线性代数作业4

合集下载

线性代数习题四作业参考解答

线性代数习题四作业参考解答

习题四作业参考解答1.求下列齐次线性方程组的一个基础解系:(1) ⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x 解:系数矩阵104018102312451014438620000A ⎛⎫-⎛⎫ ⎪⎪ ⎪=--- ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭初等行变换(行最简形) 所以同解方程组为:1323443144x x x x x =-⎧⎪⎨=+⎪⎩,令341,0x x ==,带入同解方程组求出12x x 和,得一个解向量143410η-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭;再令340,1x x ==,带入同解方程组求出12x x 和,得一个解向量201401η⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,故齐次线性方程组的基础解系为12,ηη。

(2) 仿(1)(3) 0543254321=++++x x x x x .解:同解方程组为:123452345x x x x x =----,令23451,0,0,0x x x x ====,得解向量()12,1,0,0,0Tη=-, 令23450,1,0,0x x x x ====,得解向量()23,0,1,0,0T η=-, 令23450,0,1,0x x x x ====,得解向量()34,0,0,1,0T η=-, 令23450,0,0,1x x x x ====,得解向量()45,0,0,0,1T η=-, 所以,齐次线性方程组的基础解系为:1234,,,ηηηη 2.求下列非齐次线性方程组的一般解:(2)⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++69413283542432321321321321x x x x x x x x x x x x解:增广矩阵231410211245011238213000041960000A -⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪= ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭初等行变换,()()24R A R A ==<,所以有无穷多组解。

线性代数课后习题1-4作业答案(高等教育出版社)

线性代数课后习题1-4作业答案(高等教育出版社)

第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解381141102--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(3)222111c b a cb a ;解222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).4. 计算下列各行列式:(1)7110025*******214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---=143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====cc 041203212213041224--=====rr000003212213041214=--=====r r .(3)efcf bf decd bd ae ac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b ec b e c b ad f ---=a b c d e fa d fbc e 4111111111=---=.(4)dc b a 100110011001---.解dc b a100110011001---dc b a ab ar r 10011001101021---++=====d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cdc ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 6. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213ab a b a a b a ab ac c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.8. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解a a a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n行展开))1()1(10 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a a n n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=an-a n -2=a n -2(a 2-1).(2)xa a a x aa a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n 第二章 矩阵及其运算 1. 计算下列乘积: (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.3.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4.设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫.用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(3)⎪⎪⎭⎫ ⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 .12. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x . 19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.21. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.22. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.第三章 矩阵的初等变换与线性方程组 1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. ) ~⎪⎪⎭⎫ ⎝⎛100001000001.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311;解⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123;解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010********* 故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ,所以⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量. 12.设⎪⎪⎭⎫⎝⎛----=32321321k k k A ,问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3. 解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r .(1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. P106/ 1.已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r⎪⎪⎪⎭⎫ ⎝⎛------531400251552000751610421301~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.9.设b 1=a 1+a 2, b 2=a 2+a 3, b 3=a 3+a 4, b 4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1,于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~r r r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~r r r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组. 13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5. 20.求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有 ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ,于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x .取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ; 取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T . 因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x . 解 对系数矩阵进行初等行变换, 有 ⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A ,于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x . 取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ; 取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。

线性代数练习4(答案)

线性代数练习4(答案)

习题4 逆矩阵 (答案)一、单项选择题1.设方阵A 、B 、C 满足AB=AC,当A 满足( b )时,B=C 。

(a) AB =BA (b) 0≠A (c) 方程组AX=0有非零解 (d) B 、C 可逆2.设A ,B 为n 阶可逆矩阵,下面各式恒正确的是( b )。

(a) 111)(---+=+B A B A (b) B A AB T =)( (c) B A B A T +=+--11)( (d) 111)(---+=+B A B A3.设A 为n 阶方阵,*A 为A 的伴随矩阵,则( d )。

(a) (a) 1*-=A A (b) A A =* (c) 1*+=n A A (d) 1*-=n A A 4.A 为3阶方阵,行列式1=A ,*A 为A 的伴随矩阵,则行列=--*12)2(A A (a )。

(a) 827- (b) 278- (c) 827 (d) 278 5.设A 为n 阶可逆矩阵,则下面各式恒正确的是( d )。

(a )T A A 22= (b) 112)2(--=A A(c) 111])[(])[(---=T T T A A (d) T T T T A A ])[(])[(11--=6.设,,,A B C E 为同阶方阵,E 为单位矩阵,若ABC E =,则( b )。

(a )ACB E = (b )CAB E = (c )CBA E = (d )BAC E =二、填空题1.设A 为n 阶方阵,E 为n 阶单位阵,且2A E =,则行列式=A 1或-12.设⎪⎪⎪⎭⎫ ⎝⎛=100020101A ,则行列式12(3)(9)A E A E -+-的值为-43.设⎪⎪⎪⎪⎭⎫⎝⎛-=21232321A ,则行列式=11A _1______ 4.设A 为5阶方阵,*A 是其伴随矩阵,且3=A ,则=*A 815.若)(ij a A =为15阶矩阵,则A A T的第4行第8列的元素是i8151i i4a a ∑=⋅ 三、计算题1. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (2)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. 2. 设A 为3阶矩阵, 21||=A , 求|(2A)-1-5A*|. 解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.3. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而 ⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 4. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1 )21 ,1 ,21(diag 4-= =2diag(1, -2, 1).5. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 四、证明题1. 设A k =O (k 为某个正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 (E-A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E(E +A +A 2+⋅ ⋅ ⋅+A k -1)-A(E +A +A 2+⋅ ⋅ ⋅+A k -1) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)-(A +A 2+⋅ ⋅ ⋅+A k )=E-A k =E 所以:(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.2. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E , 或 E E A A =-⋅)(21, 所以A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得 A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E , 或 E A E E A =-⋅+)3(41)2(所以(A +2E)可逆, 且)3(41)2(1A E E A -=+-. 3. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*. 证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A .又111()*||A A A E ---=, 所以11()*||A A A --= 所以(A*)-1=(A -1)*.。

线性代数4

线性代数4

第四章 向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3⨯1+2⨯0-3, 3⨯1+2⨯1-4, 3⨯0+2⨯1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61T T T --+==(1, 2, 3, 4)T . 3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r⎪⎪⎪⎭⎫⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关. 8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式.解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0,由此得 2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=,设211λλλ+-=c , 则 b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. 解 不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有a1+b1=(1, 2)T+b1=(0, 1)T, a2+b2=(2, 4)T+(0, 0)T=(2, 4)T,而a1+b1,a2+b2的对应分量不成比例,是线性无关的.10.举例说明下列各命题是错误的:(1)若向量组a1,a2,⋅⋅⋅,a m是线性相关的,则a1可由a2,⋅⋅⋅,a m线性表示.解设a1=e1=(1, 0, 0,⋅⋅⋅, 0),a2=a3=⋅⋅⋅=a m=0,则a1,a2,⋅⋅⋅,a m线性相关,但a1不能由a2,⋅⋅⋅,a m线性表示.(2)若有不全为0的数λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,则a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关.解有不全为零的数λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0,原式可化为λ1(a1+b1)+⋅⋅⋅+λm(a m+b m)=0.取a1=e1=-b1,a2=e2=-b2,⋅⋅⋅,a m=e m=-b m,其中e1,e2,⋅⋅⋅,e m 为单位坐标向量,则上式成立,而a1,a2,⋅⋅⋅,a m和b1,b2,⋅⋅⋅,b m 均线性无关.(3)若只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0才能成立,则a1,a2,⋅⋅⋅,a m线性无关, b1,b2,⋅⋅⋅,b m亦线性无关.解由于只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式由λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,所以只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)+⋅⋅⋅+λm(a m+b m)=0成立.因此a1+b1,a2+b2,⋅⋅⋅,a m+b m线性无关.取a1=a2=⋅⋅⋅=a m=0,取b1,⋅⋅⋅,b m为线性无关组,则它们满足以上条件,但a1,a2,⋅⋅⋅,a m线性相关.(4)若a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关,则有不全为0的数,λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m=0,λ1b1+⋅⋅⋅+λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0⇒λ1=-2λ2,λ1b1+λ2b2 =0⇒λ1=-(3/4)λ2,⇒λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.证明由已知条件得a1=b1-a2,a2=b2-a3, a3=b3-a4, a4=b4-a1,于是a1 =b1-b2+a3=b1-b2+b3-a4=b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ⋅ ⋅ ⋅, b r =a 1+a 2+ ⋅ ⋅ ⋅ +a r , 且向量组a 1, a 2, ⋅ ⋅ ⋅ , a r 线性无关, 证明向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关. 证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7).解 由⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a , 知R (a 1T , a 2T , a 3T )=R (a 1, a 2, a 3)=2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1T , a 2T 是一个最大无关组.14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=5200111031116110111031113111332221) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.16. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 已知n 维单位坐标向量e 1, e 2,⋅ ⋅ ⋅, e n 能由它们线性表示, 证明a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关. 证法一 记A =(a 1, a 2, ⋅ ⋅ ⋅, a n ), E =(e 1, e 2,⋅ ⋅ ⋅, e n ). 由已知条件知, 存在矩阵K , 使E =AK .两边取行列式, 得|E |=|A ||K |.可见|A|≠0,所以R(A)=n,从而a1,a2,⋅⋅⋅,a n线性无关.证法二因为e1,e2,⋅⋅⋅,e n能由a1,a2,⋅⋅⋅,a n线性表示,所以R(e1,e2,⋅⋅⋅,e n)≤R(a1,a2,⋅⋅⋅,a n),而R(e1,e2,⋅⋅⋅,e n)=n,R(a1,a2,⋅⋅⋅,a n)≤n,所以R(a1,a2,⋅⋅⋅,a n)=n,从而a1,a2,⋅⋅⋅,a n线性无关.17.设a1,a2,⋅⋅⋅,a n是一组n维向量, 证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.证明必要性:设a为任一n维向量.因为a1,a2,⋅⋅⋅,a n线性无关,而a1,a2,⋅⋅⋅,a n,a是n+1个n维向量,是线性相关的,所以a能由a1,a2,⋅⋅⋅,a n线性表示,且表示式是唯一的.充分性:已知任一n维向量都可由a1,a2,⋅⋅⋅,a n线性表示,故单位坐标向量组e1,e2,⋅⋅⋅,e n能由a1,a2,⋅⋅⋅,a n线性表示,于是有n=R(e1,e2,⋅⋅⋅,e n)≤R(a1,a2,⋅⋅⋅,a n)≤n,即R(a1,a2,⋅⋅⋅,a n)=n,所以a1,a2,⋅⋅⋅,a n线性无关.18.设向量组a1,a2,⋅⋅⋅,a m线性相关,且a1≠0,证明存在某个向量a k (2≤k≤m),使a k能由a1,a2,⋅⋅⋅,a k-1线性表示.证明因为a1,a2,⋅⋅⋅,a m线性相关,所以存在不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm , 使λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λm a m =0,而且λ2, λ3,⋅ ⋅ ⋅, λm 不全为零. 这是因为, 如若不然, 则λ1a 1=0, 由a 1≠0知λ1=0, 矛盾. 因此存在k (2≤k ≤m ), 使λk ≠0, λk +1=λk +2= ⋅ ⋅ ⋅ =λm =0,于是λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk a k =0,a k =-(1/λk )(λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk -1a k -1),即a k 能由a 1, a 2, ⋅ ⋅ ⋅, a k -1线性表示.19. 设向量组B : b 1, ⋅ ⋅ ⋅, b r 能由向量组A : a 1, ⋅ ⋅ ⋅, a s 线性表示为(b 1, ⋅ ⋅ ⋅, b r )=(a 1, ⋅ ⋅ ⋅, a s )K , 其中K 为s ⨯r 矩阵, 且A 组线性无关. 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r . 证明 令B =(b 1, ⋅ ⋅ ⋅, b r ), A =(a 1, ⋅ ⋅ ⋅, a s ), 则有B =AK . 必要性: 设向量组B 线性无关.由向量组B 线性无关及矩阵秩的性质, 有r =R (B )=R (AK )≤min{R (A ), R (K )}≤R (K ), 及 R (K )≤min{r , s }≤r .因此R (K )=r .充分性: 因为R (K )=r , 所以存在可逆矩阵C , 使⎪⎭⎫ ⎝⎛=O E KC r为K 的标准形. 于是(b 1, ⋅ ⋅ ⋅, b r )C =( a 1, ⋅ ⋅ ⋅, a s )KC =(a 1, ⋅ ⋅ ⋅, a r ).因为C 可逆, 所以R (b 1, ⋅ ⋅ ⋅, b r )=R (a 1, ⋅ ⋅ ⋅, a r )=r , 从而b 1, ⋅ ⋅ ⋅, b r 线性无关.20. 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n n n ααααβαααβαααβ,证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价. 证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ, 将上式记为B =AK . 因为0)1()1(0111101*********||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n , 所以K 可逆, 故有A =BK -1. 由B =AK 和A =BK -1可知向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 可相互线性表示. 因此向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.21. 已知3阶矩阵A 与3维列向量x 满足A 3x =3A x -A 2x , 且向量组x , A x , A 2x 线性无关.(1)记P =(x , A x , A 2x ), 求3阶矩阵B , 使AP =PB ; 解 因为AP =A (x , A x , A 2x )=(A x , A 2x , A 3x )=(A x , A 2x , 3A x -A 2x )⎪⎪⎭⎫ ⎝⎛-=110301000) , ,(2x x x A A , 所以⎪⎪⎭⎫ ⎝⎛-=110301000B . (2)求|A |.解 由A 3x =3A x -A 2x , 得A (3x -A x -A 2x )=0. 因为x , A x , A 2x 线性无关, 故3x -A x -A 2x ≠0, 即方程A x =0有非零解, 所以R (A )<3, |A |=0.22. 求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ; 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A , 于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x . 取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ;取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T .因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x . 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A , 于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x . 取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ;取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T .因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .(3)nx 1 +(n -1)x 2+ ⋅ ⋅ ⋅ +2x n -1+x n =0.解 原方程组即为x n =-nx 1-(n -1)x 2- ⋅ ⋅ ⋅ -2x n -1.取x 1=1, x 2=x 3= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-n ;取x 2=1, x 1=x 3=x 4= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-(n -1)=-n +1; ⋅ ⋅ ⋅ ;取x n -1=1, x 1=x 2= ⋅ ⋅ ⋅ =x n -2=0, 得x n =-2.因此方程组的基础解系为ξ1=(1, 0, 0, ⋅ ⋅ ⋅, 0, -n )T ,ξ2=(0, 1, 0, ⋅ ⋅ ⋅, 0, -n +1)T ,⋅ ⋅ ⋅,ξn -1=(0, 0, 0, ⋅ ⋅ ⋅, 1, -2)T .23. 设⎪⎭⎫ ⎝⎛--=82593122A , 求一个4⨯2矩阵B , 使AB =0, 且 R (B )=2.解 显然B 的两个列向量应是方程组AB =0的两个线性无关的解. 因为⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--=8/118/5108/18/101 82593122~rA , 所以与方程组AB =0同解方程组为⎩⎨⎧+=-=432431)8/11()8/5()8/1()8/1(x x x x x x . 取(x 3, x 4)T =(8, 0)T , 得(x 1, x 2)T =(1, 5)T ;取(x 3, x 4)T =(0, 8)T , 得(x 1, x 2)T =(-1, 11)T .方程组AB =0的基础解系为ξ1=(1, 5, 8, 0)T , ξ2=(-1, 11, 0, 8)T .因此所求矩阵为⎪⎪⎪⎭⎫ ⎝⎛-=800811511B .24. 求一个齐次线性方程组, 使它的基础解系为ξ1=(0, 1, 2, 3)T , ξ2=(3, 2, 1, 0)T .解 显然原方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x , 即⎪⎩⎪⎨⎧=+=+==14213212213223k x k k x k k x k x , (k 1, k 2∈R ), 消去k 1, k 2得⎩⎨⎧=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.25. 设四元齐次线性方程组I : ⎩⎨⎧=-=+004221x x x x , II : ⎩⎨⎧=+-=+-00432321x x x x x x . 求: (1)方程I 与II 的基础解系; (2) I 与II 的公共解.解 (1)由方程I 得⎩⎨⎧=-=4241x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 0)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, 1)T .因此方程I 的基础解系为ξ1=(0, 0, 1, 0)T , ξ2=(-1, 1, 0, 1)T .由方程II 得⎩⎨⎧-=-=43241x x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 1)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, -1)T .因此方程II 的基础解系为ξ1=(0, 1, 1, 0)T , ξ2=(-1, -1, 0, 1)T .(2) I 与II 的公共解就是方程III : ⎪⎩⎪⎨⎧=+-=+-=-=+00004323214221x x x x x x x x x x 的解. 因为方程组III 的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000210010101001 1110011110100011~r A , 所以与方程组III 同解的方程组为⎪⎩⎪⎨⎧==-=4342412x x x x x x . 取x 4=1, 得(x 1, x 2, x 3)T =(-1, 1, 2)T , 方程组III 的基础解系为 ξ=(-1, 1, 2, 1)T .因此I 与II 的公共解为x =c (-1, 1, 2, 1)T , c ∈R .26. 设n 阶矩阵A 满足A 2=A , E 为n 阶单位矩阵, 证明R (A )+R (A -E )=n .证明 因为A (A -E )=A 2-A =A -A =0, 所以R (A )+R (A -E )≤n . 又R (A -E )=R (E -A ), 可知R (A )+R (A -E )=R (A )+R (E -A )≥R (A +E -A )=R (E )=n ,由此R (A )+R (A -E )=n .27. 设A 为n 阶矩阵(n ≥2), A *为A 的伴随阵, 证明⎪⎩⎪⎨⎧-≤-===2)( 01)( 1)( *)(n A R n A R n A R n A R 当当当. 证明 当R (A )=n 时, |A |≠0, 故有|AA *|=||A |E |=|A |≠0, |A *|≠0,所以R (A *)=n .当R (A )=n -1时, |A |=0, 故有AA *=|A |E =0,即A *的列向量都是方程组A x =0的解. 因为R (A )=n -1, 所以方程组A x =0的基础解系中只含一个解向量, 即基础解系的秩为1. 因此R (A *)=1.当R (A )≤n -2时, A 中每个元素的代数余子式都为0, 故A *=O , 从而R (A *)=0.28. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .29. 设四元非齐次线性方程组的系数矩阵的秩为3, 已知η1, η2, η3是它的三个解向量. 且η1=(2, 3, 4, 5)T , η2+η3=(1, 2, 3, 4)T ,求该方程组的通解.解 由于方程组中未知数的个数是4, 系数矩阵的秩为3, 所以对应的齐次线性方程组的基础解系含有一个向量, 且由于η1, η2, η3均为方程组的解, 由非齐次线性方程组解的结构性质得2η1-(η2+η3)=(η1-η2)+(η1-η3)= (3, 4, 5, 6)T为其基础解系向量, 故此方程组的通解:x =k (3, 4, 5, 6)T +(2, 3, 4, 5)T , (k ∈R ).30. 设有向量组A : a 1=(α, 2, 10)T , a 2=(-2, 1, 5)T , a 3=(-1, 1,4)T , 及b =(1, β, -1)T , 问α, β为何值时(1)向量b 不能由向量组A 线性表示;(2)向量b 能由向量组A 线性表示, 且表示式唯一;(3)向量b 能由向量组A 线性表示, 且表示式不唯一, 并求一般表示式.解 ⎪⎪⎭⎫ ⎝⎛---=11054211121) , , ,(123βαb a a a ⎪⎪⎭⎫ ⎝⎛-+++---βαβαα34001110121 ~r . (1)当α=-4, β≠0时, R (A )≠R (A , b ), 此时向量b 不能由向量组A 线性表示.(2)当α≠-4时, R (A )=R (A , b )=3, 此时向量组a 1, a 2, a 3线性无关, 而向量组a 1, a 2, a 3, b 线性相关, 故向量b 能由向量组A 线性表示, 且表示式唯一.(3)当α=-4, β=0时, R (A )=R (A , b )=2, 此时向量b 能由向量组A 线性表示, 且表示式不唯一.当α=-4, β=0时,⎪⎪⎭⎫ ⎝⎛----=1105402111421) , , ,(123b a a a ⎪⎪⎭⎫ ⎝⎛--000013101201 ~r , 方程组(a 3, a 2, a 1)x =b 的解为⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛c c c c x x x 1312011132321, c ∈R . 因此 b =(2c +1)a 3+(-3c -1)a 2+c a 1,即 b = c a 1+(-3c -1)a 2+(2c +1)a 3, c ∈R .31. 设a =(a 1, a 2, a 3)T , b =(b 1, b 2, b 3)T , c =(c 1, c 2, c 3)T , 证明三直线l 1: a 1x +b 1y +c 1=0,l 2: a 2x +b 2y +c 2=0, (a i 2+b i 2≠0, i =1, 2, 3) l 3: a 3x +b 3y +c 3=0,相交于一点的充分必要条件为: 向量组a , b 线性无关, 且向量组a , b , c 线性相关.证明 三直线相交于一点的充分必要条件为方程组⎪⎩⎪⎨⎧=++=++=++000333222111c y b x a c y b x a c y b x a , 即⎪⎩⎪⎨⎧-=+-=+-=+333222111c y b x a c y b x a c y b x a 有唯一解. 上述方程组可写为x a +y b =-c . 因此三直线相交于一点的充分必要条件为c 能由a , b 唯一线性表示, 而c 能由a , b 唯一线性表示的充分必要条件为向量组a , b 线性无关, 且向量组a , b , c 线性相关.32. 设矩阵A =(a 1, a 2, a 3, a 4), 其中a 2, a 3, a 4线性无关, a 1=2a 2- a 3. 向量b =a 1+a 2+a 3+a 4, 求方程A x =b 的通解. 解 由b =a 1+a 2+a 3+a 4知η=(1, 1, 1, 1)T 是方程A x =b 的一个解.由a 1=2a 2- a 3得a 1-2a 2+a 3=0, 知ξ=(1, -2, 1, 0)T 是A x =0的一个解.由a 2, a 3, a 4线性无关知R (A )=3, 故方程A x =b 所对应的齐次方程A x=0的基础解系中含一个解向量.因此ξ=(1,-2,1,0)T是方程A x=0的基础解系.方程A x=b的通解为x=c(1,-2, 1, 0)T+(1, 1, 1, 1)T,c∈R.33.设η*是非齐次线性方程组A x=b的一个解, ξ1,ξ2,⋅⋅⋅,ξn-r,是对应的齐次线性方程组的一个基础解系, 证明:(1)η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关;(2)η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r线性无关.证明(1)反证法, 假设η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关.因为ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,而η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关,所以η*可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表示,且表示式是唯一的,这说明η*也是齐次线性方程组的解,矛盾.(2)显然向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r与向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r可以相互表示,故这两个向量组等价,而由(1)知向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,所以向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r也线性无关.34.设η1,η2,⋅⋅⋅,ηs是非齐次线性方程组A x=b的s个解,k1, k2,⋅⋅⋅,k s为实数,满足k1+k2+⋅⋅⋅+k s=1. 证明x=k1η1+k2η2+⋅⋅⋅+k sηs也是它的解.证明因为η1,η2,⋅⋅⋅,ηs都是方程组A x=b的解,所以Aηi=b (i=1, 2,⋅⋅⋅,s),从而A(k1η1+k2η2+⋅⋅⋅+k sηs)=k1Aη1+k2Aη2+⋅⋅⋅+k s Aηs=(k1+k2+⋅⋅⋅+k s)b=b.因此x=k1η1+k2η2+⋅⋅⋅+k sηs也是方程的解.35.设非齐次线性方程组A x=b的系数矩阵的秩为r,η1,η2,⋅⋅⋅,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1, (其中k1+k2+⋅⋅⋅+k n-r+1=1).证明因为η1,η2,⋅⋅⋅,ηn-r+1均为A x=b的解,所以ξ1=η2-η1,ξ2=η3-η1,⋅⋅⋅,ξn-r=η n-r+1-η1均为A x=b的解.用反证法证:ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.设它们线性相关,则存在不全为零的数λ1,λ2,⋅⋅⋅,λn-r,使得λ1ξ1+λ2ξ2+⋅⋅⋅+λ n-rξ n-r=0,即λ1(η2-η1)+λ2(η3-η1)+⋅⋅⋅+λ n-r(ηn-r+1-η1)=0,亦即-(λ1+λ2+⋅⋅⋅+λn-r)η1+λ1η2+λ2η3+⋅⋅⋅+λ n-rηn-r+1=0,由η1,η2,⋅⋅⋅,ηn-r+1线性无关知-(λ1+λ2+⋅⋅⋅+λn-r)=λ1=λ2=⋅⋅⋅=λn-r=0,矛盾.因此ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.ξ1,ξ2,⋅⋅⋅,ξn-r为A x=b的一个基础解系.设x为A x=b的任意解,则x-η1为A x=0的解,故x-η1可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表出,设x-η1=k2ξ1+k3ξ2+⋅⋅⋅+k n-r+1ξn-r=k2(η2-η1)+k3(η3-η1)+⋅⋅⋅+k n-r+1(ηn-r+1-η1),x=η1(1-k2-k3⋅⋅⋅-k n-r+1)+k2η2+k3η3+⋅⋅⋅+k n-r+1ηn-r+1.令k1=1-k2-k3⋅⋅⋅-k n-r+1,则k1+k2+k3⋅⋅⋅-k n-r+1=1,于是x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1.36.设V1={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=0}, V2={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=1},问V1,V2是不是向量空间?为什么?解V1是向量空间,因为任取α=(a1,a2,⋅ ⋅ ⋅,a n)T∈V1,β=(b1,b2,⋅ ⋅ ⋅,b n)T∈V1,λ∈∈R,有a1+a2+⋅ ⋅ ⋅ +a n=0,b1+b2+⋅ ⋅ ⋅ +b n=0,从而(a1+b1)+(a2+b2)+⋅ ⋅ ⋅ +(a n+b n)=(a1+a2+⋅ ⋅ ⋅ +a n)+(b1+b2+⋅ ⋅ ⋅ +b n)=0,λa1+λa2+⋅ ⋅ ⋅ +λa n=λ(a1+a2+⋅ ⋅ ⋅ +a n)=0,所以α+β=(a1+b1,a2+b2,⋅ ⋅ ⋅,a n+b n)T∈V1,λα=(λa1,λa2,⋅ ⋅ ⋅,λa n)T∈V1.V2不是向量空间,因为任取α=(a 1, a 2, ⋅ ⋅ ⋅, a n )T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n )T ∈V 1, 有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =1,b 1+b 2+ ⋅ ⋅ ⋅ +b n =1,从而 (a 1+b 1)+(a 2+b 2)+ ⋅ ⋅ ⋅ +(a n +b n )=(a 1+a 2+ ⋅ ⋅ ⋅ +a n )+(b 1+b 2+ ⋅ ⋅ ⋅ +b n )=2, 所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n )T ∉V 1.37. 试证: 由a 1=(0, 1, 1)T , a 2=(1, 0, 1)T , a 3=(1, 1, 0)T 所生成的向量空间就是R 3.证明 设A =(a 1, a 2, a 3), 由02011101110||≠-==A , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3是三维空间R 3的一组基, 因此由a 1, a 2, a 3所生成的向量空间就是R 3.38. 由a 1=(1, 1, 0, 0)T , a 2=(1, 0, 1, 1)T 所生成的向量空间记作V 1,由b 1=(2, -1, 3, 3)T , b 2=(0, 1, -1, -1)T 所生成的向量空间记作V 2, 试证V 1=V 2.证明 设A =(a 1, a 2), B =(b 1, b 2). 显然R (A )=R (B )=2, 又由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000000013100211 1310131011010211) ,(~r B A ,知R (A , B )=2, 所以R (A )=R (B )=R (A , B ), 从而向量组a 1, a 2与向量组b 1, b 2等价. 因为向量组a 1, a 2与向量组b 1, b 2等价, 所以这两个向量组所生成的向量空间相同, 即V 1=V 2.39. 验证a 1=(1, -1, 0)T , a 2=(2, 1, 3)T , a 3=(3, 1, 2)T 为R 3的一个基, 并把v 1=(5, 0, 7)T , v 2=(-9, -8, -13)T 用这个基线性表示. 解 设A =(a 1, a 2, a 3). 由06230111321|) , ,(|321≠-=-=a a a , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3为R 3的一个基. 设x 1a 1+x 2a 2+x 3a 3=v 1, 则⎪⎩⎪⎨⎧=+=++-=++723053232321321x x x x x x x x , 解之得x 1=2, x 2=3, x 3=-1, 故线性表示为v 1=2a 1+3a 2-a 3. 设x 1a 1+x 2a 2+x 3a 3=v 2, 则⎪⎩⎪⎨⎧-=+-=++--=++1323893232321321x x x x x x x x , 解之得x 1=3, x 2=-3, x 3=-2, 故线性表示为v 2=3a 1-3a 2-2a 3.40. 已知R 3的两个基为 a 1=(1, 1, 1)T , a 2=(1, 0, -1)T , a 3=(1, 0, 1)T , b 1=(1, 2, 1)T , b 2=(2, 3, 4)T , b 3=(3, 4, 3)T . 求由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵P . 解 设e 1, e 2, e 3是三维单位坐标向量组, 则⎪⎪⎭⎫ ⎝⎛-=111001111) , ,() , ,(321321e e e a a a , 1321321111001111) , ,() , ,(-⎪⎪⎭⎫ ⎝⎛-=a a a e e e , 于是 ⎪⎪⎭⎫ ⎝⎛=341432321) , ,() , ,(321321e e e b b b ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-341432321111001111) , ,(1321a a a , 由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-1010104323414323211110011111P .。

线性代数课后习题1-4作业答案(高等教育出版社)

线性代数课后习题1-4作业答案(高等教育出版社)

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (3)222111c b a c b a ; 解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).4. 计算下列各行列式:(1)71100251020214214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 6. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.8. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n 第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 3.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4.设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.21. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.22. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.第三章 矩阵的初等变换与线性方程组 1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. P106/ 1.已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示.证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.9.设b 1=a 1+a 2, b 2=a 2+a 3, b 3=a 3+a 4, b 4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1,于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---140113*********12211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组. 13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5. 20.求下列齐次线性方程组的基础解系: (1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ,于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x .取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ; 取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T . 因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A ,于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x .取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ; 取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。

线性代数课后习题1-4作业答案(高等教育出版社)

线性代数课后习题1-4作业答案(高等教育出版社)

= 1 2 −2 ====== 0 0 − 2 =0.
10
3
14
c1
+
1 2
c3
17
17
14
2 1 41
(2)
3 1
−1 2
2 3
1 2
;
5 0 62

2 3 1
1 −1 2
4 2 3
1 1 2
c4 − c2 =====
2 3 1
1 −1 2
4 2 3
0 2 0
r4 − r2 =====
2 3 1
2 2
52⎟⎠⎞⎜⎝⎛00
12 ⎟⎠⎞ = ⎜⎝⎛ 00
96⎟⎠⎞ ,

A2

B2
=
⎜⎝⎛
3 4
181⎟⎠⎞ − ⎜⎝⎛13
40⎟⎠⎞ = ⎜⎝⎛ 12
78⎟⎠⎞ ,
故(A+B)(A−B)≠A2−B2.
5. 举反列说明下列命题是错误的:
(1)若 A2=0, 则 A=0;
解 取 A=⎜⎝⎛00 01⎟⎠⎞ , 则 A2=0, 但 A≠0. (2)若 A2=A, 则 A=0 或 A=E;
4. 计算下列各行列式:
4 124
(1)1 10Fra bibliotek2 5
0 2
2 0
;
0 117

4 1 10 0
1 2 5 1
2 0 2 1
4 2 0 7
=cc=42=−−=7c=c33=10140
−1 2 3 0
2 0 2 1
−10 2
−14 0
4 =1
10
−1 2 3
−10 2 ×(−1)4+3

山东大学线性代数作业卷1_4答案

山东大学线性代数作业卷1_4答案

1 2 2 3 4 3.已知 A 满足 A 4 A 3 E 0 ,求 A , A . 1 3 解 由 A2 4 A 3E 0 得 A2 4 A 3E, 于是 A3 A( 4 A 3E ) 4 A2 3 A 4( 4 A 3E ) 3 A 1 2 1 0 1 26 13A 12E 13 12 ; 1 3 0 1 13 27 A4 A(13A 12E ) 13A2 12 A 13( 4 A 3E ) 12 A 1 2 1 0 1 80 40A 39E 40 39 . 1 3 0 1 40 81
a b 1. c 2b c 3
作业卷2 答案
b c 1 1 . 4 _________ 2 c a 2c a 3 a b 2a b 3
a b c 1 b c a 1 2 1 解 r4 r2 , r4 r3 得:D= =0 c a b 4 3 3 0 0 0 0 所以得 0.

AB=( E T )( E 2 T ) E T 2 T T 1 T =E -2 ( )=E 2 2 =E
T T T T
所以应选(C).
是一个数
T
3.已知A为3阶方阵,且 a11 a12 A a 21 a 22 a31 a32 1 0 0 1 (A) 3 0 a13 a11 3a31 a a 23 21 a33 a31 0 0 1 a12 3a32 a 22 a32 a13 3a33 a 23 , 则A a33
0 0 3 0 1 0 (C) 1 0 1

线性代数习题4完整解答

线性代数习题4完整解答

习题四答案:1.C,举一个反例:设,且不能由,,。

,显然,可以由,,。

线性表示。

2. C,A错在,虽然A的列向量组的秩为3,但不是任何三个行向量都线性无关;B错在,不是所有3阶子式都为非0子式;D错在,A就算不是最后一行各元素为0,也可以满足秩为3的条件E错在,线性相关的部分组可以只有2个向量,如:,由,构成的部分组显然线性相关3.B,A错在,虽然向量组秩为3,但是并不一定任何3个向量都线性无关C的错误与第2题中的E一样,也可借用那个反例加以说明D错在,若,并不一定需要零向量存在,例如,,且,,,E错在,若,,,。

就会线性相关4.因为,,,线性无关,所以,,线性无关,;又,,,线性相关,所以可以由,,线性表出。

①讨论可否由,,,线性表出,显然可以,因为可以由,,,因而更可以由,,,线性表出。

②讨论可否由,,,线性表出,则归结到是否有:R(,,,)=R,,,显然R,,,(,,,)=4而R(,,,)不一定为4,例如:,,,(),()此时R(,,,)=3,如果,,,(),()此时R(,,,)=4不一定可以由,,,③讨论可否由,,,线性表出,同样归结到是否有:R(,,,)=R,,,显然R,,,(,,,)=4而R(,,,)不一定为4,例如:,,,(),()此时R(,,,)=3 如果,,,(),()此时R(,,,)=4不一定可以由,,,④讨论可否由,,,线性表出,同样归结到是否有:R(,,,)=R,,,显然R,,,(,,,)=4而R(,,,)不一定为4,例如:,,,(),()此时R(,,,)=3 如果,,,(),()此时R(,,,)=4不一定可以由,,,⑤讨论可否由,,,线性表出,同样归结到是否有:R(,,,)=R,,,显然R,,,(,,,)=4而R(,,,)=3一定存在(,,,),,,不可以由,,,5.注意这里强调一下,按照标准写法,表示列向量,,表示行向量。

所以以后除非题目强调是行向量,否则一律视为列向量。

《线性代数》(陈维新)习题答案(第4章)

《线性代数》(陈维新)习题答案(第4章)

⇔ 矩阵 [α1 α 2 α 3 ] 的秩是否与矩阵 [α1 α 2 α 3
解 对矩阵 [α1
β ] 的秩相同.
α 2 α 3 β ] 作初等行变换化为阶梯形:
[α1
1 2 3 1 7 1 2 −1 α2 = α 3 β ] 3 7 −6 − 2 → 0 1 −3 − 5 . 5 8 1 a 0 0 0 a − 1 5
证明 设������ ≠ ������ ∈ ������ ,则������,2������, ⋯ ,������������, ⋯ ∈ ������ 。下证当������ ≠ ������时,������������ ≠ ������������。 (反证) 若������������ = ������������,则(������ − ������)������ = ������,因������ ≠ ������,则������ − ������ = 0,这与 ������ ≠ ������矛盾,所以������ 中 至少有无穷多个向量������,2������, ⋯ ,������������, ⋯。
第四章 线性空间和线性变换
习题 4.1
1.检验以下集合关于所指定的运算是否构成实数域������上的线性空间: (1) ������阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘; (2) 次数等于������(������ ≥ 1)的实系数一元多项式的全体,关于多项式的加法和实数与多项式 的数乘; (3) 有理数的全体������,关于数的加法和实数与有理数的乘法; : (4) 平面上全体向量������2 ,关于通常的向量加法和如下定义的数量乘法“∘” 解 (1) 是 因为任意两个������阶实对称矩阵和是������阶实对称矩阵, 任意一个实数乘以������阶实对称矩阵也 是������阶实对称矩阵,所以������阶实对称矩阵的全体关于矩阵的加法和实数与矩阵的数乘运算是 封闭的。下面验证八条运算规律成立。 记������阶零矩阵为������,显示������是实对称矩阵,且对任意的������阶实对称矩阵������都有������ + ������ = ������。 对任意的������阶实对称矩阵������,显然−������也是������阶实对称矩阵,且������ + (−������) = ������。 其它 6 条运算规律显然成立,这里就不证。 由此可知,������阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘否构成实数域 ������上的线性空间。 (2) 否 因为零多项式的次数不是������,所以这个集合不含零向量,因此次数等于������(������ ≥ 1)的实系 数一元多项式的全体,关于多项式的加法和实数与多项式的数乘不能构成实数域������上的线性 空间。 或者说: 因为两个任意的次数等于������(������ ≥ 1)的实系数一元多项式和的多项式次数不一定等于������, 有可能小于������,所以关于多项式的加法不封闭,因此次数等于������(������ ≥ 1)的实系数一元多项式 的全体,关于多项式的加法和实数与多项式的数乘不能构成实数域������上的线性空间。 ������ ∘ ������ = ������,∀������ ∈ ������,∀������ ∈ ������2

上海交通大学 线性代数教材 课后答案 习题四

上海交通大学 线性代数教材 课后答案 习题四
证因为A是正定的,故存在实可逆矩阵Q使
又由于B为实对称,从而 为实对称。因此存在正交方阵U使
为对角阵。现在令P=QU,于是由 知
且 为对角矩阵。
58.设A和B为n阶正定矩阵,且方程 的根是1。证明:A=B。
证由57题结论,存在n阶实可逆矩阵P,使得 =E, = 是对角阵。
的根是1
由于P可逆,相当于
的根是1
是正定矩阵,其中 是非零实常数。
证易验证B为对称矩阵。对于任意非零向量 , ,其中 。因 是非零实常数, 是非零向量,由A是正定矩阵知 。即 是正定矩阵
21.设A为实对称矩阵,t为实数。证明:t充分大之后,矩阵 为正定矩阵。
证设 是m阶方阵,按行列式完全展开式, 应为t的多项式。其展开式有m!项,每项是不同行不同列的m个元素的乘积,其中t的最高方幂应是主对角线上m个元素之积: 。其他任一项至少包含一个主对角线外元素 ,这时就不能含 和 ,故这些项最多出现 ,它的常数项应为t=0时的 ,故
其中正交替换 为
若 ,A的特征值为0,2,2-2 .分别对应特征向量
, ,

显然Q为正交矩阵。则经 ,
其中正交替换 为
(3) 的解 ,即
其中k为任意实数。
60.用正交替换化二次型
为标准形。
解:
易证主对角线上为 其他元素都为 的 阶方阵的行列式为 ,
的矩阵

所以
,Байду номын сангаас
可以解得属于 的 个特征向量为
属于 的特征向量为
。于是 ,即A合同于E。
反之,A合同于E,则由g可通过实满秩线性替换化为f。因g是正定的,故f也是正定的,即A为正定矩阵。
16.设A为正定矩阵,A合同于B,证明B也是正定矩阵。

中国地质大学远程与继续教育学院线性代数(专升本)阶段性作业4

中国地质大学远程与继续教育学院线性代数(专升本)阶段性作业4

中国地质大学远程与继续教育学院线性代数(专升本)阶段性作业4单选题1. 齐次线性方程组解的情况是_____.(5分)(A) 无解(B) 仅有零解(C) 必有非零解(D) 可能有非零解,也可能没有非零解参考答案:C2. 元齐次线性方程组有非零解的充分必要条件是_____.(5分)(A) :(B) :(C) :(D) :参考答案:B3. 设是矩阵,是矩阵,则线性方程组_____.(5分)(A) :当时仅有零解(B) : 当时必有非零解(C) : 当时仅有零解(D) : 当时必有非零解参考答案:D4. 要使,都是线性方程组的解,只要为_____.(5分)(A) :(B) :(C) :(D) :参考答案:A5. 设元齐次线性方程组的系数矩阵的秩,且为此方程组的三个线性无关的解,则此方程组的基础解系是_____.(5分)(A) :(B) :(C) :(D) :参考答案:A6. 已知矩阵的秩为,和是齐次线性方程组的两个不同的解,为任意常数,则方程组的通解为_____.(5分)(A) :(B) :(C) :(D) :参考答案:D7. 设是矩阵,则下列命题正确的是_____.(5分)(A) : 若,则有唯一解(B) : 若,则有无穷多组解(C) : 若,则有解(D) : 若,则有解参考答案:D8. 已知是的两个不同的解,是相应齐次方程组的基础解系,为任意常数,则的通解是_____.(5分)(A) :(B) :(C) :(D) :参考答案:B9. 若阶方阵的两个不同的特征值所对应的特征向量分别是和,则_____.(4分)(A) : 和线性相关(B) : 和线性无关(C) : 和正交(D) : 和的内积等于零参考答案:B10. 设是的特征值,则_____.(4分)(A) : 0(B) : 5(C) : 10(D) : 15参考答案:D11. 设三阶矩阵的特征值为,则_____.(4分)(A) : -4(B) : -15(C) : 4(D) : 15参考答案:A12. 设矩阵与相似,则下列说法不正确的是_____.(4分)(A) : 秩=秩(B) :(C) :(D) : 与有相同的特征值参考答案:B13. 阶方阵具有个线性无关的特征向量是与对角矩阵相似的_____条件.(4分)(A) : 充分(B) : 必要(C) : 既充分又必要(D) : 既不充分也不必要参考答案:C14. 阶方阵与对角矩阵相似的充分必要条件是_____.(4分)(A) : 矩阵有个特征值(B) : 矩阵有个线性无关的特征向量(C) : 矩阵的行列式(D) : 矩阵的特征多项式没有重根参考答案:B15. 下面的矩阵中哪一个是二次型的矩阵_____.(4分)(A) :(B) :(C) :(D) :参考答案:C填空题16. 设方程有无穷多个解,则___(1)___ .(4分) (1). 参考答案: -217. 如果每一个维列向量都是齐次线性方程组的解,则系数矩阵的秩___(2)___ .(4分)(1). 参考答案: 018. 矩阵的非零特征值是___(3)___ .(4分)(1). 参考答案: 419. 若矩阵与相似,则___(4)___ ,___(5)___ .(4分)(1). 参考答案: 0(2). 参考答案: 120. 阶方阵具有个线性无关的特征向量是与对角矩阵相似的___(6)___ 条件.(4分)(1). 参考答案: 充分必要21. 已知为的特征向量,则___(7)___ ,___(8)___ .(4分)(1). 参考答案: 负三(2). 参考答案: 零22. 已知三阶方阵的特征值为,则___(9)___ .(4分) (1). 参考答案: 1623. 二次型是正定的充分必要条件是实对称矩阵的特征值都是___(10)___ .(4分)(1). 参考答案: 正数。

线性代数练习册第四章习题及答案(本)

线性代数练习册第四章习题及答案(本)

线性代数练习册第四章习题及答案(本)第四章线性方程组§4-1 克拉默法则一、选择题1.下列说法正确的是( C )A.n 元齐次线性方程组必有n 组解;B.n 元齐次线性方程组必有1n -组解;C.n 元齐次线性方程组至少有一组解,即零解;D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A.当0D ≠时,非齐次线性方程组只有唯一解;B.当0D ≠时,非齐次线性方程组有无穷多解;C.若非齐次线性方程组至少有两个不同的解,则0D =;D.若非齐次线性方程组有无解,则0D =. 二、填空题1.已知齐次线性方程组1231231230020x x x x x x x x x λμμ++=??++=??++=?有非零解,则λ= 1 ,μ= 0 .2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠, 则方程组有唯一解i x =i D D.三、用克拉默法则求解下列方程组1.832623x y x y +=??+=?解:832062D ==-≠123532D ==-,2821263D ==-所以,125,62D D x y D D ====-2.123123123231x x x x x x ?+-=??-+-=?解:2131121121221303550111010r r D r r ---=--=-≠+--- 1122210511321135011011D r r ---=-+-=---,212121505213221310101101D r r --=-+-=-----,31212250021122115110110D r r --=+=---所以, 3121231,2,1D D D x x x DDD======3.21241832x z x y z x y z -=??+-=??-++=?解:132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=,2322112102112100123125D c c -=-+=--,31320101241204120182582D c c =-=--所以, 3121,0,1D D D x y z DDD======4.1234123412341234242235232110x x x x x x x x x x x x ?+-+=-??---=-??+++=?解:21314121311111111112140123223150537331211 2181231235537013814222180514r r D r r r r r r r r ---=------------+=----=-+---321421232511151110222142251823152352811012110105110010525182733214210252823522c c D c c c c c c --------=----------+=-----=----21231411323151115111214072322215012373302111518723230132123733031284315181518r r D r r r r r r r r -----= --------------=----=------12342213111512151031224522182325111132283101101002510200251521852974265211228115127c c D c c c c c c -------=---------+=-----=----12432322111152115312125252223121135231201021521555250271425115264c c D c c r r r r --------=----------+=----=---所以, 312412341,2,3,1D D D D x x x x DDDD========-§4-2 齐次线性方程组一、选择题1.已知m n ?矩阵A 的秩为1n -,12,αα是齐次线性方程组0AX = 的两个不同的解,k 为任意常数,则方程组0AX =的通解为( D ).A.1k α;B.2k α;C.12()k αα+;D.12()k αα-.解:因为m n ?矩阵A 的秩为1n -,所以方程组0AX =的基础解系含1个向量。

《线性代数》习题四答案

《线性代数》习题四答案

《线性代数》习题四答案1习题四(A)1.解:(1)EA23456(6)(1)023得特征值16,21.对于16,解对应的齐次线性方程组6EA某0,可得它的一个基础解系1(1,1)T,所以,A的属于特征值6的全部特征向量为c11,(c10,为任意常数)对于21,解对应的齐次线性方程组EA某0,T可得它的一个基础解系2(4,3),所以,A的属于特征值1的全部特征向量为c22,(c20,为任意常数)2(2)EA00110(2)(1)02211得特征值122,31,对于122,解对应的齐次线性方程组2EA某0,TT可得它的一个基础解系1(1,0,0),2(0,1,1),所以,A的属于特征值2的全部特征向量为c11c22,(c1,c2为不全为零的任意常数)对于31,解对应的齐次线性方程组EA某0,T可得它的一个基础解系3(1,0,1),所以,A的属于特征值1的全部特征向量为c33,(c30,为任意常数).1(3)EA36333(2)(4)02564得特征值122,34对于122,解对应的齐次线性方程组2EA某0,可得它的一个基础解系1(1,1,0)T,2(0,1,1)T,所以,A的属于特征值2的全部特征向量为c11c22,(c1,c2为不全为零的任意常数)对于34,解对应的齐次线性方程组4EA某0,T可得它的一个基础解系3(1,1,2),所以,A的属于特征值4的全部特征向量为c33,(c30,为任意常数).(4)010(1)(1)02EA0110得特征值121,31对于121,解对应的齐次线性方程组EA某0,TT可得它的一个基础解系1(0,1,0),2(1,0,1),所以,A的属于特征值1的全部特征向量为c11c22,(c1,c2为不全为零的任意常数)对于31,解对应的齐次线性方程组EA某0,T可得它的一个基础解系3(1,0,1).,所以,A的属于特征值1的全部特征向量为c33,(c30,为任意常数).2.解:(1)A0,EA0n得特征值0(n重),解齐次线性方程组(0E0)某0,可知某可取任一向量,特征向量为任一非零n维列向量.a(2)AaE,EaE(a)0na得特征值a(n重),解齐次线性方程组(aEaE)某0,可知某可取任一向量,特征向量为任一非零n维列向量.3.解:detA1234,trA1232.4.解:设是A1的对应于特征值的特征向量,即A1,则3AAA,即A,从而5111111,1kk13k可得,解之得,k5或k1.5k1k5.证明:设是A的对应于特征值0的特征向量(1)A0(kA)k(A)k(0)(k0).即k0是kA的一个特征值.(2)当m2时,AAAAA22即是A2的一个特征值.2设0m1是矩阵Am1的一个特征值,则Am10m1,于是AA(Amm1)0m1mA0.即0是矩阵A的一个特征值.mm(3)A可逆,故00又A0,A1AA10,0A1,A1110.即0是矩阵A1的一个特征值(4)A某AA,由(1),(3)可得A某1detA0,即detA0是矩阵A某的一个特征值,(5)A0kEAk0(kEA)(k0).即k0是矩阵kEA的一个特征值.6.证明:设A,则TATTTTAA,0,2TT2TT2T(1)00,01201.7.证明:(反证法)假设c11c22是A的属于特征值的特征向量,则A(c11c22)(c11c22).A(c11c22)c1A1c2A2c111c222,(c11c22)c11c22,c111c222c11c22c1(1)1c2(2)20.12,1,2线性无关.于是,c11c220.c1,c20,120,12,矛盾.▍8.证明:AB可逆P使得P1APB(1)BP1APP1APA(2)rBrP1APrAPrA(3)BTP1APPTATP1PTATPT(4)B1P1AP1TT1,从而ATBT.P1A1P11,从而A1B1.9.证明:AB可逆P使得P1APB,CD可逆Q使得QCQD,1P100A1Q00PC00P1APQ0B1QCQ000D10.解:均可对角化1P(1)取143P11AP00.61(2)取P001(3)取P1001101011210121PAP2.1.421PAP20111(4)取P100P1AP1.011111.解:(1)EA11213(2)0,得2对于2,解对应的齐次线性方程组2EA某0,可得它的一个基础解系1(1,1)T,从而不可对角化.423(2)EA212(3)(1)2012可得13,231,r(EA)21,从而不可对角化.111(3)EA242(2)2(6)0335可得122,36,对于122,解对应的齐次线性方程组2EA某0,可得它的一个基础解系(1,1,0)T,T12(1,0,1),对于36,解对应的齐次线性方程组6EA某0,可得它的一个基础解系T3(1,2,3).1112令P102,可得P1AP2013.63(4)EA1271000034(2)0143531可得2(四重).r(2EA)10,从而不可对角化.12.解:矩阵D是对角矩阵,而各选项中的矩阵与D有相同的特征值122,33,故只需判断各矩阵能否对角化.(1)显然,A1,从而与D相似(2)r2EA221,故矩阵A2不可对角化,从而不可能与D相似.(3)r2EA31,故矩阵A3可对角化,从而与D相似(4)r2EA421,故矩阵A4不可对角化,从而不可能与D相似13.解:(1)ABdetAdetB,trAtrB从而detA2detB2y,trA2某trB2y1解得某0,y1(2)AB,A,B有相同的特征值,从而A的特征值为2,1,1当2时,解对应的齐次线性方程组2EA某0,得基础解系11,0,0.当1时,解对应的齐次线性方程组EA某0,得基础解系T20,1,1当1时,解对应的齐次线性方程组EA某0,得基础解系T30,1,1T1令P0001101,则P1APB.1214.解:EA00110(2)(1)0,2211可得122,31当122时,解对应的齐次线性方程组2EA某0,可得它的一个基础解系1(1,0,0)T,2(0,1,1)T,当31时,解对应的齐次线性方程组EA某0, T可得它的一个基础解系3(1,0,1).1令P0001110,121PAP211,则P0012nP001212nnn111n1012n则(P1AP)nP1AnPP12n12210.115.解:令P1,2,31111010111,则PAP12,3其中P11011101111AP13AP211P22311P263263111124717726.342316.证明:AB,从而存在可逆矩阵P1,使得P1APB所以B2P1APP1APP1A2PP1APB.17.解:(1)EA01010110可得10,21,31,对于10,解对应的齐次线性方程组0EA某0,得其基础解系1(0,1,0).T对于21,解对应的齐次线性方程组EA某0,得其基础解系2(1,0,1).T对于31,解对应的齐次线性方程组EA某0,得其基础解系3(1,0,1).12111,,0,3222T将向量2,3单位化可得2,0,令Q1,2,3010120220210,则QAQ121111(2)EA11111(3)0.2111可得120,33对于120,解对应的齐次线性方程组0EA某0,得其基础解系1(1,1,0),21,0,1.TT对于23,解对应的齐次线性方程组3EA某0,得其基础解系3(1,1,1).TT把向量1,2正交化,有11,1,0再将向量1,2,3单位化,有121,0,2212120T11,2,,122T1,16161626,12111,,,,366333TT令Q1,2,313011,则QAQ3130.3 1(3)EA20222(1)(2)(5)0.223可得11,22,35对于11,解对应的齐次线性方程组EA某0,得其基础解系1(2,2,1).T对于22,解对应的齐次线性方程组2EA某0,得其基础解系2(2,1,2).T对于35,解对应的齐次线性方程组5EA某0,得其基础解系3(1,2,2).T将向量1,2,3单位化可得113(2,2,1)T,213(2,1,2)T,313(1,2,2)T.11令Q(1,2,3),则QAQ2.52(4)EA111111111(1)(5)0.3211212可得1231,45对于1231,解对应的齐次线性方程组EA某0,得其基础解系1(1,1,0,0),21,0,1,0,31,0,0,1TTT对于45,解对应的齐次线性方程组5EA某0,得其基础解系4(1,1,1,1)T把向量1,2,3正交化,有T11,1,0,011111,2,,1,0,3,,,122333TT将向量1,2,3,4单位化可得112111,,0,0,2,,,0,26626T31111,,,,4222232323232,,,12120016162 6012312312332312112,则Q1AQ1212T1113TT令Q11.518.解:(1)设与向量1正交的向量为某1,某2,某3,则某1T10,1,1某2某3某2某30,TT解此线性方程组,可得其基础解系21,0,0,30,1,1从而A对应于特征值1的特征向量为21,0,0,30,1,1.TT(2)将1,2,3单位化:1111T10,,,1,0,0,0,,23222201212011,212TT100令Q1,2,311则Q为正交矩阵,且Q1AQ,所以10000101.0AQQ1QQT19.解:由于A中各行元素之和小于1,由定理4.17,A的所有特征值的模小于1,再由定理4.15,可知limA0.nnRt1.120.解:(1)Ft0.11.1某(t)0.10.15Rt10.85Ft10.151.1某(t1),令A0.850.1t0.15.0.85(2)某(t)A某(t1)A某(0),EA(1)(0.95)0可得11,20.95,当11时,解对应的齐次线性方程组EA某0,得基础解系1(3,2)T当20.95时,解对应的齐次线性方程组0.95EA某0,得基础解系2(1,1).T令P(1,2),P11AP000.95t330.95t230.951AP0tt01320.95tPt0.95220.95t 10640.95某(t)At8440.95.6(3)lim某(t)相互依存,使数量趋于稳定.t40.121.解:(1)A0.20.10.9(2)EA0.20.10.10.40.10.10.3.00.10.3102082561.10.10.60.121某(EA)Y51。

西安石油大学函授《线性代数》作业全

西安石油大学函授《线性代数》作业全

作业1 行列式矩阵基础运算1 / 25 单选题(4分)正确答案 BA9B10C11D122 / 25 单选题(4分)正确答案 CA4312B51432C45312D6543213 / 25 单选题(4分)正确答案 C若是5阶行列式中带有正号的一项,则的值是( ).ABCD4 / 25 单选题(4分)正确答案 D设为阶行列式,则在行列式中的符号为( ).A正B负CD5 / 25 单选题(4分)正确答案 B行列式,. 若,则的取值为( ).ABCD6 / 25 单选题(4分)正确答案 A设为行列式中元素()的代数余子式,则( ). A0B1C2D37 / 25 单选题(4分)正确答案 A行列式( ).A0B1C2D38 / 25 单选题(4分)正确答案 B 行列式( ).ABCD9 / 25 单选题(4分)正确答案 C 排列的逆序数是( ).A10B11C12D1310 / 25 单选题(4分)正确答案 D行列式( ).A10B20CD11 / 25 单选题(4分)正确答案 C行列式( ).A20B200C2000D2000012 / 25 单选题(4分)正确答案 D行列式( ).A30B50C70D9013 / 25 单选题(4分)正确答案 D行列式( ).ABCD14 / 25 单选题(4分)正确答案 C行列式( ).A512B1024C1536D204815 / 25 单选题(4分)正确答案 C阶行列式( ).ABCD16 / 25 单选题(4分)正确答案 A为阶方阵,为阶单位矩阵,则下面等式正确的是( ). ABCD17 / 25 单选题(4分)正确答案 CABCD18 / 25 单选题(4分)正确答案 C设阶方阵的伴随矩阵为,且,则( ).ABCD19 / 25 单选题(4分)正确答案 BAB,则称为的逆矩阵CD方阵可逆的充分必要条件是20 / 25 单选题(4分)正确答案 B设方阵经若干次初等变换变成方阵,则必成立( ). AB若,则C若,则D21 / 25 判断题(4分)标准排列是偶排列.( )正确错误正确答案正确22 / 25 判断题(4分)正确错误正确答案正确23 / 25 判断题(4分)( ) 正确错误正确答案错误24 / 25 判断题(4分)正确错误正确答案错误25 / 25 判断题(4分)一个阶行列式与一个阶行列式,必不相等.( )正确错误正确答案错误作业2 矩阵性质向量基本运算1 / 25 单选题(4分)正确答案 C设和均为阶矩阵,则必有( ).ABCD2 / 25 单选题(4分)正确答案 D设均为阶方阵,且,则必有( ).ABCD3 / 25 单选题(4分)正确答案 B为阶矩阵,下列运算正确的是( ).AB若可逆,,则CD4 / 25 单选题(4分)正确答案 C为阶方阵,则( ).A或可逆必有可逆B与都可逆,必有可逆C或不可逆,必有不可逆D与都不可逆,必有不可逆5 / 25 单选题(4分)正确答案 DA非零矩阵的秩必大于零B如果阶方阵可逆,则的秩为C如果可逆,则D如果不可逆,则6 / 25 单选题(4分)正确答案 D设矩阵,且矩阵的秩,则( ). ABCD7 / 25 单选题(4分)正确答案 DA若且,则B若,则或C若,则D若,则8 / 25 单选题(4分)正确答案 C设为3阶方阵,且,则( ).A1BCD9 / 25 单选题(4分)正确答案 B设是矩阵,且,而,则( ).A1B2C3D410 / 25 单选题(4分)正确答案 B设阶方阵都是非零矩阵,若,则与的秩( ). A必有一个等于B都小于C一个小于,一个等于D都等于11 / 25 单选题(4分)正确答案 A已知,满足,则( ).ABCD12 / 25 单选题(4分)正确答案 B已知,,则( ).ABCD13 / 25 单选题(4分)正确答案 D设向量组Ⅰ:可由向量组Ⅱ:线性表示,则( ). A当时,向量组Ⅱ必线性相关B当时,向量组Ⅱ必线性相关C当时,向量组Ⅰ必线性相关D当时,向量组Ⅰ必线性相关14 / 25 单选题(4分)正确答案 B向量组的秩为,则必有( ).ABCD15 / 25 单选题(4分)正确答案 A线性相关的向量组的秩为,则必有( ).ABCD16 / 25 单选题(4分)正确答案 C线性无关的向量组的秩为,则必有( ).ABCD以上均有可能17 / 25 单选题(4分)正确答案 D维向量组线性无关的充要条件是( ). A中任何两个向量都线性无关B存在不全为零的个数,使得C中存在一个向量不能用其余向量线性表示D中任何一个向量都不能用其余向量线性表示18 / 25 单选题(4分)正确答案 D设向量组的秩为,则( ).A必有B向量组中任意个数小于的部分组线性无关C向量组中任意个向量线性无关D若,则向量组中任意个向量必线性相关19 / 25 单选题(4分)正确答案 BA不含零向量的向量组一定线性无关B含有零向量的向量组一定线性相关C不含零向量的向量组一定线性相关D含有零向量的向量组一定线性无关20 / 25 单选题(4分)正确答案 C设向量组线性无关,则下列向量组中线性相关的是( ). ABCD21 / 25 判断题(4分)若,则或.( )正确错误正确答案错误22 / 25 判断题(4分)若均为阶方阵,则有.( )正确错误正确答案错误23 / 25 判断题(4分)若,且,则有.( )正确错误正确答案错误24 / 25 判断题(4分)若均为阶方阵,则有.( )正确错误正确答案错误25 / 25 判断题(4分)若阶方阵的秩为,则的伴随矩阵的秩也为.( )正确错误正确答案正确作业3 向量组的线性相关性方程组可解性判断1 / 25 单选题(4分)正确答案 B设为维向量组,且秩为(),则( ).A线性无关B线性相关C任一向量都可以表示为其余向量的线性组合D任一向量都不可以表示为其余向量的线性组合2 / 25 单选题(4分)正确答案 C若向量组线性无关,向量组线性相关,则( ).A必可由线性表示B必不可由线性表示C必可由线性表示D必不可由线性表示3 / 25 单选题(4分)正确答案 C若矩阵中个列向量线性无关,则的秩( ).A大于B大于C等于D等于4 / 25 单选题(4分)正确答案 C至多为( ).A1B2C3D45 / 25 单选题(4分)正确答案 CA若向量与正交,则对任意实数,与也正交B若向量与向量都正交,则与的任一线性组合也正交C若向量与正交,则,中至少有一个是零向量D若向量与任意同维向量正交,则是零向量6 / 25 单选题(4分)正确答案 A若为阶方阵,,则齐次线性方程组的基础解系含有的解向量个数为( ).BCD不确定7 / 25 单选题(4分)正确答案 A设矩阵,方程组仅有零解的充分必要条件是( ).A的列向量组线性无关B的列向量组线性相关C的行向量组线性无关D的行向量组线性相关8 / 25 单选题(4分)正确答案 B齐次线性方程组,其中为矩阵,且,是该方程组的三个线性无关的解向量,则下列选项中哪个是的基础解系( ).ABCD9 / 25 单选题(4分)正确答案 B已知是非齐次线性方程组的两个不同解,是其对应的齐次线性方程组的基础解系,为任意常数,则方程组的通解为( ).ABCD10 / 25 单选题(4分)正确答案 C设为阶方阵,且的秩,是的两个不同的解,则的通解为( ).BCD11 / 25 单选题(4分)正确答案 D已知齐次线性方程组有非零解,则为( ).A3B4CD12 / 25 单选题(4分)正确答案 D设为阶方阵,且的秩,则的基础解系( ).A仅有唯一向量B有有限个向量C有无限个向量D不存在13 / 25 单选题(4分)正确答案 D为阶方阵,则可逆的充要条件是( ).A任一行向量都是非零向量B任一列向量都是非零向量C有解D14 / 25 单选题(4分)正确答案 D元线性方程组有唯一解的充要条件是( ).ABC为方阵且D,且可由的列向量线性表示15 / 25 单选题(4分)正确答案 D设是矩阵,是非齐次线性方程组所对应的齐次线性方程组,则下列结论正确的是( ).A若仅有零解,则有唯一解B若有非零解,则有无穷多个解C若有无穷多个解,则仅有零解D若有无穷多个解,则有非零解16 / 25 单选题(4分)正确答案 C设为4元非齐次线性方程组的三个解向量,且,若,,为任意常数,则线性方程组的通解为( ).ABCD17 / 25 单选题(4分)正确答案 B若方程组无解,则( ).A1BCD18 / 25 单选题(4分)正确答案 D设是齐次线性方程组的一个基础解系,则该方程组的基础解系也可以是( ). A用表示出的向量组B与秩相同的向量组C与等价的一个向量组D与等价的一个线性无关向量组19 / 25 单选题(4分)正确答案 C与向量都正交的全部向量为( ).ABCD20 / 25 单选题(4分)正确答案 B若为阶方阵,,则齐次线性方程组的基础解系含有的向量个数为( ).A1B3CD21 / 25 判断题(4分)若两个维向量组等价,则这两个向量组的秩相等.( )正确错误正确答案正确22 / 25 判断题(4分)若两个维向量组的秩相等,则这两个向量组等价.( )正确错误正确答案错误23 / 25 判断题(4分)量.( )正确错误正确答案错误24 / 25 判断题(4分)若向量组线性相关,则必含有零向量.( )正确错误正确答案错误25 / 25 判断题(4分)若向量组线性无关,则必不含有零向量.( )正确错误正确答案正确作业4 线性方程组求解矩阵对角化1 / 25 单选题(4分)正确答案 D设是的特征值,则矩阵的一个特征值为( ).ABCD2 / 25 单选题(4分)正确答案 C设是非奇异矩阵的特征值,则矩阵有一个特征值为( ).ABCD3 / 25 单选题(4分)正确答案 C已知3阶矩阵的三个特征值分别为,则( ).ABCD4 / 25 单选题(4分)正确答案 C设是方阵的一个特征值,则矩阵的一个特征值为( ).ABCD5 / 25 单选题(4分)正确答案 A如果矩阵与相似,则( ).ABCD6 / 25 单选题(4分)正确答案 C已知3阶方阵的特征值分别为,,则( ).A3BCD17 / 25 单选题(4分)正确答案 C3阶方阵的特征值分别为,,则的特征值为( ). ABCD8 / 25 单选题(4分)正确答案 D已知与相似,则( ).A1B2C3D69 / 25 单选题(4分)正确答案 D三阶方阵的特征值为,则的特征值为( ).ABCD10 / 25 单选题(4分)正确答案 C设为阶可逆矩阵,是的一个特征值,则的伴随矩阵的特征值之一是( ). ABCD11 / 25 单选题(4分)正确答案 B若是矩阵的特征值,则( ).A0B1C2D312 / 25 单选题(4分)正确答案 C设为阶方阵,且为的个特征值,与相似,则( ).A0BCD13 / 25 单选题(4分)正确答案 D若为阶正交矩阵,则( ).A0B1CD14 / 25 单选题(4分)正确答案 B若方阵相似,则下列结论不正确的是( ).A的秩必定相等B均可逆C必定等价D的行列式必定相等15 / 25 单选题(4分)正确答案 B若方阵可对角化,则满足的条件为( ).ABCD16 / 25 判断题(4分)若,则方程组仅有零解.( )正确错误正确答案错误17 / 25 判断题(4分)若方程组有非零解,则方程组有无穷多解.( ) 正确错误正确答案错误18 / 25 判断题(4分)若方程组有无穷多解,则方程组有非零解.( ) 正确错误正确答案正确19 / 25 判断题(4分)若,则的列向量都是方程组的解.( )正确错误正确答案正确20 / 25 判断题(4分)若,则的列向量都是方程组的解.( )正确错误正确答案错误21 / 25 判断题(4分)若是阶方阵的一个特征值,则.( )正确错误正确答案正确22 / 25 判断题(4分)设,则的内积等于0.( )正确错误正确答案正确23 / 25 判断题(4分)若为正交矩阵,则也是正交矩阵.( )正确错误正确答案正确24 / 25 判断题(4分)若可对角化,则必定可逆.( )正确错误正确答案错误25 / 25 判断题(4分)若可逆,则必可对角化.( )正确错误正确答案错误作业5 二次型1 / 20 单选题(5分)正确答案 A二次型的秩为2,则( ).A0B1C2D32 / 20 单选题(5分)正确答案 B实二次型的秩为2,则( ).A0B1C2D33 / 20 单选题(5分)正确答案 B设是正定矩阵,则应满足的条件是( ). ABCD4 / 20 单选题(5分)正确答案 B已知矩阵为正定矩阵,则一定满足条件( ).ABCD5 / 20 单选题(5分)正确答案 C矩阵正定,则满足( ).ABCD6 / 20 单选题(5分)正确答案 B二次型正定,则满足( ).ABCD7 / 20 单选题(5分)正确答案 C二次型为正定二次型,则满足( ).ABCD8 / 20 单选题(5分)正确答案 C若二次型为正定二次型,则应该满足条件( ).ABCD9 / 20 单选题(5分)正确答案 C二次型的矩阵是( ).ABCD10 / 20 单选题(5分)正确答案 C矩阵对应的二次型是( ).ABCD11 / 20 单选题(5分)正确答案 A已知方阵合同,则( ).A必定等价B必定相似C都可逆D都不可逆12 / 20 单选题(5分)正确答案 C二次型,下列哪个是它的标准型( ). ABCD13 / 20 单选题(5分)正确答案 D二次型的规范型为( ).ABCD14 / 20 单选题(5分)正确答案 A若是阶正定矩阵,则( ).A必为正定矩阵B必为负定矩阵C必为半正定矩阵D必为半负定矩阵15 / 20 单选题(5分)正确答案 B二次型的正定性是( ). A正定B负定C半正定D半负定16 / 20 判断题(5分)二次型的矩阵一定是对称矩阵.( )正确错误正确答案正确17 / 20 判断题(5分)若正定,则必定可逆.( )正确错误正确答案正确18 / 20 判断题(5分)若可逆,则必为正定矩阵.( )正确错误正确答案错误19 / 20 判断题(5分)正确错误正确答案正确20 / 20 判断题(5分)正确错误正确答案错误。

高等数学 线性代数 习题答案第四章

高等数学 线性代数 习题答案第四章

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f -= () f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20ex f x x '==得 0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim(1)1(0),(20)lim ()lim(1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)()f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导.又 (0)(2)1f f == 又由 101()112x f x x -<<⎧'=⎨<<⎩知 ()0f x '≠综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ.(3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续, () f x ∴在[]0,π上不连续, 显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos 02f ξξ'===. 综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f ff x x -'=+==-则x =,取ξ=,即存在(0,1)3ξ=∈,使得(1)(0)()10f f f ξ-=-成立. 从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5. 已知函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f (a )=f (b )=0,试证:在(a ,b )内至少存在一点ξ,使得f (ξ)+f ′(ξ) = 0,ξ∈(a ,b ). 证: 令()()e xF x f x =,则()()()e e xxF x f x f x ''=+由e x 在(),-∞+∞上连续,可导,()f x 在[],a b 上连续,在(),a b 内可导,知()F x 在[],a b 上连续,在(),a b 内可导,而且()()0,()()0,()()e e 即abF a f a F b f b F a F b =====,由罗尓定理至少存在一点(,)a b ξ∈使()0F ξ'=. 即 ()()0e e f f ξξξξ'+= 而0e ξ≠ 故 ()()0f f ξξ'+=即在(),a b 内至少存在一点ξ,使得()()0f f ξξ'+=. 6.若方程10110n n n a x a x a x --+++= 有一个正根x 0,证明方程12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根. 证: 令1011()…nn n f x a x a xa x --=+++,显然()f x 在[]00,x 连续,在()00,x 内可导,且(0)0f =,依题意知0()0f x =.即有0(0)()f f x =.由罗尓定理,至少存在一点0(0,)x ξ∈,使得()0f ξ'=成立,即12011(1)0…n n n a n a n a ξξ---+-++=成立,这就说明ξ是方程12011(1)0n n n a nx a n x a ---+-++= 的一个小于0x 的正根.7. 设f (a ) = f (c ) = f (b ),且a <c <b , f ″(x )在[a ,b ]上存在,证明在(a ,b )内至少存在一点ξ,使f ″(ξ)= 0.证: 显然()f x 分别在[],a c 和[],c b 上满足罗尓定理的条件,从而至少存在1(,)a c ξ∈,2(,)c b ξ∈,使得12()()0f f ξξ''==.又由题意知()f x '在[]12,ξξ上满足罗尓定理的条件,从而至少存在一点12(,)(,)a b ξξξ∈⊂,使得()0f ξ''=.即在(,)a b 内至少存在一点ξ,使()0f ξ''=.习题4-21.利用洛必达法则求下列极限:(1) sin3lim tan5x xxπ→; (2) 0e 1lim (e 1)x x x x x →---;(3)lim m m n n x a x a x a →--; (4) 20()lim x xx a x a x →+-,(a >0); (5) 0ln lim cot x xx+→; (6) 0lim sin ln x x x +→; (7) 1ln(1)lim arccot x x x →+∞+; (8) 0e 1lim()e 1x x x x →--; (9) 10lim(1sin )xx x →+; (10) 2lim (arctan )πx x x →+∞(11) c s c 03e lim()2x x x x →-+ ; (12) 2120lim e x x x →;(13) lim )x x →+∞; (14) 1101lim (1)e xxx x →⎡⎤+⎢⎥⎣⎦.解:222000011sin 33cos33(1)limlim lim cos3cos 5tan 55sec 5533(1)(1)5511(2)lim lim lim (1)111lim 22(3)lim lim lim πππe e e e e e e e e x x x x x xx x x x x xx x x x m m m n n n x a x a x a x x x x x x x x x x x x a mx x a nx →→→→→→→--→→→==⋅=⋅-⋅-=----==--+++==+-==-.m n m nm m x a n n --=2002220()ln ln()()(4)lim lim 21()()()ln ln()()lim2x xxxx x x x x x x a x a a a x a x a a x x xa x a x a x a a a x a x a x a x →→→⎡⎤+-++⎢⎥+-+⎣⎦=⎡⎤++++-++⎢⎥+++⎣⎦=[]200021()ln ln 012 aa a a aa a a a ++-⋅+==2200000000001ln sin 2sin cos (5)lim lim lim lim cot csc 12sin 0cos 001ln sin (6)lim sin ln lim lim lim tan csc csc cot sin lim lim tan 100x x x x x x x x x x x x x x x x x x x x x x x xx x x xxx x ++++++++++→→→→→→→→→→==-=--=-⋅====-⋅-=-⋅=-⨯=222221111ln(1)111(7)lim lim lim lim 111cot 11arc x x x x xx x x x x x x x x →+∞→+∞→+∞→+∞-++++====+-++ 20002200001(1)(8)lim()lim lim 1(1)21443limlim 12022e e e e e e e e e e e e e e e e e e e x x x x x x x x x x x xxxxx x x x x x x xx x x x x x →→→→→-----==-------====+-++0002cos 11ln(1sin )cos 1sin ln(1sin )lim limlim 11sin 12112ln(arctan )arctan 1limlim 112ln(arctan )(9)lim(1sin )lim 2(10)lim (arctan )lim πππee =e ee ee eeπx x x x x xx xx x xxxxx x x x x x x x xxx x x x →→→→+∞→+∞++++→→⋅⋅+-→+∞→+∞+========221lim12lim(1)arctan (1)arctan πeeex x x xx xx→+∞→+∞--+-+===020033lnln322csc ln lim csc 2sin sin 0002(2)(3)33(2)limlim 1(3)(2)cos cos 3(11)lim()lim lim 21e e e e e e e e eee ee exxxx x x x x x x x e e e x x x x xxxxx x x x x x x x xxx →→→---+++→→→+-+--⋅----+--+-===+====2221111220000221()(12)lim lim lim lim 11()e e ee x xx x x x x x x x x x→→→→'⋅====∞'202211ln(1)1ln(1)1limlim lim 0(13)lim )lim1111lim31(14)lim (1) eeee x x x x x x x x xx xxx x x x x →→→+∞→+∞+-+-→=++===⎡⎤===+⎢⎥⎣⎦00111211lim2(1)2eex x xx →→-+--+==2.设 21lim 1x x mx nx →++-=5,求常数m ,n 的值.解: 1lim(1)0, x x →-= 而21lim 51x x mx n x →++=-21lim()0 x x mx n →∴++= 且21()lim 5(1)x x mx n x →'++='-即 10m n ++= 且 1l i m (2)5x x m →+= 即 1m n +=- 且 25m += 于是得 3,4m n ==-. 3.验证极限sin lim x x xx→∞+存在,但不能由洛必达法则得出.解: sin 1limlim(1sin )1x x x x x x x→∞→∞+=+=,极限存在,但若用洛必达法则,有sin lim lim(1cos )x x x xx x→∞→∞+=+因lim cos x x →∞不存在,所以不能用洛必达法则得出.4.设f (x )二阶可导,求2()2()()limh f x h f x f x h h →+-+-.解: 这是型未定式,利用洛必达法则有 [][]200000()2()()()()limlim2()()()()1lim 21()()1()()11lim lim ()()2222().h h h h h f x h f x f x h f x h f x h h hf x h f x f x h f x hf x h f x f x h f x f x f x h h f x →→→→→''+-+-+--=''''-+---=''''+---''''=+=+-''=5.设f (x )具有二阶连续导数,且f (0) = 0,试证g (x ) = (),0'(0),0f x x x f x ⎧≠⎪⎨⎪=⎩可导,且导函数连续. 证: 当0x ≠时,2()()()()()f x xf x f x g x x x '-''==当0x =时,由200000()(0)()(0)()(0)lim lim lim 00()(0)1()(0)1lim lim (0)2202x x x x x f x f g x g f x xf x x x x f x f f x f f x x →→→→→'-'--==--''''--''===- 即 1(0)(0)2g f '''=所以 2()(),0()1(0),02xf x f x x xg x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩由(),()f x f x '的连续性知()g x '在0x ≠处连续,又20000()()()()()lim ()limlim211lim ()(0)(0)22x x x x xf x f x f x xf x f x g x x xf x fg →→→→'''''-+-'=='''''===故()g x '在0x =处连续,所以()g x '在(),-∞+∞内处处连续.综上所述,(),0()(0),0f x xg x x f x ⎧≠⎪=⎨⎪'=⎩可导,且导函数连续.习题4-31.求函数f (x ) =e x x 的n 阶马克劳林公式.解:()()(1),()(1)(2),()()…x x x x x x k x f x e xe e x f x e x e e x f x e k x '=+=+''=++=+=+()()(0)1(0),(1,2,3,)!!(1)!k k f k fk k k k k ∴====-又 (0)0f =321(1)()(01)2!(1)!(1)!n x n x x e n x f x x x x n n θθθ+++∴=+++++<<-+2.当01x =-时,求函数f (x ) = 1x的n 阶泰勒公式. 解:()()[]23()2341()1()112212!3!!()(1),()(1),()(1),,()(1)!(1)(1)!(1)(1)!1,(0,1,2,)!!(1)()(1)1(1)111(1) … n n n n n n n n n nn n f x f x f x f x x x x x n f n f n n n n x f x x x x x θ-++++''''''=-=-=-=-∴-=-⋅=----==-=+∴=-+-⎡⎤+++++++⎣⎦-++ (01)θ<<3.按(4)x -的乘幂展开多项式432()53 4.f x x x x x =-+-+解: 函数432()534f x x x x x =-+-+,根据泰勒公式按(4)x -的幂的展开式是2(4)34(4)()(4)(4)(4)(4)2!(4)(4)(4)(4)3!4! f f x f f x x f f x x '''=+-+-'''+-+- 而[][][]432324244(4)(4)454434456,(4)21,41523(4)137,123022!2(4)111,24303!3!(4)12414!4!x x x f f x x x f x x f x f ====-⨯+-⨯+=-'==-+-''==-+'''==-=⨯=所以,234()5621(4)37(4)11((4)(4)f x x x x x =-+-+-+-+-.4.利用泰勒公式求下列极限:(1) 30sin limx x x x →-; (2) 21lim ln(1)x x x x →+∞⎡⎤-+⎢⎥⎣⎦. 解: (1) 利用泰勒公式,有34sin ()3!x x x o x =-+所以 343300430()sin 3!lim lim 1()1lim()66x x x x o x x x x x o x x →→→--==-= (2) 利用泰勒公式,有221111ln(1)()2o x x x x+=-+,所以222222221111lim lim ln(1)(())21()1111lim lim .()1222x x x x x x x x o x x x x o x x o x x →+∞→+∞→+∞→+∞⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦ 习题4-41. 求下面函数的单调区间与极值:(1)32()26187f x x x x =---; (2)()ln f x x x =-; (3)23()1(2)f x x =--; (4)()(4)f x x x =-. 解: (1) 2()612186(1)(3),f x x x x x '=--=+-令()0f x '=得驻点121,3,x x =-=-在()(),,13,-∞-+∞上,()0f x '>,在()1,3-上()0f x '< ∴ ()f x 在(,1],[3,)-∞-+∞上单调增加,在[]1,3-上单调减少.当 1x =-时, ()f x 有极大值,极大值为(1)3f -=, 当 3x =时, ()f x 有极小值,极小值为(3)61f =-.(2) 11()1x f x x x-'=-=,令()0f x '=得驻点1x = 在()0,1上,()0f x '<;在()1,+∞上,()0f x '> ∴ ()f x 在(0,1]上单调递减;在[1,)+∞上单调递增. 当1x =时,()f x 有极小值,极小值为(1)1f =. (3)()()0f x f x ''=≠ 但当2x =时,()f x '不存在, 在(,2)-∞上,()0f x '>;在(2,)+∞上,()0f x '<, ∴ ()f x 在(,2]-∞上单调递增;在[2,)+∞上单调递减. 当2x =时, ()f x 有极大值,极大值为(2)1f =.(4) 2240()40x xx f x x xx ⎧-≥=⎨-+<⎩ ,则 240()240x x f x x x ->⎧'=⎨-+<⎩且当 0x =时,()f x '不存在,又令()0f x '=得2x = 在(,0),(2,)-∞+∞上,()0f x '>,在(0,2)上()0f x '< ∴ ()f x 在(,0],[2,)-∞+∞上单调递增;在[0,2]上单调递减; 当0x =时,()f x 有极大值,极大值为(0)0f =; 当2x =时, ()f x 有极小值,极小值为(2)4f =-. 2. 试证方程sin x = x 只有一个根.证: 显然0x =是方程sin x x =得一个根(亦可将()sin f x x x =-运用零点定理).令()sin f x x x =-,则()cos 10f x x '=-≤,而()0f x '=的点不是单调区间的分界点,故()f x 在(,)-∞+∞内单调下降,所以()f x 在(,)-∞+∞内只有一个零点,即方程sin x x =只有0x =一个根.3. 已知()([0,))f x C ∈+∞,若f (0) = 0, f ′(x )在[0,)+∞内存在且单调增加,证明()f x x在[0,+∞)内也单调增加.解: 0 x ∀>,由题意知()f x 在[]0,x 上满足拉格朗日中值定理的条件,利用拉格朗日中值定理得,(0,) x ξ∃∈,使()(0)()f x f xf ξ'-=, 因 ()f x '在[0,)+∞单调增加,且(0)0f =,所以()()()f x xf xf x ξ''=≤ 即 ()()0xf x f x '-≥令 ()()(0) f x F x x x=>,则 2()()()0xf x f x F x x '-'=≥ 所以()F x 单调递增,即 ()f x x在(0,)+∞内单调增加.4. 证明下列不等式:(1) 1+12x x >0; (2)2ln(1)(0)2 x x x x x -<+<>.证: (1) 令 1()12f x x =+则1()(12f x '=, 当 0x >时1,()0f x '<>即()f x 单调递增,从而()(0)0f x f >=,故112x +>. (2) 令 2()ln(1)2x f x x x =+-+,则 21()111x f x x x x'=-+=++当 0x >时,有()0f x '>,即()f x 单调递增,从而()(0)0f x f >= ,即2ln(1)2x x x +>-又令 ()ln(1)g x x x =-+,则1()111xg x x x'=-=++ 当 0x >时,()0g x '>,即 ()g x 单调递增,从而()(0)0g x g >=,即ln(1)x x >+.综上所述,当0x >时有2ln(1)2x x x x -<+<. 5. 试问a 为何值时,f (x ) = a sin x +13sin 3x 在x =3π处取得极值?是极大值还是极小值?并求出此极值.解: ()cos cos3f x a x x '=+若3πx =为极值点,则cos cos 03ππa +=,所以2a =.又()2sin 3sin 3,()03πf x x x f ''''=--=<故函数在3πx =处取得极大值,极大值为()3πf =习题4 - 51. 某个体户以每条10元的价格购进一批牛仔裤,设此批牛仔裤的需求函数为402Q P =-,问该个体户应将销售价定为多少时,才能获得最大利润? 解: 利润2()10260400L P PQ Q P P =-=-+-, ()460L P P '=-+,令 ()0L P '=得 P =15所以应将销售价定为每条15元,才能获得最大利润.2.设 f (x ) = cx α (c >0,0<α<1)为一生产函数,其中c 为效率因子,x 为投入量,产品的价格P 与原料价格Q 均为常量,问:投入量为多少时可使利润最大? 解: 依题意,总利润()()()L x Pf x Q x P cx Qx α=-=⋅- 则 1()L x Pc xQ αα-'=- 令 ()0L x '=得 11Q x Pc αα-⎛⎫=⎪⎝⎭所以,投入量为11Q Pc αα-⎛⎫⎪⎝⎭时利润最大.3. 某产品的成本函数为23()156C Q Q Q Q =-+,(1) 生产数量为多少时,可使平均成本最小?(2) 求出边际成本,并验证边际成本等于平均成本时平均成本最小. 解: (1) 2()()156C Q C Q Q Q Q==-+ 令 260()Q C Q '=-=⎡⎤⎣⎦得Q =3 故 生产数量3Q =时,可使平均成本最小. (2) 2()15123MC C Q Q Q '==-+当 3Q =时,15123396MC =-⨯+⨯= 2()156336C Q =-⨯+=即边际成本等于平均成本时平均成本最小. 4. 已知某厂生产Q 件产品的成本为C =25000+2000Q +1402Q (元). 问:(1) 要使平均成本最小,应生产多少件产品?(2) 若产品以每件5000元售出,要使利润最大,应生产多少件产品? 解: (1) 平均成本 250001()200040C Q Q Q =++ 边际成本1()200020C Q Q '=+. 当()()C Q C Q '=时,平均成本最小,由()()C Q C Q '=即2500011200020004020Q Q Q ++=+ 得1000Q =(负值不合题意已舍去). 所以要使平均成本最小,应生产1000件产品.(2)221()5000()500025000200040130002500040L Q Q C Q Q Q Q Q Q =-=---=-+-令 1()3000020L Q Q '=-+=, 得60000Q =(件) 所以应生产60000件产品.5. 某厂全年消耗(需求)某种钢材5170吨,每次订购费用为5700元,每吨钢材单价为2400元,每吨钢材一年的库存维护费用为钢材单价的13.2%,求: (1) 最优订购批量; (2) 最优批次; (3) 最优进货周期; (4) 最小总费用.解: 由题意 215170,5700,1,240013.2%316.8 R C T C ====⨯= 则(1)最优订购批量70*431.325q === (2)最优批次 5170*12*431.325R n q ==≈(次)(3)最优进货周期 36530.452*12T t n ===(天) (4)最小总费用*136643.9E ==≈(元)6. 用一块半径为R 的圆形铁皮,剪去一圆心角为α的扇形后,做成一个漏斗形容器,问α为何值时,容器的容积最大?解: 设漏斗的底面半径为r ,高为h ,为了计算方便令2ϕπα=-,则2,,2ππR r R r h ϕϕ====漏斗的容积2322123(83)πππV hr V ϕϕ==<<'=-令 0V '=得10ϕ=(舍之),2ϕ=,34222237),40,9πππV V ϕϕϕ''=-+-⎫''=-<⎪⎭故当ϕ=时漏斗得容积最大.由2πϕα=-得2π2πα==, 所以,当2πα=-时,容积最大. 7. 工厂生产出的酒可即刻卖出,售价为k ;也可窖藏一个时期后再以较高的价格卖出.设售价V 为时间t 的函数V = k (k >0)为常数.若贮存成本为零,年利率为r ,则应何时将酒售出方获得最大利润(按连续复利计算). 解: ()e rtrtA t k k -=⋅=令()0rt r A t k ⎫'-==⎪⎭得214t r = 所以,应窖藏214r 时以后售出可获得最大利润. 8. 若火车每小时所耗燃料费用与火车速度的三次方成正比,已知速度为20km/h ,每小时的燃料费用40元,其他费用每小时200元,求最经济的行驶速度. 解: 设火车每小时所耗燃料费为Q ,则 3Q k v = (k 为比例常数) 依题意得 34020k =⋅, 解得 1200k =, 又设火车行驶()km s 后,所耗费用为, 32200(200)()s E kv kv s v v=+⋅=+ 令 2200()0100v E s v'=-=, 得27.14v =≈ (km/h), 所以,最经济得行驶速度为27.14 km/h.习题 4-61. 讨论下列函数的凸性,并求曲线的拐点:(1) y =2x -3x ; (2) y = ln(1+2x ); (3) y = x e x; (4) y = 4(1)x ++e x; (5) y =2(3)x x +; (6) y=arctan e x. 解: (1)223,126,0.3令 得 y x x y x y x '=-''''=-==当13x <时,0y ''>; 当13x >时,0y ''<,且12()327f = 所以,曲线23y x x =-在1(,)3-∞内是下凸的,在1(,)3+∞内是上凸的,点12(,)327是曲线的拐点.(2) 222222222(1)222(1),1(1)(1)x x x x x y y x x x +-⋅--'''===+++, 令0y ''=得,121,1x x =-=,这两点将定义域(,)-∞+∞分成三个部分区间,列表考察各部分区间上二阶导数得符号.所以,曲线2l n (1)y x =+在(,1)-∞-及(1,)+∞内是上凸的,在(1,1)-内是下凸的,点(1,ln 2)±是曲线的拐点.(3) 324(1),12(1)0xxy x e y x e '''=++=++> 所以,曲线在定义域(,)-∞+∞内处处下凸,没有拐点.(4) 343212,(3)(3)x x y y x x --'''==++,令 0y ''=得6x = 当 6x <时,0y ''<,当6x >时,0y ''>;又2(6)27f =,函数的定义域为(,3)(3,)-∞--+∞ ;所以曲线在(,3),(3,6)-∞--内上凸,在(6,)+∞内下凸,点2(6,)27是拐点. (6)arctan 2arctan arctan arctan 2222221112(12)(1)(1)(1)x x x x y e x x x ey e e x x x '=⋅+-''=⋅-⋅=+++令 0y ''= 得 12x =当 12x <时,0y ''>,当12x >时,0y ''<,且 1arctan 21()2e f =,所以曲线在1(,)2-∞内向下凸,在1(,)2+∞内向上凸,点1arctan 21(,)2e是拐点. 2. 利用函数的凸性证明下列不等式:(1) e e 2x y +>2e x y+, x ≠y ;(2) x ln x +y ln y >(x +y )ln2x y +,x >0,y >0,x ≠y .证: (1) 令()e x f x =,则()e x f x '=,()0e xf x ''=>,所以函数()f x 的曲线在定义域(,)-∞+∞内是严格下凸的,由曲线下凸的定义有: ()(),()()22x y f x f y x y f x y ++∀≠<≠ 即 22e e ex y x y ++< 即2()2e e e x yx y x y ++>≠.(2) 令()ln f x x x =,则1()1ln ,()f x x f x x'''=+=当 0x >时,恒有()0f x >,所以()f x 的曲线在(0,)+∞内是严格下凸的,由曲线下凸的定义有, 0,0,,x y x y ∀>>≠有()()()22f x f y x y f ++>即ln ln ()ln222x x y x y x y+++> 即 ln ln ()ln 2x yx x y y x y ++>+.3. 当a ,b 为何值时,点(1,3)为曲线y =a 3x +b 2x 的拐点. 解: 因为32y ax bx =+是二阶可导的,所以在拐点处0y ''=,而232,62y a x b x y a x b'''=+=+ 所以 620a b += 又拐点(1,3)应是曲线上的点,所以3a b +=解方程6203a b a b +=⎧⎨+=⎩ 得 39,22a b =-=所以当39,22a b =-=时,点(1,3)为曲线32y ax bx =+的拐点. 4. 求下列曲线的渐近线:(1) y = ln x ; (2)y =22x -; (3) y = 23xx -; (4) y = 221x x -.解: (1) 0lim lim ln x x y x ++→→==-∞,所以ln y x =有垂直渐近线 0x =. 又 lim x y →+∞=+∞,但1ln lim lim lim 01x x x y xx y x x→+∞→+∞→+∞====,lim (0)x y x →+∞-⋅=∞,所以不存在水平或斜渐近线.(2) 220x x -=,所以有水平渐近线0y =,又2lim 0x x x y x -→∞→∞== ,所以没有斜渐近线,又函数22x y -=没有间断点,因而也没有垂直渐近线. (3) 221limlim 0331x x xxx x →∞→∞==--,所以有水平渐近线0y =,又函数23x y x ==-有两个间断点x x ==,且22,,3x x x xx x=∞=∞--所以有两条垂直渐近线x =x =又 21lim lim 3x x y x x →∞→∞==∞-,所以没有斜渐近线.(4) 2lim lim 21x x x y x →∞→∞==∞- ,所以没有水平渐近线,又 函数221x y x =-有间断点12x =,且212lim 21x x x →=∞-,所以有垂直渐近线12x =. 又 1limlim 212x x y x x x →∞→∞==- 2111l i m ()l i m ()l i m 22122(21)4x x x x x y x x x x →∞→∞→∞-=-==-- 所以有斜渐近线1124y x =+. 5.作出下列函数的图形: (1) f (x ) =21xx+; (2) ()2arctan f x x x =- (3) ()2,(0,)e xf x x x -=∈+∞. 解: (1) (i) 定义域为(,)-∞+∞.()()f x f x -=- ,故曲线关于原点对称.(ii) 21lim limlim 012x x x x y x x→∞→∞→∞===+ ,故曲线有渐近线0y =.(iii) 222222121,(1)(1)x x x x y x x +-⋅-'==++ 22223322423232(1)(1)2(1)222442(3)(1)(1)(1)x x x x x x x x x x x y x x x -+--⋅+⋅---+-''===+++,令0y '=即210x -=得驻点1x =±,又使0y ''=的点为0,x =.图4-1(2) (i) 定义域为(,)-∞+∞.又 ()arctan y x x x y -=-+=-,故为奇函数.(ii) 2arctan lim ,limlim (1)1,x x x y x y x x→±∞→±∞→±∞=∞=-=πlim ()lim (2arctan )(2)()π2x x y x x →±∞→±∞-=-=-±= 所以有渐近线πy x = .(iii) 222211,11x y x x -'=-=++ 2222222(1)(1)24,(1)(1)x x x x x y x x +--⋅''==++令 0y '=得驻点1x =±,又使0y ''=的点为0x =. 列表如下:图4-2(3) (i) 定义域为(,)-∞+∞,且()((,))f x C ∈-∞+∞. (ii) ()2(1),()2(2),e e xxf x x f x x --'''=-=-由()0f x '=得1x =,由()0f x ''=得2x =,把定义域分为三个区间 (,1),(1,2),(2,);-∞+∞(iv) lim ()0x f x →+∞=,故曲线()y f x =有渐近线0y =,lim ()x f x →+∞=-∞.(v) 补充点(0,0)并连点绘图,如图所示:图4-3。

线性代数练习4

线性代数练习4

T
S ABC
x1 1 x2 2 x3
y1 1 y2 1 . y3 1
证明:因为 AB x2 x1 , y 2 y1 ,0
AC x3 x1 , y3 y1 ,0,从而
x x1 AB AC 0,0 2 x3 x1
y 2 y1 y3 y1
y 5 x 1, 点,直线 y 2 x 3 .
2
2、 将 xOz 坐标面上的抛物线 z 5 x 绕 x 轴旋转一周,求生成的旋转曲面的方程. 解:抛物线 z 5 x 绕 x 轴旋转一周所生成的曲面方程为:
2
( y 2 z 2 ) 5x
3、 将 xOy 坐标面上的双曲线 4 x 9 y 36 分别绕 x 轴及 y 轴旋转一周,求生成的两个旋
6 求下列直线的方程: (1) 经过 A( 1,0,-1),B( 1,1,3)两点.
ቤተ መጻሕፍቲ ባይዱ
(2) 过点 A( 1,-1,2)与直线
x y 2z 1 0 平行. x 2 y 3z 2 0
解: (1)方向向量为 AB 0,1,4 所以直线的方程为
x 1 y z 1 0 1 4
4、 说明下列旋转曲面是怎样形成的: (1) x
2
y2 z2 1; 4 4
5,1,0 ,
也即点 M0( 4,-3,1)在平面 x+2y -z-3=0 上的投影点.
习题 4—5
1、 指出下列方程在平面直角坐标系与空间直角坐标系中各表示什么图形: (1) x y 2 y 0 ;圆,圆柱面
2 2
(2) x 2 y ;抛物线,抛物柱面
2
(3) 4 x 2 y 1;直线,平面 (4)

线性代数课本习题答案 (4)

线性代数课本习题答案 (4)

11
22
rr
11
22
rr
11
22
rr
又 , , , 线性无关, 故k 0, k 0, , k 0, 从而有k 0, k 0, k 0, , k 0 , , , 线性相关,和题设矛盾.
12
r
1
2
r
1
2
r
12
r
故k 0, 于是k k k
k 0 k k k
kk k 1 2
2m
a n1
a n2
,
于是就有秩
, , 12
a nm
a a
11
12
, n
=秩
a 21
a 22
a a m1 m 2
a 1n
a a
11
21
a 2n
=秩
a 12
a 22
a
mn
a a
1m
2m
a n1
a n2
.
a
nm
, 按 n
如果从k k k 0可以推出所有系数k , k , , k 全为0, 那么称向量组 , , , 线性无关.
12
n
, , 12
a x a x
11 1
12 2
, 线性无关 n
ax 21 1
ax 22 2
am1
x 1
ax m2 2
a x 0 1n n
a x 2n n
0
只有零解(唯一解)
a x 0 mn n
a a
11
12

a 21
a m1
a 22
a m2
a 1n
a 2n
a mn
n(向量组所含向量的个数,也即未知量的个数)

线性代数习题答案4

线性代数习题答案4

a2 + b2 3 (a2 + b2 3)(a2 − b2 3) a22 − 3b22
a22 − 3b22
3,
a1 ± a2 , b1
± b2;
a1a2
+ 3b1b2 , a1b2
+ a2b1;
a1a2 a22
− 3b1b2 − 3b22
,
(a2b1 − a1b2 a22 − 3b22
)
都是有理数,故 K2 是数域.
x + y = (x1 + y1, x2 + y2 , x3 + y3 )T , 2(x1 + y1) + 3(x2 + y2 ) − (x3 + y3 ) = 0 ⇒ x + y ∈W4 , kx = (kx1, kx2 , kx3)T , 2(kx1) + 3(kx2 ) − (kx3) = 0 ⇒ kx ∈W4 故W4 对 R3 中的加法与数乘运算封闭, 它是 R3 的子空间. (5) W5 = {x ∈ R3 | 2x1 + 3x2 − x3 = 1}; 【解】W5 不是 R3 的子空间. 显然W5 中不含有零向量, 故W5 不是 R3 的子空间. (6) W6 = {x ∈ R3 | x1 − x22 = 0}.
=
a1a2 a22
+ b1b2 + b22
+
(a2b1 a22
− a1b2 ) + b22
i,
a1
± a2 , b1
± b2;
a1a2
− b1b2 , a1b2
+ a2b1;
a1a2 + b1b2 a22 + b22

线性代数课后习题1-4作业答案(高等教育出版社)

线性代数课后习题1-4作业答案(高等教育出版社)

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (3)222111c b a c b a ; 解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).4. 计算下列各行列式:(1)71100251020214214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 6. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.8. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n 第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 3.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4.设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.21. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.22. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.第三章 矩阵的初等变换与线性方程组 1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. P106/ 1.已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示.证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.9.设b 1=a 1+a 2, b 2=a 2+a 3, b 3=a 3+a 4, b 4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1,于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---140113*********12211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组. 13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5. 20.求下列齐次线性方程组的基础解系: (1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ,于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x .取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ; 取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T . 因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A ,于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x .取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ; 取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数作业4
单项选择题
第1题
答案:A
第2题二次型f(x1,x2,x3)=x12+x22+x32+x1x2+x1x3+x2x3为___。

A、正定
B、负定
C、半正定
D、不定
答案:A
第3题同阶方阵A与B相似的充要条件是___。

A、存在两个可逆矩阵P与Q,使PAQ=B
B、存在可逆矩阵P,使A=P-1BP;
C、存在可逆矩阵P,使P T AP= B
D、秩(A)=秩(B)
答案:B
第4题
答案:D
第5题若同阶方阵A与B相似,则必有___。

A、λE-A=λE-B
B、A与B有相同的特征向量
C、A、B都相似于同一对角矩阵
D、对任意常数k,kE-A=kE-B相似
答案:D
第6题二次型f=x T Ax(A为实对称矩阵)正定的一个充要条件是___。

A、det(A)>0
B、存在可逆矩阵C,使得C T AC成为对角矩阵
C、A可逆
D、存在可逆矩阵M,使得A=M T M
答案:D
第7题若矩阵C可逆,且使C T AC=B,则必成立___。

A、A与B有相同的特征值
B、A与B相似
C、当B T=B时,二次型x T Ax与x T Bx有相同的规范形
D、当B T=B时,有A T= A-1
答案:C
第8题若矩阵C可逆,且使C T AC=B,则必成立___。

A、A与B相似
B、当B T=B时,有A T= A-1
C、A与B有相同的特征值
D、当B T=B时,二次型x T Ax与x T Bx有相同的规范形
答案:D
第9题
答案:A
第10题设A为n阶方阵,则___。

A、A的特征值一定都是实数
B、A必有n个线性无关的特征向量
C、A可能有n+1个线性无关的特征向量
D、A最多有n个互不相同的特征值
答案:D
第11题
答案:B
第12题n阶方阵A有n个互不相同的特征值是A与对角矩阵相似的___。

A、充要条件
B、充分非必要条件
C、必要非充分条件
D、既非充分也非必要条件
答案:B
第13题
答案:B
第14题关于二次型f(x1,x2,x3)=3x12+4x22+5x32+4x1x2-4x2x3,下列说法正确的是___。

A、是正定的
B、不是正定的
答案:A
第15题设A、B都是n阶实对称矩阵,则A与B相似的充要条件是___。

A、秩(A)=秩(B)
B、det(A)=det(B)
C、det(λE-A)=det(λE-B)
D、A2与B2相似
答案:C
第16题设3阶实对称矩阵A的全部特征值为λ1=λ2=2,λ3=1,且ξ1=(1,1,0)T 及ξ2=(1,1,2)T都是方阵A的特征向量,则向量ξ3=(1,-1,0)T___。

A、是A的属于特征值λ3=1的特征向量
B、是A的属于特征值λ2=2的特征向量
C、可能是属于特征值λ3=1的特征向量,也可能是属于特征值λ2=2的特征向量
D、不是A的特征向量
答案:A
第17题下列二次型中,为正定二次型的是___。

A、f(x1,x2,x3)=x12-2x22+3x32+2x1x3
B、f(x1,x2,x3)=(x1+x2)2+3x32
C、f(x1,x2,x3)=5x12+x22+3x32+4x1x2-2x1x3-2x2x3
D、f(x1,x2,x3)=x12+x22+x32+2x1x2+x1x3+2x2x3
答案:C
第18题n阶方阵A与对角矩阵相似的充要条件是___。

A、A有n个互不相同的特征值
B、A有n个互不相同的特征向量
C、A有n个线性无关的特征向量
D、A有n个两两正交的特征向量
答案:C
第19题二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是___。

A、2y12-y22-3y32
B、-2y12
C、2y12-y22
D、2y12+y22+3y32
答案:A
判断题
第20题设A、B为同阶正定矩阵,k1,k2为正常数,则k1A+k2B亦为正定矩阵。

答案:正确。

相关文档
最新文档