比 例 应 用 题
比.比例.分数.百分数应用题
⽐.⽐例.分数.百分数应⽤题6、甲车间⼈数与⼄车间⼈数⽐是3:4,已知⼄车间⼈数⽐甲国间⼈数多10⼈,⼄车间有多少⼈?两个车间共有多少⼈?7、⼀辆客车和⼀辆货车同时从相距495千⽶的两地相向⽽⾏,经过5.5⼩时相遇。
已知客车与货车的速度的⽐是4:5。
求货车每⼩时⾏多少千⽶?8、甲、⼄两地相距360千⽶。
两辆汽车同时从两地相向开出3⼩时后,已⾏的路程和余下的路程的⽐是3:2。
照这样速度,两车还要经过⼏⼩时才相遇。
9、⽔果站运来柑和桔⼦共2400箱,已知柑是桔⼦的20%。
后来⼜运来⼀批柑,这时柑与桔⼦箱烽的⽐是3:8。
这时柑有多少箱?10、运输队运送⼀批货物,第⼀次运送了总数的83,余下的货物分两次运完。
已知第⼀次与第⼆次运的重量的⽐是3:4,第三次⽐第⼆次少运24吨。
这批货物有多少吨?11、学校买回⼀批书,按4:5放在甲、⼄两个书架⾥。
如果从甲书架借出25本,这时甲书架的书是⼄的43。
原来甲、⼄书架各有⼏本书?12、运送⼀批货物,运出的⽐剩下的31还多14吨,剩下的与运出的是2:3。
这批货物有多少吨?13、甲、⼄两城相距300千⽶,标在⼀幅地图上的距离只有3厘⽶,这幅地图上12.5厘⽶的距离,代表实际长度多少千⽶?14、甲⼄两队从两端同时挖⼀条⽔渠。
挖通时,甲、⼄两队挖的长度的⽐是5:6。
如果甲队每天挖30⽶,⼄队单独挖这条⽔渠需20天,求这条⽔渠的全长。
15、下图的⽐例尺是1:800,求左图的实际⾯积是多少平⽅⽶?(图中长8厘⽶,宽5厘⽶)16、甲、⼄两个粮仓共存粮640吨。
甲仓运出60吨,⼄仓运进50吨,现在甲、⼄两仓存粮吨数的⽐是4:5。
现在甲、⼄两仓各存粮多少吨?17、甲、⼄两⼈⽣产⼀批零件,甲⽐⼄多⽣产20个,如果⼄少⽣产8个,那么甲与⼄⽣产零件个数的⽐是6:5。
原来⼄⽣产多少个零件?18、甲仓货物与⼄仓货物⽐是6:5,丙仓货物⽐⼄仓货物少31,⼜⽐甲仓货物少320吨。
⼄仓存货物多少吨?正、反⽐例的应⽤题解决问题。
比和比例应用题(一)
比和比例应用题(一)例1、某班学生为汶川失学儿童捐款640元,女生捐的钱数与男生捐的钱数之比为5:3,王晨根据上面的条件,得到下面四个结论,其中错误的是( )A 、女生比男生多32 B、男生比女生少捐款52 C 、男生共捐款240元 D 、男生比女生捐款少32 例23:4,练2例3练3、 例4的31练443,李海 例514人到练5变为7:5,那么两包糖重量的总和是多少克?能力训练1、 某班女生人数与男生人数之比是7:9(1) 女生人数是男生人数的(...)(...) (2) 男生人数是女生人数的(...)(...)(3) 女生人数是全班人数的(...)(...) (4) 男生人数是全班人数的(...)(...) (5) 女生人数比男生人数少(...)(...) (6) 男生人数比女生人数多(...)(...)2、(1)0.4=( )÷10=2:( )=( )%(2)6.3:0.9化成最简单的整数比是( ),比值是( )(3 (43、(1 (2 ) (345A 、6 ),体积是(7 8、一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数之比变为4:5,求原来两班的人数。
9、小芳爱读书,她读一本少年英雄故事的书,读了几天后,已读页数与未读页数比是3:5,后来又读了27页,这时已读页数与未读页数比是9:7,这本书共多少页?10、甲组人数比乙组人数多31,后来从甲组调9人多乙组,此时乙组人数比甲组多54,求原来甲乙各有多少人?11、如图,圆形中的阴影部分面积占圆面积的61,占正方形面积的51,三角形中阴影部分面积占三角形面积的91,占正方形面积的41,圆、正方形、三角形的面积的最简整数比是多少?12是3:51314是3:2。
比例练习题带答案十道
比例练习题带答案十道1、张大妈家上个月用了8吨水,水费是12.8元。
李奶奶家用了10吨水,李奶奶家的水费是多少钱?2、有一批书,这批书如果每包20本,要捆18包。
如果每包30本,要捆多少包?3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟?4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,需要行驶多少小时?5、“万达”修路队修筑一条公路,原计划每天修400m,15天可以修完。
结果12天就完成了任务,实际每天修多少米?6、学校用同样的方砖铺地,铺5㎡需要方砖120块,照这样计算,再铺32㎡,一共需要这种方砖多少块?7、发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了多少天?8、装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地,需要多少块?需要X块5*5:4*4=X:8016X=2000X=2000/16X=125需要125块9、制作一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4:3,那么乙单独完成要多长时间?已知甲单独完成需要8小时,可以设甲的效率为每小时完成1/8批零件。
甲乙效率比4:3,。
设乙的效率为x。
则:x=4:3可求得x=*3/4=3/32则乙单独工作需要时间为2/3小时也就是10小时40分钟10、王明在100m赛跑冲到终点时领先李明10m,领先王亮15m。
如果李明和王亮按原来的速度继续冲向终点,那么当李明到达终点时,王亮还差多少米到达终点?X5=1200-150x=304x=1201200/120=10比和比例练习题一、填空: 1.甲乙两数的比是11:9,甲数占甲、乙两数和的,乙数占甲、乙两数和的。
甲、乙两数的比。
是3:2,甲数是乙数的倍,乙数是甲数的2. 某班男生人数与女生人数的比是34,女生人数与男生人数的比是,男生人数和女生人数的比是。
女生人数是总人数的比是。
.一本书,小明计划每天看27,这本书计划看完。
关于比例的应用题
关于比例的应用题一、简单比例应用题1. 题目- 已知甲、乙两数的比是3:5,甲数是12,求乙数是多少?- 解析:- 因为甲、乙两数的比是3:5,设乙数为x。
- 根据比例的定义,(甲)/(乙)=(3)/(5),已知甲数是12,可列出方程(12)/(x)=(3)/(5)。
- 通过交叉相乘得到3x = 12×5,即3x=60。
- 解得x = 20,所以乙数是20。
2. 题目- 一种盐水,盐和水的比是1:10,要配制这种盐水550克,需要盐和水各多少克?- 解析:- 盐和水的比是1:10,那么盐水一共是1 + 10=11份。
- 要配制550克盐水,每份的重量是550÷11 = 50克。
- 盐占1份,所以盐的重量是50×1 = 50克。
- 水占10份,水的重量是50×10 = 500克。
二、比例尺相关应用题1. 题目- 在比例尺是1:5000000的地图上,量得A、B两地的距离是6厘米。
A、B两地的实际距离是多少千米?- 解析:- 比例尺1:5000000表示地图上1厘米代表实际距离5000000厘米。
- 量得A、B两地在地图上的距离是6厘米,那么实际距离就是6×5000000 = 30000000厘米。
- 因为1千米 = 100000厘米,所以30000000厘米=30000000÷100000 = 300千米。
2. 题目- 一个长方形操场,长120米,宽80米。
如果把它画在比例尺是1:400的图纸上,长和宽各应画多少厘米?- 解析:- 因为1米 = 100厘米,所以长120米=120×100 = 12000厘米,宽80米=80×100 = 8000厘米。
- 根据比例尺1:400,图上距离 = 实际距离×比例尺。
- 长应画12000×(1)/(400)=30厘米。
- 宽应画8000×(1)/(400) = 20厘米。
比和比例应用题同步训练
比和比例应用题同步训练1、周末小王约朋友小张、小黎去水库钓鱼。
一天下来他们数了数,共钓了21条鱼,称一称共重42千克。
如果依据钓鱼的时间及钓鱼的收获,小王、小张、小黎该分得的比为111 365︰︰。
那么他们三人会怎样分这些鱼?2、某农场把61600公亩耕地划归为粮田与棉田,它们之间的面积比是7︰2,棉田与其他作物面积的比是6︰1。
每种作物各是多少公亩?3、某小学六年级的同学分三组参加植树。
第一组与第二组人数比是5︰4,第二组与第三组人数比是3︰2。
已知第一组的人数比二、三两组人数的总和少15人。
六年级参加植树的共有多少人?4、科技组与作文组人数比是9︰10,作文组与数学组人数比是5︰7,已知数学组与科技组共有69人。
数学组比作文组多多少人?5、小明读一本书,已读和未读的页数比是1︰5。
如果再读30页,则已读和未读的页数比是3︰5。
这本书共有多少页?6、甲、乙两包糖的重量比是4︰1。
从甲包取出130克放入乙包后,甲、乙两包糖的重量比是7︰5,原来甲包有多少克糖?7、五年级三个班举行数学竞赛,一班参加比赛的占全年级参赛总人数的13,二班与三班参加比赛人数比是11︰13,二班比三班少8人。
一班有多少人参加了比赛?8、甲、乙两车同时从A、B两地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米。
A、B两地相距几千米?9、小刚和小明进行了100米短跑比赛(假定二人的速度均不变)。
当小刚跑了90米时,小明距终点还有25米,那么当小刚到达终时,小明距终点还有几米?10、甲、乙两人各加工同样多的零件,同时加工,当甲完成任务时,乙还有150个没有完成,当乙完成任务时,甲可以超额完成250个,这批零件总数共有几个?11、两块一样重的合金,一块合金中铜与锌的比是2︰5,另一块合金中铜与锌的比是1︰3。
现将两块合金合成一块。
求新合金中铜与锌的比。
12、将一条公路平均分给甲、乙二个工程队修筑。
比例应用题 - 题目
比例应用题知识梳理教学重、难点作业完成情况典题探究例1.一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩.问另一个长方形的面积是多少亩?例2.甲、乙、丙三个齿轮的齿数分别为28个、20个、35个.它们互相咬合,当甲转动5圈时,乙、丙两齿轮各转多少圈?例3.某机关有三个部门,A部门有公务员为84人,B部门有公务员56人,C部门有公务员为60人,如果每个部门按相同的比例裁减人员,使这个机关留下公务员共150人,那么A、B、C部门留下的公务员人数为多少?例4.工厂有86个工人,每个工人每天可以加工甲种零件15个,或加工乙种零件12个,或加工丙种零件9个.3个甲,1个丙,2个乙配成一套,如果要使得每天加工的零件正好配套,请你安排工人进行生产.例5.某市居民天然气收费标准如下:每户每月用4立方米以下(含4立方米),每立方米1.8元,当超过4立方米时,超出部分每立方米3元,某月A、B两户共交费26.4元,用气量之比为5:3,问:A、B两户各应缴费多少元?演练方阵A档(巩固专练)一.选择题(共3小题)1.如图,由9个小长方形组成一个大长方形,按图中的编号,1、2、3、4、5号长方形的面积分别是1平方厘米、2平方厘米、3平方厘米、4平方厘米、5平方厘米,那么6号长方形的面积是()A.6平方厘米B.6.5平方厘米C.7平方厘米D.7.5平方厘米2.科学课上,同学们做“平衡架”实验(如图,使用的钩码重量都相同).张老师在平衡架的两边挂了一些钩码.要使平衡架平衡,a处应挂()个钩码.A.1B.2C.3D.43.(2013•华亭县模拟)把5千克的糖溶解在100千克的水里,糖占糖水的()A.B.C.D.十分之一二.填空题(共19小题)4.(2013•北京模拟)小明利用暑假到一家自行车厂勤工俭学,讲好了干7个星期,老板给他一辆自行车外加200元作报酬,后因他只做了4个星期,老板给了他一辆自行车外加20元钱的报酬,则一辆自行车的价值是_________元.5.(2013•北京模拟)有一只刻度均匀但不准确的温度计,将它放在100摄氏度的沸水中,示数为99摄氏度;将它放在0摄氏度的冰水中,示为数为4摄氏度,则将它放在25摄氏度的教室中,示数为_________.6.最上面的小长方形体积是总体积的四分之一注水(1)注满最下面的长方体要多长时间?注满第二还要多长时间?(2)问下面长方体的高?注水的速度?(3)问总高度?总时间?7.一个长方形,用垂直于长和宽的两条线分成四块(如图),其中三块面积分别是12、15、24平方米,则第四块的面积是_________平方米.8.的分子分母减去同一数之后为,则减去的数是_________.9.如图,一个矩形被分成八个小矩形,其中有五个小矩形的面积如图数字所示,那么这个大矩形面积是_________.10.希望小学五年级四个班的班长赵军、李丽、叶梅、王笑一起到同一文具店购买圆珠笔和铅笔作为奖品,奖励班上在口算比赛中的优胜者,4个人购买的数量和总价如下表所示,若其中有一个人的总价算错了.这个人是_________.赵军李丽叶梅王笑圆珠笔(支)15 12 21 18铅笔(支)25 20 35 30总价(元)450 360 636 54011.一块长方形地用两条直线分成四块长方形地,其中三块长方形面积分别是12,18,30平方米,第四块面积是_________平方米.12.亨亨用100张贴纸把他的桌面贴满.莎莎的一张贴纸面积只有亨亨的一张贴纸面积的一半,而她的桌面面积则为亨亨的桌面面积的2倍.那么莎莎最少要用她的贴纸_________张才能把她的桌面贴满.13.如图所示,一块长方形地被两条直线分成四个小长方形,其中三个的面积分别是20平方米、25平方米、40平方米,问:另一个小长方形的面积(阴影部分)是_________平方米.14.(2013•中江县模拟)大牛和小牛的头数比是4:5,表示大牛比小牛少_________.(判断对错)15.(2012•莲都区模拟)三个分数的和是2,它们的分母相同,分子比是1:2:3.这三个分数分别是_________.16.两个农妇共带245只鸡蛋去卖,一个带得多,一个带得少,但卖的同样得价钱,一个农妇对另一个说:“如果我有你那么多鸡蛋,我能卖32元.”另一个说:“如果我有你那么多鸡蛋,只能卖18元.”那么,两人中带的较少的人带了_________个鸡蛋.17.一个长方体棱长总和是120厘米,长、宽、高的比是5:3:2.这个长方体的体积是_________立方厘米.18.一个等腰三角形的顶角和一个底角度数的比是2:1,它的一个底角是_________度.19.一次甲、乙、丙三位朋友合乘一辆出租车出去办事,出发时三人商量好,车费由三人合理分摊.甲在行到6千米的地方下车,乙在行到12千米的地方下车,丙一直行到18千米的地方才下车,共付了36元得车费.请问:他们三人各应承担_________车费比较合理.20.把两筐苹果分给甲、乙、丙三个班.甲班分得总量的,剩下的按5:7分给乙、丙班.已知第二筐苹果重量是第一筐,且比第一筐少5千克.甲、乙、丙班分得的苹果分别是_________、_________、_________千克.21.如图是一班和二班的男生和女生的人数统计图.已知两个班的人数都不少于30,也不多于40.则一班有_________名学生,二班有_________名学生.22.给的分子加上某数,分母减去同一个数,分数的约分后变为,某数是_________.三.解答题(共6小题)23.(2014•广州模拟)小华登山,从山脚到途中A点的速度是千米/时,从A点到山顶的速度是2千米/时.他到达山顶后立即按原路下山,下山速度是4千米/时,下山比上山少用了小时.已知途中B点到山顶的路程比A点到山顶的路程少500米,且小华从A点开始上山至下山到达B点恰好用了1小时.问:从山脚到山顶的路程是多少千米?24.(2014•长沙模拟)小亮家2009年包了一个鱼塘,为了解塘中有多少条鱼,他爸爸第一次网出100条,并将每条鱼作上记号,放入水中,当他们完全混合于鱼群后,又网出200条,其中带有记号的鱼有20条,且每条鱼大小差不多,均重约4千克,现在市场价这种鱼为12元/千克,问这个鱼塘中约有多少条?今年他家养鱼大约可以有多少收入?25.从一块铜板上剪下半径4分米和半径2分米的两个圆形的铜片.半径4分米的铜片重600克,半径2分米的铜片重多少克?26.要加工600个零件,师傅先做了2个小时,徒弟接着做了9个小时,正好完成任务.已知师傅1小时加工零件个数正好等于徒弟3小时加工的零件个数,求师傅和徒弟每小时各加工零件多少个?27.某班买来单价为0.5元的练习本若干,如果将这些练习本只给女生,平均每人可得15本,如果将这些练习本只给男生,平均每人可得10本,那么将这些练习本平均分给全班同学,每人应付多少钱?28.如图甲、乙、丙三个皮带轮的半径比分别为:5:3:7,求它们的转数比.当甲轮转动7圈时,乙、丙两轮各转多少圈?B档(提升精练)一.填空题(共4小题)1.赵、钱、孙、李四人合资组建一支运输队,赵购进2辆汽车,钱购进3辆汽车,孙购进5辆汽车,李未购进汽车.这几辆汽车价格相同,所需资金由四人平均负担,这样李拿出22万元.那么赵应拿出_________万元.2.五位同学决定购买一台电脑,费用平均分担,后来小组又来了3名新成员,费用重新由8个人平均分担,因此原来的同学每人节省了285元,这台电脑价格为_________元.3.在一包建筑用纸板中,蓝色和红色纸板数量比为2:7.晶晶每天用1张蓝色板和3张红色板.最后一天她用了3张红色板和最后1张蓝色板,并且余下了15张红色板.这包建筑用纸板原来共有_________张.4.搬运一批货物,甲车单独运要运6次,乙车每次可运72吨,现在甲、乙两车合运,运的次数相同,完成任务时,甲、乙两车搬运货物重量的比是5:3,这批货物共有_________吨.二.解答题(共23小题)5.(2014•长沙模拟)数学王国要和敌国打仗.按原来的兵力分配.A 阵地有3000人,B 阵地有5000人,C阵地的人数是兵力总数的20%.由于军情发生了变化,要重新调动兵力.A 阵地人数要占兵力总数的40%,B阵地要比A阵地多1000人,另外,还要组织预备队,C 阵地人数和预备人数同样多.请你算一算,怎样分配兵力?6.(2013•黄冈模拟)某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.8元.当超过4吨时,超过部分每吨3元.某月,甲、乙两户共交水费26.4元,甲、乙用水量的比是5:3,甲、乙两户各应交水费多少元?7.(2012•浙江)某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底,开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上,但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示:根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?8.(2012•武汉模拟)有一袋糖果分配给甲、乙丙三人,甲、乙、丙三人依次所得的糖果数目比是5:4:3.如果把糖果重新分配给甲、乙、丙三人,使其比依次为7:6:5,则其中一人会比原本所得的数目多10颗,求此人原本所得的糖果数目.9.(2011•长春模拟)甲、乙、丙三人共存款2980元,甲取了380元,乙存了700元,丙取了自己存款数的,这三人存款的比是5:3:2,现在三人存款各是多少元?10.(2011•东莞模拟)某高速公路收费站对过往车辆的收费标准如图所示.一天,通过该收费站的大型车和中型车的辆数之比是5:6,中型车与小型车的辆数之比是4:11,小型车的通行费总数比大型车多270元.求:(1)这天通过收费站的大型车、中型车及小型车各有多少辆?(2)这天收费总数是多少元?11.(2012•北京模拟)已知甲、乙、丙三个班总人数的比为3:4:2,甲班男、女生的比为5:4,丙班男、女生的比为2:1,而且三个班所有男生和所有女生的比为13:14,请问:(1)乙班男、女生人数的比是多少?(2)如果甲班男生比乙班女生少12人,那么甲、乙、丙三个班各有多少人?12.(2010•夹江县模拟)附加题:甲、乙二人到书店去买书,共带去54元,甲用了自己钱数的75%,乙用了自己钱数的,两人剩下的钱数正好相等,求甲,乙原来各带去多少元?13.(2009•锡山区)用36米长的篱笆围成一个长方形菜地,要求长与宽的比是5:4.①这块菜地的面积是多少平方米?②如果按1:200的比例画出这个长方形菜地的平面图,那么这个平面图的面积是多少平方厘米?14.(2007•绵阳)甲、乙、丙三堆煤的重量比是2:3:5,三堆煤共重15吨,甲比乙少多少吨?15.(2006•南城县)一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?16.(2003•丰台区)学校买回315棵树苗,计划按3:4分给五、六年级种植,两个年级各分到树苗多少棵?17.某机械厂有甲、乙、丙三个车间,甲车间有工人350人,乙车间有375人,丙车间有300人,2007年因金融风暴影响工厂生意而被迫裁员.如果每个车间按相同比例裁员减工人,使留下工人共820人,那么甲、乙、丙三车间各留下的工人人数为多少?18.学校体育保管室有篮球32个,排球28个,足球40个.一天体育课上,这三种球按相同的比例借出,结果一共还剩75个,那么排球还剩多少个?篮球和足球一共借出多少个?19.甲、乙、丙、丁合买一台电脑,甲出的钱与其余三人出的钱的比是1:3,乙出的钱与其余三人出的钱的比是1:4,丙出的钱与其余三人出的钱的比是1:5,丁出的钱是690元,这台电脑多少钱?20.学校把购进图书的按4:5分给五、六两个年级.已知五年级分得80本,学校共购进图书多少本?21.甲乙两车间共有120人,现从甲车间调12人去乙车间,此时甲乙两车间的人数比是7:5.原来甲乙两车间的人数比是多少?22.张老师拿来红黄两种卡片共95张,分给甲、乙两组同学做游戏,甲组分到的卡片中,有是黄色的,其它是红色的;乙组分到的卡片中,有是黄色的,其它是红色的,张老师一共拿来多少张红卡片?23.斌斌和帅帅合伙开工厂,斌斌出的银子是帅帅的1.5倍,现在小风加入合伙,三人协议由小风拿100万给斌、帅二人,使得三人出的银子相同,那么斌斌原出的银子是多少?24.小美有桃子,小泉有芒果,欧欧有苹果,他们按下面比例互换,桃子与芒果为3:5,桃子与苹果为3:8,芒果与苹果为5:8,现在小美共拿出39个桃子分别与其他两位互换,小泉共拿出芒果90个与其他两人互换,欧欧共拿出苹果88个与其他两人互换,那么欧欧与小美和小泉各交换苹果多少个?25.有一次,王强、林涛、宋峰三位朋友合租一辆出租车,大家共同分摊车费,王强在全行程的处下车,到了处林涛也下车了,最后宋峰一个人坐到终点,共付90元钱.王强、林涛各应付给宋峰多少钱?26.三仓镇在建设文明城镇中,举全镇之力整治污水沟.当政府投入140万元时,已整治工程量与所剩工程量之比是7:3.照这样计算,整个治污水工程需投入多少万元?余下的工程投入如果由全镇3万人分担,每人还应负担多少元?27.甲、乙、丙三人坐出租车回家.当行到全程的时,甲下了车;当行到全程的时,乙下了车;丙到终点才下车.他们三人共付车费150元.你认为甲、乙、丙三人怎样付款最合理?列式计算说明理由.成长足迹课后检测学习(课程)顾问签字:负责人签字:教学主管签字:主管签字时间:。
比和比例应用题
比和比例应用题例1 甲、乙两个仓库原有粮食吨数的比是5:4,甲仓库运走36吨后,两仓库粮食的吨数的比是3:4,甲仓库原有粮食多少吨?练习1 甲、乙两个仓库存放的货物重量比是4:3,把甲仓库货物的1/3运到乙仓库,这时乙仓库的货物重量比甲仓库多100吨,甲仓库原有货物多少吨?练习2 甲乙两人各加工100个零件,甲比乙迟1 1/2小时开工,结果同时完成,甲乙两人的工作效率比是5:2。
甲每小时加工多少个零件练习3 两个相同的瓶子装满酒精溶液,一个瓶中酒精和水的体积之比是3:1,而另一个瓶中酒精与水的比是4:1,若把两瓶酒精溶液混合,混合液中酒精和水的体积比是多少?例2 甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1,乙瓶中酒精与水的体积比是4:1,现在把两瓶溶液倒入大瓶中混合,这时酒精与水的体积比是多少?练习1 某班在一次考试中,平均成绩是78分,男、女生各自的平均成绩是75.5分和81分,这个班男、女生人数的比是多少?练习3 一个长方形和一个正方形的周长比为6:5,长方形的长是宽的521倍,求这个长方形与正方形的面积之比。
例3甲和乙同时从A、B两地相向走来,甲每小时走7.5千米,两人相遇后,再走22.5千米到米到A地,甲再走2小时到B地,乙每小时走多少千米?练习1 甲、乙两人步行的速度比是7:5,甲、乙分别由A、B两地同时出发,如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?练习2 一批货物已经运走的65%,还剩下280吨,这批货物运走了多少吨?练习3 甲、乙两人进行百米赛跑,当甲到达终点时,乙距终点还有6米。
如果甲在起跑线后面6米,与乙同时跑,谁先到达终点?这时另一个距终点还有几米?例4化肥厂经过改革日产量比原来的20吨提高了25%,原来30天的产量,现在需要多少天能完成?练习1 有一项搬运砖的任务,25个人去搬需6小时可以完成。
如果相同工效的人数增加到30人,运完这批砖能减少几小时?练习2 甲、乙两辆汽车同时从A、B两个城市相对开出,经过12小时相遇后,甲车继续向前开到B城还要6小时,已知甲车每小时比乙车块25千米,求A、B两个城市间的公路长多少千米练习3 师徒两人加工一批零件,徒弟共加工3小时,师傅再参加工作,完成时,徒弟加工了这批零件的83,已知师徒工效比为2:5,师徒单独加工各要几小时例5 在一群学生中,如果走了15名学生,那么剩下的男女人数比为2:1。
六年级数学比的应用试题
六年级数学比的应用试题1.王叔叔用1360厘米的角铁焊制一个柜台架子,柜台长、宽、高的比是11:2:4,这个柜台的长、宽、高各是多少厘米?【答案】220厘米、40厘米、80厘米【解析】本题属于按比例分配问题,我们可以先求出总份数,然后再进行计算,还要注意长、宽、高之和应该等于1360÷4,而不是直接用1360这个数值。
解:1360÷4=340(厘米)11+2+4=17长:340×=220(厘米)宽:340×=40(厘米)高:340×=80(厘米)答:这个柜台的长、宽、高分别是220厘米、40厘米、80厘米。
总结:把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。
解决这类问题的方法:(1)找出各种量。
(2)化成最简整数比,看各部分数量占总量的几分之几。
(3)按照求一个数的几分之几是多少用乘法解决。
2.把下面各比化成后项是100的比。
(1)宁宁的邮票张数与丽丽的邮票张数比为2:5;(2)东东做对的题数与做错的题数比为100:125。
【答案】40:100;80:100【解析】比的前项和后项同时扩大或缩小相同的倍数,比的大小不变。
5变成100要乘以20,125变成100要除以1.25。
2:5=(2×20):(5×20)=40:100100:125=(100÷1.25):(125÷1.25)=80:100【考点】比的基本性质。
3.甲、乙两数的比是3:2,乙、丙两数的比是7:6,求甲、乙、丙三个数的比。
【答案】21:14:12【解析】由题目我们发现:两个比中都有乙数,一个表示2份,一个表示7份,要求甲、乙、丙三个数的比,就要把两个比中的乙数表示的份数转化成相同的份数,即求出2和7的最小公倍数。
然后再求出三个数的比是多少。
解:根据比的基本性质可知:乙两个数的比是 3:2=(37):(27)=21:14;丙两个数的比是 7:6=(72):(62)=14:12。
比例应用题含有答案
比例应用题含有答案比例应用题含有答案【试题】【题1】甲数比乙数少20%,那么乙数比甲数多百分之几?【题2】有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?【题3】一个正方体的棱长增加原长的1/2,他的表面积比原表面积增加百分之几?【题4】商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球占现在总数的25%,卖出的篮球是多少个?【题5】把一个正方形的一边减少20%,另一边增加2公尺,得到一个长方形,他与原来的正方形面积相等,那么正方形的.面积是多少平方公尺?【题6】已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的百分之几?【题7】把25公克盐放进100公克水里制成盐水,制成的这种盐水,含盐量是百分之几?【题8】某次会议,昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加5%,今天共1995人出席会议,昨天参加会议的有多少人?【题9】有甲、乙两家商店,如甲店的利润增加20%,乙店的利润减少10%,那么,这两店的利润就相同,问原来甲店的利润是原来乙店的利润的百分之几?【题10】有浓度为3.2%的盐水500公克,为把他变成浓度是8%的盐水,需要使他蒸发掉多少公克的水?【参考答案】1.【解答】20%÷(1-20%)=25%。
2.【解答】16÷【(1-25%)÷25%―(1―45%)÷45%】=9(块)。
3.【解答】【(1+1/2)×(1+1/2)×6】÷(1×1×6)-1 = 125%。
4.【解答】45×60%-18×【25%÷(1-25%)】 = 6(个)。
5.【解答】【2×(1-20%)÷20%】2 = 64(平方公尺)。
解比例应用题练习题(精选92道应用题)
解比例应用题1、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?2、甲、乙两地相距240 千米,画在比例尺是1 ∶3000000 的地图上,长度是多少厘米?3、在一幅地图上,用 3 厘米的线段表示实际距离600 千米。
量得甲、乙两地的距离是 4.5 厘米,甲、乙两地的实际距离是多少千米?4、运来一批纸装订成练习本,每本36 页,可订 40 本,若每本 30 页,可订多少本?5、在一幅比例尺是1: 30000 的地图上,量得东、西两村的距离是 12.3 厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120 千米,在一幅比例尺是 1:6000000 的地图上,应画多少厘米?7、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?8、在一幅比例尺是 1 :4000 的平面图上,量得一块三角形的菜地的底是 12 厘米,高是 8 厘米,这块菜地的实际面积是多少公顷?9、一辆汽车 2 小时行驶 130 千米。
照这样的速度,从甲地到乙地共行驶 5 小时。
甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行 64 千米,5 小时到达。
如果要 4 小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修 360 米,30 天可以修完。
如果要提前 5 天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120 米,8 天可以修完;如果每天修150 米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长 12 千米,开工 3 天修了 1.5 千米。
照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修 120 米,8 天可以修完;如果每天多修 30 米,几天可以修完?(用比例方法解)15、小明买 4 本同样的练习本用了 4.8 元,138 元可以买多少本这样的练习本 ?(用比例解答)16、工厂有一批煤,计划每天烧 2.4 吨,42 天可以烧完。
比例的应用练习题
比例的应用练习题1、一种农药和水按1:200配成药水防治病虫害,现在要配制8040千克,需要药和水各多少千克?2、、一种农药,用药液和水按照1:1500配制而成。
(1)要配制这种农药750.5千克,需要药液和水各多少千克?(2)现在有540千克的水,要配制这种农药,需要多少千克药液?(3)如果现在只有3千克的药液,能配制这种农药多少千克?3、、要配制一种药水,药粉和水的质量比是1:500(1)现在有水2000千克,需要药粉多少千克?(2)要配制这种药水2004千克,需要药粉和水各多少千克?4、一辆汽车3小时行108千米,以同样的速度,5小时行多少千米?5、生产一批零件,每天做72个,15天完成任务。
如果12天完成,每天应多少个零件?6、50千克花生可出油16千克,照这样计算,80吨花生可出油多少千克?7、修一条路,每天修240米,10天完成,如果每天修200米,几天可以完成?8、要运4000吨货物,4天运了400吨。
照这样计算,剩下的还有多少天才运完?9、装订一批书,计划每天装订1800本,40天完成。
实际每天比计划多装订200本,实际几天完成?10、用同样的砖铺地,铺18平方米要用618块砖。
如果铺24平方米,要用多少块砖?11、一间房子要用方砖铺地,用面积9平方分米的方砖,需要96块。
如果改用面积是4平方分米的方砖,需要多少块?12、用边长是15厘米的方砖铺地,需要2000块。
如果改用边长25厘米的方砖来铺,需要多少块?13、一种农药和水按1:200配制成药水,现在要配制8040千克药水,需要农药多少千克?14、在比例尺是1 ∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离是多少千米?15、一个机器零件长3厘米,画在一张比例尺为20:1的图纸上,应画多长?16、一个长方形操场,长240米,宽160米。
把它画在比例尺是1:800的图纸上,长和宽各应画多少厘米?并画出平面图。
比的应用题典型题归类
比的应用题典型题归类1、已知两个数的和与比,求这两个数。
例:红花和黄花共70 朵,红花与黄花的比是2 :5 ,求红花与黄花各是多少朵?2、已知两个数的差与比,求这两个数。
例:红花比黄花多20 朵,红花与黄花的比是7 :3 ,求红花与黄花各是多少朵?3、已知一个数与比,求另一个数。
例:红花有28 朵,红花与黄花的比是 4 :7 ,求黄花有多少朵?4、已知两个数或三个数的平均数与比,求这几个数。
例:甲乙两数的平均数是45 ,这两个数的比是2 :7 ,求甲乙两数各是多少?5、已知周长与比,求面积。
例:已知长方形的周长是60 厘米,长与宽的比是5 :1 ,求这个长方形的面积。
6、求连比例:东方红化工厂一车间人数与二车间人数的比是 7 ∶6,二车间人数与三车间人数的比是 5 ∶4,写出三个车间人数的最简整数连比。
7、已知总路程与速度之比求两车速度甲乙两地相距400 千米, A、B两车同时从甲乙两地相对开出,经过4 小时两车相遇,已知 A、B 两车的速度比是 2 :3 ,求 A、 B 两车的速度分别是多少?8、已知长方体棱长之和与长、宽、高之比求长方体体积例:已知一个长方体棱长之和为240 厘米,长、宽、高的比为4 :3 :2 ,求这个长方体的体积是多少?9、已知三角形内角度数之比,求内角度数例:一个三角形三个内角度数比是2:3:5。
按角分,这是什么三角形?1、同学们分3 组采集树种。
第一组、第二组、第三组采集的树种的比是 5:3:4。
一组采集 15 千克,二组、三组各采集多少千克?2、一批大米1200 千克,运走后,剩下的按 3:5 分两次吃,第二次吃多少千克3、某班男女生人数比是7:5 ,已知男生比女生多5 人,全班多少人?4、饲养场鸡鸭只数的比是3:5 ,鸡比鸭少 600 只,鸭有多少只?5、一车间要生产4800 个零件,已经生产的和剩下的比是5:7 ,还要生产多少个零件?6、学校领来一批树苗,按 2:3:4 分给四、五、六年级种植。
用比例解应用题
用比例解应用题(1)姓名____________1.学校食堂买5袋同样的大米用了600元,照这样计算,买40袋这样的大米要用多少钱?2.一辆汽车要从甲地到乙地,原计划每小时行60千米,8小时到达。
实际6小时到达,实际每小时行多少千米?3、工程队要修一条水渠,原计划50人40天修完。
实际25天修完,实际参加修水渠的有多少人?4、用400千克油菜籽可以榨油160千克。
照这样计算,600吨油菜籽可以榨油多少吨?5、六⑴班男生和女生人数的比是6∶5,女生有30人,男生有多少人?6、六⑴班男生有30人,和女生人数的比是6∶5,女生有多少人?全班有多少人?用比例解应用题(2)姓名____________7、一种农药,用药液和水按照2∶500配制而成。
5千克药液能配制这种农药多少千克?8、某车间有男工25人,女工20人。
如果新招男工15人,要使男、女工人数的比不变,应新招女工多少人?9.一间房子要用方砖铺地。
用边长是3分米的方砖,需要96块。
如果改用边长是2分米的方砖,需要多少块?10.农场要收割小麦224公顷,3天收割了84公顷。
照这样计算,剩下的还要几天才能收割完?11.一辆汽车要从甲地开往乙地,2小时行了160千米,照这样的速度,再行3小时能到达乙地。
甲、乙两地相距多少千米?用比例解应用题(3)姓名____________ 12.张英借了一本故事书,原计划每天读20页,9天读完。
实际每天多读10页,实际多少天读完?13.某厂买回一批煤,原计划每天烧15吨,可以烧80天。
实际每天比计划节约20%,这批煤实际烧了多少天?14.工程队抢修一段公路,原计划每天修50米,6天修完。
实际提前1天修完,实际每天修多少米?15.工程队铺一段铁路,原计划每天铺3.2 千米,实际每天铺4千米,实际铺完这段铁路用了12天。
实际比计划提几天铺完?16.用一批纸装订成同样大小的练习本,计划每本20页,装订300本,实际装订的本数比计划少50本。
比的应用解题技巧
比的应用解题技巧例1. 小明读一本书,已读的页数和未读的页数之比是5:4。
如果再读27页,已读的页数和未读的页数比是2:1。
这本书有多少页?分析与解答:由于已读的页数和未读的页数之比是5:4,那么已读的页数占总页数的95,如果再读272页对应的例2. (人)。
例3. 1”可以理解量比是3,就是例4. 多少?分析与解答:甲走的路程比乙少31,则甲、乙的路程比是(1-31):1=2:3,同理甲乙所用时间比是1:(1+81)=8:9,那么甲乙的速度比是82:93=3:4。
例5. 在学校召开的秋季运动会上,李小强、刘小刚、王小林三个人参加了百米赛跑。
在比赛过程中,李小强的速度比刘小刚慢101,刘小刚的速度比王小林慢101,他们三人的速度比是多少?分析与解答:假设刘小刚的速度为“1”由李小强的速度比刘小刚慢101,那么李小强=1-101=109,刘小刚的速度比王小林慢101,王小林=1÷(1-101)=910,故李小强:刘小刚:王小林=109:1:910=81:90:100。
例6. 两个相同的瓶子里装满糖水。
第一个瓶子里糖和水的质量比是1:9,第二个瓶子里糖和水的质量比是1:10,把两瓶糖水混合装入一个瓶子里,这时糖和水的质量比是多少?分析与解答:第一个瓶子里糖和水的质量比是1:9,可以理解为糖占1份,水占9份,故糖水占。
例7.例8. 4份,六1份。
例9. 小华和爷爷的年龄比是1:6,已知小华的年龄比爷爷小50岁,小华和爷爷的年龄和是多少? 分析与解答:小华和爷爷的年龄比是1:6,说明小华占1份,爷爷占6份,小华比爷爷小6-1=5(份),就是小华比爷爷小的50岁,则每份是50÷5=10(岁)所以小华和爷爷的年龄和是10×(1+6)=70(岁)。
例10. 赵老师用60厘米长的铁丝围成一个长方形教具,围成的长方形教具的长和宽的比是3:2。
求这个长方形的教具的长和宽分别是多少厘米?分析与解答:解答这道题的关键应先求长与宽的和,由长方形周长公式可知长与宽的和是60÷2=30(厘米),又由于长与宽的比是3:2,共为3+2=5(份),所以每份为30÷5=6(厘米),那么长=6×3=18(厘米),宽=6×2=12(厘米)。
数学比和比例的应用试题
数学比和比例的应用试题1.树台小学回族学生有1100人,回族学生人数与汉族学生人数的比是11:2,树台小学有汉族同学多少名?【答案】200【解析】由“回族学生人数与汉族学生人数的比是11:2”,可知:回族学生人数占11份,汉族学生人数占2份,用回族学生人数除以回族学生人数占得份数,先求出一份的数,然后即可求出汉族学生人数.解:1100÷11×2,=100×2,=200(人);答:树台小学有汉族同学200名.点评:此题是比的应用,主要考查先求一份的数,再求几份的数.2.粮店运来的大米比面粉多108袋,大米和面粉的比是5:4,运来大米和面粉各多少袋?【答案】大米有540袋,面粉有432袋.【解析】由它们的比是5:4可知,面数是大米的,而大米比面粉多108袋,所以大米有108÷(1﹣)袋,进而求出面粉有多少袋.解:大米有:108÷(1﹣)=540(袋);面粉有:540×=432(袋);答:大米有540袋,面粉有432袋.点评:本题主要根据它们的比先求出面粉是大米的几分之几后再根据多的袋数求出各有多少袋.3.鸡的只数与鸭的只数比是4:7.(1)鸡的只数是鸭的只数的.(2)鸭的只数是鸡鸭总数的.(3)鸭的只数是鸡的只数的倍.【答案】,,1.75.【解析】鸡的只数与鸭的只数比是4:7,把鸡的只数看作4份,鸭的只数7份.则鸡的只数和鸭的只数一共有4+7=11份,据此解答.解:(1)鸡的只数是鸭的只数的:4;(2)鸭的只数是鸡鸭总数的:7÷(4+7)=;(3)鸭的只数是鸡的只数的:7÷4=1.75.点评:解答此题的关键是利用份数进行解答.4.学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能多的平均分给每位小朋友,余下的苹果、饼干、糖的数量之比是1:2:3.问:学前班有多少位小朋友?【答案】34【解析】因为1+2=3,176+216﹣324=68,所以全班的人数应是68的约数.68的大于10的约数是17、34和68.据此解答.解:如果全班人数为17,176÷17=10…6,216÷17=12…12,324÷17=19…1,16:12:1≠1:2:3不符合题意;如果全班人数为34,176÷34=5…6,216÷34=6…12,324÷34=9…18,6:12:18=1:2:3符合题意;如果全班人数为68,176÷68=2…40,216÷68=3…12,324÷68=4…52,40:12:52≠1:2:3不符合题意;答:学前班有34位小朋友.点评:本题的关键是先求全班的最多是多少,然后再分情况进行讨论.5.六年级甲乙两班人数比为3:2,甲班转给乙班3名同学后,两班人数比为4:3,问甲乙两班原来各有多少人?【答案】甲班原来有63人,乙班原来有42人.【解析】根据“六年级甲乙两班人数比为3:2”,可知甲班人数是乙班的,设乙班原有x人,甲班就有x人;再根据“甲班转给乙班3名同学后,两班人数比为4:3”,列出比例,进而解比例得解.解:设乙班原有x人,甲班就有x人,由题意得:(x﹣3):(x+3)=4:3,x﹣9=4x+12,x=21,x=42;x=×42=63;答:甲班原来有63人,乙班原来有42人.点评:此题考查比的应用,关键是根据甲乙人数的比,推知甲班人数是乙班的,再根据甲班转给乙班3名后的比,列出比例得解.6.东、西两个仓库所存粮食的比是7:3.如果从东仓库运60吨粮食到西仓库,则东仓库存粮占西仓库的150%,两个仓库共存粮多少吨?【答案】600【解析】因两个仓库存粮的总数不变,原来东仓库的存粮占两库存粮的,“从东仓库运60吨粮食到西仓库,则东仓库存粮占西仓库的150%”,就是东仓库与乙仓库存粮的比是150:100=3:2,这是东仓库的存粮就占两库存粮的,60吨对应的分率就是两库存粮的﹣=,据此解答.解:东仓库存粮占西仓库的150%”,就是东仓库与乙仓库存粮的比是150:100=3:2,这是东仓库的存粮就占两库存粮的,60÷(﹣),=60÷,=600(吨).答:两个仓库共存粮600吨.点评:本题的关键是抓住不变量的两库存粮的总数,再分别求出东仓存粮原来和运出后各占两库总数的几分之几,然后根据60对应的分率求出两库的存粮总数.7.甲乙两车间人数比是3:5,若从乙车间调10人到甲车间,现在甲乙车间的人数比是2:3,原来甲车间有多少人?【答案】30【解析】根据题干,设原来甲车间有3x人,则乙车间就是5x人,从乙车间调10人到甲车间后,甲车间是3x+10人,乙车间是5x﹣10人,再根据现在甲乙车间的人数比是2:3,列出比例式求出x的值即可解答.解:设原来甲车间有3x人,则乙车间就是5x人,根据题意可得:(3x+10):(5x﹣10)=2:3,2(5x﹣10)=3(3x+10),10x﹣20=9x+30,x=10,10×3=30(人),答:甲车间原有30人.点评:解答此题的关键是利用已知的甲乙两个车间的人数之比,正确的设出未知数,再根据变化后的比列出比例式即可解答.8.妈妈5月份的工资是3200元,这个月花去的和剩下的钱数的比是5:3,花去的比剩下的多多少元?【答案】800【解析】由题意,把3200元看作5=3=8份,每份是3200÷8=400(元),又知花去的比剩下的多2份,那么花去的比剩下的多400×2元,解决问题.解:3200÷(5+3)×(5﹣3),=3200÷8×2,=400×2,=800(元);答:花去的比剩下的多800元.点评:把总钱数看作8份数,求出每份数,进一步解决问题.9.一辆汽车从甲城开往乙城,3小时行驶105km.用同样的速度又行驶了1.2小时到达乙城,甲城到乙城有多少千米?(用比例解)【答案】147【解析】根据速度一定,路程与时间成正比例,由此列出比例解决问题.解:设甲、乙两地相距x千米,105:3=x:(3+1.2),3x=105×(3+1.2),3x=441,x=147;答:甲城到乙城有147千米.点评:解答此题的关键是,根据题意及路程、速度与时间的关系,判断路程与时间成正比例,注意1.2小时是在前面3小时行驶后又行驶的时间,不是总路程对应的时间.10.一块铜锌的合金质量是760g,现在按锌、铜1:3的比例重新熔铸,需要添加40g铜,原有锌、铜各多少克?【答案】锌重200克,铜重560克.【解析】由题意得现在合金的重量为760+40=800克,根据现在合金中锌:铜=1:3,可知把总重量平均分成1+3=4份,用总重量除以总份数即可求出一份的重量,再用一份的重量分别乘各自占的份数即可求出现在合金中各自的重量,进而可以求出原来的重量.据此解答即可.解:(760+40)÷(1+3),=800÷4,=200(克),锌重:200×1=200(克)原来铜重:760﹣200=560(克).答:原有锌重200克,铜重560克.点评:此题主要考查利用比的应用解决实际问题.关键是求出每一份的重量.11.用192厘米的铁丝做一个长方体的框架.长、宽、高的比是7:5:4.这个长方体框架的体积是多少?【答案】3780【解析】根据“用192厘米的铁丝做一个长方体的框架”,可知一个长、宽、高的长度和是192除以4,也就是要分配的总量;把这个总量按7:5:4的比例进行分配,进一步求出它的长、宽、高的长度分别是多少,这个长方体框架的体积也就迎刃而解了.解:要分配的总量:192÷4=48(厘米),长:48×=21(厘米),宽:48×=15(厘米),高:48×=12(厘米),长方体框架的体积:21×15×12=3780(立方厘米).答:这个长方体框架的体积是3780立方厘米.点评:此题属于比的应用按比例分配题,关键是弄清要分配的总量和按什么比例进行分配,再进一步解决问题.12.小明读一本书,第一天读了全书的,第二天比第一天多读26页,这时已读的与剩下的页数比是7:5,这本书小明还有多少页没读?【解析】70读了两天后,已读的与剩下的页数比是7:5,即此时已读的占全部的,由于第一天读了第一天读了全书的,则第二天读的占全书的﹣,第二天比第一天多读了全书的﹣﹣,第二天比第一天多读26页,则全书的页数为26÷(﹣﹣),由此可知,这本书小明没有读的还有26÷(﹣﹣)×页.解:26÷(﹣﹣)×=26÷(﹣﹣)×,=26÷×,=70(页).答:小明没读的页数为70页.点评:首先根据两天后已读的页数与未读页数的比,求出已读页数占全部页数的分率,进而求出第二天比第一天多读的占全部的分率是完成本题的关键.13. A、B两的地相距360千米,甲、乙两车同时从两地出发,相向而行,3小时后相遇.已知甲车与乙车速度的比是7:5,求乙车的速度.【答案】50【解析】根据路程除以相遇时间等于速度和,即可求出甲、乙的速度和,再由甲车与乙车速度的比是7:5,即可求出乙车的速度.解:360÷3=120(千米),乙车的速度占甲、乙速度和的几分之几:5÷(7+5)=,120×=50(千米);答:乙车的速度是50千米.点评:解答此题的关键是,根据速度,路程,相遇时间的关系,求出速度和,再找出对应量,根据乘法的意义,列式解答即可.14.哲商小学原来新、老两个校区六年级人数的比是5:7,这学期老校有30人去新校,新校有6人转到老校,这样新校六年级的人数是老校六年级人数的.现在新校区六年级学生有多少人?【答案】384【解析】老校有30人去新校,新校有6人转到老校,变化的人数实际为(30﹣6),在这个过程中,实际不变的量是总人数,所以把两校总人数当做单位“1”,通过两校人数比的变化求出总人数是多少之后就能求出新校区有多少人.解:(30﹣6)÷(﹣)=24÷=864(人),864×=384(人)答:现在新校区六年级学生有384人.点评:本题关健是找出不变量,然后根据不变量求出所求问题.15.将8本相同厚度的书叠起来,高度是30厘米.如果将20本这样相同厚度的书叠起来,那么高度是多少厘米?(要求用比例的方法)【答案】75厘米.【解析】根据题意知道,一本书的厚度一定,书叠起的高度与书的本数成正比例,由此列比例解答.解:设20本书叠起的高度是x厘米,30:8=x:20,8x=30×20,x=,x=75;答:20本书叠起的高度是75厘米.点评:解答此题的关键是,先判断出哪两种相关联的量成何比例,再列出比例解答即可.16.求未知数Ⅹ﹣3x=:4=3.5:x.【答案】x=;x=10.【解析】(1)根据等式的性质,在方程两边同时加上3x,再减去,最后除以3来解.(2)先根据比例的基本性质,把原式转化为,再根据等式的性质,在方程两边同时除以来解.解:(1),,,,x=;(2):4=3.5:x,,,点评:本题考查了学生利用比例的基本性质和等式的性质解方程的能力,注意等号要对齐.17.三个修路队共同修一条长120千米的路,第一队修了这条路的,第二队与第三队所修路长的比是3:5,第三队修了多少千米?【答案】第三队修了45千米【解析】根据分数乘法的意义,先求出第二队和第三队所修路长的和是:120×(1)=72千米;再根据比的意义,即可求出第三队修的路长.解:120×(1)=72(千米),3+5=8,72×=45(千米),答:第三队修了45千米.点评:此题考查了利用分数乘法的意义解决问题的方法以及比在实际问题中的应用.18.100吨甘蔗可以榨糖12吨,照这样计算,6000吨甘蔗可以榨糖多少吨?如果要榨糖360吨,需要用甘蔗多少吨?【答案】6000吨甘蔗可以榨糖720吨;如果要榨糖360吨,需要用甘蔗3000吨.【解析】根据甘蔗的榨糖量一定,甘蔗的质量与糖的质量成正比例,由此设出未知数,列出比例解答即可.解:(1)6000吨甘蔗可以榨糖x吨,100:12=6000:x,100x=12×6000,x=720;(2)如果要榨糖360吨,需要用甘蔗y吨,100:12=y:360,12y=100×360,y=,y=3000;答:6000吨甘蔗可以榨糖720吨;如果要榨糖360吨,需要用甘蔗3000吨.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.19.李师傅3小时做了48个零件.照这样计算,8小时可做多少个零件?(用比例解答)【答案】8小时可做128个零件【解析】根据题意知道,工作效率一定,工作量和工作时间成正比例,由此列式解答即可.解:8小时可做x个零件,x:8=48:3,3x=8×48,x=,x=128;答:8小时可做128个零件.点评:解答此题的关键是,弄清题意,根据工作效率,工作时间和工作量三者的关系,列式解答即可.20.贝贝家来了3位客人,贝贝拿出20ml浓缩果汁按1:50的比给客人冲果汁喝,用如下图的玻璃杯,果汁倒至处,贝贝和客人每人一杯够吗?【答案】贝贝和客人每人一不杯够【解析】根据题意,求出20ml浓缩果汁按1:50,可配果汁多少,再利用圆柱的体积公式求出玻璃杯的体积,再进行比较即可.解:果汁体积为20×50=1000(ml)=1000(立方厘米),6÷2=3(厘米),4个玻璃杯里果汁体积为π×32×15××4=1130.4(立方厘米),1130.4>1000.2;答:贝贝和客人每人一不杯够.点评:解答此题主要分清所求物体的形状,转化为求有关图形的体积或面积的问题,把实际问题转化为数学问题,再运用数学知识解决.21.一艘轮船从甲港驶往乙港,每小时行25千米.12小时到达,返回时每小时行30千米,几小时可以到达?(用比例知识解答)【答案】10小时可以到达【解析】根据路程一定,速度与时间成反比例,由此列出比例解答即可.解:设x小时可以到达,30x=25×12,x=,x=10,答:10小时可以到达.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.22.(2011•平和县模拟)架线班要架设一条通讯线路,计划每天架设105米,40天完成.如果每天架设120米,多少天可以完成?(用方程解)【答案】35天可以完成【解析】根据通讯线路的总米数一定,每天架设的米数与架设的天数成反比例,由此列出比例解决问题.解:设x天可以完成,120x=105×40,x=,x=35,答:35天可以完成.点评:解答此题的关键是,每天架设的米数×架设的天数=通讯线路的总米数(一定),由此判断成何比例.23.(2011•宿州模拟)正方形的周长和边长的比是4:1..【答案】正确【解析】因为正方形的周长=边长×4,所以正方形的周长与边长的比是4:1;据此解答即可.解:正方形的周长与边长的比是:(边长×4):边长=4:1;故答案为:正确.点评:解答此题关键是根据正方形的周长的计算公式,进一步求得问题即可.24.(2011•郑州模拟)操场上有108名同学在锻炼身体,其中女生占,后来又来了几名女生,使女生人数和男生人数的比是3:7,后来来了几名女生?【答案】后来来了12名女生【解析】根据“女生占,”知道男生占(1﹣)由此求出男生的人数;再根据后来女生人数和男生人数的比是3:7,知道后来男生占总数的,又因为男生的人数不变,所以可以求出后来的总人数,进而求出后来来的女生的人数.解:108×(1﹣)﹣108,=108×﹣108,=84×﹣108,=120﹣108,=12(名);答:后来来了12名女生.点评:解答此题的关键是,根据题意知道男生的人数不变,然后将比转化成分数,再找出对应量,利用基本的数量关系列式解答即可.25.(2012•宜宾县模拟)AB两种商品原来价格之比为7:3,如果它们的价格分别上涨70元,则价格之比变成7:4.问这两种商品原来的价格各是多少元?【答案】甲种商品原来的价格是210元,乙种商品原来的价格是90元【解析】根据题意知道,甲、乙两种商品的价格差不会变化,由此根据“甲、乙两种商品的价格之比是7:3”,知道原来甲占价格差的,再根据“价格之比是7:4.”知道后来甲占价格差的,由此用70除以(﹣),即可求出价格差,进而求出这两种商品原来的价格.解:价格差是:70÷(﹣),=70÷,=70×,=120(元);甲原来的价格是:120×,=120×,=210(元),乙原来的价格:210﹣120=90(元);答:甲种商品原来的价格是210元,乙种商品原来的价格是90元.点评:解答此题的关键是,根据价格差不变化,将比转化为分率,统一单位“1”,再根据基本的数量关系解决问题.26.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少?【答案】做成的竖式纸盒与横式纸盒个数之比是4:3【解析】此题可以用设数法来解答,假设竖式纸盒有a个,横式纸盒有b个,由题意列式为(a+2b):(4a+3b)=2:5,然后化简即可.解:设竖式纸盒有a个,横式纸盒有b个,则共用长方形纸板(4a+3b)块,正方形纸板(a+2b)块.根据题意有:(a+2b):(4a+3b)=2:5,即5(a+2b)=2(4a+3b),5a+10b=8a+6b,3a=4b,即a:b=4:3.答:做成的竖式纸盒与横式纸盒个数之比是4:3.点评:此题的解题思路是:先设出竖式纸盒和横式纸盒的个数,然后相应地表示出共用长方形纸板的块数,正方形纸板的块数,再根据正方形纸板总数与长方形纸板总数之比为2:5,列出等式并化简.27.装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地需要多少块?(用比例知识解答)【答案】用边长4dm的方砖铺地需要125块【解析】根据题意知道客厅的面积一定,方砖的面积与方砖的块数成反比例,由此列出比例解决问题.解:设用边长4dm的方砖铺地需要x块,4×4×x=5×5×80,16x=25×80,x=,x=125;答:用边长4dm的方砖铺地需要125块.点评:解答本题的关键是判断哪两种量成何比例,注意此题给出的5dm与4dm是方砖的边长,不是方砖的面积.28.李师傅要加工一批零件,如果每小时加工50个,6小时可以加工完.若每小时加工60个,多少小时可以加工完?(用比例解)【答案】5小时可以加工完【解析】根据题意知道,零件的总个数一定,即总工作量一定,工作效率与工作时间成反比例,由此列出比例解答即可.解:设x小时可以加工完,60x=50×6,x=,x=5,答:5小时可以加工完.点评:关键是根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.29.(2010•泸西县模拟)一座16层高的住宅楼(层高3米),地基深为8米.按照这样的比例,盖一座22层高的住宅楼,需打多深的地基?【答案】需打11米深的地基【解析】由题意可知:每米的楼高需打地基的深度是一定的,则楼的高度与地基的深度成正比例关系,据此即可列比例求解.解:设需打x米深的地基,则有(16×3):8=(22×3):x,48x=66×8,48x=528,x=11;答:需打11米深的地基.点评:解答此题的主要依据是:若两个量的商一定,则这两个量成正比例,从而可以列比例求解.30.(2012•同心县模拟)用600页纸装订同样的练习本如下表:600=(2)、根据上面的关系式,求X=15时,Y=.(3)、练习本每本的页数和装订的本数成比例吗?成什么比例?说明理由.【答案】XY,40【解析】(1)由表格知道每本装订的页数×装订的本数=600,所以用Y表示装订的本数,用X表示每本装订的页数,那么600=XY;(2)把X=15时代入XY=600解方程即可求出Y的值;(3)判练习本每本的页数和装订的本数之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:(1)因为每本装订的页数×装订的本数=600,所以用Y表示装订的本数,用X表示每本装订的页数,那么600=XY;(2)把X=15时代入XY=600,即15Y=600,Y=600÷15,Y=40,(3)因为练习本每本的页数×装订的本数=600(一定),符合反比例的意义,所以练习本每本的页数和装订的本数成反比例,故答案为:XY,40.点评:本题主要是利用正、反比例的意义解决问题.31.小明和小红所集邮票张数的比是5:6,小明给小红10张邮票后,小明和小红邮票张数的比是4:5.小明和小红一共有多少张邮票?【答案】小明和小红一共有990张邮票【解析】因原来小明和小红所集邮票张数的比是5:6,就是小明的邮票张数占全部邮票的,小明给小红10张邮票后,小明和小红邮票张数的比是4:5,就是小明的邮票张数占全部邮票的,也就是全部邮票的()就是10,根据分数除法的意义可列式解答.解:10,=10÷,=10,=990(张).答:小明和小红一共有990张邮票.点评:本题考查了学生对比与分数的掌握,和利用分数除法的意义解题的能力.32.某工程队男女职工人数的比是4:3.因支援其他工程,调走女职工66人,这时女职工人数是男职工人数的,这个工程队原来有男职工多少人?【答案】这个工程队原来有男职工有216人【解析】根据“男女职工人数的比是4:3.”知道女职工人数是男职工的,又根据题意知道男职工的人数不变,而女职工的人数由占男职工的变为占男职工人数的,是因为调走女职工66人,因此用对应的数66除以对应的分数(﹣),就是要求的单位“1”,即原来男职工的人数.解:66÷(﹣),=66÷,=66×,=216(人);答:这个工程队原来有男职工有216人.点评:根据男职工的人数不变,将单位“1”统一为男职工的人数,再找出对应的分率与对应的数,用除法列式解答即可.33.同一种方砖铺一间长8米,宽6米的乒乓球室的地板,先用200块方砖就铺了32平方米,余下的还要多少方砖?(用比例解)【答案】余下的还要100块方砖【解析】由题意可知:每块方砖的面积是一定的,则铺设的底面的面积与需要的方砖的块数成正比例,据此即可列比例求解.解:设余下的还要x方砖,则有32:200=(8×6﹣32):x,32x=200×(8×6﹣32),32x=200×16,32x=3200,x=100;答:余下的还要100块方砖.点评:解答此题的主要依据是:若两个相关联量的商一定,则这两个量成正比,从而可以列比例求解.34.建筑工地计划运进一批水泥,第一次运来总数的25%,第二次运来180吨,这时运来的与没运来的吨数比是4:3,工地计划运进的这批水泥是多少吨?【答案】工地计划运进的这批水泥是560吨【解析】第二次运来180吨后,运来的与没运来的吨数比是4:3,即已运来的占总数的,又第一次运来总数的25%,则这180吨占总数的﹣25%,所以这批水泥共有180÷(﹣25%)吨.解:180÷(﹣25%)=180÷(﹣25%),=180÷,=560(吨).答:工地计划运进的这批水泥是560吨.点评:首先根据二次运来180吨,运来的与没运来的吨数比求出已运来的占总数的分率是完成本题的关键.35.修一条公路,已经修的和没有修的长度比是1:3,再修300米,已经修的长度是没有修的,共修了多少千米?【答案】共修了1.2千米【解析】根据“已经修的和没有修的长度比是1:3,”知道已经修的占公路总长度的,再根据“已经修的长度是没有修的,”知道已经修的长度占公路总长度的,,由此用(﹣)去除对应的量300米就是这条路的总长度,进而求出修路的千米数.解:300÷(﹣)=300÷,=3600(米);3600×,=3600×,=1200(米),1200米=1.2千米.答:共修了1.2千米.点评:这道题单位“1”是这条公路的全长,单位“1”是不变的,统一单位“1”,找到300米的对应分率,用除法求出单位“1”进而得出答案.36.(2012•商丘模拟)一堆煤,第一天运走的吨数与总吨数的比是1:3,第二天运走4.5吨后,两天正好运走了总数的一半,这堆煤有多少吨?【答案】这堆煤有27吨【解析】把这堆煤的总量看作单位“1”,由题意可知:第一天运走的吨数占总吨数的,再据“第二天运走4.5吨后,两天正好运走了总数的一半”可知,第二天运走的吨数占总吨数的(),而第二天运走的实际吨数是4.5吨,所以用4.5除以()就是这堆煤的总量.解:4.5÷(),=4.5÷,=27(吨);答:这堆煤有27吨.点评:解答此题的关键是求出4.5吨的对应分率(),进而求出这堆煤的总量.37.装配车间要装配一批洗衣机,计划每天装配42台,20天内完成任务,实际每天多装配8台,需要几天完成?(有比例知识解)【答案】实际每天多装配8台,需要16.8天完成【解析】根据题意知道洗衣机的总量一定,每天装配的台数×装配需要的天数=洗衣机的总量(一定),所以每天装配的台数与装配需要的天数成反比例,由此列出比例解答即可.解:设需要x天就可以完成任务,(42+8)x=42×20,50x=840,x=16.8;答:实际每天多装配8台,需要16.8天完成.点评:解答此题的关键是明白,洗衣机的总量一定,每天装配的台数与装配需要的天数成反比例.38.工程队修一条路,上半月修好的米数与全长的比是1:5.如果再修360米,就正好修了这条路的一半.这条路全长多少米?【答案】这条路全长1200米【解析】把全长看作单位“1”,根据“上半月修好的米数与全长的比是1:5”,可知上半月修好的米数占全长的,再根据“如果再修360米,就正好修了这条路的一半”,可以求出360 米就相当于全长的(﹣),然后用除法计算.解:360÷(﹣),=360×,=1200(米);答:这条路全长1200米.点评:此题主要考查分数除法的应用及比与分数的关系,用数量除以它的对应分率就是单位“1”,即全长.39.李明与王华身高的比是6:5,李明比王华高;王华比李明矮.【答案】;【解析】(1)把王华的身高看作单位“1”,则李明的身高是王华身高的,于是利用分数减法的意义即可求解;(2)把李明的身高看作单位“1”,则王华的身高是李明身高的,于是利用分数减法的意义即可求解.解:(1)﹣1=;(2)1﹣=;故答案为:;.点评:解答此题的关键是:要设出不同的单位“1”,比谁就把谁看作单位“1”,从而问题逐步得解.40.一种合金中A和B两种物质的质量比是4:5,那么A物质的质量占这种合金的.【答案】【解析】一种合金中A和B两种物质的质量比是4:5,A物质的质量占这种合金的,据此解答.解:=,答:么A物质的质量占这种合金的.故答案为:.点评:本题主要考查了学生对比与分数之产关系的掌握情况.41.某校男生人数和女生人数的比是8:7,则男生人数占全校学生人数的,女生人数占全校学生人数的.【答案】;【解析】根据题干,可知单位“1”的量是全校学生人数,男生人数占了其中的8份,女生人数占了其中的7份,进而可知全校学生就是8+7=15分,据此用男生人数除以全校人数,用女生人数除以全校人数即可解答.解:7+8=15,。
二年级比多少应用题
二年级比多少应用题在数学中,比多少应用题是一种常见的题型,它涉及到比较两个或多个数量的多少。
这种题型对于二年级的学生来说,是一个重要的学习内容。
下面,我们将通过几个例子来探讨如何解决这种题型。
例1:小明有5个苹果,小红有3个苹果,请问小明比小红多几个苹果?这是一个简单的比多少应用题。
我们可以通过直接相减得到答案。
解法:5 - 3 = 2答:小明比小红多2个苹果。
例2:动物园里有5只猴子,10只鸽子。
请问猴子比鸽子少几只?这个问题与上一个问题类似,但是角色和数量发生了变化。
我们依然可以通过直接相减得到答案。
解法:10 - 5 = 5答:猴子比鸽子少5只。
例3:在一个班级里,有30个学生。
我们知道这个班级的男生有15人,女生有14人。
请问男生比女生多几人?这个问题稍微复杂一些,因为我们需要先计算出男生的数量和女生的数量,然后再进行比较。
解法:我们知道男生的数量是15人,女生的数量是14人。
所以,男生的数量比女生多:15 - 14 = 1人。
答:男生比女生多1人。
通过以上三个例子,我们可以看到解决比多少应用题的基本方法是比较两个数量的差值。
对于简单的题型,我们可以直接计算出答案;对于稍微复杂的题型,我们可以通过先计算每个数量的值,然后再进行比较得出答案。
在解决这种问题时,需要学生具备一定的数学基础和细心计算的能力。
通过这种题型的学习,也可以帮助学生提高对数学的兴趣和应用能力。
一年级数学比多少应用题在数学中,比多少是一个重要的概念,尤其是一年级的学生需要充分理解和掌握这个概念。
比多少通常是指比较两个或多个数量的相对大小。
通过解决比多少的应用题,学生可以培养对数学的理解和解决问题的能力。
一、比多少的应用题示例例1:小华和小明都有一些苹果,小华有5个苹果,而小明有8个苹果,请问谁拥有的苹果更多?例2:动物园里有两只小熊和三只小猴,请问哪一类动物更多?例3:教室里有20个红色气球和15个蓝色气球,请问哪种颜色的气球更多?二、解题方法对于这类比多少的应用题,关键是要先确定数量,然后比较大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例应用题
1、两个正方形边长的比是5:4,它们面积的比是多少?
2、盐和水配成盐水,盐与水之比是2:8 ,现有盐4千克,要和多少千克水混合?
3、甲.乙两数的比是3:2,甲.丙两数的比是4:3,求甲.乙.丙三数的连比,
4、把一批图书按4:5:6,分借给ABC三个班,已知A班比C班少得24本,三个班各
分得多少本?
5、饲养小组养的白兔与黑兔的只数比是7:5,饲养黑兔250只,养的白兔与黑兔共多少
只?
6、一个长方体的棱长之和为152厘米,它的长.宽.高的比是8:6:5,这个长方体的体积
是多少?
7、三个数的比是4:6:9,如果第一.二两个数之和是100,求出这三个数。
8、在一个等腰三角形中,顶角和底角的度数之比是4:3,这个三角形的顶角和底角分别
是多少度?
9.一个长方形的长是10厘米,宽与长之比是3:5,这个长方形的面积是多少平方厘米?。