弱电设备怎样防雷击

合集下载

电力系统弱电装置防雷技术

电力系统弱电装置防雷技术

电力系统弱电装置防雷技术是指在电力系统中,对弱电装置进行雷电防护的技术手段和措施。

防雷技术在电力系统中尤为重要,因为雷电是一种具有强烈破坏性的自然现象,能够对电力系统造成严重的损坏,并影响正常运行。

本文将从四个方面介绍电力系统弱电装置防雷技术。

一、电力系统弱电装置的防雷原则弱电装置包括通信设备、监控设备、自动控制装置等,它们对于电力系统的正常运行起着重要的作用。

对于弱电装置的防雷,可以采取以下原则:1. 采用合适的防雷设备:防雷设备包括避雷针、避雷带、避雷网等,选择合适的防雷设备是防止雷电入侵的基础。

2. 使用合适的接地措施:弱电装置应该有良好的接地系统,通过接地来引导雷电流,保护装置免受雷电的侵害。

3. 采取合适的屏蔽措施:弱电装置必须采取良好的屏蔽措施,防止雷电通过电磁感应从外部进入进入装置内部。

4. 使用合适的绝缘材料:弱电装置内部的电气设备,如线缆、插头等,应使用合适的绝缘材料,防止雷电对其造成损害。

二、电力系统弱电装置的防雷措施1. 弱电装置的接地设计接地是弱电装置防雷的重要环节之一。

在接地设计中需要注意以下几点:(1) 接地电阻低:接地电阻低,可以提供更好的接地效果。

因此需要选择合适的地质条件和合适的接地材料,保证接地电阻在要求范围内。

(2) 接地系统规整:接地系统需要规整,避免“死角”,确保雷电流能够快速集中到地下。

(3) 接地装置的互连:电力系统中的所有弱电装置接地装置需要通过导线等互相连接,以降低接地电阻,保证接地的有效性。

2. 弱电装置的接口保护弱电装置的接口是其与外界联系的部分,也是雷电侵害的重要路径之一。

因此需要采取以下几种措施:(1) 使用合适的接口保护装置:接口保护装置可以通过瞬态电压抑制器等装置,对雷电侵害进行抑制和吸收,保护弱电装置不受损害。

(2) 安装适当的绝缘设备:对于无需与外界相连的弱电装置,可以通过安装绝缘设备,将其与外界隔离,防止雷电侵害。

3. 弱电装置的电磁屏蔽为了减少弱电装置对外部电磁干扰的敏感度,防止雷电通过电磁感应进入弱电装置内部,需要采取电磁屏蔽的措施:(1) 对弱电装置进行金属屏蔽:对于弱电装置的外壳、线缆等,可以采用金属材料进行屏蔽,从而减少电磁干扰。

建筑物弱电系统防雷技术应用

建筑物弱电系统防雷技术应用

建筑物弱电系统防雷技术应用建筑物弱电系统防雷技术是指在建筑物中应用各种电气和电子设备,保护建筑物和其中的弱电设施免受雷击损坏的技术措施。

弱电系统包括了通信、数据传输、监控、安全保障、能源管理和楼宇自控等系统。

在防雷技术应用中,我们主要关注以下几个方面:建筑物外部防护、接地系统和内部设备防护。

一、建筑物外部防护1. 避雷针:避雷针是建筑物中最常见的防雷设施之一,它能将雷电引入地下,保护建筑物内部的电气和电子设备。

在建筑物的高处安装避雷针,并合理地设置导线和接地装置,能够有效地避免雷电对建筑物的损坏。

2. 避雷网:避雷网是一种由导电材料制成的网状结构,覆盖在建筑物的外墙、屋顶、窗户等部位,能够接收并分散来自雷电的能量,保护建筑物的弱电系统。

避雷网的材料和结构设计需要经过科学计算和实验验证,以确保其防雷效果和耐久性。

3. 避雷接地网:避雷接地网是一种覆盖在建筑物周围地下,与避雷针和避雷网相连接的金属导体网状结构。

它能够将接收到的雷电能量分散到地下大范围的土壤中,减少雷击对建筑物的影响。

在建筑物的施工过程中,需要合理地铺设和连接避雷接地网,确保其良好的接地效果。

二、接地系统接地系统是弱电系统防雷技术中一个非常重要的部分,它能够将来自避雷针、避雷网和设备的雷电能量引入地下,防止雷电对建筑物和设备的损害。

1. 外部接地系统:外部接地系统主要是指避雷针和避雷网的接地。

在建筑物施工中,需要选择合适的接地装置,并确保其与避雷针和避雷网的接地导线连接牢固、电气性能稳定。

需要对接地装置进行定期检测和维护,确保接地系统的可靠性。

2. 内部接地系统:内部接地系统主要是指建筑物中各种设备的接地。

对于弱电设备而言,接地地网需要布置在设备附近,并与设备的接地导线连接。

接地电阻应该符合相关标准要求,以确保设备的安全运行。

三、内部设备防护1. 防雷保护装置:建筑物中的弱电设备需要安装适当的防雷保护装置,用于吸收和分散雷电能量,保护设备免受雷击损害。

弱电设备防雷技术措施

弱电设备防雷技术措施

仅供参考[整理] 安全管理文书弱电设备防雷技术措施日期:__________________单位:__________________第1 页共7 页弱电设备防雷技术措施随着现代科技的高速发展,电子信息设备的应用已深入至各个领域,各种电子、微电子装备已在各行业大量使用。

由于这些系统和设备耐过电压能力低,雷电高电压以及雷电电磁涌流侵入所产生的电磁效应、热效应都会对系统和设备造成干扰或永久性损坏,造成较大的经济损失。

因此解决电子信息系统对雷电灾害的防护问题,十分重要。

电子信息系统设备的多样化、复杂化,其微电子元器件的工作电压较低,通信信号幅度相对较小等特点,如在回路中设置防雷设施势必会影响通信、网络等设备的可靠、安全和畅通。

这给弱电设备的过电压防范带来一定的难度。

为了减少雷电感应致使自动化控制系统等弱电设备损坏,造成直接和间接的重大经济损失,有必要对弱电设备的防雷与接地技术进行研究,采取有效的防雷措施。

1造成弱电设备损坏的主要原因1.1直击雷所谓直击雷是指雷击点直接作用在设备上或作用在传输线路上,由传输线路引人造成设备的损坏。

直击雷造成设备损坏的程度一般都较为严重,一般采取安装避雷针和布设避雷带进行防雷保护。

1.2感应雷所谓感应雷是指雷击点发生在距离设备几百米或几公里以外,雷击点周围的磁场发生强烈变化,其附近的设备或金属导体上将感应出一定的雷电压幅值,使弱电设备过电压造成损坏。

实际上雷击造成弱电设备损坏的大都(占99%)是由感应雷引起的。

因此,必须重视感应雷的防范。

1.3感应雷电压的特点①雷电波是冲击电压披,作用时间短,一般只有几微秒至几十微秒的非周期变化电压,可认为是瞬态的变化电压:②雷击点周围的磁场发生强烈变化时。

在附近的设备、金属导体上将感第 2 页共 7 页应出一定的雷电压幅值;③在设备、器件或导体上所产生的雷电感应电压强度与其导体的长度、截面、安装高度和磁场强度(雷击强度)成正比,与至雷电发生地点之间的距离成反比。

弱电设备雷电危害分析及保护措施

弱电设备雷电危害分析及保护措施

弱电设备雷电危害分析及保护措施弱电设备是指在其运行过程中所使用的电能较低的设备,如电子设备、通讯设备、计算机设备等。

由于弱电设备具有较为敏感的电子元件和电路,所以在雷电天气下,很容易受到雷电的危害。

因此,在使用弱电设备时必须进行雷电危害分析,并采取相应的保护措施。

本文将对弱电设备雷电危害分析及保护措施进行详细论述。

首先,弱电设备受到雷电危害的主要原因是雷击产生的大气电荷和电磁场对设备的直接或间接影响。

雷电产生时,会产生高达百万伏的电压,这样的高电压有可能击穿电路板、电线、电缆等,导致设备受损甚至烧毁。

同时,雷电产生的瞬态电流和瞬态电磁场也会对设备内部的电子元件产生较大的瞬态电压和瞬态电流,造成设备故障或损坏。

其次,为了保护弱电设备免受雷电危害,需要采取一系列的保护措施。

其中,最常用的保护措施是安装接地装置。

接地装置能够将设备连接到地面,将雷电产生的电荷和电磁场导入地下,从而减少对设备的影响。

接地装置应该具备良好的接地电阻,以确保雷电产生的电流能够迅速流入地下,减小设备受损的可能性。

此外,还可以采取防雷装置进行保护。

防雷装置通常包括避雷针、避雷网、避雷线等。

避雷针是将设备的高处安装一个尖头导电杆,以吸引雷击,降低雷电击中设备的可能性;避雷网是用导电材料制成的一个网状结构,将设备内部的电荷分散到周围的大气中,防止雷电产生的电荷积蓄和电流引入设备;避雷线是将设备与地面之间建立一个导电通道,将雷电产生的电流迅速引入地下。

此外,设备内部的电子元件和电路也需要采取相应的保护措施。

例如,在弱电设备的电源输入端安装电源过滤器,可以过滤掉雷电产生的电磁干扰;在设备的输入输出端口安装不完全导电的屏蔽器,可以防止雷电产生的电磁辐射对设备内部元件的干扰;在设备的电源线和通信线上安装防雷器,可以将雷击产生的瞬态电压和瞬态电流引导到地下或其他安全地方。

最后,为了保证弱电设备的安全运行,还需要制定相应的应急预案。

应急预案应包括设备的定期巡检和维护,以及雷电天气下设备的关闭和断电操作。

2023年电力系统弱电装置防雷技术

2023年电力系统弱电装置防雷技术

2023年电力系统弱电装置防雷技术随着电力系统的发展和电子设备的广泛应用,我们面临的雷电灾害也越来越严重。

在电力系统中,弱电装置通常是指电力系统中的控制、保护、通信和测量装置,比如各种继电器、PLC(可编程逻辑控制器)、监控系统等。

这些弱电装置对雷电的抗击能力相对较弱,容易受到雷击而损坏。

因此,在2023年,如何有效地防止雷电对电力系统的弱电装置造成损坏,将是一个重要的技术挑战。

1. 弱电装置的外部防护为了保护弱电装置免受雷击的影响,我们可以采取一系列的外部防护措施。

首先,电力系统中的弱电装置应当远离高海拔地区,因为雷电通常会更容易发生在高地区。

其次,建议在弱电装置的附近设置避雷针,将雷电引入地下。

同时,在弱电装置的外部设置防雷棒,能够起到一定的防护作用。

此外,弱电装置的外部安装可以采用金属外壳以增加电磁屏蔽效果,减少雷击的影响。

同时,还可以在外壳上设置接地装置,将雷电引入地下。

此外,为了防止雷电沿着电源线路进入弱电装置,建议在电源线路上设置过电压保护装置,在雷电发生时自动切断电源。

2. 弱电装置的内部防护除了外部防护,我们还可以在弱电装置的内部进行一些防护措施。

首先,可以采用特殊的材料或技术对弱电装置的电路板进行防雷处理,增加其抗雷电干扰的能力。

其次,可以在电路板上设置过压保护电路,当雷电过电压到达一定程度时,自动切断电路,保护弱电装置不受损坏。

另外,弱电装置的内部电源供应电路也需要进行防护。

可以采用稳压电源或电源滤波器,防止过电压进入弱电装置。

同时,在弱电装置的电源进线处设置欠压、过压、过流等保护装置,能够及时切断电源,保护弱电装置。

3. 弱电装置的监控和维护在2023年的电力系统中,我们还可以利用先进的监控技术,对弱电装置进行实时监测。

通过监测装置,可以实时监测弱电装置的工作状态和运行参数,包括电压、电流、温度等。

一旦监测到异常情况,比如过压、过流等,可以及时发出报警信号,采取相应的措施进行处理,以确保弱电装置的正常运行。

电力系统弱电装置防雷技术(三篇)

电力系统弱电装置防雷技术(三篇)

电力系统弱电装置防雷技术1雷击的形成及入侵途径1.1雷击形成主要有两种形式:直接雷击和感应雷击直接雷击是指雷电直接作用在物体上,产生电能效应、热效应和机械力等对物体造成危害。

感应雷击是指雷电放电时,在附近导体上产生的静电效应和电磁感应,由此产生的放电效应使使金属部件之间产生火花,称之为感应雷击。

1.2感应雷击的入侵途径有以下几种变电站的避雷针的二次感应产生的雷击效应,产生的雷电电流经过避雷针导地时感应到市内的传输线上。

对于老式的通讯设备来讲,它们的构造大都是由电子管、晶体管向集成电路过渡的。

由于电子管、晶体管等相对对立,因而耐冲击能力较强,因此二次雷击效应对电子管、晶体管通讯设备不会造成太大损害。

对于集成化程度较高的微电子设备,其耐冲击能力差,受雷击更易使微电子设备受到损坏。

通过电源线、信号线或天线馈线引入的感应雷击通过电磁感应耦合到各类传输线而破坏设备。

电源线引入感应雷击。

变电站内设置的微波通信基站的供电线路大多采用架空明线。

试验表明,雷电频谱在几十MHz以下频域,主要能量集中分布在工频附近。

因此,雷电与市电相耦合的概率很高,容易造成通信线路及通信串口烧坏。

为了扩大信号覆盖范围,就要尽可能地增加天线架设高度(65m以上的铁塔约占50%)。

但是,在提高信号覆盖范围的同时,也增加了铁塔引雷的概率。

2外部防护:外部防护是指对安装弱电设备的建筑物本体的安全防护,可采用避雷针、分流、屏蔽网、均衡电位、接地等措施,这种防护措施比较常见,相对来说比较完善弱电设备的外部防护首先是使用建筑物的避雷针将主要的雷电流引人大地;其次是在将雷电流引人大地的时候尽量将雷电流分流,避免造成过电压危害设备;第三是利用建筑物中的金属部件以及钢筋可以作为不规则的法拉第笼,起到一定的屏蔽作用,如果建筑物中的设备是低压电子逻辑系统、遥控、小功率信号电路的电器,则需要加装专门的屏蔽网,在整个屋面组成不大于5m-5m,6m-4m的网格,所有均压环采用避雷带等电位连接;第四是建筑物各点的电位均衡,避免由于电位差危害设备;第五是保障建筑物有良好的接地,降低雷击建筑物时接点电位损坏设备。

弱电系统防雷解决方案

弱电系统防雷解决方案

弱电系统防雷处理方案一、概述1、浅析弱电系统旳雷电危害雷击是一种自然现象,它能释放出巨大旳能量、具有极强大旳破坏能力。

几种世纪来,人类通过对雷击破坏性旳研究、探索,对雷电旳危害采用了一定旳防止措施,有效地减少了雷害。

近年来,伴随微电子技术旳不停发展,弱电系统在生产生活各个方面旳使用越来越广,人们在受益于微电子旳极大以便旳同步,也受到其一旦损坏就损失巨大旳困扰。

实际中,在增长弱电系统旳时候,往往对弱电系统旳防雷未加考虑或考虑不够旳状况较多,一旦有雷电波侵入,设备损坏一般是巨大旳,有旳甚至使整个系统瘫痪,导致无可挽回旳损失。

分析这些类雷击事故旳重要原因是由于一次设备发生雷击后在弱电设备导致旳浪涌超过了设备承受旳能力而损坏设备旳,浪涌旳重要形式是电源浪涌、信号浪涌。

而这种浪涌在新建或扩建设备时又往往不被重视,因此才会导致严重旳损失。

2、弱电系统雷害旳重要原因分析雷电会导致多种不一样形式旳危害,没有任何一种措施可以全面防止雷电旳危害,通过多种有效旳措施可将雷害旳程度降到最低,在数年旳实际中人们对直击雷、感应雷、球形雷旳认识比较高,防护也相对完善,但对雷电浪涌旳防护意识和防护措施相对比较微弱,对弱电系统旳雷电浪涌考虑不够导致旳雷击事件屡见不鲜。

重要旳雷电形式及雷害状况有如下几种状况:(1)直击雷是指雷电直接击在建筑物构架、动植物上,因电效应、热效应和机械效应等导致建筑物等损坏以及人员旳伤亡。

(2)感应雷是雷电在雷云之间或雷云对地放电时,在附近旳户外传播信号线路、埋地电力线、设备间连接线产生电磁感应并侵入设备,使串联在线路中间或终端旳电子设备遭到损害。

感应雷虽然没有直接雷剧烈,但其发生旳几率比直击雷高得多。

(3)雷电浪涌是近年来由于微电子旳不停使用引起人们极大重视旳一种雷电危害形式,同步其防护方式也不停完善。

最常见旳电子设备危害不是由于直接雷击引起旳,而是由于雷击发生时在电源和通讯线路中感应旳电流浪涌引起旳。

弱电系统防雷电应急预案

弱电系统防雷电应急预案

弱电系统防雷电应急预案
为减少在雷雨季节弱电系统(包括:闭路监控系统、楼宇对讲,红外周边防范、消防报警控制系统、车场道闸系统等)遭受雷电的冲击破坏,保护设备安全,制订以下防雷措施。

1.在雷雨季节必须坚持关注天气预报并加强设备巡视和保养。

2.检查各部分防雷装置、建筑物金属构件、低压配电保护线(PE)、等电位连接带、设备保护地、屏蔽体接地、防静电接地及接地装置等连接在一起的接地系统
3.检查和测量所属电器设备的接地情况,是否符合《电气装置安装施工及验收规范》要求,这是避免雷击的关键。

4.雷电来临之际立刻关停易受雷击破坏的设备(包括消防报警控制系统、车场道闸系统、闭路监控系统、红外线报警系统、楼宇对讲系统、天线接收系统等)。

5.电子系统应外部防雷和内部防雷等措施进行综合防护。

6.设备和装置外露可导电部分作电位基本相等的电气连接即等电位连接。

7.将工作接地与防雷接地分开布线,禁止互联互通。

8.过电压是一种高强电压、大电流、瞬间发生的电压。

其破坏力相当强,在其发生的同时还产生渐弱的空间感应电势,极性与之相反。

因此,使用良好的接地才能减除其破坏。

9.工程主管与护卫部协调工作,保证小区安全巡视,维修部设专人值守,保证出现意外雷电时能及时抢修,排除故障。

弱电设备怎样防雷击(doc 16页)

弱电设备怎样防雷击(doc 16页)

弱电设备怎样防雷击(doc 16页)弱电设备如何防雷击1.概况仅1999年6月到2001年8月一年多的时间里,可查的由于雷击发生的弱电损坏就有四次之多。

樊庄变电站线路落雷,造成主控地与设备之间的电位差而损坏大量的保护设备;南郊变电站的微波塔落雷,由于感应过电压而损坏大量的通讯、远动设备损坏;西万庄变电站的微波塔落雷,由于地电位差造成大量的通讯远动设备损坏;北郊变电站微波塔落雷,造成大量的保护、运动、通讯设备损坏。

近年来,随着微电子技术的不断发展,自动控制系统在生产生活各个方面的使用越来越广,人们在受益于微电子的极大方便的同时,也受到其一旦损坏就损失巨大的困扰。

实际中,在增加自动控制系统的时候,往往对自动控制系统的防雷未加考虑或考虑不够的情况较多,一旦有雷电波侵入,设备损坏一般是巨大的,有的甚至使整个系统瘫痪,造成无可挽回的损失。

这些故障的主要原因是由于一次设备发生雷击后在弱电设备造成的浪涌超过了设备承受的能力而损坏设备的,浪涌的主要形式是电源浪涌、信号浪涌。

而这种浪涌在新建或扩建设备时又往往不被重视,所以本文在介绍常用的弱电防雷的同时,重点探讨了浪涌对弱电设备的危害及预防措施。

2.弱电设备雷电危害的主要原因分析雷电会导致多种不同形式的危害,没有任何一种办法可以全面防止雷电的危害,通过各种有效的办法可将雷害的程度降到最低,在多年的实际中人们对直击雷、感应雷、球形雷的认识比较高,防护也相对完善,但对雷电浪涌的防护意识和防护措施相对比较薄弱,以上所列的四次典型的雷击弱电设备的情况就是对弱电防雷考虑不够造成的。

其主要的雷电形式及雷害情况有以下几种情况:(1)雷电浪涌是近年来由于微电子的不断使用引起人们极大重视的一种雷电危害形式,同时其防护方式也不断完善。

最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。

一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。

弱电设备雷电的防护(三篇)

弱电设备雷电的防护(三篇)

弱电设备雷电的防护弱电设备雷电防护是一个非常重要的问题,因为雷电可能对设备造成严重的损坏甚至导致减少设备寿命和停机时间。

在以下文章中,我们将讨论弱电设备雷电的防护措施。

首先,了解雷电的工作原理对于理解如何防护弱电设备非常重要。

雷电是由不同电势的空气分子之间的电荷转移引起的,当云与地面之间的电势差增加到一定程度时,电荷将通过空气进行跳跃并形成闪电。

因此,要保护弱电设备不受雷电的影响,我们需要采取以下防护措施:1. 接地系统接地系统是防止雷电直接影响设备的首要措施。

通过将设备的金属外壳与地面连接,可以将雷电电荷直接引导到地下。

这样可以减少雷击对设备的直接威胁。

必须确保接地系统的质量和连通性,以确保有效地将电荷引导到地下。

2. 避雷针避雷针是一种用于引导雷电电荷的导体杆。

根据法拉第电磁感应定律,当雷电靠近设备时,避雷针会吸引电荷并将其引导到地下,确保设备安全。

在设计弱电设备的建筑物上安装避雷针是一种常见的防护方法。

3. 外部干扰抑制除了直接雷击外,雷电还可能通过设备的电缆和电源线等外部信号传输路径产生干扰。

为了抑制这种干扰,我们可以采取以下措施:- 使用屏蔽电缆:屏蔽电缆可以减少外部电磁场对设备的影响,并提供一定程度的防雷保护。

- 安装滤波器和抑制器:这些设备可以用来过滤和抑制电源线上的电磁干扰,从而保护设备免受雷击和其他电磁干扰的影响。

4. 内部保护雷电可能通过电缆等内部信号传输路径进入设备,因此也需要采取一些内部保护措施:- 使用防雷器:防雷器可以用来保护设备内部的电路免受雷电影响。

防雷器会吸收雷电冲击并将其引导到地下,从而保护设备的内部电路。

- 在关键部件和电路中使用电磁屏蔽和绝缘材料:这些材料可以减少雷电对设备内部电路的影响,提供一定的保护。

综上所述,弱电设备的雷电防护是一个综合性的问题,需要从不同方面来考虑和实施。

合理设计和加强接地系统,安装避雷针,减少外部干扰,采取内部保护措施等都是有效的防护方法。

弱电设备雷电的防护范文(二篇)

弱电设备雷电的防护范文(二篇)

弱电设备雷电的防护范文弱电设备雷电防护雷电是一种自然界的大气现象,它的产生给人们的生产与生活带来了很大的威胁。

特别是对于弱电设备而言,雷电对其运行稳定性和设备寿命会造成很大的影响。

因此,针对弱电设备,我们需要采取一系列的防护措施,以确保设备的安全运行。

本文将介绍弱电设备雷电防护的相关内容。

一、了解雷电的危害首先,我们需要了解雷电给弱电设备带来的危害。

雷电主要通过雷电流和雷电场对设备进行攻击,它们会对设备的电路元器件和线路结构造成瞬态电压冲击和电磁感应。

这些瞬态电压冲击和电磁感应会导致设备的过电压、过电流和电磁干扰,从而损坏设备的元器件,甚至引发火灾事故。

二、建立完善的弱电设备雷电防护体系为了保护弱电设备免受雷电的侵害,我们应该建立完善的防护体系。

具体而言,可以从以下几个方面着手:1. 清晰的防护目标在进行雷电防护前,我们首先要明确防护目标。

针对不同的弱电设备,我们可以确定不同的防护标准,以确保设备的安全运行。

一般而言,弱电设备的防护目标主要包括:减小设备受雷电冲击的概率、减小受雷电冲击时的损害程度、提高设备的抗干扰能力等。

2. 合理的接地系统设计接地是雷电防护的重要环节之一。

良好的接地系统设计可以减小设备在雷电冲击下的电压和电流,从而保护设备的安全运行。

在设计接地系统时,我们应该选择合适的接地方式、合理布置接地电极,确保接地电阻的合理性。

3. 选用合适的防雷器材防雷器材是防护弱电设备免受雷电侵害的关键。

我们应该根据设备的特点和需求,选用合适的防雷器材。

常见的防雷器材包括避雷针、避雷带、避雷器等。

在选用防雷器材时,我们需要考虑其耐受能力、工作灵敏度、接地能力等因素。

4. 完善的维护管理制度维护管理是保障弱电设备连续运行的关键环节。

我们应该建立完善的维护管理制度,对设备进行定期检查、维护和保养。

在维护管理制度中,我们可以包括设备巡检、设备保养、设备更换等内容,以确保设备的安全运行。

三、针对不同设备的雷电防护策略不同的弱电设备在面对雷电冲击时,我们可以采取不同的防护策略。

简述防止雷电反击的措施

简述防止雷电反击的措施

简述防止雷电反击的措施
防止雷电反击是非常重要的,特别是在一些对雷电敏感的地区或者设备。

以下是一些常见的防止雷电反击的措施:
1. 避雷针,安装避雷针是防止雷电反击最常见的方法之一。

避雷针可以将雷电引向地面,减少对建筑物或设备的损害。

合理布置避雷针可以有效地保护建筑物和人员安全。

2. 接地系统,良好的接地系统可以将雷电引入地下,减少雷电对设备的影响。

接地系统需要经常检查和维护,确保其正常运行。

3. 避雷带和避雷网,在一些对雷电敏感的场所,如电力设施和通讯基站,安装避雷带和避雷网可以有效地防止雷电反击,保护设备的安全。

4. 隔离设备,在一些对雷电敏感的设备上,可以安装隔离设备来防止雷电的影响。

这些设备可以将雷电引入地下或者其他安全的地方,保护设备的正常运行。

5. 防雷接地装置,在一些对雷电敏感的设备上,安装防雷接地
装置可以有效地防止雷电反击,保护设备的安全。

总的来说,防止雷电反击需要综合考虑建筑物或设备的特点,采取合适的防雷措施,确保建筑物和设备的安全。

定期检查和维护防雷设施也是非常重要的,以确保其正常运行。

电力设备防雷主要措施

电力设备防雷主要措施

电力设备防雷主要措施电力设备防雷是为了保护电力设备免受雷击损坏的一系列措施。

由于雷击是一种自然灾害,具有突发性和破坏性,因此采取必要的防雷措施是非常重要的。

本文将介绍电力设备防雷的主要措施,以帮助读者更好地了解和应对这个问题。

合理规划设备布局是电力设备防雷的基础。

在设备布局方面,应尽量避免设备暴露在空旷的地方,如山顶、高楼顶层等。

同时,设备之间的间距也要合理设置,避免因雷电放电而产生的相互影响和损害。

安装避雷装置是电力设备防雷的核心措施之一。

避雷装置可以分为外部避雷装置和内部避雷装置。

外部避雷装置主要包括避雷针、避雷网和避雷带等,用于引导和分散雷电放电。

内部避雷装置主要包括避雷器、避雷盒和避雷线等,用于吸收和消除雷电过电压。

安装避雷装置可以有效地将雷电引入地下,减少对电力设备的直接损害。

接地系统也是电力设备防雷的重要组成部分。

接地系统的作用是将雷电引入地下,减少雷电对设备的影响。

接地系统包括接地体和接地线两部分。

接地体通常采用铜杆、铜板或铜网等导电材料制成,埋设在地下,与设备接地线相连接。

接地线则是将设备与接地体相连接,确保设备能够及时导入地下,减少雷电损害。

设备的绝缘保护也是电力设备防雷的重要环节。

绝缘保护主要包括设备的外绝缘和内绝缘两个方面。

外绝缘主要通过绝缘外壳和绝缘罩等措施来实现,防止雷电直接接触设备。

内绝缘主要通过绝缘材料和绝缘结构来实现,防止雷电通过设备内部的电路和元器件造成损坏。

定期检测和维护也是电力设备防雷的重要环节。

定期检测可以及时发现设备的潜在问题和隐患,采取相应的维护和修复措施。

维护工作包括清洁设备表面、检查接地系统和绝缘系统、修复或更换损坏的避雷装置等。

定期检测和维护可以确保设备长期稳定运行,减少雷击风险。

电力设备防雷主要包括合理规划设备布局、安装避雷装置、建立接地系统、实施绝缘保护和定期检测维护等措施。

通过采取这些措施,可以有效地保护电力设备免受雷击损坏,确保电力系统的安全稳定运行。

弱电系统的防雷措施

弱电系统的防雷措施

弱电系统的防雷措施弱电系统是指电力传输和分配系统中电压等级较低的那部分系统,主要包括通信、监控、安防等设备。

由于其电压较低,对雷击等外界扰动较为敏感,因此必须采取一系列有效的防雷措施来确保其安全稳定运行。

本文将介绍一些常见的弱电系统的防雷措施,并阐述其原理和操作步骤。

一、接地系统的建立接地系统是弱电系统防雷的基础,其作用是把雷击电流引入地下,减少对设备的损害。

接地系统主要包括接地电极、接地网和接地线。

接地电极是通过将金属材料埋入地下,与设备相连接,实现设备的接地;接地网则是将多个接地电极相互连接形成的网状结构,提高了接地效果和可靠性;而接地线则用于连接设备和接地系统,确保电流能够顺利流入地下。

在建立接地系统时,应根据实际情况采用不同的接地方式,并保证接地电阻符合相关标准。

二、防雷装置的安装防雷装置是弱电系统中常用的防护设备,其主要作用是将雷击电流引入接地系统,减小对弱电设备的影响。

常见的防雷装置包括避雷针、避雷带和避雷网等。

避雷针是安装在建筑物顶部的金属导体,能够吸引雷电,并通过接地系统将电流引导入地下;避雷带则是安装在建筑物周围的导电材料,起到类似的导流作用;而避雷网则是建立在建筑物周围的金属网状结构,将雷电引入接地系统。

在安装防雷装置时,应根据建筑物的结构和所在地的雷电活动情况选择合适的装置,并确保其可靠地连接到接地系统上。

三、设备的屏蔽和保护在弱电系统中,设备的屏蔽和保护是防止雷击对设备造成影响的重要手段。

屏蔽主要通过屏蔽层或屏蔽壳来实现,能够阻挡外界的电磁干扰并减小雷击的影响;而保护则是通过安装保护器件,如熔断器和过压保护器等,来限制雷击电流和电压的传播。

在屏蔽和保护设备时,应根据设备的特性、工作环境和所需的防护水平选择合适的方法和装置,并严格按照操作规程进行安装和维护。

四、定期检测和维护弱电系统的防雷措施需要定期进行检测和维护,以确保其正常运行和有效防护。

检测主要包括对接地系统的接地电阻和接地电位进行测试,以及对防雷装置和设备的状态进行检查;而维护则包括清除接地系统周围的杂物和杂草,修复损坏的接地电极和接地线,更换损坏的防雷装置等。

电力系统弱电装置防雷技术

电力系统弱电装置防雷技术

电力系统弱电装置防雷技术为了保障电力系统弱电装置的正常运行,防雷技术显得非常重要。

在我们的日常生活中,雷暴天气频繁出现,雷击所引发的电磁干扰问题也成为电力系统运行的一大隐患。

因此,采取适当的防雷措施对于保障电力系统正常运行和延长设备寿命至关重要。

电力系统弱电装置防雷技术主要包括在设备结构设计、接线和接地技术、雷电过电压保护以及绝缘技术等方面。

首先,对于设备结构设计方面,弱电装置的硬件结构要合理设计。

可以采用双层结构的设计,即内部采用金属屏蔽层,外部采用非金属层。

内部金属屏蔽层可以有效地吸收来自雷电的电磁辐射,减小装置的损毁风险。

而外部的非金属层则能够隔离外界的电磁干扰,保证设备的正常工作。

其次,接线和接地技术也是防雷技术中的重要环节。

合理的接线和接地能够有效地防止雷击对设备的破坏。

接线时,要选择合适的导线材料,如铜线或铝线,以能够承受较大的电流冲击。

同时,接地系统要做好,包括接地线路的布置和接地网的构建。

接地电阻要尽量小,以保证雷电通过接地系统的流动,从而避免雷击对设备的损伤。

雷电过电压保护是弱电装置防雷技术中的重要措施。

过电压保护装置要选用鉴别能力强、速动性好的装置。

在电力系统中,常用的过电压保护装置有避雷器、放电管和放电二极管等。

这些装置能够在雷暴天气时迅速做出反应,将过电压导向地下,保护设备正常运行。

此外,绝缘技术也是电力系统弱电装置防雷技术中不可忽视的一环。

通过合理的绝缘设计和绝缘材料的选择,能够有效地阻止雷电对设备的直接打击。

绝缘技术包括使用绝缘材料对设备进行包裹,这样能够形成一个绝缘屏障,用于隔离雷电对设备的接触。

同时,在绝缘方面还需要做好绝缘检测和维护工作,及时发现和处理绝缘故障,以确保设备的正常运行。

总结来说,电力系统弱电装置防雷技术包括设备结构设计、接线和接地技术、雷电过电压保护以及绝缘技术等多方面的措施。

合理采取这些技术措施,能够有效地保护电力系统弱电装置,减小雷击对设备的损害,保障电力系统的正常运行和设备的长寿命。

电力系统弱电装置防雷技术范文

电力系统弱电装置防雷技术范文

电力系统弱电装置防雷技术范文导论近年来,随着电子设备的广泛应用和信息化时代的到来,电力系统中的弱电装置越来越重要。

然而,在雷电活动频繁的地区,电力系统中的弱电装置经常面临雷击带来的威胁。

因此,弱电装置防雷技术成为了电力系统中的重要问题。

本文将介绍一些常见的弱电装置防雷技术,以提供给相关专业人员参考和借鉴。

1. 地线防雷技术弱电装置的防雷是以保护设备和人员安全为目标的一项技术活动。

在地线防雷技术方面,可采用以下几种方法:一是合理设置地线的长度和截面积。

地线的长度越短,电阻越小,可减小地电位差,提高防雷效果。

截面积越大,电流通过的电阻越小,可提高防雷的稳定性。

二是地线的接地方式。

一般来说,接地的方式有直接接地、等长接地和补偿接地等。

不同的接地方式适用于不同的地形和土壤条件。

三是地线的埋设方式。

地线可以埋设在地下,以减少对建筑物外观的影响,并提高防雷的效果。

地线的埋设深度一般应达到1米以上。

2. 避雷装置技术避雷装置是弱电装置防雷技术中最常用的手段之一。

根据避雷装置的工作原理和安装位置不同,可分为接闪器、引雷针和避雷带等。

接闪器是指将雷电击中的电流引导到地下,以减少对建筑物和设备的危害。

引雷针是指将空中飞雷电击中的电流引导到地下,以避免其直接对建筑物和设备产生破坏。

避雷带是指围绕建筑物或设备周围设置的金属带,用来分散雷电冲击,减少对设备的危害。

3. 防雷设备技术防雷设备是指用于检测和保护弱电装置免受雷击损害的设备。

根据不同的需求和应用场景,防雷设备可以分为雷电流检测器、雷电流限制器和雷电流释放器等。

雷电流检测器是指用于检测和记录雷击事件的设备,一旦检测到雷电流通过,就会发出警报,并记录相关数据以供分析和处理。

雷电流限制器是指一种可限制雷击电流大小的装置,通过减小雷电流的大小,可减轻对设备的危害。

雷电流释放器是指一种用于释放雷击电流的装置,当雷电击中装置时,释放器会将雷电流引导到地下或其他安全位置,以减少对设备的危害。

弱电设备雷电的防护(二篇)

弱电设备雷电的防护(二篇)

弱电设备雷电的防护1.概述随着科技的不断发展,人类已步入信息社会,计算机网络技术的普及越来越多的办公大楼、写字楼、医院、银行、宾馆等建筑离不开综合布线系统。

配置综合布线系统,犹如为建筑物建立了一个高速,大容量的信息传送平台,为建筑智能化提供了快速的信息通道。

计算机、程控交换机、CATV等微电子设备日益增多,而微电子器件承受雷电电磁脉冲能力较差,因此,雷害事故不断发生。

我国每年因雷击破坏建筑物内计算机网络系统的事件时有发生,所造成的损失是非常巨大的。

因此综合布线系统的防雷设计就显得尤其重要。

我们知道雷电入侵电器设备的形式有两种:直击雷和感应雷。

雷电直接击中线路并经过电器设备入地的雷击过电流称为直击雷;由雷闪电流产生的强大电磁场变化与导体感应出的过电压,过电流形成的雷击称为感应雷。

目前,在建筑物防雷系统设计上,是执行的国家标准《建筑物防雷设计规范》GB50057-94,设计由避雷网(带),避雷针或混合组成的接闪器,立柱基础的钢筋网与钢屋架,屋面板钢筋等构成一个整体,避雷网通过全部立柱基础的钢筋作为接地体,将强大的雷电流入大地。

计算机系统安置在建筑物内,受建筑物防雷系统保护,直击雷击中计算机网络系统的可能性非常小,计算机设备抗直击雷能力很低,防护设备非常昂贵,通常不必安装防护直击雷的设备,而计算机网络必须防感应雷和雷电浪涌电压。

2.干扰途径与耦合机制产生干扰必须具备三个条件:干扰源、干扰通道、易受干扰设备。

干扰源分为内部和外部。

内部主要是装置原理和产品质量等。

外部主要由使用条件和环境因素决定,如工作电源直流回路受开关操作和天气影响等而引起的浪涌电压,强电场或强磁场以及电磁波辐射等。

干扰通道有传导耦合、公共阻抗耦合和电磁耦合三种。

外部主要通过分布电容的电磁耦合传到内部;内部则三种均有。

由于设备采用的敏感元件的选用和结构布局等不尽合理,造成本身抗干扰能力差,对干扰加以抑制,降低其幅度,减少其影响力,这是从外部环境上加以改善。

建筑物弱电系统防雷技术应用

建筑物弱电系统防雷技术应用

建筑物弱电系统防雷技术应用建筑物弱电系统防雷技术是指在建筑物中对弱电系统进行防雷保护的技术措施和方法。

弱电系统是指建筑物中除供电系统和照明系统外的其他低电压、低电流、低功率的系统,如通信系统、安防系统、IT系统等。

建筑物弱电系统是现代建筑中不可或缺的一部分,其功能涵盖了通信、安全、数据传输等重要方面。

由于弱电系统通常采用的是低电压、低电流的工作方式,存在着更高的抗干扰能力,但也更加容易受到雷击的影响。

对弱电系统进行防雷保护至关重要。

在弱电系统的防雷技术应用中,有以下几种常见的方法:1. 外部防雷措施:对建筑物进行外部防雷设计,包括安装避雷针、避雷带、避雷网等,以分散、吸收雷电能量,降低雷击可能性。

2. 接地系统设计:弱电系统的接地系统是其防雷保护的重要组成部分。

通过良好的接地系统设计,能够将雷击产生的电流迅速引入地下,保护弱电系统不受到雷电威胁。

3. 避雷器的应用:为弱电系统引入专业的避雷器设备,能够有效地对雷电进行防护。

避雷器能够通过对雷电进行放电,将过大的电流引入地下,保护弱电设备的正常运行。

4. 界面防护技术:在弱电系统中,各个设备之间的界面对于防止雷电干扰具有重要作用。

通过合理设置界面,在设计时充分考虑防雷特性,并采取适当的接地和隔离措施,能够有效地保护弱电设备的稳定运行。

5. 瞬态电压抑制技术:在弱电系统中,瞬态电压是经常存在的一种电压波动,可能造成弱电设备的损坏。

通过采用瞬态电压抑制器,能够将瞬态电压限制在一定范围内,保护弱电设备的正常工作。

在建筑物弱电系统防雷技术应用中,通过外部防雷措施、接地系统设计、避雷器的应用、界面防护技术以及瞬态电压抑制技术等多种手段的综合应用,能够有效地保护弱电系统不受到雷电的损害,确保其正常稳定的运行。

弱电设备防雷技术措施

弱电设备防雷技术措施

弱电设备防雷技术措施弱电系统作为一种非常重要的设备,将在各种场合得到广泛应用,例如工业、医疗、能源等等。

为了保证其正常的运行和稳定性,我们需要采取一系列的防雷技术措施。

1. 地接技术地接技术是一种被广泛采用的弱电设备防雷技术措施。

通常情况下,地接技术是通过一定的金属部件将设备与地面紧密连接,从而实现对地电位的联接。

在应对接近颗粒闪电等强电磁干扰时,地接技术也是非常有效的防护手段。

然而,在实际应用中,在不同地段的弱电设备防雷功效可能不尽相同,需要根据实际情况调整地接技术的合理化配置。

2. 金属绝缘技术金属绝缘技术就是将弱电设备表面或内部加一层绝缘膜,从而将电磁波从设备表面上反射回去。

绝缘材料通常选用聚合物等高压电绝缘材料,具有热稳定性、抗寒性、电气绝缘强度高等优点。

金属绝缘技术还可以有效地控制外部电磁干扰进入弱电设备内部,提高设备的稳定性和工作效率。

3. 下级防雷下级防雷是一种在弱电设备密集区域实行的防雷措施。

通过在弱电系统核心区域或设备周边设置下级防雷电极或避雷针,从而将雷电干扰转化为地电势差,避免进一步的损害。

在下级防雷等弱电设备防雷技术措施中,一定要根据实际环境不同选择不同的安装方案。

4. 接地网络技术接地网络技术最重要的特点是可以在弱电设备和地面之间形成一个电流环,从而有效控制外部电气设备对弱电设备的干扰。

通过接地网络技术可以对弱电设备进行设计及调整,从而防止外部电气信号困扰弱电电路,使其保持稳定性和工作效率,避免由于震动、温度、瞬间电荷等因素导致的接触不良或线路故障等问题。

5. 隔离技术隔离技术的使用范围极广,可以有效地避免信号的相互影响和干扰。

隔离技术是指将弱电设备与电源断电的双重保护,用以消除信号的共模干扰和异模干扰。

隔离技术无需对弱电设备的外壳进行特殊处理,可以增强信号传输和保障设备安全。

电力系统弱电装置防雷技术

电力系统弱电装置防雷技术

电力系统弱电装置防雷技术1. 引言雷电是自然界中的一种强大天气现象,对电力系统和弱电装置构成了严重威胁。

因此,采取有效的防雷技术对电力系统的安全稳定运行和弱电装置的正常工作至关重要。

本文将介绍电力系统弱电装置防雷技术。

2. 雷电形成与危害雷电是通过云与地面之间的电荷分离和放电形成的。

当雷电直接打击某一目标,会导致强烈的电流通过,从而引发电磁脉冲和电压增加的现象。

这可能导致电力系统线路短路、设备故障、火灾甚至人身危险。

3. 弱电装置防雷技术(1)防雷接地系统一个有效的接地系统可以将雷电引导到地下,从而减轻电力系统及弱电装置的雷击风险。

接地系统应具备低电阻、低电感和良好的接地荷载能力。

(2)防雷设备防雷设备包括避雷针、避雷带和避雷网等。

这些设备的作用是分散雷电能量并引导地下,从而减轻雷电对电力系统和弱电装置的冲击。

(3)防雷保护器件防雷保护器件用于保护弱电装置不受雷击的危害。

常用的防雷保护器件有避雷器、继电器、保险丝等。

这些器件可以在雷电来临时迅速放开,从而保护设备免受雷电影响。

(4)防雷绝缘措施绝缘是防止雷电通过设备和线路的重要手段。

通过采用合适的绝缘材料和绝缘结构,可以降低雷电的影响。

4. 防雷技术的应用(1)城市电力系统城市电力系统中的弱电装置广泛存在,如通信系统、计算机设备、传感器等。

为了保护这些设备不受雷击的影响,必须采取有效的防雷技术。

引入上述的防雷接地系统、防雷设备和防雷保护器件等,可以有效抵御雷电的威胁。

(2)工业电力系统工业电力系统中的弱电装置也面临着雷电风险,如自动化控制系统、安全监控系统等。

对于这些装置,除了上述的防雷技术外,还可以考虑安装避雷器、隔离开关等防雷设备,以增强防雷能力。

(3)农村电力系统农村电力系统中的弱电装置主要是农业自动化设备和农村通信系统等。

由于农村地区通常缺乏有效的防雷设施,因此必须采用适当的防雷技术来保护农村电力系统的安全稳定运行。

5. 防雷技术的发展趋势随着科技的发展,防雷技术也在不断进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弱电设备如何防雷击1.概况仅1999年6月到2001年8月一年多的时间里,可查的由于雷击发生的弱电损坏就有四次之多。

樊庄变电站线路落雷,造成主控地与设备之间的电位差而损坏大量的保护设备;南郊变电站的微波塔落雷,由于感应过电压而损坏大量的通讯、远动设备损坏;西万庄变电站的微波塔落雷,由于地电位差造成大量的通讯远动设备损坏;北郊变电站微波塔落雷,造成大量的保护、运动、通讯设备损坏。

近年来,随着微电子技术的不断发展,自动控制系统在生产生活各个方面的使用越来越广,人们在受益于微电子的极大方便的同时,也受到其一旦损坏就损失巨大的困扰。

实际中,在增加自动控制系统的时候,往往对自动控制系统的防雷未加考虑或考虑不够的情况较多,一旦有雷电波侵入,设备损坏一般是巨大的,有的甚至使整个系统瘫痪,造成无可挽回的损失。

这些故障的主要原因是由于一次设备发生雷击后在弱电设备造成的浪涌超过了设备承受的能力而损坏设备的,浪涌的主要形式是电源浪涌、信号浪涌。

而这种浪涌在新建或扩建设备时又往往不被重视,所以本文在介绍常用的弱电防雷的同时,重点探讨了浪涌对弱电设备的危害及预防措施。

2.弱电设备雷电危害的主要原因分析雷电会导致多种不同形式的危害,没有任何一种办法可以全面防止雷电的危害,通过各种有效的办法可将雷害的程度降到最低,在多年的实际中人们对直击雷、感应雷、球形雷的认识比较高,防护也相对完善,但对雷电浪涌的防护意识和防护措施相对比较薄弱,以上所列的四次典型的雷击弱电设备的情况就是对弱电防雷考虑不够造成的。

其主要的雷电形式及雷害情况有以下几种情况:(1)雷电浪涌是近年来由于微电子的不断使用引起人们极大重视的一种雷电危害形式,同时其防护方式也不断完善。

最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。

一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。

浪涌电压可以从电源线或信号线等途径窜人电脑设备。

美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000h(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V 的就有300余次。

这样的浪涌电压完全有可能一次性将电子设备损坏。

信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。

金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。

排除这些干扰将会改善网络的传输状况。

(2)直击雷是指雷电直接击在建筑物构架、动植物上,因电效应、热效应和机械效应等造成建筑物等损坏以及人员的伤亡。

(3)感应雷是雷电在雷云之间或雷云对地放电时,在附近的户外传输信号线路、埋地电力线、设备间连接线产生电磁感应并侵入设备,使串联在线路中间或终端的电子设备遭到损害。

感应雷虽然没有直接雷猛烈,但其发生的几率比直击雷高得多。

3.弱电设备防雷措施按照防护范围可将弱电设备的防雷措施分为两类,外部防护和内部防护。

外部防护是指对安装弱电设备的建筑物本体的安全防护,可采用避雷针、分流、屏蔽网、均衡电位、接地等措施,这种防护措施人们比较重视、比较常见,相对来说比较完善。

内部防护是指在建筑物内部弱电设备对过电压(雷电或电源系统内部过电压)的防护,其措施有:等电位联结、屏蔽、保护隔离、合理布线和设置过电压保护器等措施,这种措施相对来说是比较新的办法,也不够完善,下边对弱电设备防雷进行探讨,主要对雷电浪涌及地电位差的防护提出一些自己的看法。

3.1弱电设备的外部防护弱电设备的外部防护首先是使用建筑物的避雷针将主要的雷电流引人大地;其次是在将雷电流引人大地的时候尽量将雷电流分流,避免造成过电压危害设备;第三是利用建筑物中的金属部件以及钢筋可以作为不规则的法拉第笼,起到一定的屏蔽作用,如果建筑物中的设备是低压电子逻辑系统、遥控、小功率信号电路的电器,则需要加装专门的屏蔽网,在整个屋面组成不大于5m-5m,6m-4m的网格,所有均压环采用避雷带等电位连接;第四是建筑物各点的电位均衡,避免由于电位差危害设备;第五是保障建筑物有良好的接地,降低雷击建筑物时接点电位损坏设备。

3.2弱电设备的内部保护从EMC(电磁兼容)的观点来看,防雷保护由外到内应划分为多级保护区。

最外层为0级,是直接雷击区域,危险性最高,主要是由外部(建筑)防雷系统保护,越往里则危险程度越低。

保护区的界面划分主要通过防雷系统、钢筋混凝土及金属管道等构成的屏蔽层而形成,从0级保护区到最内层保护区,必须实行分层多级保护,从而将过电压降到设备能承受的水平。

一般而言,雷电流经传统避雷装置后约有50%是直接泄人大地,还有50%将平均流人各电气通道(如电源线,信号线和金属管道等)。

随着电脑通信设备的大规模使用,雷电以及操作瞬间过电压造成的危害越来越严重。

以往的防护体系已不能满足电脑通信网络安全的要求。

应从单纯一维防护转为三维防护,包括:防直击雷,防感应雷电波侵入,防雷电电磁感应,防地电位反击以及操作瞬间过电压影响等多方面作系统综合考虑。

多级分级(类)保护原则:即根据电气、微电子设备的不同功能及不同受保护程度和所属保护层确定保护要点作分类保护;根据雷电和操作瞬间过电压危害的可能通道从电源线到数据通信线路都应做多级层保护。

3.2.1 电源部分防护弱电设备的电源雷电侵害主要是通过线路侵入。

高压部分有专用高压避雷装置,电力传输线把对地的电压限制到小于6000V(1EEEEC62.41),而线对线则无法控制。

所以,对380V低压线路应进行过电压保护,按国家规范应有三部分:建议在高压变压器后端到二次低压设备的总配电盘间的电缆内芯线两端应对地加避雷器或保护器,作一级保护;在二次低压设备的总配电盘至二次低压设备的配电箱间电缆内芯线两端应对地加装避雷器保护器,作二级保护;在所有重要的、精密的设备以及UPS的前端应对地加装避雷器或保护器,作为三级保护。

目的是用分流(限幅)技术即采用高吸收能量的分流设备(避雷器)将雷电过电压(脉冲)能量分流泄人大地,达到保护目的,所以,分流(限幅)技术中采用防护器的品质、性能的好坏是直接关系网络保护的关键,因此,选择合格优良的避雷器或保护器至关重要。

3.2.2 信号部分保护对于信息系统,应分为粗保护和精细保护。

粗保护量级根据所属保护区的级别确定,精细保护要根据电子设备的敏感度来进行确定。

3.2.3 接地处理一定要求有一个良好的接地系统,因所有防雷系统都需要通过接地系统把雷电流泄人大地,从而保护设备和人身安全。

如果机房接地系统做得不好,不但会引起设备故障,烧坏元器件,严重的还将危害工作人员的生命安全。

另外还有防干扰的屏蔽问题,防静电的问题都需要通过建立良好的接地系统来解决。

4.结论弱电设备的防雷问题是一个综合性的工作,尤其是弱电设备的雷电浪涌防护还重视不够,也常常由其而引起设备的损坏,所以在完善弱电设备外部防护的同时,要加强弱电设备的内部防护,建议加强以下几方面的工作:(1)首先要完善弱电外部雷电防护,将绝大部分雷电流直接接闪引入地下泄散。

(2)其次要阻塞沿电源线或数据、信号线引入的过电压波。

(3)第三限制钳位被保护设备上浪涌过压过流幅值在设备可承受的范围。

这三道防线,相互配合,各行其责,缺一不可。

对电子设备防雷击有关问题的看法来源:中国论文下载中心[ 06-03-03 11:57:00 ] 作者:程开嘉编辑:studa9ngns摘要:本文阐述了雷击模拟电子设备的机理,SPD和类型和选择时应注意的问题。

关键词:雷击雷电波形 SPD近年来,电子信息设备和计算机系统已深入各行各业,由于这类设备的工作电压和耐冲击电压水平低,极易受到雷电电磁脉冲的危害,从而使雷电灾害由电力和建筑物这两个传统领域扩展到几乎所有行业,特别是通讯、信息技术数据中心,计算机中心以及微电子生产行业等由于雷电造成的危害尤为重要。

另一方面,因为雷击是机率事件,这种影响尚未引起人们的注意,很多人认为只要按照国家的建筑物防雷设计规范做好避雷针(带)、引下线和接地装置等建筑物内外的防雷工作就“万事大吉”了。

但实际上,当雷击现象发生时,建筑物的外部防雷装置确实有效地抵御了雷击对建筑物的破坏,同时均匀的避雷引下线与建筑物接地的均压环也起到法拉第网笼的作用,保证建筑物内的人员不致因跨步电压升高而导致触电事故。

但这时当雷电击中建筑物防雷装置或击中附近其他建筑物的避雷针(带)并由引下线导人大地时,瞬间内在引下线自上而下的产生一个很强的变化磁场。

处在这个电磁场作用下的导体,便会感应产生电压,其数值也可达数十千伏,处在这个磁场作用范围的电气、信号、电源及它们的传输线路都因相对地切割了这个变化的磁场磁力线而产生出感应高压,从而将用电设备击坏。

如图1所示,如果导体的形状是开口环形感应电压,便会把几厘米长的空气间隙a、b击穿发生火花放电。

如果导体是一个闭合回路,感应电压会造成一个电流通过,假如回路上有接触不良的接点,这些地方就会局部发热。

再有,由于雷电冲击波的能量集中在工频附近几十赫兹到几百赫兹的低端,雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的机率要比从信号线中进入的机率要高很多,据统计,约有8%的雷击损坏电子设备的事故是由电源引入的,因此应特别加强系统中设备电源的防雷措施。

l 雷击电子设备的途径及损坏机理雷击过电压损坏设备可分为两种情况,一种是受雷电直击,另一种受感应雷影响所致。

据统计电子设备受雷电直击而损坏的机率很小,而绝大多数损坏为感应雷造成,雷电行波通过传输信息的电路线传至电子设备使其某些电子元件受损。

还有一种情况值得重视的是电子设备附近的大地或其他设备的接地体,因受直击雷引起的电位升高,会使电子设备造成反击,使之对地绝缘击穿。

根据传统经验电子设备的地线与电源设备的地线分开设置是减少这种雷电侵入途径的有效措施之一。

所以凡联结有输人或输出线路的电子设备应考虑以上三条侵入途径。

不论那种途径侵入的雷击过电压加在电子设备上冲击引起两种过电压,一种是:使平衡电路某点出现超过允许的对地过电压,称为纵向过电压,地电位上升引起的反击也属于从地系统侵入的纵向过电压;另一种是平衡电路线间或不平衡电路线对地出现的过电压称为横向过电压。

使用对称传输线的设备,横向过电压是因线路两线间存在不同的纵向过电压;或因纵向防护元件放电性能的分散性(如动作时间有快慢的差别)是造成横向过电压的原因,如果在平衡线路上的两个纵向防护元件,其中一路故障或失效这就造成了横向过电压的极限情况。

相关文档
最新文档