浅谈离散型随机变量的分布列与数学期望及方差的求法
第九章第6讲 离散型随机变量的分布列、均值与方差
第6讲 离散型随机变量的分布列、均值与方差[学生用书P203])1.离散型随机变量的分布列(1)定义:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 2.离散型随机变量X 的均值与方差3.均值与方差的性质(1)E (aX +b )=aE (X )+b (a ,b 为常数). (2)D (aX +b )=a 2D (X )(a ,b 为常数).1.辨明三个易误点(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的.(2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.(3)均值E (X )是一个实数,由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.2.求离散型随机变量均值、方差的基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解; (2)已知随机变量X 的均值、方差,求X 的线性函数Y =aX +b 的均值、方差和标准差,可直接用X 的均值、方差的性质求解;(3)如能分析所给随机变量服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.1.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为X ,则表示“放回5个红球”事件的是( )A .X =4B .X =5C .X =6D .X ≤5C [解析] 事件“放回5个红球”表示前5次摸到黑球,且第6次摸到红球,故X =6.2.教材习题改编 设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12C.14D .18D [解析] 由分布列的性质,得12+14+18+p 4=1,所以p 4=18.3.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10),则D (X )等于( )A .5B .8C .10D .16B [解析] 因为E (X )=15(2+4+6+8+10)=6,所以D (X )=15[(-4)2+(-2)2+02+22+42]=8.4.设随机变量X 的分布列为P (X =k )=k15,k =1,2,3,4,5,则P ⎝⎛⎭⎫12<X <52=________. [解析] P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=115+215=15. [答案] 155.一个人将编为1,2,3,4的四个小球随机放入编为1,2,3,4的四个盒子,每个盒子放一个小球,球的编与盒子的编相同时叫做放对了,否则叫做放错了.设放对个数记为ξ,则ξ的期望的值为________.[解析] 将四个不同小球放入四个不同盒子,每个盒子放一个小球,共有A 44种不同放法,放对的个数ξ可取的值有0,1,2,4,其中P (ξ=0)=9A 44=38, P (ξ=1)=C 14×2A 44=13,P (ξ=2)=C 24A 44=14,P (ξ=4)=1A 44=124,E (ξ)=0×38+1×13+2×14+4×124=1. [答案] 1离散型随机变量的分布列的性质[学生用书P204][典例引领]设离散型随机变量X 的分布列为求2X +1的分布列.【解】 由分布列的性质知: 0.2+0.1+0.1+0.3+m =1, 解得m =0.3. 首先列表为:从而2X +1的分布列为在本例的条件下,求P (1<X ≤4). [解] 由例题解析知m =0.3,所以P (1<X ≤4)=P (X =2)+P (X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. [解析] 因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. [答案] 23 ⎣⎡⎦⎤-13,13离散型随机变量的均值(高频考点)[学生用书P204]离散型随机变量的均值是高考命题的热点,多以解答题的形式呈现,多为中档题. 高考对离散型随机变量的均值的考查主要有以下两个命题角度: (1)已知离散型随机变量的均值,求参数值; (2)已知离散型随机变量符合的条件,求其均值.[典例引领](2015·高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.【解】 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故E (X )=0×715+1×715+2×115=35(个).求离散型随机变量X 的均值的方法(1)理解X 的意义,写出X 可能取的全部值; (2)求X 取每个值的概率; (3)写出X 的分布列; (4)由均值的定义求E (X ).[题点通关]角度一 已知离散型随机变量的均值,求参数值1.某射击运动员在一次射击比赛中所得环数ξ的分布列如下:已知ξ的均值E (ξ)=4.3,则y 的值为( ) A .0.6 B .0.4 C .0.2D .0.1C [解析] 由题意知,x +0.1+0.3+y =1,又E (ξ)=3x +4×0.1+5×0.3+6y =4.3,两式联立解得y =0.2.角度二 已知离散型随机变量符合的条件,求其均值2.根据某电子商务平台的调查统计显示,参与调查的1 000位上购物者的年龄情况如图所示.(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上购物者人数成等差数列,求a ,b 的值;(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1 000位上购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此3人获得代金券总和X 的分布列与数学期望.[解] (1)由题意可知⎩⎪⎨⎪⎧2b =a +0.015,(0.01+0.015×2+b +a )×10=1, 解得a =0.035,b =0.025.(2)利用分层抽样从样本中抽取10人,其中属于高消费人群的有6人,属于潜在消费人群的有4人.从中抽取3人,并计算3人所获得代金券的总和X ,则X 的所有可能取值为:150,200,250,300,P (X =150)=C 36C 310=16,P (X =200)=C 26C 14C 310=12,P (X =250)=C 16C 24C 310=310,P (X =300)=C 34C 310=130.故X 的分布列为E (X )=150×16+200×12+250×310+300×130=210.离散型随机变量的均值与方差的应用[学生用书P205][典例引领]为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望.(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【解】 (1)设顾客所获的奖励额为X 元.①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60.P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元). (2)根据商场的预算,每个顾客的平均奖励额为60元. 所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1元,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2元,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.利用均值与方差解决实际问题的方法(1)对实际问题进行具体分析,将实际问题转化为数学问题,并将问题中的随机变量设出来.(2)依据随机变量取每一个值时所表示的具体事件,求出其相应的概率. (3)依据期望与方差的定义、公式求出相应的期望与方差值. (4)依据期望与方差的意义对实际问题作出决策或给出合理的解释.(2017·郑州市第一次质量预测)某中药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为20万元;有雨时收益为10万元.额外聘请工人的成本为a 万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益; (2)该基地是否应该外聘工人,请说明理由.[解] (1)设下周一无雨的概率为p ,由题意,p 2=0.36,p =0.6, 基地收益X 的可能取值为20,15,10,7.5,则P (X =20)=0.36,P (X =15)=0.24,P (X =10)=0.24,P (X =7.5)=0.16, 所以基地收益X 的分布列为基地的预期收益E (X )=20×0.36+15×0.24+10×0.24+7.5×0.16=14.4, 所以基地的预期收益为14.4万元. (2)设基地额外聘请工人时的收益为Y 万元,则其预期收益E (Y )=20×0.6+10×0.4-a =16-a(万元),E (Y )-E (X )=1.6-a ,综上,当额外聘请工人的成本高于1.6万元时,不外聘工人;成本低于1.6万元时,外聘工人;成本恰为1.6万元时,是否外聘工人均可以.[学生用书P206])——随机变量的均值与其他知识的交汇(2015·高考湖北卷)某厂用鲜牛奶在某台设备上生产A ,B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A ,B 两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.【解】 (1)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z , 则有⎩⎪⎨⎪⎧2x +1.5y ≤W ,x +1.5y ≤12,2x -y ≥0,x ≥0,y ≥0.(*)目标函数为z =1 000x +1 200y .将z =1 000x +1 200y 变形为l :y =-56x +z1 200,设l 0:y =-56x .①②③当W =12时,(*)表示的平面区域如图①阴影部分所示,三个顶点分别为A (0,0),B (2.4,4.8),C (6,0).平移直线l 0知当直线l 过点B , 即当x =2.4,y =4.8时,z 取最大值,故最大获利Z =z max =2.4×1 000+4.8×1 200=8 160(元).当W =15时,(*)表示的平面区域如图②阴影部分所示,三个顶点分别为A (0,0),B (3,6),C (7.5,0).平移直线l 0知当直线l 过点B , 即当x =3,y =6时,z 取得最大值,故最大获利Z =z max =3×1 000+6×1 200=10 200(元). 当W =18时,(*)表示的平面区域如图③阴影部分所示,四个顶点分别为A(0,0),B(3,6),C(6,4),D(9,0).平移直线l0知当直线l过点C,即当x=6,y=4时,z取得最大值,故最大获利Z=z max=6×1 000+4×1 200=10 800(元).故最大获利Z的分布列为因此,E(Z)=8 160×0.3+10 200×0.5+10 800×0.2=9 708.(2)由(1)知,一天最大获利超过10 000元的概率p1=P(Z>10 000)=0.5+0.2=0.7,由二项分布,3天中至少有1天最大获利超过10 000元的概率为p=1-(1-p1)3=1-0.33=0.973.(1)本题是离散型随机变量的分布列、均值与线性规划交汇.解决本题需根据题目所给信息提炼出线性约束条件和目标函数,然后再求Z的值.考查了对数学的应用意识、数据处理能力及数形结合思想.(2)离散型随机变量的均值常与统计、平面向量、函数、数列、不等式等知识交汇,题目设计新颖,是近几年高考考查的热点.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X的分布列.[解] (1)从8个点中任取两点为向量终点的不同取法共有C28=28(种),当X=0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27.(2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为[学生用书P311(独立成册)]1.若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12C.12D .1 C [解析] 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.2.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A.13 B .16C.12D .56D [解析] 由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.3.随机变量ξ的取值为0,1,2,若P (ξ=0)=15,E (ξ)=1, 则D (ξ)=________.[解析] 设ξ=1时的概率为p ,则E (ξ)=0×15+1×p +2×⎝⎛⎭⎫1-p -15=1,解得p =35,故D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.[答案] 254.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.[解析] X 的所有可能值为0,1,2.P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为[答案]5.若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望E (X ). [解] (1)个位数字是5的“三位递增数”有 125,135,145,235,245,345.(2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1,因此 P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142.所以X 的分布列为则E (X )=0×23+(-1)×114+1×1142=421.6.(2017·山东青岛一模)一个袋中装有7个除颜色外完全相同的球,其中红球4个,编分别为1,2,3,4;蓝球3个,编分别为2,4,6,现从袋中任取3个球(假设取到任一球的可能性相同).(1)求取出的3个球中含有编为2的球的概率;(2)记ξ为取到的球中红球的个数,求ξ的分布列和数学期望. [解] (1)设A =“取出的3个球中含有编为2的球”,则P (A )=C 12C 25+C 22C 15C 37=20+535=2535=57. (2)由题意得,ξ可能取的值为0,1,2,3,则 P (ξ=0)=C 33C 37=135,P (ξ=1)=C 14·C 23C 37=1235, P (ξ=2)=C 24·C 13C 37=1835, P (ξ=3)=C 34C 37=435.所以ξ的分布列为所以E (ξ)=0×135+1×1235+2×1835+3×435=127.7.袋中有20个大小相同的球,其中记上0的有10个,记上n 的有n 个(n =1,2,3,4),现从袋中任取一球,X 表示所取球的标.(1)求X 的分布列、期望和方差;(2)若Y =aX +b ,E (Y )=1,D (Y )=11,试求a ,b 的值. [解] (1)X 的取值为0,1,2,3,4,其分布列为所以E (X )=0×12+1×120+2×110+3×320+4×15=1.5,D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (Y )=a 2D (X )得2.75a 2=11,得a =±2, 又E (Y )=aE (X )+b ,所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4,所以⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4.8.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.[解] (1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80.所以y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧10n -80,n <1680,n ≥16,(n ∈N ).(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7. X 的分布列为X 的数学期望E (X )=60×0.1+70×0.2+80×0.7=76.X 的方差D (X )=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44. ②答案一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 的数学期望E (Y )=55×0.1+65×0.2+75×0.16+85×0.54=76.4.Y 的方差为D (Y )=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,D (X )<D (Y ),即购进16枝玫瑰花时利润波动相对较小.另外,虽然E (X )<E (Y ),但两者相差不大.故花店一天应购进16枝玫瑰花.答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y的数学期望E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,E(X)<E(Y),即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.9.(2017·兰州市诊断考试)甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪70元,每单抽成2元;乙公司无底薪,40单以内(含40单)的部分每单抽成4元,超出40单的部分每单抽成6元.假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)现从甲公司记录的这100天中随机抽取2天,求这2天送餐单数都大于40的概率;(2)若将频率视为概率,回答以下问题:①记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;②小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他做出选择,并说明理由.[解] (1)记“抽取的2天送餐单数都大于40”为事件M,则P(M)=C220C2100=19495.(2)①设乙公司送餐员送餐单数为a,则当a=38时,X=38×4=152;当a=39时,X=39×4=156;当a =40时,X =40×4=160; 当a =41时,X =40×4+1×6=166; 当a =42时,X =40×4+2×6=172.所以X 的所有可能取值为152,156,160,166,172. 故X 的分布列为所以E (X )=152×110+156×15+160×15+166×25+172×110=162.②依题意,甲公司送餐员日平均送餐单数为38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5, 所以甲公司送餐员日平均工资为70+2×39.5=149(元). 由①得乙公司送餐员平均工资为162元. 因为149<162,故推荐小明去乙公司应聘.10.某公司准备将1 000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择.若投资甲项目一年后可获得的利润ξ1(万元)的概率分布列如下表所示:且ξ1的期望E (ξ1)=120;若投资乙项目一年后可获得的利润ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为p (0<p <1)和1-p .若乙项目产品价格一年内调整次数X (次)与ξ2的关系如下表所示:(1)求m ,n 的值; (2)求ξ2的分布列;(3)若E (ξ1)<E (ξ2),则选择投资乙项目,求此时p 的取值范围.[解] (1)由题意得⎩⎪⎨⎪⎧m +0.4+n =1,110m +120×0.4+170n =120,解得m =0.5,n =0.1.(2)ξ2的可能取值为41.2,117.6,204, P (ξ2=41.2)=(1-p )[1-(1-p )]=p (1-p ),P (ξ2=117.6)=p [1-(1-p )]+(1-p )(1-p )=p 2+(1-p )2, P (ξ2=204)=p (1-p ), 所以ξ2的分布列为(3)由(2)可得:E (ξ2)=41.2p (1-p )+117.6[p 2+(1-p )2]+204p (1-p )=-10p 2+10p +117.6, 由E (ξ1)<E (ξ2),得120<-10p 2+10p +117.6, 解得0.4<p <0.6,即当选择投资乙项目时,p 的取值范围是(0.4,0.6).。
离散型随机变量的分布列及均值、方差
(2)方差
n
称 D(X)=
(xi-E(X))2pi
i=1
为随机变量 X 的方差,它刻画了随机变量 X 与其均
值 E(X)的 平均偏离程度 ,并称其算术平方根 DX为随机变量 X 的 标准差 .
4.均值与方差的性质 (1)E(aX+b)= aE(X)+b . (2)D(aX+b)= a2D(X) .(a,b 为常数)
题型一 分布列的求法 例 1 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,
在推出的第二季名师云课中,数学学科共计推出 36 节云课,为了更好地将课程
内容呈现给学生,现对某一时段云课的点击量进行统计:
点击量 [0,1 000] (1 000,3 000] (3 000,+∞)
节数
3 5
题型二 均值与方差 例 2 某投资公司在 2019 年年初准备将 1 000 万元投资到“低碳”项目上,现有 两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利 30%,也 可能亏损 15%,且这两种情况发生的概率分别为79和29;
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利 50%,可能 损失 30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115. 针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
3.离散型随机变量的均值与方差 一般地,若离散型随机变量 X 的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn (1)均值 称 E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变量 X 的均值或 数学期望 .它 刻画了离散型随机变量取值的 平均水平 .
【思维升华】 离散型随机变量的均值与方差的常见类型及解题策略 (1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布 列,然后利用均值、方差公式直接求解. (2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的 方程(组),解方程(组)即可求出参数值. (3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题 作出判断.
离散型随机变量的分布列与期望和方差
离散型随机变量的分布列与期望和方差考点一:离散型随机变量的分布列 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量 (2)方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根()X D 为随机变量X 的标准差.(3)均值与方差的性质 1.E(aX +b)=aE(X)+b. 2.D(aX +b)=a2D(X)(a ,b 为常数). 考点二:超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k=0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,如果随机变量X 的分布列具有下表形式,考点三:二项分布二项分布;在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 基础练习1.在某公司的两次投标工作中,每次中标可以获利14万元,没有中标损失成本费8000元.若每次中标的概率为0.7,每次投标相互独立,设公司这两次投标盈利为X 万元,则EX =( ) A .18.12B .18.22C .19.12D .19.222.设服从二项分布B (n ,p )的随机变量X 的期望与方差分别是10和8,则n ,p 的值分别是( ) A .B .C .D .3.已知X 的分布列为X ﹣1 0 1 P且Y =aX +3,E (Y )=,则a 为( ) A .1B .2C .3D .44.设随机变量X ∼N(1,δ2),且P(X>2)=51,则P(0<X<1)=___.5.已知离散型随机变量x 的取值为0,1,2,且()()(),2,1,410b x p a x p x p ======若()1=X E ,则 ()=X D .6.若随机变量,且,,则当 .(用数字作答)7.已知随机变量X 满足(23)7E X +=,(23)16D X +=,则下列选项正确的是( ) A .7()2E X =,13()2D X = B .()2E X =,()4D X = C .()2E X =,()8D X = D .7()4E X =,()8D X = 超几何分布VS 二项分布1.“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望;(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.2.某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50~(,)X B n p 52EX =54DX =(1)P X ==条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(1)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(2)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X ,求x 的分布列和数学期望.3.假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为0.9,随机抽取4个投保人,设其中活过65岁的人数为X ,保险公司支出给这4人的总金额为Y 万元(参考数据:40.90.6561=) (1)指出X 服从的分布并写出Y 与X 的关系; (2)求(22)≥P Y .(结果保留3位小数)考点四:正太分布1.已知随机变量ξ服从正态分布)9,5(N ,若)2()2(-<=+>c p c p ξξ,则c 的值为( )A .4B .5C .6D .72.已知随机变量服从正态分布即,且,若随机变量,则( )A .0.3413B .0.3174C .0.1587D .0.15863.已知随机变量X ∼N (2,1),其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( )A .0.1359B .0.7282C .0.8641D .0.932054.某市高三年级第二次质量检测的数学成绩X 近似服从正态分布N (82,σ2),且P (74<X <82)=0.42.已知我市某校有800人参加此次考试,据此估计该校数学成绩不低于90分的人数为( ) A .64B .81C .100D .1215.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .X 2~(,)X N μσ()0.6826P X μσμσ-<≤+=~(5,1)X N (6)P X ≥=①利用该正态分布,求(187.8212.2)P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求()E X .12.2≈.若2(,)Z N μσ~,则()0.6826P Z μσμσ-<<+=,(22)P Z μσμσ-<<+0.9544=.。
离散型随机变量分布列期望及方差
离散型随机变量分布列、期望及方差高三数学徐建勋2010-1-30教学目标:1、理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性2、理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题教学重点:(1)离散型随机变量及其分布列(2)条件概率及事件的独立性(3)离散型随机变量的期望与方差教学难点:离散型随机变量及其分布列及其两个基本性质教学过程:【知识梳理】1、随机变量的概念如果随机试验的结果可以用一个变量X表示,并且X是随着试验的结果的不同而变化的,那么这样的变量X叫随机变量,随机变量常用希腊字母X、Y、…表示。
如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.2、离散型随机变量的分布列设离散型随机变量X可能取得的值为,X取得每一个值的概率为,则称表为离散型随机变量X的概率分布,或称为离散型随机变量X的分布列.离散型随机变量X的分布列的性质:(1)(2)一般的,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。
3、二点分布如果随机变量X的分布列为,其中,则称离散型随机变量X服从参数为的二点分布.4、超几何分布一般的,设有总数为N件的两类物品,其中一类有n件,从所有物品中任取M件(M ≤N),这M件中所含这类物品的件数X是一个离散型随机变量,它取值为m时的概率为我们称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.5、条件概率一般地,设A,B为两个事件,且,在事件A发生的条件下,事件B发生的条件概率记为6、独立重复试验一般地,在相同条件下,重复地做n次试验称为n次独立重复试验.在n次独立重复试验中,事件A恰好发生k次的概率为,,1,2,…,n,其中p是一次试验中该事件发生的概率。
7、二项分布若将事件A发生的次数设为X ,事件A不发生的概率设为,那么在n次独立重复试验中,事件A恰好发生k次的概率是(其中k = 0,1,2,…,n),于是得到X的分布列:则称这样的离散型随机变量X服从参数为n,p的二项分布,记为。
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
2离散型随机变量的期望值和方差
离散型随机变量的期望值和方差一、基本知识概要:1、 期望的定义:一般地,若离散型随机变量ξ的分布列为则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。
它反映了:离散型随机变量取值的平均水平。
若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。
E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P2、 方差、标准差定义:D ξ=(x 1-E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。
D ξ的算术平方根ξD =δξ叫做随机变量的标准差。
随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。
且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。
若ξ~B(n ,p),则D ξ=npq ,其中q=1-p.3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。
二、例题: 例1、(1)下面说法中正确的是 ( )A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。
B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。
C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。
D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。
解:选C说明:此题考查离散型随机变量ξ的期望、方差的概念。
(2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是。
解:含红球个数ξ的E ξ=0×101+1×106+2×103=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本题型和内容为主,突出应用性和实践性及综合性。
高中离散型随机变量的分布列、期望与方差
第51讲离散型随机变量的分布列、期望与方差【学习目标】1.了解离散型随机变量的期望、方差、标准差的概念,会求某些简单的离散型随机变量的概率分布.2.会根据离散型随机变量的分布列求期望、方差或标准差,并能解决一些实际问题.3.理解超几何分布、二项分布的试验模型,会将某些特殊离散型随机变量的分布列、期望与方差转化化归为二项分布求解.【知识要点】1.离散型随机变量的分布列(1)随机变量如果随机试验的每一个试验结果都可以用一个确定的数字表示,数字随着试验结果的变化而变化的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等来表示.(2)离散型随机变量对于随机变量可能取到的值,可以按一定顺序一一列出,这样的变量就叫离散型随机变量.(3)分布列设离散型随机变量X可能取的值为x1,x2,…,x i,…,x n,而每一个值的概率为P(X=x i)=p i (i=1,2,…,n).则称表为随机变量X的概率分布列.(4)分布列的两个性质①0≤p i≤1,i=1,2,…,n. ②p1+p2+…+p n=1.2.两点分布如果随机变量X 的分布列为(其中0<p<1),q=1-p,则称离散型随机变量X服从参数为p的两点分布列.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为P(X=k)=C M k C N-M n-kC N n,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称此分布列:P148.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.P13为超几何分布列.、4.离散型随机变量的均值与方差若离散型随机变量ξ的分布列为:(1)均值:称Eξ=x1p1+x2p2+…+x n p n为随机变量ξ的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差:称Dξ=∑ni=1(x i-Eξ)2p i为随机变量ξ的方差,它刻画了随机变量ξ与其均值Eξ的平均偏离程度,其算术平方根Dξ为随机变量ξ的标准差.5.均值与方差的性质(1)E(aξ+b)=aEξ+b.(2)D(aξ+b)=a2Dξ.6.基本性质若ξ服从两点分布,则Eξ=p,Dξ=p(1-p)若X服从二项分布,即ξ~B(n,p),则Eξ=np,Dξ=np(1-p).典型例题考点一、超几何分布及其应用例题1.某校校庆,各届校友纷至沓来,某班共来了n位校友(n>10且n∈N*),其中女校友6位,组委会对这n位校友制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率等于12,求n的值;(2)当n=12时,设选出的2位校友中女校友人数为ξ,求ξ的分布列和Eξ.考点二、二项分布及其应用例题2. (2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?7.某公司规定:员工的销售津贴按季度发放,如果员工没有完成季度销售任务,则在其相应季度的销售津贴中扣除500元,但每个员工全年最多扣除1000元销售津贴.设某员工完成季度销售任务的概率为0.8,且每个季度是否完成销售任务是相互独立的,计算(结果精确到0.01):(1)一年内该员工连续两个季度扣销售津贴的概率;(2)一年内该员工恰好两个季度扣销售津贴的概率;(3)一年内该员工平均扣多少销售津贴.6.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下:将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.P4 考点三、离散型随机变量的分布列、数学期望与方差例题3. (2013浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a∶b∶c.P54.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=____(结果用最简分数表示).5.设p为非负实数,随机变量X的概率分布列为:则EX的最大值为____;DX的最大值为____.P10考点集训1.已知X~B(n,p),E(X)=8,D(X)=1.6,则n和p值分别为( )A.100和0.08 B.20和0.4C.10和0.2 D.10和0.82.设随机变量ξ的分布列为P(ξ=k)=ck(k+1),k=1,2,3,c为常数,则P(0.5<ξ<2.5)=____.3.随机变量ξ的分布列如下:则:(1)x=____;(2)P(ξ>3)=____;(3)P(1≤ξ<4)=____.考点四、期望与方差的实际应用例题4.(2013重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X).【基础检测】1.设ξ是服从二项分布B(n,p)的随机变量,又E(ξ)=15,D(ξ)=454,则n与p的值为( )A.60,34B.60,14C.50,34 D.50,142.已知袋中装有6个白球、2个黑球,从中任取3个球,则取到白球个数ξ的期望E(ξ)=( )A.2 B.5928 C.6128 D.943.已知随机变量X的分布列为:则E(6X+8)等于____.4.已知随机变量ξ的分布列如下:其中a,b,c成等差数列,若E(ξ)=13,则D(ξ)的值是____.方法总结1.关于离散型随机变量分布列的计算方法如下:(1)写出ξ的所有可能取值.(2)用随机事件概率的计算方法,求出ξ取各个值的概率.(3)利用(1)(2)的结果写出ξ的分布列.2.常见的特殊离散型随机变量的分布列.(1)两点分布.它的分布列为(p0q1),其中0<p<1,且p+q=1;(2)二项分布.它的分布列为(0p01p12p2……k p k……n p n),其中p k=C n k p k q n-k,k=0,1,2,…,n,且0<p<1,p+q=1,p k=C n k p k q n-k可记为b(k;n,p).3.对离散型随机变量的期望应注意:(1)期望是算术平均值概念的推广,是概念意义下的平均.(2)Eξ是一个实数,由ξ的分布列唯一确定,即作为随机变量ξ是可变的,可取不同值,而Eξ是不变的,它描述ξ取值的平均状态.(3)Eξ=x1p1+x2p2+…+x n p n+…直接给出了Eξ的求法,即随机变量取值与相应概率值分别相乘后相加4.对离散型随机变量的方差应注意:(1)Dξ表示随机变量ξ对Eξ的平均偏离程度,Dξ越大表明平均偏离程度越大,说明ξ的取值越分散;反之Dξ越小,ξ的取值越集中,在Eξ附近,统计中常用Dξ来描述ξ的分散程度.(2)Dξ与Eξ一样也是一个实数,由ξ的分布列唯一确定.。
随机变量及其分布-离散型随机变量的数学期望和方差
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。
2.意义:反映离散型随机变量取值的平均水平。
3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。
2.意义:反映离散型随机变量偏离均值的程度。
3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。
高中数学离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一
常见的离散型随机变量的分布列、均值与方差(学生)
常见的离散型随机变量的分布列、均值与方差【知识要点】一、离散型随机变量及其分布列 1、随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。
长用希腊字母ηξ,来表示。
若ξ是随机变量,b a +=ξη,其中b a ,是常数,则η也是随机变量。
2、离散型随机变量如果对于随机变量可能取的值,可以一一列出,这样的随机变量叫做离散型随机变量。
3、离散型随机变量的分布列(1)若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,⋅⋅⋅⋅⋅⋅21,X 取每一个值)21(n i x i ,,,⋅⋅⋅=的概率i i p x X P ==)(,以表格的形式表示如下:此表称为离散型随机变量X 的分布列,简称X 的分布列。
有时为了表达简单,也用等式i i p xX P ==)(,n i ,,,⋅⋅⋅=21,表示X 的分布列。
(2)性质:①n i p i ,,,,⋅⋅⋅=≥210;②11=∑=ni i p ;③在某个范围内取值的概率等于这个范围内每个随机变量值的概率的总和。
4、常见离散型随机变量 (1)两点分布若随机变量X 的分布列是则这样的分布列称为两点分布列。
如果随机变量X 的分布列为两点分布列,就称X 服从两点分布(也称伯努利分布),而称)1(==x P p 为成功概率。
其EX=p ,DX=p(1-p). (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为m k C C C X P nNkn MN k M ,,,,,⋅⋅⋅=⋅==--210)k (,其中}min{n M m ,=,且*∈≤≤N N M n N M N n 、、,,,称分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
记作:1)1()(---•==N nN N M N nM DX N nM EX n M N H X ,,其,,—。
离散型随机变量的分布列、期望与方差
=2.752.
学例2 (2008·广东卷)随机抽取某厂的某种
产品200件,经质检,其中有一等品126件、 二等品50件、三等品20件、次品4件.已知生 产1件一、二、三等品获得的利润分别为6万 元、2万元、1万元,而1件次品亏损2万元.设 1件产品的利润为ξ(单位:万元).
(1)求ξ的分布列;
(2)求1件产品的平均利润(即ξ的数学期望);
ξ
0
1
…
M
P
C C 0 n0 M NM
C C 1 n1 M NM
CNn
CNn
…
C C m nm M NM
CNn
为⑦超几何分布列.如果随机变量ξ的分布列为超
几何分布列,则称随机变量ξ服从超几何分布.
3.离散型随机变量的分布列的性质 ⑧ Pi≥0,P1+P2+…+Pi+…=1 (i=1,2,3,…) . 4.离散型随机变量的均值 若离散型随机变量ξ的分布列为:
是随机变量的特征数,期望反映了随 机变量的平均取值,方差与标准差都 反映了随机变量取值的稳定与波动、 集中与离散的程度.在进行决策时,一 般先根据期望值的大小来决定,当期 望值相同或相差不大时,再去利用方 差决策.
备选题
某工厂每月生产某种产品三件,经检测发 现,工厂生产该产品的合格率为45.已知生产 一件合格品能盈利25万元,生产一件次品将 亏损10万元.假设该产品任何两件之间合格与 否相互之间没有影响.
设随机变量ξ表示在取得合格品以前
已取出的不合格品数,则ξ=0,1,2,3,
可得P(ξ=0)=
9 12
,
P(ξ=1)=
3× 9
12 11
=
9 44
,
2023版高考数学一轮总复习11-2离散型随机变量及其分布列均值与方差课件
例 (2020山东泰安三模)某水果批发商经销某种水果(以下简称A水果),购 入价为300元/袋,并以360元/袋的价格售出,若前8小时内所购进的A水果 没有售完,则批发商将没售完的A水果以220元/袋的价格低价处理完毕 (根据经验,2小时内完全能够把A水果低价处理完,且当天不再购进).该水 果批发商根据往年的销量,统计了100天内A水果在每天的前8小时的销售 量,制成如下条形统计图.
+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机
变量X服从超几何分布.
4.离散型随机变量的均值与方差
1)均值的定义:一般地,若离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望,它反映了离散 型随机变量取值的平均水平.
2
3)=P(ξ=-3)= 1 ,P(ξ=1)=P(ξ=-1)= 3,故随机变量|ξ|的分布列为
8
8
|ξ|
1
故E(|ξ|)=1×3 +3× 1= ,3
4
42
D(|ξ|)=1
3 2
2
×
3+
4
3
3 2
2
×
=14
.故3 选B.
4
答案 B
应用 利用均值、方差进行决策 解决均值、方差实际问题的策略 1)把握“1”实质:随机变量的均值反映了随机变量取值的平均水平,方差 反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变 量,是实际生产中用于方案取舍的重要理论依据. 2)运用“2”策略: ①当均值不同时,两个随机变量取值的水平有区别,可直接对问题作出判断. ②若两随机变量的均值相同或相差不大,则可通过方差来研究两随机变 量的离散程度或者稳定程度,进行决策.
第十章 第五节 离散型随机变量的分布列及数字特征
(1)C 解析:D(3X-1)=9D(X),只需求 D(X)的最大值即可,根据题意 a+b
又 0≤p1≤1,∴0≤13 -d≤1,∴-23 ≤d≤13 .同理,由 0≤p3≤1,p3=d+13 , ∴-13 ≤d≤23 ,∴-13 ≤d≤13 ,即公差 d 的取值范围是-13,13 .
3.随机变量 X 的概率分布列如下:
X0
1
2
3
4
5
6
P
1 a
1 a
C16
1 a
C26
1 a
C36
1 a
为
X x1 x2 …
xi
…
xn
P p1 p2 …
pi
…
pn
则称 E(X)=x1p1+x2p2+…+xnpn 为 X 的数学期望或均值.
意义:离散型随机变量的数学期望刻画了这个离散型随机变量的平均水平.
(2)离散型随机变量的方差定义:
设离散型随机变量 X 的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
X
-1
0
1
P
1 4
1 2
1 4
A.0 B.1 C.14
D.12
D 解析:E(X)=-1×14 +0×12 +1×14 =0,
则 D(X)=14 ×(-1-0)2+12 ×(0-0)2+14 ×(1-0)2=12 .
浅谈离散型随机变量的分布列与数学期望及方差的求法
用 ( ) 求 只 要 对 几 何级 数求 和. 7式
=
P ≤n 却 比 较 容 易 时 , 时 我 们 可 以 利 用 P( =i ( ) 这 t )= P ≥n 一P ≥n+1 :P( ≤r ( ) ( ) t )一P( n一1 , 求 得 ≤ )来
到 P f= ) 这 个 方 法 在计 算数 学期 望及 方差 时也 很 有 用 . ( n.
一
=
2 ∑ ∑
‘
0 e:n 一E t ∈+1 }E ( =n)一E ( 亭+1 E
=
2∑ ∑
‘‘ 三
n =1 i= I
、
引 言
=
2 ・ ≥i E ( 1) ∑ i P( )一 E )+
培 根 曾经 说 过 :读 史 使 用 明智 , 诗 使 人 明 秀 , 算 使 “ 读 演
故得公式 = 2∑ n P n 一 ( + ) ② ・ (≥ ) 1.
所 以为 了求 数 学 期 望 和 方 差 也 可 以 不 求 分 布 列 , 要 只 求 得 P ≥n , ① 和② 公 式 计 算 就 行 . 在 应 用 上 也 十 分 ( )按 这
方便 , 能更 直 接 、 简 洁 、 清 晰 和 更 实 用 地 反 映 随 机 变 量 更 更 的本 质 . 例 2 甲 、 两人 进 行 比赛 , 局 甲胜 的概 率 为 P 乙胜 乙 每 ,
1 +∑ 2 q +∑ ( ) () p p q
由于蟛 =∑ n ( n 存在, P = ) 所以该级数绝对收敛.
从 而有 ,
=
=2 ()+) ()一 p 2+∑ p l g g
(
^:0
k
‘
・
∑ n( = ) P n
离散型随机变量的分布列的求解方法
离散型随机变量的分布列的求解方法一.离散型随机变量分布列的性质分布列的两个性质①p i ≥0;②p 1+p 2…+p n =1.根据性质②可以检验所求概率是否准确。
例1.设ξ是一个离散型随机变量,其分布列如下表.求常数q .巩固练习1.设随机变量X 的分布列P(X =i)=k2i (i =1,2,3),则P(X ≥2)=__________2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P(X=0)等于()3.已知随机变量X的概率分布列如下表:则P(X=10)=()4.设随机变量ξ的分布列为kP()5ξ==ak(k=1,2,3,4,5),则常数a 的值为,P 3(5ξ≥=.二.离散型随机变量期望与方差的计算(1)定义法:数学期望(均值)E(X)=x 1p 1+x 2p 2+…+x n p n ,它反映了离散型随机变量取值的平均水平;方差D(X)=1ni =∑(x i -E(X))2p i ,它刻画了随机变量X 与其均值E(X)为随机变量X 的标准差,(2)已知随机变量ξ的期望.方差,求ξ的线性函数η=aξ+b 的期望,方差,可利用性质E(aξ+b)=aE(ξ)+b,D((aξ+b)=a 2D(ξ)(3)公式法:①若X 服从两点分布:则E(X)=p 和D(X)=p(1-p)②若X 服从二项分布,即X ~B(n,p),则E(X)=np;D(X)=np(1-p)例 2.随机变量的取值为0,1,2,若,,则________.ξ-101P121-2qq 2练习1.离散型随机变量X可能取值为1,2,3,4,P(X=k)=ak+b(k=1,2,3,4),又E(X)=3,则3a+b=()2.袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.(1)求ξ的分布列、均值和方差;(2)若η=aξ+b,E(η)=1,D(η)=11,试求a,b的值.3.甲、乙、丙三位学生独立地解同一道题,甲做对的概率为12,乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:ξ0123P14a b124(1)求至少有一位学生做对该题的概率;(2)求m,n的值;(3)求ξ的数学期望.4.为迎接2021年“牛”年的到来,某校举办猜奖活动,参与者需先后回答两道选择题,问题A 有三个选项,问题B 有四个选项,但都只有一个选项是正确的,正确回答问题A 可获奖金a 元,正确回答问题B 可获奖金b 元,活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止,假设一个参与者在回答问题前,对这两个问题都很陌生.(1)如果参与者先回答问题A ,求其恰好获得奖金a 元的概率;(2)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.5.某中学根据2008—2019年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2020年某新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m 、31、n ,已知三个社团他都能进入的概率为241,至少进入一个社团的概率为43,且n m .(Ⅰ)求m 与n 的值;(Ⅱ)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修学分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数的分布列及期望.例3、某公司从大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分).公司规定:成绩在180分以上者到甲部门工作,180分以下者到乙部门工作,另外只有成绩高于180分的男生才能担任助理工作.(1)如果用分层抽样的方法从甲部门人选和乙部门人选中选取8人,再从这8人中选3人,那么至少有一人是甲部门人选的概率是多少?(2)若从所有甲部门人选中随机选3人,用X表示所选人员中能担任助理工作的人数,写出X的分布列,并求出X 的数学期望.巩固练习1.为迎接2015年在兰州举行的“中国兰州国际马拉松赛”,某单位在推介晚会中进行嘉宾现场抽奖活动.抽奖盒中装有大小相同的6个小球,分别印有“兰州马拉松”和“绿色金城行”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个小球都印有“兰州马拉松”即可中奖,并停止抽奖,否则继续,但每位嘉宾最多抽取3次.已知从盒中抽取两个小球不都是“绿色金城行”标志的概率为4 5.(Ⅰ)求盒中印有“兰州马拉松”标志的小球个数;(Ⅱ)用η表示某位嘉宾抽奖的次数,求η的分布列和期望.2.某校体育教师至少擅长篮球和足球中的一项,现已知有5人擅长篮球,2人擅长足球,从该校的体育教师中随机选出2人,设X为选出的2人中既擅长篮球也擅长足球的人数,已知P(X>0)=7 10.(Ⅰ)求该校的体育教师的人数;(Ⅱ)求X的分布列并计算X的数学期望与方差.3.将编号为1,2,3,4的4个小球随机放到A、B、C三个不同的小盒中,每个小盒至少放一个小球.(Ⅰ)求编号为1,2的小球同时放到A盒的概率;(Ⅱ)设随机变量ξ为放入A盒的小球的个数,求ξ的分布列与数学期望.4.湖南卫视“我是歌手”这个节目深受广大观众喜爱,节目每周直播一次,在某周比赛中歌手甲、乙、丙竞演完毕,现场的某4位大众评审对这3位歌手进行投票,每位大众评审只能投一票且把票投给任一歌手是等可能的,求:(1)恰有2人把票投给歌手甲的概率;(2)投票结束后得票歌手的个数ζ的分布列与期望.5.一对父子参加一个亲子摸奖游戏,其规则如下:父亲在装有红色、白色球各两个...的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个...的乙袋子里随机取一个球,父子俩取球相互独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色情况与他们获得的积分对应如下表:所取球的情况三个球均为红色三个球均不同色恰有两球为红色其他情况所获得的积分18090600(Ⅰ)求一次摸奖中,所取的三个球中恰有两个是红球的概率;(Ⅱ)设一次摸奖中,他们所获得的积分为X,求X的分布列及均值(数学期望)E(X);6.某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照,,,,的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在,的数据).(Ⅰ)求样本容量n和频率分布直方图中x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.7.下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(I)求该专业毕业总人数N和90~95分数段内的人数n;(II)现欲将90~95分数段内的n名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为35,求n名毕业生中男、女各几人(男、女人数均至少两人)?(III)在(II)的结论下,设随机变量ξ表示n名毕业生中分配往乙学校的三名学生中男生的人数,求ξ的分布列和数学期望Eξ.8、某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N (168,16)。
随机变量及其分布-离散型随机变量的数学期望和方差
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望1. 定义则称E(X)=人》• X2p2亠 '亠人口亠I•.亠X n P n为随机变量X的数学期望或均值。
2. 意义:反映离散型随机变量取值的平均水平。
3•性质:若X是随机变量,丫二aXF,其中a,b是实数,则Y也是随机变量,且E(aX b^aE(X) b二、离散型随机变量的方差1. 定义n则称D(X)八,(人-E(X))2p i为随机变量的方差。
i=12. 意义:反映离散型随机变量偏离均值的程度。
23. 性质:D(aX b)二a D(X)三、二项分布的均值与方差如果X ~ B(n, p),则E(X)二np , D(X)二叩(1 - p)。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)= 1.6,则a— b =( )A.0.2 B . 0.1C.—0.2 D . 0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数E的数学期望为()A . 0.6B . 1C. 3.5 D . 2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分•小王选对每题的概率为0.8,则其第一大题得分的均值为________________________ .【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰•机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;⑵若要求P(X W n)> 0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n= 19与n= 20之中选其一,应选用哪个?【过关练习】1•今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为匕则E( 3等于()A . 0.765B . 1.75C . 1.765D . 0.222•某射手射击所得环数 3的分布列如下:3•已知随机变量 3的分布列为则 x = _______ , P(1< 33) = __________ , E( 3 = ________.4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有 10个粽子,其中豆沙粽 2个,肉粽 3个,白棕5个,这三种粽子的外观完全相同•从中任意选取 3个.(1) 求三种粽子各取到1个的概率;(2) 设X 表示取到的豆沙粽个数,求 X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中 p € (0,1),则( )A . D(X) = p 3B .C . D(X) = p — p 2D .0.9和0.85,设发现目标的雷达的台数为D(X)= p 2 D(X)= pq 2A . 8B . 12 2 C.9D . 16【例 3】若 D(3= 1 ,则 D( 3- D( 3) = _________ .3【例 4】若随机变量 X 1 〜B(n,0.2), X 2〜B(6, p), X 3〜B(n , p),且 E(X 1)= 2, D(X 2)=刁 贝卩 c(X 3)=( )A . 0.5 B. 1.5 C. 2.5D . 3.5【例5】根据以往的经验,某工程施工期 间的降水量X(单位:mm)对工期的影响如下表:降水量X X<300300W X<700700 W X<900X > 900工期延误 天数Y2610该工程施工期间降水量 的均值与方差.【过关练习】1•某人从家乘车到单位,途中有3个路口 .假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为 ( )A . 0.48B . 1.2C . 0.72D . 0.62.设投掷一个骰子的点数为随机变量 X ,则X 的方差为 .3.盒中有2个白球,3个黑球,从中任取 3个球,以X 表示取到白球的个数,n 表示取到黑球的个数.给出6 9 9下列结论:① E(X)= 5, E (n= 5;② E(X 2) = E (n ;③ E (n )= E(X);④ D(X) = D (n = 25. 其中正确的是 _________ .(填上所有正确结论的序号) 4.海关大楼顶端镶有 A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:【例2】设随机变量 ,k = 0,1,2,…,n ,且 E(8 = 24,则 D( 3的值为(历年气象资料表明, E 的分布列为P(E= k) = C n课后练习【补救练习】1. 若随机变量E〜B(n,0.6),且E(8= 3,贝U P( 1)的值为()A . 2 X 0.44B . 2X 0.45C. 3X 0.44 D . 3X 0.642•已知〜B(n, p), E(8= 8, D(3= 1.6,则n与p的值分别为()A . 100 和0.08B . 20 和0.4C. 10 和0.2 D . 10 和0.83•有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X 甲)= E(X 乙),方差分别为D(X()甲)= 11, D(X乙)=3.4.由此可以估计A •甲种水稻比乙种水稻分蘖整齐B•乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D•甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为__________ ;方差为________ .【巩固练习】1. 现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是()A. 6B. 7.8C . 9D . 122. —射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A . 2.44 B. 3.376C . 2.376 D. 2.43. 已知随机变量X + Y= 8,若X〜B (10,0.6),贝U E(Y), D(Y)分别是()A . 6,2.4 B. 2,2.4C . 2,5.6 D. 6,5.64•马老师从课本上抄录一个随机变量E的概率分布列如下表:请小牛同学计算E的数学期望•尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(3 = __________ .5•某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历•假定该毕业生得到甲公司面试的2概率为2得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生1得到面试的公司个数,若P(X= 0) = 12,则随机变量X的数学期望E(X) = _____________ .6•随机变量E的分布列如下:1其中a, b, c成等差数列,若E( 3= 3则D(3 = _______________ •7•某城市出租汽车的起步价为6元,行驶路程不超出3 km时按起步价收费,若行驶路程超出3 km,则按每超出1 km加收3元计费(超出不足 1 km的部分按 1 km计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18, 0.20, 0.20,0.18,0.12,设出租车行车路程3是一个随机变量,司机收费为n元),则n= 3 3- 3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设3为成活沙柳的株数,数学期望E(3= 3,标准差D 3为中.(1)求n, p的值并写出3的分布列;⑵若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设E为离散型随机变量,则E(E(3 —3 =( )A . 0B . 1C. 2 D .不确定2•甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛•假设每局甲获胜的概率为2,乙获胜的概率为3各局比赛结果相互独立.(1)求甲在4局以内洽4局)赢得比赛的概率;⑵记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).3. A, B两个投资项目的利润率分别为随机变量X i和X2.根据市场分析,X i和X2的分布列分别为:(1)在A, B两个项目上各投资100万元,Y i(万元)和丫2(万元)分别表示投资项目A和B所获得的利润,求方差D(Y”, D(Y2);⑵将x(0w X W 100)万元投资A项目,(100 —x)万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和•求f(x)的最小值,并指出x为何值时,f(x)取到最小值.。
离散型随机变量的分布列,期望与方差
1、随机变量:
如果随机试验的结果可以用一个变量来表示, 那么这样的变量叫做随机变量.随机变量常用 希腊字母 ξ、η 等表示.
随机变量将随机事件的结果数量化.
问题:某人射击一次,可能出现哪些结果?
若设射击命中的环数为ξ, 则ξ是一个随机变量. ξ可取0,1,2,…,10. ξ=0,表示命中0环;
(1). pi 0, i 1,2,3,
(2). p1 p2 p3 1
例1、某一射手射击所得环数的分布列如下:
ξ 4 5 6 7 8 9 10
p 0.02 0.04 0.06 0.09 0.28 0.29 0.22
求此射手“射击一次命中环数≥7”的概 率
一般地,离散型随机变量在某一范围内的概 率等于它取这个范围内各个值的概率之和。
例1.设p是 非 负 实 数, 随 机 变 量的 概 率 分 布为
0
1
2
P
1 p 2
p
1 2
则E的 最 大 值 为______,D的 最 大 值 为______
例2.A、B是 治 疗 同 一 种 疾 病 的 两种 药 , 用 若 干 实 验 组 进 行 对 比 实 验 。每 个 试 验 组 由4个 小 白 鼠 组 成 , 其 中2只 服 用A, 另2只 服 用B, 然 后 观 察 疗 效 。 若 在 一 个 试 验 组中 , 服 用A有 效 的 小 白 鼠 的 只 数 比 服 用B有 效 的 多 , 就 称 该 试 验组 为 甲 类
写出ξ的分布列. 解: 随机变量ξ的可取值为 1,2,3.
当ξ=1时,即取出的三只球中的最小号码为1,则其它
两只球只能在编号为2,3,4,5的四只球中任取两只,故
有P(ξ=1)=
离散型随机变量的期望值和方差
12.2 离散型随机变量的期望值和方差一、知识梳理1.期望:若离散型随机变量ξ,当ξ=x i的概率为P(ξ=x i)=P i (i=1,2,…,n,…),则称Eξ=∑x i p i为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(x i-Eξ)2p i为随机变量ξ的均方差,简称方差. D叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b 为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,D ξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.二、例题剖析【例1】设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、Dξ.拓展提高 既要会由分布列求E ξ、D ξ,也要会由E ξ、D ξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P (ξ=x 1)=53,P (ξ=x 2)=52,且x 1<x 2,又知E ξ=57,D ξ=256.求ξ的分布列.解:依题意ξ只取2个值x 1与x 2,于是有E ξ=53x 1+52x 2=57, D ξ=53x 12+52x 22-E ξ2=256. 从而得方程组⎪⎩⎪⎨⎧=+=+.1123,723222121x x x x【例2】 人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p 1,非意外死亡的概率为p 2,则a 需满足什么条件,保险公司才可能盈利?【例3】 把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ.特别提示求投球的方法数时,要把每个球看成不一样的.ξ=2时,此时有两种情况:①有2个空盒子,每个盒子投2个球;②1个盒子投3个球,另1个盒子投1个球.【例4】 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D ξ的最大值;(2)求ξξE D 12-的最大值. 【例5】 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n 的球n 个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.【例6】(湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。
离散型随机变量的期望与方差的相关公式的证明
离散型随机变量的期望与方差的相关公式的证明凭祥高中 谢松兴地址:凭祥市新华路95号 邮编:532600关键词:二项分布 几何分布 期望 方差 公式 证明摘 要:本文主要介绍离散型随机变量的期望和方差的定义,着重用多种方法介绍高中数学课本中没有具体给出的二项分布、几何分布的期望和方差相关公式的证明推导过程,并能指导读者通过相关公式的应用解决一些高考题目和解决一些实际问题.前言人教版高中数学第三册(选修II )中离散型随机变量的期望与方差的相关公式的给出比较直接突然,很多学生想知道其中的具体原因。
作为高考已经不要求推导公式,本着为学生答疑解惑的原则,本文作者结合大学和高中相关知识,给出以下证明方法,以便学有余力的学生自由阅读。
-、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。
当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。
因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。
这个故事里出现了“期望”这个词,数学期望由此而来。
定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。
[]1定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
意思是 X 点落在线段 CD 上的概率等于
∞
∞
∑
kx
k- 1
= =
k =1
∑
( xk ) ′ =
k =1
∑x
k
′
1 1 ′ = , | x | < 1. 1- x ( 1 - x) 2
∞
k =1
我们记 ξ= AX,η = XB , 由对称性 , 随机变量 ξ 与 η应有 ξ= E η 相同的概率分布 , 因而有相同的平均值 : E . 但 ξ +η =
∞
n =1
ξ= 于是得到公式 E
∑ P (ξ≥n ) .
∞
n =0
①
2
2 ξ 由于 Dξ 存在 , 所以级数 E =
∑ n P (ξ = n ) 也绝对
收敛 , 从而有
数学学习与研究 2010 1 5
21 活用分解法 整值型随机变量 ξ 的数学期望的另一个常用方法是把 ξ 分解成若干个随机变量之和 : ξ=ξ ξ ξ 1 + 2 + … +ξ n , 每一个 ξ i 的数学期望很容易求 ( i ξ= E ξ ξ ξ 往往只取 0, 1 两个值 ) , 然后由 E + E + … + E . 即 1 2 n ξ 可求得 E . 用这个方法的最大优点是避免去求 ξ 的分布列 , 困难的地方是找上述分解式比较难 . 31 巧用微积分法 利用几何级数求和公式和级数可逐项微分的性质求解. 例 4 从标有数码 0, 1, 2, …, 9 的十张卡片中每次抽取 一张 , 然后返还 , 直到抽得数码 9 为止 . 如以 X 表示首次抽 到数码 9 的次数 , 求 E ( X ) 及 D ( X ) . 解 X 的特定值为 1, 2, 3, …, 如果在第 k 次抽取到数
. 现在不难理解下面这道题的解法了 . 2 51 采用母函数法 一种简便的计算数学期望的方法就是采用母函数法 . 例 6 离散型随机变量 X 由分布列 pk = P ( X = k ) ( k = 1, 2 2, 3, …)给定. 设函数 S ( u) = p0 + p1 u + p2 u + … 为序列 { pk }的 母函数 , 试通过母函数来表示随机变量 X 的数学期望. 解 按随机变量 X 的数学期望定义
码 9, 前 k - 1 次抽到的是 9 以外的数码 , 每次抽到的概率为 9 , 又因为每次抽数码的试验都是独立的 , 所以 P ( X = k ) = 10 k- 1 9 1 ・ . 10 10 这里利用几何级数求和公式和级数可逐项微分的性质
∞
k =1
CD . 这个概率只与 AB CD 的长度有关 , 而与 CD 位于 AB 中的哪一段无关 . 这就是 几何概率模型中的等可能性或对称性 .
∞
n =1
∑ nP . 如果发生
n
所以为了求数学期望和方差也可以不求分布列 , 只要 求得 P (ξ ≥n) , 按 ① 和② 公式计算就行 . 这在应用上也十分 方便 , 能更直接 、 更简洁 、 更清晰和更实用地反映随机变量 的本质 . 例 2 甲、 乙两人进行比赛 , 每局甲胜的概率为 p, 乙胜 的概率为 1 - p = q. 比赛进行到有一人连胜两局为止 . 以 ξ ξ 记比赛的局数 , 求 E , 即平均比赛多少局 . 解 直接求 ξ 的分布列并不困难 . k +1 k k k +1 k P (ξ= 2 k + 1 ) = p q + p q = ( pq) , k ≥0; 2 2 k- 1 P (ξ= 2 k ) = ( p + q ) ( pq) , k ≥1. 但在用分布列求数学期望时遇到的级数的求和公式大 家一般不熟悉 , 改用 P (ξ ≥n ) 就可以避免这麻烦 . 因为 {ξ ≥ n}表示到 ( n - 1 ) 局为止 , 没有一人连胜二局 , 总是两人轮流 胜 , 所以 P (ξ ≥1 ) = 1, P (ξ ≥2 k + 1 ) = 2 pk qk , k ≥1; k k- 1 P (ξ ≥2 k) = p q + pk - 1 qk = ( pq) k - 1 , k ≥1. ξ 用 ( 7 ) 式求 E 只要对几何级数求和 .
ξ= E
= P (ξ= 1 ) P (ξ= n) P (ξ= n ) P (ξ= n ) = P (ξ ≥1 ) P (ξ ≥n )
n =1
∑ nP (ξ= n )
+ P (ξ= 2 ) + P (ξ= 3 ) + … + + … + P (ξ= 2 ) + P (ξ= 3 ) + … + + … + P (ξ= 3 ) + … + P (ξ= n ) + … + +… + P (ξ ≥2 ) + P (ξ ≥3 ) + … + +… .
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
专题研究
110 ZHUANT I YANJ IU
= = = =
k =1
∑ ( k + 1 ) kx
∞
k- 1
-
k =1
∑ kx
k- 1
k =1
∑ k ・p u
k
.
∞
k =1
( 1) = 令 u = 1, 代入上式 S ′
∑ k ・p
k
= E (X).
k =1
∑ (x
∞
k =1
k +1
)
n
1 ( 1 - x) 2 1
( 1 - x) 2
∑x
2
k +1
n
x 1 1- x ( 1 - x) 2 2 1 = , | x | < 1. ( 1 - x) 3 ( 1 - x) 2
2
9 9 2 代入上式 , 得 k ・ = 1900. 10 10 k =1 41运用对称性 求解数学期望及方差的另处一种解法就是运用对称性. 例 5 一副纸牌共有 N 张 , 其中有三张 A. 随机地洗牌 , 然后从顶上开始一张接一张地翻牌 , 直至翻到第二张 A 出 N +1 现为止 . 求证 :翻过的纸牌数平均值为 . 2 解 也设想把纸牌一张张翻到底 , 把纸牌作全排列 . 三 张 A 把整个排列分割成四段 :第一张 A 之前的纸牌数为 ξ 1, 第一张 A 与第二张 A 之间的纸牌数为 ξ 2 , 第二张 A 与第三 张 A 之间的纸牌数为 ξ 3 , 第三张 A 之后的纸牌数为 ξ 4. 由于 每种排列是等可能的 , 三张 A 的分布是均匀的 , 四个随机变 量ξ 1 ,ξ 2 ,ξ 3与ξ 4 应该有相同的分布 , 因而有相同的平均值 , ξ ξ ξ ξ ξ ξ ξ 但ξ + + + 1 2 3 4 = N - 3, 所以 E 1 = E 2 = E 3 = E 4 = N - 3 N - 3 N +1 ξ= . 现在 ξ=ξ +2 = . 用这 1 +ξ 2 + 2, 所以 E 4 2 2 个方法求翻到第一张 A 为止翻过的纸牌数的平均值也很容 N - 3 N +1 ξ 易 , 它等于 E +1 = . 1 +1 = 4 4 这种解法和适用面较广 , 例如可将例 8 推广到有任意 张 A 的情形 . 这种解法的实质就是运用对称性 . 由于在几何 概率问题中具有类似的对称性 , 因此这方法也可应用到几 何概率问题中去 . 最简单的几 何 概 率问 题 是 这 样叙 述 的 : 设 有 一 线 段 (或“ )的 AB , 在 AB 上随机地取一点 X. 所谓“ 随机地 ” 任意 ”
k +1
E (X) =
k =1
∑ k ・P ( X = k)
∞
=
k =1
∑ k ・p .
k
∞
∞
k k
上面计算用到幂级数 分的性质 :
∞
k =1
k =1
∑x
在其收敛域内可逐项微
∞
对序列 { pk }的母函数 S ( u ) =
( u) = S′
k =1 k- 1
∑ p u 微分 ,
∞2Leabharlann k- 1∑k x∞ ∞
令 x=
9 , 便得到 10
∞
k =1
∑
9 k・ 10 9 10 1 1k- 1 k- 1
k- 1
・ ・
2
1 = 10. 10
ξ= AB , 因此 E
AB
从而 E ( X ) =
=
∞
∑
k・
1 10
1 ・ 10 9 k ・ 10
2
9 10
= 10,
D (X) =
k =1
∑
1 ・ - 102 = 190 - 100 = 90. 10
∞
2 ξ=E ξ ξ- E ξ( E ξ+ 1 ) D +E
∞
=
n =1
∑ n ( n + 1 ) ・P (ξ= n)
∞
n n =1
ξ( E ξ+ 1 ) - E
=2 =2 =2
∑ ∑ i・P (ξ= n )
∞
i =1
ξ( E ξ+ 1 ) - E ξ( E ξ+ 1 ) - E
∞
∑ ∑ i・P (ξ= n )
i =1
∞
n =1
∑ i・P (ξ≥ i)
i =1
ξ( E ξ ) + 1) . - E ξ( E ξ+ 1 ) . - E ②