2007-2008年高等数学(下)期末考试试卷(A)2

合集下载

高等数学(文科)期末试卷(A、B卷)及评分标准

高等数学(文科)期末试卷(A、B卷)及评分标准

( A− I )B = A2 − I = ( A− I )( A + I ) (6 分) B = A + I = ⎡⎢⎢⎢⎢⎣012
0 4 0
402⎤⎥⎥⎥⎥⎦ (8 分)
x1 y1 s1 − 2t1
x1 y1 s1
x1 y1 t1
三、 D = (−3) ⋅ x2 y2 s2 − 2t2 (4 分) = (−3) ⋅ x2 y2 s2 + 6 x2 y2 t2 (6 分)
⎪ ⎨
(λ + 3)x1 + x2 + 2x3 λ x1 + (λ − 1)x2 + x3
=λ = 2λ 无解?给
⎪⎩3(λ + 1)x1 + λ x2 + (λ + 3)x3 = 3
出你的理由。
八、(本题满分 10 分)已知随机变量 X 的密度函数为:ϕ ( x) = 2 − 2x ( 0< x < 1) 。
02⎤⎥⎥⎦ ,求矩阵 X 。
x+ y 三、(本题满分 8 分)求行列式 D = y + z
z+x
y+z z+x x+ y
z+x x+ y 。 y+z
四、(本题满分 8 分)一射手对同一目标独立地进行四次射击,若至少命中一次的概率为 80 / 81 ,
试求:(1)该射手进行一次射击的命中率;(2)该射手前两次射击全部命中的概率。
3、下列关于事件 A、B 的结论,正确的是:
【】
A、若 A、B 对立,则 P( AB) = 0 B、若 P( AB) = 0 ,则 P( A) = 0 或 P(B) = 0
C、若 A、B 互斥,则 P( A) = 1 − P(B) D、若 A、B 互斥,则 P( A + B) = 1

南京工业大学07-08下)高等数学B试卷(A)答案

南京工业大学07-08下)高等数学B试卷(A)答案
南京工业大学 高等数学 B 试卷
试题 (A)卷
试题标准答案
2007 --200 8 学年第 二 学期 使用班级 一、选择题(共 15 分,每小题 3 分)
1.(D) 2.(C) 3.(A) 4.(B) 5.(D)
二、填空题(共 20 分,每小题 2 分)
1.1 6. 必要
2. (2, 6, 10)
3. 1 (dx dy) 4. 2 2
z x
Fx Fz
1
2
x e
z
, z y
Fy Fz
1
2
y e
z
(4 分)
2.解:
sin x dxdy
1
dx
x sin x dy
Dx
0
x x2
(4 分)
1 sin1(3 分) Nhomakorabea原式 ln(1 r 2 )rdrd
(2 分)
D
2 d 1l n1( r 2 )r d r (4 分)
D
2
d
1
l
n1(
r
2
)r
d
r
0
0
(2 分) (4 分)
2
ln udu (2ln 2 1) (2 分) 1
7.原方程化为 u 4u e x
(2 分)
特征方程 r 2 4 0 r 2i
齐次方程通解为 u C1 cos2x C2 sin 2x
令特解 y Aex ,代人解得 A 1 5
5. x 1 y 2 z 3
1
3
5
1
y2
7.1
8. dy f (x, y)dx 9.(x 2) 2( y 1) z 0
0
y
10.8

2008高数工-2期末-A(工-4ye)答案

2008高数工-2期末-A(工-4ye)答案

一、单项选择题:本大题共5小题,每小题4分,共20 分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确结果的字母写在括号内。

1. 对函数xy x y x f +=2),(,原点 )0,0( 【 B 】 (A )不是驻点. (B )是驻点却不是极值点. (C )是极大值点. (D )是极小值点. 2. 微分方程01=-'xy 【 D 】 (A ) 不是可分离变量的微分方程 (B )是齐次微分方程(C )是一阶线性齐次微分方程 (D )是一阶线性非齐次微分方程3.级数()∑∞=⎪⎪⎭⎫⎝⎛+-111n n n n 的敛散情况是 【 C 】(A ) 条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不能确定 4.设∑为球面2222x y z a ++=的表面,则⎰⎰∑zdS = 【 A 】(A )0 (B )22a π (C ) 24a π (D ) 1 5.将二次积分dx x dy I y ⎰⎰+=1311交换积分次序后得 【 B 】(A )⎰⎰+13121x dy x dx (B) ⎰⎰+20311x dy x dx (C ) ⎰⎰+ydy x dx 03101 (D )⎰⎰+1311xdy x dx二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中的横线上.6.曲线t z t y t t x 2,sin ,cos ===在点),,1,0(πP 处的切线方程为2012π-=-=-z y x , 法平面方程为0440222=+-=-+-ππππz x z x 或.7.试写出求解下列条件极值问题的拉格朗日函数:分解已知正数a 为三个正数z y x ,,之和,使z y x ,,的倒数之和最小()()a z y x zy x z y x L -+++++=λ111,,.8.函数()x x x f -=1ln )(的麦克劳林级数的收敛域为[)1,1-∈x , ()=)0(5f -30 . 9.设函数(),001⎩⎨⎧≤≤--<<=x x x x f ππ)(x S 是()x f 的以2π为周期的傅立叶级数的和函数,则=-)21(S21 ,=)(πS 21+π . 10.2222=+++z y x xyz 确定了隐函数),(y x z z =,则),(y x z z =在点()1,0,1-处的全微分为 dy dx dz 2-=.三、计算下列各题:本大题共6小题,每小题9分,共54分. 解答应写出主要过程或演算步骤.11.设函数()ye x yf z ,22-=,其中f 具有二阶连续偏导数,求y z ∂∂,yx z ∂∂∂2.解 ye f yf y z 2'12'+=∂∂ ()y e f y f x yx z 1211222''+''-=∂∂∂12.计算三重积分dv y xI ⎰⎰⎰Ω+=)(22,其中Ω为旋转抛物面22y x z +=与平面 1=z 所围成的区域.解: 利用柱面坐标: dv y x I ⎰⎰⎰Ω+=)(22dz d d ⎰⎰⎰=1012202ρπρρρθ ()ρρρπd 21312-=⎰ ρρρπd )(2513-=⎰6π=13.利用高斯公式计算曲面积分 ⎰⎰∑++++=,222333zy x dxdyz dzdx y dydz x I 其中∑是球面2222a z y x =++的内侧.解:将球面方程2222a z y x =++代入I ,得: ⎰⎰⎰⎰∑∑++=++++=dxdy z dzdx y dydz x a z y x dxdyz dzdx y dydz x I 3332223331 利用高斯公式,333,,z R y Q x P ===,设球面∑所围闭区域为Ω,()dxdydz z y x a I ⎰⎰⎰Ω++-=2223331 dr r r d d a a ϕϕθππsin 3202020⎰⎰⎰-=⎰-=πϕϕπ05sin 56d a a 5124a π-=.14.计算()(),322⎰++-=Ly dy ye x dx y xI 其中L 是由直线22=+y x 上从点()0,2A 到点()1,0B 上的一段及圆弧21y x --=上从()1,0B 到()0,1-C 的一段连接而成的有向曲线.解:补线21:,0:→-=x y CA ,++BC 弧则围成封闭曲线,其所围闭区域为D ,在其上使用格林公式,y ye x Q y x +=-=3,2P 2,2,3-=∂∂=∂∂yPx Q()()⎰++-=Ly dyye x dx y x I 322()()()()⎰⎰++--++-=++CAy BC y dy ye x dx y xdy ye x dx y x32322CAAB 2弧=dx x dxdy y P x Q D ⎰⎰⎰--⎪⎪⎭⎫ ⎝⎛∂∂-∂∂21221335--=⎰⎰x dxdy D 4523415ππ+=-⎪⎭⎫⎝⎛+= 15. 求(1)幂级数()121121-∞=∑--n n n x n 的收敛域;(2)幂级数()121121-∞=∑--n n n x n 的和函数.解:(1)求收敛域:121211212lim()(lim -+∞→+∞→-+=n n n nn n x n n x x u x u 2x =,则该级数在()1,1-内收敛. 1=x 时,级数为()∑∞=--1121n nn ,收敛1-=x 时,级数为()∑∞=---1121n nn ,收敛,该级数的收敛域为[]1,1-. (2)求和函数 设()121121)(-∞=∑--=n n n x n x s , 两边同时对x 求导,得()221121)1(121)(-∞=-∞=∑∑-='⎪⎪⎭⎫ ⎝⎛--='n n n n n n x x n x s 211x +-=两边同时对x 积分,得 x dx x s x s xarctan 11)0()(02-=+-=-⎰由于,0)0(=s 所以[]1,1,arctan )(-∈-=x x x s 16.设函数)(x y 满足()()[]d t t y tex y x t⎰-+='01,且(),10=y , 求)(x y .解:两边求导得()()x y xe x y x -='',即:()()x xe x y x y =+'' 这是二阶常系数非齐次线性方程,且(),10=y ()10='y(1)先解对应的齐次方程: 特征方程为,012=+r 特征根为i r ±= 对应齐次方程的通解为x C x C Y sin cos 21+=(2)再求非齐次方程的一个特解:设特解为()x e B Ax y +=*,求"'**,yy ,代入方程()()x xe x y x y =+''化简得 21,21-==B A 则所求特解为x e x y ⎪⎭⎫⎝⎛-=2121*(3)求原方程的特解:原方程的通解为()x e x x C x C y Y y 121sin cos 21*-++=+= 将初始条件(),10=y ()10='y 代入得1,2321==C C 则()x e x x x y 121sin cos 23-++=四、 证明题: 本题共1题,6分. 17. 证明:()()21,21:,11ln 1ln ≤≤≤≤≥++⎰⎰y x D dxdy x y D. 证明:()()dxdy x y D⎰⎰++1ln 1ln ()()()()dxdy y x x y D ⎰⎰⎥⎦⎤⎢⎣⎡+++++=1ln 1ln 1ln 1ln 211⎰⎰=≥Ddxdy 其中用到了()()()()()()()()y x x y y x x y +++++=⎥⎦⎤⎢⎣⎡+++++1ln 1ln 21ln 1ln 1ln 1ln 1ln 1ln 21221≥。

高等数学A试卷(含答案

高等数学A试卷(含答案

《高等数学》(经济类)期末考试试卷(A )一、判断题(每小题2分,共计20分)( )1、闭区间上的无界函数必不连续.( )2、若)(x f 在0x 处不连续,则)(x f 在0x 处必不可导. ( )3、若函数)(x f y =处处可导,则曲线)(x f y =必点点有切线. ( )4、设函数()f x 在0x 处可导,则函数)(x f 在0x 处也可导. ( )5、对于任意实数a ,总有c x a dx x a a++=+⎰111. ( )6、若0>x ,)()(x g x f '>',则当0>x 时,有)()(x g x f >. ( )7、若函数)(x f 在],[b a 上可积,则在],[b a 上必有界. ( )8、(,)z f x y =在点00(,)x y 处可微则在该点必连续.( )9、设(,)z f x y =是关于x 的奇函数,且区域D 关于x 轴对称,则二重积分0),(=⎰⎰Dd y x f σ.( )10、xe x y -='2)(2是二阶微分方程. 二、填空题(每题2分,共计20分)1、432lim23=-+-→x kx x x ,则k = . 2、设)(0x f '存在,则xx f x x f x ∆-∆-→∆)()(lim000= _____.院、系 班级 姓名 学号 课头号密 封 线3、若函数)(x f y =的导数为y ',则=22dyxd _____.4、设1)(2-=xex f ,则)0(2f d = .5、21sin x d tdt dx =⎰ .6、利用定积分的几何意义计算:⎰--a adx x a 22= .7、改变累次积分的积分次序:⎰⎰y ydx y x f dy ),(10= .8、广义积分⎰∞+-02dx e x = .9、将二重积分⎰⎰Dd y x f σ),(,区域D 为2222b y x a ≤+≤,)0(b a <<表示为极坐标形式的累次积分为 . 10、微分方程xy y 2='的通解为 .三、计算题(每题6分,共计42分)1、求011lim ln(1)x x x x →⎡⎤+-⎢⎥+⎣⎦.2、求函数11x y x -=+在[0,4]上的最大值与最小值.3、求⎰+312211dx xx.4、求使352)(2-+=⎰x x dt t f xa 成立的连续函数)(x f 和常数a .5、求隐函数0xe xyz -=的一阶偏导数z x ∂∂,22x z∂∂.6、计算⎰⎰Ddxdy yx 22,区域D 是由2=y ,x y =,1=xy 围成的区域. 院、系 班级 姓名 学号 座号密 封 线7、求微分方程0)12(2=+-+dx x xy dy x 在条件01==x y 下的特解.四、应用题(共8分)求由曲线3y x =及直线2,0x y ==所围成的平面图形的面积,及该图形绕x 轴旋转所得旋转体的体积.五、证明题(共10分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,且⎰=132)(3)0(dx x f f .证明:在)1,0(内有一点c ,使0)(='c f .参考答案一 √ √ √ × × × √ √ × ×二 1. -3 2. -0()f x ' 3. 4. 24d x 5. 22sin x x6. 212a π 7. 210(,)x x d x f x y d y ⎰⎰ 8. 1/29. 20(cos ,sin )bad f r r r dr πθθθ⎰⎰ 10. 2x y C e = (C 为常数)三 1. -1/2 2.min max 31,5y y =-= 4. 参书(梁保松《高等数学》,下同)习题5-2,65. 参书习题6-6,5(3)6. 参书习题7-2,7(3)7.参书§9.2 例12四 4 ,1287π五 参书§5.1 例2(注:本资料素材和资料部分来自网络,仅供参考。

高等数学下册期末考试试题及答案 (1).

高等数学下册期末考试试题及答案 (1).

高数高等数学A(下册)期末考试试题一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a、b满足a b0,a2,b2,则a b.3z2、设z xln(xy),则.x y23、曲面x2y2z9在点(1,2,4)处的切平面方程为.4、设f(x)是周期为2的周期函数,它在[,)上的表达式为f(x)x,则f(x)的傅里叶级数在x3处收敛于,在x处收敛于.5、设L为连接(1,0)与(0,1)两点的直线段,则(x y)ds L※以下各题在答题纸上作答并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)2222x3y z91、求曲线2在点M0(1,1,2)处的切线及法平面方程.22z3x y2、求由曲面z2x2y及z6x y所围成的立体体积.3、判定级数2222(1)nlnn1n1是否收敛?如果是收敛的,是绝对收敛还是条件收敛? nz2zx,4、设z f(xy,)siny,其中f具有二阶连续偏导数,求.x x yy 5、计算曲面积分dS2222,x y z a其中是球面被平面z h(0h a)截出的顶部.z三、(本题满分9分)抛物面z x2y2被平面x y z1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.第 1 页共 2 页高数(本题满分10分)计算曲线积分⎰L(exsiny-m)dx+(excosy-mx)dy,其中m为常数,L为由点A(a,0)至原点O(0,0)的上半圆周x2+y2=ax(a>0).四、(本题满分10分) xn求幂级数∑n的收敛域及和函数.n=13⋅n∞五、(本题满分10分)计算曲面积分I=⎰⎰2xdydz+2ydzdx+3(z∑332-1)dxdy,其中∑为曲面z=1-x2-y2(z≥0)的上侧.六、(本题满分6分)设f(x)为连续函数,f(0)=a,F(t)=222z=Ω,其中是由曲面[z+f(x+y+z)]dvt⎰⎰⎰Ωt与z=lim+t→0F(t). t3-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交;不得带走试卷。

浙江理工大学07~08高数A2期末试卷(含答案)

浙江理工大学07~08高数A2期末试卷(含答案)

浙江理工大学2007~2008学年第二学期高等数学A 期终试题(A )卷班级 学号 姓名 一、 选择题(每小题4分,满分28分)1、函数2222),(y x y x y x f +-= 在点)1,1(处的全微分)1,1(df 为 ( )(A) 0 (B) dy dx + (C) dx 4 (D) dy dx -2 2、设L 是从A (1,0)到B (-1,2)的直线段,则()Lx y ds +⎰= ( )(B)(C) 2 (D) 03、方程234sin 2y y x '''+=+的特解为 ( )(A)1(cos 2sin 2);2y x x =-+ (B) 31cos 222y x x =- (C)31sin 222y x x =- (D)311cos 2sin 2.222y x x x =--4、设)(x f 在),0(+∞上有连续的导数,点A )2,1(,B )8,2(在曲线22x y =上。

L为由A 到B 的任一曲线,则=++-⎰dy x xy f x dx x y f x y xy L])(1[)](22[22223( )。

(A) 20, (B) 30, (C) 35, (D) 40。

5、 设b 为大于1的自然数,对幂级数∑∞=1n bnnx a,有a a a nn n =+∞→1l i m,(1,0≠>a a ),则其收敛半径=R ( )。

(A) a , (B) a1, (C)ba , (D)ba1。

6、下列级数收敛的是 ( )(A) ∑∞=1sin n n π; (B )∑∞=1100!n n n ; (C )∑∞=+12)11ln(n n ; (D )∑∞=+-12)11(21)1(n n n nn . 7、已知曲线)(x f y =过原点,且在原点处的法线垂直于直线)(,13x y y x y ==-是微分方程02=-'-''y y y 的解,则=)(x y ( )(A )x xe e--2 (B )x x e e 2-- (C )x x e e 2-- (D )x x e e --2二、填空题(每小题4分,满分20分)1、设函数22(,)22f x y x ax xy y =+++在点(1,1)-取得极值, 则常数a = 。

2007-2008(2)期末考试试卷(A)(高等数学)

2007-2008(2)期末考试试卷(A)(高等数学)

学号:
武汉工业学院 2007 –2008 学年第 2 学期 期末考试试卷(A 卷)
课程名称 高等数学 2
注:1、考生必须在答题纸的指定位置答题,主观题要有必要的步骤。
2、考生必须在答题纸的密封线内填写姓名、班级、学号。
3、考试结束后只交答题纸。
------------------------------------------------------------------------------------------------------------------------------------一、填空题(每小题 2 分, 共 14 分)
7. x2dS=
其中∑是柱面 x 2 y 2 4 在0 z 1之间的部分曲面.
二、解答下列各题(每小题 7 分,,总计 70 分)
1.
求过直线l
:
3x 2y z 1 0 2x 3y 2z 2 0
且垂直于平面
:
x
2y
3z
5
0 的平面方程。
2.
已知平面
: 3x
y 2z 5 0 与直线l :
与路径无关,
其中 L 为上半平面内的任意曲线,并计算从点(3, 2) 沿曲线 L 到达点(1,2) 时该曲线积分之值。 3
A 卷第 1 页(共 1 页)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------

安徽大学高数A(二)期末试卷答案

安徽大学高数A(二)期末试卷答案

安徽大学 2009—2010 学年第二学期 《高等数学 A(二)、B(二)》考试试卷(A 卷)
(闭卷 时间 120 分钟)
题号 一




总分
得分
阅卷人
学号
姓名
专业
一、填空题(本大题共五小题,每小题 2 分,共 10 分)
1.点 (2,1,1) 到平面 x + y − z +1 = 0 的距离为
.
2.极限
f (x, y) 在点 (x0 , y0 ) 处取极小值的充分条件的是
()
A.
fxx (x0 ,
y0 )
>
0,
fxx (x0 ,
y0 )
f yy (x0 ,
y0 ) −
f
2 xy
(
x0
,
y0fxx (x0 ,
y0 )
>
0,
fxx (x0 ,
y0 )
f yy (x0 ,
y0 ) −
f
2 xy
18.将 f (x) = 1 展开为 (x + 2) 的幂级数,并求该幂级数的收敛域. 1+ 2x
四、应用题(本大题共 8 分)
19. 在椭圆 x2 + 4 y2 = 4 上求一点,使该点到直线 2x + 3y −12 = 0 的距离最短.
《高等数学 A(二) 、B(二)》(A 卷) 第 5 页 共 6 页
_________.
2. 设 f (x, y) = x y ,则 lim f (x, y) =_____________ .
xy +1−1
(x, y)→(0,0)
∫ ∫ 3. 累次积分

2007- 2008第二学期高等数学期末试卷(A)

2007- 2008第二学期高等数学期末试卷(A)

中国矿业大学徐海学院2007-2008学年第二学期《高等数学》试卷(A )卷考试时间:120分钟 考试方式:闭卷班级: 姓名: 学号: 序号:考生注意:本试卷共10页,四大题,草稿纸附两张,不得在草稿纸上答题。

一、填空题(每小题3分,共15分)1. 微分方程xy y 2='的通解是____________________________。

2.二元函数)ln(y x x z +=的定义域为_____________________________________。

3.设xyxe z =,则=∂∂xz_____________________________________。

4.过点(1,2,-1)且垂直于平面0423=+-+z y x 的直线方程是___________________________________________。

5. 曲线t x =,2t y =,3t z =在1-=t 处的法平面方程为___________________________________________。

二、选择题(每小题3分,共15分)1. 设二重积分的积分区域D 是222a y x ≤+(0>a ),则⎰⎰=+Ddxdy y x )2(23( )。

A. 0B. 2πa C. 2π2a D. 22.曲线⎩⎨⎧==052y x z 绕x 轴旋转所形成的旋转面方程是( )。

A. 2225y x z +±= B. 2225y x z +=C. x z y 522=+D. 225x z =3.对于级数]1)1([31p n p n n n -∞=∑+-,下列结论正确的是( )。

A. 当0>p 时,级数收敛B. 当1>p 时,级数收敛C. 当20<<p 时,级数绝对收敛D. 当21<<p 时,级数绝对收敛 4.函数2)(x e x f -=展开成x 的幂级数是( )。

08高数A(2)A卷答案-5页文档资料

08高数A(2)A卷答案-5页文档资料

s(x) = ( x ) 1 x
=
1 (1 x)2
, (1
x
1) .
……10 分
第2页
线
4八.、设(10f
分(x))是设区可域导D函数{(,x, y且) | 满x2 足 y条2 件1}:,计lim算 x0
f((1x)2
D


fy
(21)dxdxy)
2x4

1
,则曲线

f11

xf12

f2
yf 21

xyf 22
f11 x y f12 xyf22 f2
……4 ……6 ……8
专业:

学院:

第1页
五、(8 分)求曲面 x2 yz 3y2 2xz2 8z 上点 (1, 2, 1) 处的切平面和法线方程.
cos 2
d

1D.2
1f
(c3osesc2x)3dsec
x
)
ln1
3dx
0
2
40
2
4
……6 分 ……8 分
三、计算题((1共 1)491分 5) .
4 4 16
……10 分
1九.、(解求8:分由lxi)m1z求函23x数xzx02,x211z
y2x在区。域 x2

设 s(x) nxn1 , x (1,1) .上式两边从 0 到 x 积分,得 n1
x s(x)dx
x
(
nxn1)dx

x nxn1dx xn
x
, (1 x 1) ,……7 分
0
0
n1

中国石油大学高数(2-2)历年期末试题参考答案

中国石油大学高数(2-2)历年期末试题参考答案

2007—2008学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上. 1. 平面1:0y z -=∏与平面2:0x y +=∏的夹角为3π.2. 函数22y x z +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为321+.3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当0→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π)0,0(f .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分f dv ⎰⎰⎰Ω在柱面坐标系下化为三次积分为211()πθ⎰⎰⎰rd dr f r rdz .5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:Pdx Qdy Rdz Γ++=⎰6. 将函数()1(0)f x x x π=+≤≤展开成余弦级数为)0()5cos 513cos 31(cos 412122πππ≤≤+++-+=+x x x x x .二、单项选择题:7~12小题,每小题3分,共18分。

下列每题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在题后的括号内.7. 若(,)z f x y =有连续的二阶偏导数,且(,)xyf x y K ''= (常数),则(,)y f x y '=( D ) (A) 22K ; (B) Ky ; (C) ()ϕ+Ky x ; (D) ()ϕ+Kx y .8. 设()f x 是连续的奇函数,()g x 是连续的偶函数,区域{(,)01,D x y x y =≤≤-≤≤,则下列结论正确的是( A ). (A)()()0Df yg x dxdy =⎰⎰; (B) ()()0Df xg y dxdy =⎰⎰;(C)[()()]0Df xg y dxdy +=⎰⎰; (D) [()()]0Df yg x dxdy +=⎰⎰.9. 已知空间三角形三顶点)5,0,0(),1,1,1(),3,2,1(C B A -,则ABC ∆的面积为( A ) (A)92; (B) 73; (C) 29; (D)37. 10. 曲面积分2z dxdy ⎰⎰∑在数值上等于( C ). (A) 流速场i z v 2=穿过曲面Σ指定侧的流量;(B) 密度为2z =ρ的曲面片Σ的质量;(C) 向量场k z F 2=穿过曲面Σ指定侧的通量;(D) 向量场k z F 2=沿Σ边界所做的功.11.若级数1(2)nn n c x ∞=+∑在 4x =- 处是收敛的,则此级数在 1x = 处 ( D )(A)发散; (B)条件收敛; (C)绝对收敛; (D)收敛性不能确定.12.级数121(1)n pn n -∞=-∑的敛散性为 ( A ) (A) 当12p >时,绝对收敛; (B )当12p >时,条件收敛;(C) 当102p <≤时,绝对收敛; (D )当102p <≤时,发散.三、解答题:13~20小题,共58分.请将解答过程写在题目下方空白处.解答应写出文字说明、证明过程或演算步骤. 13. (本题满分6分)设()x y z x y z e-++++=确定(,)z z x y =,求全微分dz .解:两边同取微分 ()(1)()x y z dx dy dz edx dy dz -++++=⋅-⋅++ , 整理得 dz dx dy =--.14. (本题满分8分)求曲线2223023540x y z x x y z ⎧++-=⎨-+-=⎩ 在点(1,1,1)处的切线与法平面方程.解:两边同时关于x 求导22232350dy dz x y z dx dxdy dz dx dx ⎧+⋅+⋅=⎪⎪⎨⎪-+=⎪⎩,解得(1,1,1)(1,1,1)9474dy dx dz dx ⎧=⎪⎪⎨⎪=-⎪⎩,所以切向量为:91{1,,}1616T =-, 切线方程为: 1111691x y z ---==-; 法平面方程为:16(1)9(1)(1)0x y z -+---=,即169240x y z +--=.15.(本题满分8分)求幂级数(21)nn n x∞=+∑的和函数.解:求得此幂级数的收敛域为(1,1)-,(21)nn n x∞=+∑02∞==+∑nn nx 0∞=∑n n x ,1122∞∞-===∑∑nn n n nxx nx,设11()∞-==∑n n A x nx,则111(),(11);1∞∞-=====-<<-∑∑⎰⎰x x n nn n x A x dx nx dx x x x 21(),1(1)'⎛⎫∴== ⎪--⎝⎭x A x x x即2222()(1)∞===-∑n n xnx xA x x ,(21)∞=∴+∑nn n x 02∞==+∑nn nx 0∞=∑n n x 22211,(11)(1)1(1)+=+=-<<---x xx x x x . 16.(本题满分6分)计算()∑=++⎰⎰I x y z dS ,其中∑为曲面5+=y z 被柱面2225+=xy 所截下的有限部分. 解:()∑=++⎰⎰I x y z dS (5)∑=+⎰⎰x dS∑=⎰⎰xdS (∑关于yoz 平面对称,被积函数x 是x 的奇函数)5∑+⎰⎰dS05∑=+⎰⎰dS 2225+≤=⎰⎰x ydxdy 25π==.17.(本题满分8分)计算积分222(24)(2)=++-⎰LI xxy dx x y dy ,其中L 为曲线22355()()222-+-=x y 上从点(1,1)A 到(2,4)B 沿逆时针方向的一段有向弧.解:4∂∂==∂∂Q Px x y,∴积分与路径无关,选折线AC +CB 为积分路径, 其中(2,1)C ,,12:,1,0=≤≤⎧⎨==⎩x x x AC y dy 2,0:.,14==⎧⎨=≤≤⎩x dx CB y y y222(24)(2)∴=++-⎰LI x xy dx x y dy222(24)(2)=++-⎰AC x xy dx x y dy 222(24)(2)+++-⎰CBx xy dx x y dy24221141(24)(8).3=++-=⎰⎰x x dx y dy 18.(本题满分8分)计算22()∑=+++⎰⎰I yzdydz y x z dzdx xydxdy ,∑是由曲面224-=+y x z与平面0=y 围成的有界闭区域Ω的表面外侧. 解:2222,(),,,∂∂∂==+=++=+∂∂∂P Q R P yz Q y x z R xy x z x y z由高斯公式, 22()∑=+++⎰⎰I yzdydz y x z dzdx xydxdy 22()Ω=+⎰⎰⎰x z dxdydz(利用柱面坐标变换cos sin ,θθ=⎧⎪=⎨⎪=⎩z x y y 则2:02,02,04.θπΩ≤≤≤≤≤≤-r y r )2224200032.3ππθ-==⎰⎰⎰r d rdr r dy 19.(本题满分8分)在第Ⅰ卦限内作椭球面1222222=++cz b y a x 的切平面,使切平面与三个坐标面所围成的四面体体积最小,求切点坐标.解:设切点坐标为),,(000z y x ,则切平面的法向量为000222222{,,}x y z a b c,切平面方程为0)()()(020020020=-+-+-z z c z y y b y x x a x ,即 1202020=++cz z b y y a x x , 则切平面与三个坐标面所围成的四面体体积为 22200016a b c V x y z =⋅,令 )1(ln ln ln ),,,(220220220000000-+++++=czb y a x z y x z y x L λλ解方程组⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++=+=+=+1021021021220220222002020c z b y ax c z z b y y a x x λλλ,得30a x =,30b y =,30c z =,故切点坐标为)3,3,3(c b a . 20. (本题满分6分)设(),()f x g x 均在[,]a b 上连续,试证明柯西不等式:22[()][()]b b aaf x dxg x dx ⎰⎰2[()()].baf xg x dx ≥⎰证:设:,.D a x b a y b ≤≤≤≤则 22[()][()]b baaf x dxg x dx ⎰⎰22()()Df xg y dxdy =⎰⎰(D 关于y x =对称)22()()Df yg x dxdy =⎰⎰221[()()2D f x g y dxdy =+⎰⎰22()()]Df yg x dxdy ⎰⎰22221[()()()()]2Df xg y f y g x dxdy =+⎰⎰ 1[2()()()()]2Df xg x f y g y dxdy ≥⋅⎰⎰[()()()()]Df xg x f y g y dxdy =⋅⎰⎰ ()()()()b b aaf xg x dx f y g y dy =⎰⎰2[()()]baf xg x dx =⎰.2008—2009学年第二学期 高等数学(2-2)期末试卷(A)参考答案一.选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1. 设三向量,,a b c 满足关系式a b a c ⨯=⨯,则( D ). (A )必有0a =; (B )必有0b c -=;(C )当0a ≠时,必有b c =; (D )必有()a b c λ=- (λ为常数). 2. 直线34273x y z++==--与平面4223x y z --=的关系是( A ). (A )平行,但直线不在平面上; (B )直线在平面上;(C )垂直相交; (D )相交但不垂直.3. 二元函数225,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( A )(A) 不连续,偏导数存在 (B) 连续,偏导数不存在(C) 连续,偏导数存在 (D) 不连续,偏导数不存在4. 已知2()()x ay dx ydyx y +++为某二元函数的全微分,则=a ( D ). (A )1-; (B )0; (C )1; (D )2.5. 设()f u 是连续函数,平面区域:11,0D x y -≤≤≤≤,则22()Df x y dxdy +=⎰⎰( C ). (A)122()dx f x y dy +⎰⎰; (B)1220()dy f x y dx +⎰⎰;(C )120()d f r rdr ⎰⎰πθ; (D )120()d f r dr ⎰⎰πθ.6. 设a 为常数,则级数1(1)(1cos )nn a n ∞=--∑( B ). (A )发散 ; (B )绝对收敛; (C )条件收敛; (D )收敛性与a 的值有关. 二.填空题(本题共6小题,每小题4分,满分24分).1. 设函数222(,,)161218x y z u x y z =+++,向量{1,1,1}n =,点0(1,2,3)P , 则03.3P u n ∂=∂2. 若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数5.a =-3. L 为圆221x y +=的一周,则22()0.Lx y ds -=⎰4. 设1lim 2n n na a +→∞=,级数211n nn a x ∞-=∑的收敛半径为.25. 设221()x y f x e dy -=⎰,则1101()(1).4xf x dx e -=-⎰ 6. 设()f x 是以2为周期的周期函数,它在区间(1,1]-上的定义为32,10(),01x f x x x -<≤⎧=⎨<≤⎩,则()f x 的以2为周期的傅里叶级数在1x =处收敛于3.2三.解答下列各题(本题共7小题,满分44分). 1.(本小题6分)设()f u 是可微函数,z f =,求2z z x y x y∂∂+∂∂.解题过程是:令u =,则()z f u x ∂'=∂,()z f u y ∂'=∂,20.z zx y x y∂∂∴+=∂∂ 2. (本小题6分)计算二重积分2211Dxydxdy x y +++⎰⎰,其中22{,)1,0}D x y x y x =+≤≥. 解题过程是:D 关于x 轴对称,被积函数221xy x y ++关于y 是奇函数,2201Dxy dxdy x y ∴=++⎰⎰,故2211D xy dxdy x y +++⎰⎰221D xy dxdy x y =++⎰⎰221D dxdy x y +++⎰⎰122020ln 2.12rdr d r -=+=+⎰⎰πππθ 3. (本小题6分) 设曲面(,)z z x y =是由方程31x y xz +=所确定,求该曲面在点0(1,2,1)M -处的切平面方程及全微分(1,2)dz.解题过程是:令3(,,)1F x y z x y xz =+-,23x F x y z '=+,3y F x '=,z F x '=,则所求切平面的法向量为:0{,,}{5,1,1}x y z M n F F F '''==,切平面方程为:560.x y z ++-=23x z F z x y z x F x '∂+=-=-'∂,2y z F zx y F '∂=-=-'∂,00(1,2)5.M M z zdzdx dy dx dy x y∂∂∴=+=--∂∂4. (本小题6分)计算三重积分Ω,其中Ω是由柱面y =0,0y z ==,4x y z ++=所围成的空间区域.解题过程是:利用柱面坐标变换,Ω14(cos sin )2r d r dr dz -+=⎰⎰⎰πθθθ12300[4(cos sin )]d r r dr =-+⎰⎰πθθθ04141[(cos sin )].3432d =-+=-⎰ππθθθ 5. (本小题6分)求(2)x z dydz zdxdy ∑++⎰⎰,其中∑为曲面22(01)z x y z =+≤≤,方向取下侧.解题过程是:补2211,(,){1}.z x y D x y ∑=∈=+≤上:∑与1∑上所围立体为20201, 1.r r z Ω≤≤≤≤≤≤:,θπ 由高斯公式,得1(2)(201)x z dydz zdxdy dxdydz Ω∑+∑++=++⎰⎰⎰⎰⎰上下2211332rd rdr dz ππθ==⎰⎰⎰, (2)x z dydz zdxdy ∑∴++=⎰⎰13(2)2x z dydz zdxdy π∑-++⎰⎰上3012Ddxdy π=--⎰⎰3.22πππ=-= 6. (本小题7分) 求幂级数211nn n x n∞=+∑的收敛域及和函数. 解题过程是:因为1lim n n n a R a →∞+=2211lim 1(1)1n n n n n →∞++==++,故收敛区间为(1,1)-; 1±=x 时,极限21lim 0n n n→∞+≠,级数均是发散的;于是收敛域为(1,1)-, 211()n n n S x x n ∞=+=∑1nn nx ∞==∑1n n x n ∞=+∑10011n x x n n n x x nx dx dx n ∞∞-==''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑⎰⎰0111x x x dx x x '⎛⎫=+ ⎪--⎝⎭⎰2ln(1),(1,1).(1)x x x x =--∈-- 7. (本小题7分)例1 计算22()I xy dS ∑=+⎰⎰,∑1z ≤≤的边界.解题过程是:设12∑=∑+∑,其中1∑为锥面1z z =≤≤,2∑为221,1z x y =+≤部分,12,∑∑在xoy 面的投影为:D 221x y +≤.1dS ==,2dS dxdy =,22()I x y dS ∑∴=+⎰⎰122()x y dS ∑=++⎰⎰222()x y dS ∑+⎰⎰22(D x y =+⎰⎰22()Dx y dxdy ++⎰⎰221)()Dx y dxdy =+⎰⎰21301)d r dr πθ==⎰⎰四.证明题(8分).设函数(,)f x y 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记2221()[()1]Ly f xy x y f xy I dx dy y y +-=+⎰, (1)证明曲线积分I 与路径L 无关; (2)当cd ab =时,求I 的值.证明: (1)记21()(,)y f xy P x y y +=,22[()1](,)x y f xy Q x y y-=, ;1)()()](]1)([);(1)()](1[])()(2[22322222y xy f xy xy f y xy f y x xy f y x Q xy f xy y xy f y xy f y y x xy f y xy yf y P -'+='⋅+-=∂∂'+-=+-⋅'+=∂∂ P Qy x∂∂∴=∂∂成立,积分I 与路径L 无关. (2)由于积分与路径无关,选取折线路径,由点(,)a b 起至点(,)c b ,再至终点(,)c d ,则(,)(,)(,)(,)(,)(,)c b c d a b c b I P x y dx Q x y dy =+⎰⎰21[()][()]c d a c cbf bx dx cf cy dy b y=++-⎰⎰()()cb cd ab cb c a c c f t dt f t dt b d b -=+++-⎰⎰()().cd ab c a c af t dt ab cd d b d b=-+==-⎰2009—2010学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题(6530⨯=分分)1. 若向量,,a b c 两两互相垂直,且5,12,13a b c ===,则13.a b c ++=2.设函数22sin y z xy x =,求2.z zxy z x y∂∂+=∂∂3. 设函数(,)f x y 为连续函数,改变下列二次积分的积分顺序:21101(,)(,)(,).y dy f x y dx dx f x y dy f x y dy =+⎰⎰⎰⎰⎰⎰4. 计算(1,2)2(0,0)7()(2).2y y I e x dx xe y dy e =++-=-⎰5. 幂级数213nnn n x ∞=∑的收敛域为:(.6. 设函数2()()f x x x x πππ=+-<< 的傅里叶级数为:01(cos sin )2n n n a a nx b nx ∞=++∑,则其系数32.3b π= 二、选择题(4520⨯=分分)1.直线11321x y z --==-与平面342x y z +-=的位置关系是( A ) (A) 直线在平面内; (B) 垂直; (C) 平行; (D) 相交但不垂直. 2.设函数22(,)4()f x y x y x y =---, 则(,)f x y ( C ) (A) 在原点有极小值; (B) 在原点有极大值; (C) 在(2,2)-点有极大值; (D) 无极值.3. 设L 是一条无重点、分段光滑,且把原点围在内部的平面闭曲线,L 的方向为逆时针方向,则22Lxdy ydxx y -=+⎰( C ) (A) 0; (B)π; (C) 2π; (D) 2π-.4. 设a 为常数,则级数21sin n na n ∞=⎛ ⎝∑ ( B ) (A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 敛散性与a 值有关.三、计算题 (7+7+7+7+6+8=42分)1. 设224,(,)(0,0),(,)0,(,)(0,0).xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩讨论(,)f x y 在原点(0,0)处是否连续,并求出两个偏导数(0,0)x f '和(0,0)y f '. (7分)解:令42244200,lim (,)lim 1y y ky kx ky f ky y k y y k →→===++,随k 的取值不同,其极限值不同, 00lim (,)x y f x y →→∴不存在,故(,)f x y 在原点不连续;00(0,0)(0,0)00(0,0)limlim 0x x x f x f f xx ∆→∆→+∆--'===∆∆,00(0,0)(0,0)00(0,0)lim lim 0y y y f y f f yy ∆→∆→+∆--'===∆∆.2. 计算IΩ=其中Ω是由上半球面z=和锥面z =所围成的立体 . (7分)解:作球面坐标变换:sin cos ,sin sin ,cos .x y z ρϕθρϕθρϕ=== 则2sin dxdydz d d d ρϕθϕρ=, :02,0,0.4πθπϕρΩ≤≤≤≤≤≤IΩ=2340sin (2.d d d ππθϕϕρπ==-⎰⎰⎰3. 求锥面z =被柱面222x y x +=所割下部分的曲面面积.(7分)解:锥面∑:,)xy z x y D =∈=22{2}.x y x +≤xz '=y z '=,.xyxyD D S dS dxdy ∑∴====⎰⎰ 4. 计算曲面积分222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰,其中∑是由22z x y =+,221x y +=,0,0,0x y z ===围在第一卦限的立体的外侧表面 . (7分)解:设Ω为∑所围立体,222,,,P z x Q x y R y z ===222,P Q R x y z x y z∂∂∂++=++∂∂∂由Gauss 公式, 222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰222()x y z dxdydz Ω=++⎰⎰⎰作柱面坐标变换:cos ,sin ,.x r y r z z θθ=== 则dxdydz rd drdz θ=, 2:0,01,0.2r z r πθΩ≤≤≤≤≤≤2122205().48r I d rdr r z dz πθπ∴=+=⎰⎰⎰ 5.讨论级数312ln n nn ∞=∑的敛散性. (6分)解:543124ln ln lim lim 0,n n n n n n n →∞→∞⋅==312ln n n n ∞=∴∑ 收敛 .6. 把级数121211(1)(21)!2n n n n x n -∞--=--∑的和函数展成1x -的幂级数.(8分) 解:设级数的和函数为()S x ,则121211(1)()(21)!2n n n n S x x n -∞--=-=-∑2111(1)sin (21)!22n n n x x n --∞=-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑,(,).x ∈-∞+∞ 即111111()sin sin sin cos cos sin 2222222x x x x S x ---⎛⎫⎛⎫==+=⋅+⋅ ⎪⎪⎝⎭⎝⎭ 201(1)1sin 2(2)!2n n n x n ∞=--⎛⎫=⋅ ⎪⎝⎭∑2101(1)1cos 2(21)!2n n n x n +∞=--⎛⎫+⋅ ⎪+⎝⎭∑ 2201(1)sin (1)2(2)!2n n n n x n ∞=-=⋅-⋅∑212101(1)cos (1),(,).2(21)!2n n n n x x n ∞++=-+⋅-∈-∞+∞+⋅∑ 四、设曲线L 是逆时针方向圆周22()()1,()x a y a x ϕ-+-=是连续的正函数, 证明:()2()Lxdyy x dx y ϕπϕ-≥⎰. (8分)证明:设22:()()1,D x a y a -+-≤由Green 公式,()()()L D xdy Q P y x dx dxdy y x y ϕϕ∂∂-=-∂∂⎰⎰⎰1(())()Dx dxdy y ϕϕ=+⎰⎰(而D 关于y x =对称) 1(())()D x dxdy x ϕϕ=+⎰⎰1[2()]22.()D D x dxdy dxdy x ϕπϕ≥⋅==⎰⎰⎰⎰即 ()2()L xdyy x dx y ϕπϕ-≥⎰.2010-1011学年第二学期高等数学(2-2)期末考试A 卷参考答案 一. 填空题 (共4小题,每小题4分,共计16分) 1.22(1,0)ln(),y z xe x y dz =++=设则dy dx +3 .2.设xy y x y x f sin ),(+-=,则dx x x f dy y ⎰⎰110 ),(=)1cos 1(21- .3.设函数21cos ,0()1,0xx f x x x x πππ+⎧<<⎪=-⎨⎪+-≤≤⎩以2π为周期,()s x 为的()f x 的傅里叶级数的和函数,则(3)s π-=212π+ . 4.设曲线C 为圆周222R y x=+,则曲线积分ds x y x C⎰+)—(322=32R π . 二.选择题(共4小题,每小题4分,共计16分) 1. 设直线L 为32021030,x y z x y z ++=⎧⎨--+=⎩平面π为4220x y z -+-=,则 ( C ) .(A) L 平行于平面π (B) L 在平面π上(C) L 垂直于平面π (D) L 与π相交,但不垂直 2.设有空间区域2222:x y z R Ω++≤,则Ω等于 ( B ).(A)432R π (B) 4R π (C) 434R π (D) 42R π 3.下列级数中,收敛的级数是( C ).(A)∑∞=+-1)1()1(n nnn n (B) ∑∞=+-+11)1(n nn n(C)nn en -∞=∑13(D)∑∞=+1)11ln(n nnn4. 设∑∞=1n na是正项级数,则下列结论中错误的是( D ) (A ) 若∑∞=1n na收敛,则∑∞=12n na也收敛 (B )若∑∞=1n na收敛,则11+∞=∑n n naa 也收敛(C )若∑∞=1n n a 收敛,则部分和n S 有界 (D )若∑∞=1n n a 收敛,则1lim1<=+∞→ρnn n a a三.计算题(共8小题,每小题8分,共计64分)1.设函数f 具有二阶连续偏导数,),(2y x y x f u +=,求yx u∂∂∂2.解:212f xyf xu+=∂∂)()(22222121211212f f x f f x xy xf yx u++++=∂∂∂ 221221131)2(22f f x xy yf x xf ++++= 2.求函数y x xy z+-=23在曲线12+=x y 上点(1,2)处,沿着曲线在该点偏向x 轴正向的切线方向的方向导数.解:曲线⎩⎨⎧+==1:2x y xx L 在点(1,2)处的切向量)2,1(=T ,)2,1(510=T52cos ,51cos ==βα 13|)16(|,11|)13(|)2,1()2,1()2,1(2)2,1(=+=∂∂=-=∂∂xy yz y x z 函数在点(1,2)沿)2,1(=T方向的方向导数为5375213511|)2,1(=⨯+=∂T3.计算,)(2dxdy y x D⎰⎰+其中}4),({22≤+=y x y x D . 解dxdy xy dxdy y x dxdy y x y x y x D⎰⎰⎰⎰⎰⎰≤+≤+++=+4422222222)()( 22300d r dr πθ=+⎰⎰ = π84. 设立体Ω由锥面z =及半球面1z =围成.已知Ω上任一点(),,x y z 处的密度与该点到x y o 平面的距离成正比(比例系数为0K >),试求立体Ω的质量. 解:由题意知密度函数||),,(z k z y x =ρ法1:⎪⎩⎪⎨⎧≤≤≤≤≤≤Ωϕπϕπθcos 204020r : 质量M =⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z k dxdydz z y x ||),,(ρk=dr r r d d ϕϕϕθϕππsin cos 2cos 204020⎰⎰⎰76kπ=.法2:22:1,:1D x y z ⎧+≤⎪Ω≤+(,,)||M x y z dxdydz k z dxdydz ρΩΩ==⎰⎰⎰⎰⎰⎰211076rkk d dr ππθ==⎰⎰⎰. 法3:122217||(1(1)).6kM k z dxdydz z z dz z z dz πππΩ==+--=⎰⎰⎰⎰⎰ 5.计算曲线积分⎰+++-=Cy x dyx y dx y x I 22)()(,其中C 是曲线122=+y x 沿逆时针方向一周.解:⎰++-=C dy x y dx y x I 1)()( dxdy y P x Q y x ⎰⎰≤+∂∂-∂∂=122)(π2])1(1[122=--=⎰⎰≤+dxdy y x . 6. 计算第二类曲面积分⎰⎰∑++dxdy zx xydxdz xyzdydz 2,其中∑为球面1222=++z y x 的外侧. 解:利用高斯公式,dxdydz x x yz dxdy zxxydxdz xyzdydz ⎰⎰⎰⎰⎰Ω∑++=++)()(22dxdydz x yz ⎰⎰⎰Ω+=)(dxdydz x ⎰⎰⎰Ω+2dxdydz z y x ⎰⎰⎰Ω+++=)(310222 .154sin 31104020πϕϕθππ==⎰⎰⎰dr r d d7.求幂级数nn x n ∑∞=+111的和函数 . 解:幂级数的收敛半径1=R ,收敛域为)1,1[-0≠x 时,1111)(+∞=∑+=n n x n x xS =01x n n x dx ∞=∑⎰01x n n x dx ∞==∑⎰0ln(1)1xxdx x x x ==----⎰0=x 时,0)0(=S , ⎪⎩⎪⎨⎧=⋃-∈---=∴00)1,0()0,1[)1ln(1)(x x xx x S四.证明题(本题4分)证明下列不等式成立:π≥⎰⎰D x ydxdy ee ,其中}1|),{(D 22≤+=y xy x .证明:因为积分区域关于直线x y =对称, ⎰⎰⎰⎰=D D y xx y dxdy ee dxdy e e⎰⎰=∴D x y dxdy ee 21)(⎰⎰⎰⎰+D D y xxy dxdy e e dxdy e e =π=≥+⎰⎰⎰⎰dxdy dxdy e e e e D y x x y 221(21) 五.应用题(本题8分)设有一小山,取它的底面所在平面为xoy 坐标面,其底部所占的区域为},75:),{(22≤-+=xy y x y x D 小山的高度函数为.75),(22xy y x y x h +--=(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(00y x g ,试写出),(00y x g 的表达式。

DA2007-2008学年第二学期高数试卷A参考答案

DA2007-2008学年第二学期高数试卷A参考答案

2007-2008学年第二学期高数试卷A 参考答案试卷号:A20080630一、1. 0 ;2. 0)2(2)1(4=+-+-z y x ;3. =I ⎰⎰101),(xdy y x f dx ;4. 32a π, ;5、R = 2 。

6、(4)0y y -=。

二、1、 B ; 2、 A ;3、B ;4、 C ;5、 A ;6、(化工、食工做) D ;6、(物理、机电、电气、计算机做) D三.1、令,12t x =+则 212-=t x ,,tdt dx =当0=x 时1=t 。

4=x 时3=t⎰++40122dx x x =⎰⎰+=+-312312)3(21221dt t tdt t t =3221333213=⎥⎦⎤⎢⎣⎡+t t2、)cos()sin(y x e y x e xzx x -+-=∂∂ ,)cos(y x e y z x --=∂∂ ))cos())cos()((sin(dy y x dx y x y x e dz x---+-=3、令1sin )1(11+-=++n u n n n ππ,111sin)1(2sin )1(lim lim11221<=+-+-=++++∞→+∞→πππππn n u u n n n n n nn n所以原级数收敛且是绝对收敛的。

4、原式=⎰⎰⎰--++-∂+∂-∂-∂aa D dy x y dx y x dxdy yy x x x y )2()())()2((22 =⎰⎰⎰---D aaxdx dxdy )3(=32ab π-5、设长方体得长、宽、高分别为z y x ,,,则)(2xz yz xy S ++=,3a xyz = 令)(),,(3a xyz xz yz xy z y x F --++=λ 则00=-+==-+==-+=xy y x F xz z x F yz z y F z y x λλλ,解得z y x ==,代入3a xyz =得a z y x === , 2min 6a S =四 )(),(),(2x y y x Q xy y x P ϕ==。

高等数学下期末考试试卷

高等数学下期末考试试卷

清华大学试卷《 高等数学A (二)》(A 卷)一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题分5小题, 每小题4分, 共20分)1、设f x y x y xy x y (,)=+-+-32231,则f y '(,)32=( ) (A) 41 (B) 40 (C) 42 (D) 392、设圆域D :x 2+y 2≤1,f 是域D 上的连续函数,则答 ( )3、如果81lim1=+∞→nn n a a ,则幂级数∑∞=03n n n x a (A)当2<x 时,收敛; (B) 当8<x 时,收敛;(C) 当81>x 时,发散; (D) 当21>x 时,发散;答( )4、设Ω为球体x 2+y 2+z 2≤1,f (x ,y ,z )在Ω上连续,I =x 2yzf (x ,y 2,z 3),则I =(A) 4x 2yzf (x ,y 2z 3)d v (B) 4x 2yzf (x ,y 2,z 3)d v(C) 2x 2yzf (x ,y 2,z 3)d v (D) 0 5、设L 是圆周 x 2+y 2=a 2 (a >0)负向一周,则曲线积分--------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------( )二、填空题(将正确答案填在横线上) (本大题分5小题, 每小题4分, 共20分)1、设)ln(),,(222z y x z y x f ++=,则=-)2,1,1(f d gra2、=-=+++dz z y x xyz 处全微分在)1,0,1(,22223、设L 为圆周122=+y x ,则⎰=Lds x 24、如果幂级数n n x a ∑在x = -2处条件收敛,则收敛半径为R=5、曲面32=+-xy e z z 在(1,2,0)处切平面方程为三 计算题(必须有解题过程) (本大题分7小题,共 60分) 1、(本小题8分)已知22)1()1(ln -+-=y x u ,试求:2222yux u ∂∂∂∂+2、(本小题8分)求函数223333y x y x z --+=的极值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京工业大学 高等数学A-2 试题(A )卷(闭)2007--2008 学年第 二 学期 使用班级 2007级 (江浦) 学院 班级 学号 姓名1、交换积分次序_____________________),(),(2303112=+⎰⎰⎰⎰-x x dy y x f dx dy y x f dx 。

2、xyez sin =,则__________________=dz 。

3、设2222:R z y x S =++,则__________2=⎰⎰ds x S。

4、设某二阶常系数齐次线性微分方程以x x e C e C y 321+=-为通解,则该二阶常系数齐次线性微分方程为________________。

二、选择题(本题共3小题,每小题3分,满分9分,每小题给出四个选项,把正确答案填在题后的括号内)1、设常数0>k ,则级数21)1(nnk n n+-∑∞= [ ] )(A 绝对收敛; )(B 条件收敛; )(C 发散; )(D 敛散性与k 的取值有关。

2、函数()222222,0,0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在原点)0,0(处 [ ])(A 连续,偏导数存在; )(B 连续,但偏导数不存在; )(C 不连续,但偏导数存在; )(D 不连续,偏导数也不存在。

3、设2222:R z y x V ≤++,则dv z y x V⎰⎰⎰++222为 [ ]32)(4R A π; 4)(R B π; 34)(4R C π; 42)(R D π。

三、计算(每小题6分,共30分)1、设)()(1y x yg xy f x z ++=,其中g f ,具有二阶连续的导数,求yx z∂∂∂2。

2、计算⎰⎰++=Ddxdy x y xI )2(22,其中D 是由双纽线22222)(y x y x -=+围成的平面区域。

3、计算dxdydz e I Vz ⎰⎰⎰=,其中V 是由曲面z y x 222=+及平面2=z 所围成的闭区域。

4、求曲面3=+-xy z e z 在点)0,1,2(处的切平面及法线方程。

5、求幂级数nn x n n ∑∞=+121的收敛域与和函数。

四、解答下列各题(本题共4小题,每小题每题6分,共24分) 1、设函数),(y x z z =由0),(=++xzy y z x F 确定,求x z ∂∂。

2、求函数2e yz x =在点P(1,0)处沿从点P(1,0)到点(2,1)Q -的方向的方向导数。

3、设)(x y y =满足方程x e y y y 223=+'-'',且其图形在点)1,0(与曲线12+-=x x y 相切,求函数)(x y 。

4、将函数)11()(≤≤-=x x x f 展开成以2为周期的傅立叶级数。

五、(本题满分8分)求函数221216z x y x y =+-+在区域2225x y +≤上的最大值与最小值。

六、(本题满分9分)已知曲线积分dy x ydx x eLx)()](2[ϕϕ-+⎰与路径无关,且0)0(=ϕ。

(1)求)(x ϕ; (2)计算dy x ydx x e x )()](2[)1,1()0,0(ϕϕ-+⎰的值。

七、(本题满分8分)计算⎰⎰∑++++2222)(z y x dxdya z axdydz ,其中∑为下半球面222y x a z ---=的下侧,a 为大于零的常数。

南京工业大学高等数学(下)期末试卷(江浦卷)(A )参考答案一、填空题: 1、⎰⎰-y ydx y x f dy 231),(; 2、)(cos sin xdy ydx xy e xy +;3、344R π; 4、032=-'-''y y y 。

二、选择题:1、B ;2、C ;3、B 三、计算: 1、解:)()()(12y x g y xy f x yxy f x x z +'+'+-=∂∂ (3分) )()()(2y x g y y x g xy f y yx z+''++'+''=∂∂∂。

(3分) 2、解: 根据对称性,⎰⎰⎰⎰⎰⎰+=+=++1)(4)()2(222222D DDd y x d y x d x y xσσσ, (2分)作极坐标变换⎩⎨⎧==θθsin cos r y r x ,则θπθ2cos 0,40≤≤≤≤r , (2分)原式24024022cos 034212cos 212cos 4I d d dr r d ⨯====⎰⎰⎰⎰ππθπθθθθθ822121ππ=⨯⨯=。

(2分) 3、解:)1(2222)(2+====⎰⎰⎰⎰⎰⎰⎰Ωe dz z e dxdy dz e dV e I z z D z z ππ (6分)4、 解:3),,(-+-=xy z e z y x F z ,则1,,-===zz y x e F x F y F ,(2,1,0){,,1}{1,2,0}z n y x e =-=, (4分)所以所求切平面为 (2)2(1)0,240x y x y -+-=+-=即 。

(1分)所求的法线方程为 02112-=-=-z y x 。

(1分) 5、解:因为, 1||lim 1=+∞→nn n a a 所以幂级数的收敛半径为1=R ,又因为当1±=x 时级数发散,所以该幂级数的收敛域为)1,1(-。

(2分)dx x dx x n x x n x n x n n x n n x n n n n n n n n ⎰∑⎰∑∑∑∑⎥⎦⎤⎢⎣⎡+'⎥⎦⎤⎢⎣⎡++∞=--∞=∞=∞=∞=011011111211==)11(),1ln()1(11120<<----=-+'⎪⎭⎫⎝⎛-=⎰x x x x dx x x x x x。

(4分) 四、解答下列各题: 1、解:设),,(),,(xz y y z x F z y x ++=ϕ xF y F x z F F z x 11),(21221+=-+=ϕϕ, (3分) 故212212xyF F x yzF yF x x zz x +--=-=∂∂ϕϕ。

(3分) 2、解:2||},1,1{=-=, (1分)}21,21{}sin ,{cos -==ααl , (2分)2e y z x ∂=∂,22e y zx y∂=∂, (2分)cos sin z z z l x y αα∂∂∂=+=∂∂∂222e 2)e y y y x x ==- 函数2e y z x =在点P(1,0)处沿从点P(1,0)到点(2,1)Q -的方向的方向导数为2(1,0)2)e 2y x ⎤-=-⎥⎦ (2分)3、解:由条件知)(x y y =满足1)0(,1)0(-='=y y 。

(1分)由特征方程2,1023212==⇒=+-r r r r ,对应齐次方程的通解x x e C e C y 221+=。

(2分)设特解为x Axe y =*,代入方程,得,2-=A ,则特解为x xe y 2*-=从而得通解x x x xe e C e C y 2221-+=, (2分) 代入初始条件得0,121==C C ,则x e x x y )21()(-=。

(1分)4、解:所给函数在]1,1[-上满足收敛定理条件,将其延拓成以2为周期的函数时,它在整个实轴上均连续,因此其付立叶级数在]1,1[-内收敛于函数本身。

1210==⎰xdx a ,2211)1(2cos 2n xdx n x a n n --==⎰ππ, ),2,1(0 ==n b n 。

(4分))11(cos 1)1(221)(122≤≤---+=∑∞=x x n n x f n n ππ。

(2分)五、解:由⎩⎨⎧=+==-=01620122y z x z y x ,得驻点)8,6(-,但该驻点不在区域2522≤+y x 内,所以最值只能在2522=+y x 达到。

(3分)设)25(16122222-+++-+=y x y x y x F λ ,由⎪⎩⎪⎨⎧=-+=++==+-=025021620212222y x y y F x x F y x λλ,得)4,3(),4,3(),(--=y x , (3分) 代入目标函数,比较得最小值125,75)4,3()4,3(==--z z 最大值。

(2分) 六、解: 由,xQ y P ∂∂=∂∂得,)(2)(xe xf x f -=+' 则,31)(222x x dx x dx e Ce C dx e e e x f -=⎥⎦⎤⎢⎣⎡+-=--⎰⎰⎰因为0)0(=f ,所以31=C , 则).(31)(2x x e e x f -=- (5分) 故⎰⎰⎰--=-+-1021)1,1()0,0()(310)()](2[dy e e dx dy x f ydx x f e x)(312e e --=-. (4分)七、解:取xoy ∑为xoy 面上的圆盘222a y x ≤+,方向取上侧,则⎰⎰⎰⎰∑∑++=++++dxdy a z axdydz a z y x dxdya z axdydz 22222)(1)( ⎥⎥⎦⎤⎢⎢⎣⎡++-++=⎰⎰⎰⎰∑∑+∑xoyxoy dxdy a z axdydz dxdy a z axdydz a 22)()(1, (4分) ⎥⎥⎦⎤⎢⎢⎣⎡-+=⎰⎰⎰⎰⎰ΩxyD dxdy a dv a z a 2)32(1 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+=⎰⎰⎰22302220323sin cos 21a a a a d r r d d a a ππϕϕϕϕθπππ 34440322121sin cos 41a a a a a dr r d a a ππππϕϕϕπππ=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎰⎰=。

(4分)。

相关文档
最新文档