用户需求、要传送的业务种类和所采用传送体制的技术水平等来确定具体的系统结构。
因此,光纤通信系统结构的形式是多种多样的,但其基本结构仍然是确定的。
图0-1给出了光纤通信系统的基本结构,也可称之为原理模型。
光纤通信系统主要由三部分组成:光发射机、传输光纤和光接收机。
其电/光和光/电变换的基本方式是直接强度调制和直接检波。
实现过程如下:输入电信号既可以是模拟信号(如视频信号、电话语音信号),也可以是数字信号(如计算机数据、PCM编码信号);调制器将输入的电信号转换成适合驱动光源器件的电流信号并用来驱动光源器件,对光源器件进行直接强度调制,完成电/光变换的功能;光源输出的光信号直接耦合到传输光纤中,经一定长度的光纤传输后送达接收端;在接收端,光电检测器对输入的光信号进行直接检波,将光信号转换成相应的电信号,再经过放大恢复等电处理过程,以弥补线路传输过程中带来的信号损伤(如损耗、波形畸变),最后输出和原始输入信号相一致的电信号,从而完成整个传送过程。
根据所使用的光波长、传输信号形式、传输光纤类型和光接收方式的不同,光纤通信系统可分成:图0-1 光纤通信系统模型(2)按光纤特点划分(4) 按光调制的方式划分ZY12OFCom13BG3光纤通信原理实验系统简介本套实验系统实验箱是为配合《光纤通信》课程的理论教学,结合目前光纤通信工程技术最新进展,为了提高大专院校学生实际操作和动手能力而研制开发的。
一、主机箱简介它包含了光纤通信系统设备中的各个主要组成部分,具体由以下十二个模块组成。
其印刷电路板布局图如图0-3所示,每个模块均留出了关键的测试孔和测试钩,利于客户连线做系统实验以及测试用。
1、电源模块:提供实验箱各模块电源。
2、光发送模块:实现各种信号的光传输。
3、光接收模块:实现光电信号的转换,滤波放大。
4、预失真补偿模块:对信号进行预失真补偿;语音信号处理模块:提供语音信号输入输出及放大处理功能。
5、语音信号处理模块:提供音乐芯片以及外置的语音输出,接受部分用扬声器扩出。
6、模拟信号源模块:产生正弦波、三角波,频率在14Hz至300KHz之间连续可调;幅度在0V至5V之间连续可调。
7、电话接口模块:提供电话接口功能。
8、数字信号源模块:产生24伪随机码、位同步码、帧同步码。
输出信号码元速率为64KB/s,伪随机码的码型可通过拨码开关任意设置。
9、PCM编译码模块:实验PCM编译码功能。
10、CMI编译码模块:实现CMI编译码功能。
11、HDB3编译码模块:实现HDB3编译码功能。
12、CPLD下载模块:提供位同步、帧同步功能;提供学生自主设计电路的功能。
客户可以通过上述十二个模块以及相应的配件,灵活组成各种不同光纤通信系统,如:850nm波长光纤通信系统、1310nm波长光纤通信系统、1550nm波长光纤通信系统;同时也可以组成单模光纤通信系统、多模光纤通信系统;模拟光纤通信系统、数字光纤通信系统;时分复用传输系统和波分复用传输系统等光纤通信工程中常用的绝大多数光纤通信系统。
实验系统基本组成方框图如图0-2所示:图0-2 光纤传输实验系统方框图实验系统主要由光发模块、光收模块、光无源器件和辅助通信模块等组成。
光发端机完成将电信号直接调制至光载波上去,采用强度调制(IM);光接收机完成光信号的解调,采用直接检测(DD),属于非相干解调。
光载波由半导体光源产生,由半导体光检测器将光信号转换成电信号从而达到传输信号的目的。
本实验系统可以完成模拟信号(正弦波、三角波、视频信号、音频信号)的光纤传输,也可以完成数字信号(NRZ码、CMI码、计算机串口数据)的光纤传输;可以实现接口码型HDB3、线路码型CMI、电终端PCM码型的编译码;也可实现四个时隙的复接、两个光波长的波分复用、时钟提取、帧信号的提取等实用先进功能;也提供了丰富的资源,以实现二次开发实验。
实验设备的具体性能指标如下:1、电源模块输出:+5V、+12V、-5V、-12V、-48V2、方波信号输出(1)时钟信号:4.096MHz,32.768MHz(2)方波信号:64KHZ,256KHz,1.024MHz,14Hz~ 300KHz(3)数字基带信号的码速率分别为:64KHz,256KHz(4)频率输出误差:≤±1%(5)方波输出稳定度:±0.3%+3mV (电压纹波) ±0.3%+0.5V (电压过冲)(6)占空比: 50%3、正弦波信号输出(1)频率输出范围:14Hz~300KHz(2)幅度0V~5V连续可调4、脉冲信号输出(1)频率输出范围:8KHz(2)占空比:为6.25%(3)频率输出误差:≤±1%5、三角波信号输出(1)频率输出范围:14HZ~300KHZ连续可调(2)幅度:0V~ 5V连续可调6、数字、模拟电话(1)话音质量要求清晰,只允许有少量的脉冲噪声二、配件简介ZY12OFCom13BG3实验箱的配件共两部分:一部分装在无源器件箱内,一部分本身有独立包装,则单独配备。
1、无源配件箱如图0-3所示,为供客户选配的光纤通信原理配件箱。
FC-FC单模光跳线两根 ST-FC多模光跳线两根FC-FC多模光跳线一根 ST-ST多模光跳线一根850光发端机一个 850光收端机一个FC-FC适配器一个小可变衰减器一个CPLD芯片一块芯片起拔器一把下载线一根串口线两根带弹片连接线 20根三相电源线一根音频线一根实验指导书一本教师用书一本实验报告一本发货光盘一张保修卡一张2、第二部分配件共有如下几种:普通电话机两部扰模器一台光功率计一台误码仪一台视频传输配件(小电视机一台、摄像头一个、视频线两根)一套图0-3 无源器件箱示意图光纤实验箱使用注意事项光学器件属于昂贵易损器件,所以在实验操作过程中应加倍小心,防止光学器件的损坏,为了保证实验顺利地进行,请注意以下事项:1、请仔细阅读实验指导书操作步骤后开机实验,实验各测试点、跳线及开关说明请参考附录III,正确连接导线,以免造成光学器件和芯片的损坏。
2、实验箱使用过程中应有防静电措施,以防静电损坏光学器件。
3、光学器件属于昂贵器件,在安装和拆卸过程中请注意轻拿轻放,遇到问题须及时向老师报告。
4、实验时不可将光纤输出端对准自己或别人的眼睛,以免损伤眼睛。
5、实验箱使用完毕后,请立即将防尘帽盖住光纤输入、输出端口,用光纤端面防尘盖盖住光纤跳线端面,防止灰尘进入光纤端面而影响光信号的传输。
6、若不小心把光纤输出端的接口弄脏,需用酒精棉球进行清洗。