北师大版八年级数学上名校课堂单元测试(二)(含答案)

合集下载

北师大版初中八年级数学上册第二章检测卷含答案

北师大版初中八年级数学上册第二章检测卷含答案

学校 班级 姓名第二章检测卷(时间:60分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列各式不是无理数的是( ).A.π5B.2ππC.π-3.14D.π+π22.|1+√3|+|1-√3|=( ).A.1B.√3C.2D.2√3 3.若实数a ,b ,c ,d 满足a-1=b-√2=c+1=d+2,则a ,b ,c ,d 这四个实数中最大的是( ).A.aB.bC.cD.d 4.下列说法正确的是( ).A.27的立方根是±3B.-8没有立方根C.立方根是它本身的数是±1D.平方根是它本身的数是05.如图,数轴上点A 所表示的数为√3,点B 到点A 的距离为1个单位长度,则点B 所表示的数是( ).A.√3-1B.√3+1C.√3-1或√3+1D.1-√3或1+√3 6.已知√a 3+3a 2=-a √a +3,则a 的取值范围是( ).A.a ≤0B.a>-3C.-3≤a ≤0D.a ≥0或a ≤-3 7.若√2x -1+√1-2x +1在实数范围内有意义,则x 满足的条件是( ).A.x ≥12B.x ≤12C.x=12D.x ≠12 8.把(2-x )√1x -2根号外的因式移到根号内,得( ). A.√2-x B.√x -2 C.-√2-xD.-√x -2 二、填空题(每小题4分,共24分)9.3-√11的绝对值是 .10.(2021遂宁)若|a-2|+√a +b =0,则ab= .11.(2021滨州)计算:√32+√83-|π0-√2|-(13)-1=. 12.当m= 时,最简二次根式12√3m +2和4√2m +3可以合并.13.(2021广元)如图,实数-√5,√15,m 在数轴上所对应的点分别为A ,B ,C ,点B 关于原点O 的对称点为D.若m 为整数,则m 的值为 .14.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b=√a+b a -b (a+b>0),如:3*2=√3+23-2=√5,则7*(6*3)= .三、解答题(共44分)15.(8分)计算:(1)(√2+1)2-√24-1+(√2 024-1)0; (2)(-1)2 023+√273+|-√3|-√16.16.(8分)解方程:(1)(3x+2)2=16;(2)12(2x-1)3=-4.17.(8分)已知3a+2的立方根是2,3a+b-1的算术平方根是3,c 是√2的整数部分.(1)求a ,b ,c 的值;(2)求a+b-c 的平方根.18.(10分)在数轴上表示a ,b ,c 三点的位置如下图所示:。

(北师大版)初中数学八年级上册第二章综合测试02含答案解析

(北师大版)初中数学八年级上册第二章综合测试02含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二章综合测试一、选择题(共10小题)1.实数297,1π+,0.010010001−中,无理数是( )A .297B .1π+C .0.010010001−D 2.25的算术平方根是( )A .5B .5−C .12.5D .12.5−3.下列式子为最简二次根式的是( )A B C D 4.下列说法正确的是( )A .5±是25的算术平方根B .4±是64的立方根C .2−是8−的立方根D .()24−的平方根是4− 5.下列运算中,正确的是( )A =B 1=C =D = 6.2764−的立方根是( ) A .34− B .38 C .49− D .9167.+的运算结果应在下列哪两个数之间( ) A .3.5和4.0 B .4.0和4.5 C .4.5和5.0 D .5.0和5.58.已知a 、b 、c 在数轴上的位置如图所示,则a c b +−−的化简结果是( )A .a b c +−B .3a b c −+C .a b c −++D .3a b c −+−9.定义一个新运算,若1i i =,21i =−,3i i =−,41i =,5i i =,61i =−,7i i =−,81i =,…,则2020i =( )A .i −B .iC .1−D .110.的小数部分不可能全部写出来,但因为<.即12<<.1−.的小数部分是m 数部分是n ,那么m n +的值是( )A 2B 1CD 3 二.填空题(共8小题)11.最接近________.12.+=________.13.比较大小:________(填“>”,“=”,“<”号)14.计算:÷=________.15..则a的取值范围是________.16.已知21+−的算术平方根是4,那么2−的平方根是________.a ba ba−的平方根是3±,3117.0==________.18.如图,以原点O为圆心,OB为半径画弧交数轴于点A,则点A所表示的数是________.三.解答题(共7小题)19.|−20.++−−21.互为相反教,z是64的平方根,求x y z−+的平方根.22.已知1n=−的值.m=,123.已知正实数x的平方根是n和n a+.(1)当6a=时,求n;(2)若2222()10n x n a x++=,求x的值.24.观察、发现:1========.(1(2=________;(3⋯+25.观察下列等式:回答问题:①111 111112 =+−=+②111 112216 =+−=+③1111133112=+−=+,…(1)=________;(2)请按照上式反应的规律,试写出用n表示的等式;(3)验证你的结果.第二章综合测试答案解析一、1.【答案】B解:297是分数,属于有理数;0.010010001−是有限小数,属于有理数;2=,是整数,属于有理数;1π+是无理数.故选:B.2.【答案】A解:2525=,25∴的算术平方根是5.故选:A.3.【答案】A解:A、是最简二次根式,故本选项符合题意;B3=,不是最简二次根式,故本选项不符合题意;C=D=故选:A.4.【答案】C解:A、5±是25的平方根,原说法错误,故此选项不符合题意;B、4是64的立方根,原说法错误,故此选项不符合题意;C、2−是8−的立方根,原说法正确,故此选项符合题意;D、()2416−=,16的平方根是4±,原说法错误,故此选项不符合题意.故选:C.5.【答案】C解:A.不是同类二次根式不能合并,选项错误;B.不是同类二次根式不能合并,选项错误;==,选项正确;==,选项错误; 故选:C.6.【答案】A 解:34−的立方等于2764−, 2764∴−的立方根等于34−. 故选:A.7.【答案】B解:原式2=+25 2.5<<,42 4.5∴<+,故选:B.8.【答案】A解:由数轴可知:0c a b <<<,0a c b ∴+−<,0a c +<,0c a −<,∴原式()||||a c b a c c a =−+−−++−()()a c b a c c a =−−+++−−a b c a c c a =−+−++−+a b c =+−,故选:A.9.【答案 】D解:1i i =,21i =−,3i i =−,41i =,5i i =,61i =−,7i i =−,81i =,⋯, ∴每4个数据一循环,20204505÷=,202041i i ∴==.故选:D.10.【答案】B 解:132<<,∴1n =,的小数部分是m ,而23<<,2m ∴=,∴+=−+=.211m n故选:B.二.11.【答案】2−解: 2.2534<<,∴<<,即2 1.5−<<−,1.52∴最接近2−.−.故答案为:212.【答案】解:原式==故答案为:13.【答案】<解:25==,∴<即<.故答案为:<.14.解:原式===,a15.【答案】1a−,解:由题意得:10a,解得:1a.故答案为:116.【答案】1=±解:21±,a−的平方根是3∴−=,219a解得5a=;a b+−的算术平方根是4,31∴+−=,a b3116∴⨯+−=,35116b解得2b=,∴−=−⨯=,25221a b∴−的平方根是:1a b2=±.17.【答案】解:由题意得:20−=,a−=,30b解得:2a=,3b=,==+=,则故答案为:18.【答案】解:如图所示:OB==故点A所表示的数是:.三.19.||=++−22=.420.【答案】解:原式322=+−−1=.21.【答案】解:+=,∴010x ∴+=,20y −−,解得1x =−,2y =, z 是64的平方根,8z ∴=或8z =−所以,1285x y z −+=−−+=,12811x y z −+=−−−=−(舍去),所以,x y z −+ 的平方根是.22.【答案】解:1m =+1n =−m n ∴−=1mn =−.∴原式3===.23.【答案】解:(1)正实数x 的平方根是n 和n a +, 0n n a ∴++=,6a =,260n ∴+=3n ∴=−;(2)正实数x 的平方根是n 和n a +, ()2n a x ∴+=,2n x =,()222210n x n a x ++=, 3310x x ∴+=,35x ∴=,x ∴=24.【答案】解:(1)原式===;(2)原式==;;(3)原式1=+⋯+1=−9=.初中数学 八年级上册 6 / 625.【答案】解:(11120=, 故答案为:1120; (21111n n =+−+. (3==()()111n n n n ++=+()()()111n n n nn n +++−=+1111n n =+−+.。

第2章 实数 北师大版八年级数学上册单元测试试卷(含答案)

第2章 实数 北师大版八年级数学上册单元测试试卷(含答案)

第二章 实数时间:60分钟 满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·四川成都七中育才学校期末)使x+4有意义的x的取值范围是( )A.x≥-4B.x<-4C.x≠-4D.x>-42.下列各数:3.14,π,0.401,16,2.131 331 333 1…(相邻两个1之间3的个数逐次加1),323,3-9,其中无理数有( ) 21A.2个B.3个C.4个D.5个3.若一个数的算术平方根是8,则这个数的立方根是( )A.±2B.±4C.2D.44.(2022·江苏苏州期末)若最简二次根式1+2a与3是同类二次根式,则a的值为( )A.2B.4C.-1D.15.(2022·浙江宁波期末)已知432=1 849,442=1 936,452=2 025,462=2 116.若n为整数且n<2022<n+1,则n的值为( )A.43B.44C.45D.466.(2021·辽宁本溪期中)已知x,y为实数,且x-3+(y+2)2=0,则y x的立方根是( )A.36B.-2C.-8D.±27.(2022·河北石家庄晋州期末)如图是嘉嘉的试卷,答对1题得25分,答错或者不答不得分,则嘉嘉的得分是( )姓名: 嘉嘉 成绩: ①-(-8)2= 8 ;②2 7-5 7= -3 7 ;③27-2 3= 6 ;④(5+2)2= 9+4 5 .A.25分B.50分C.75分D.100分8.(2022·河南郑州三中期末)如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为( ) A.10-1 B.5-1C.2D.5(第8题) (第10题)9.对实数a,b,定义运算a*b=a 2b(a≥b),ab2(a<b),已知3*m=36,则m的值为( )A.4B.±23C.23D.4或±2310.(2021·河北唐山遵化模拟)在一个大正方形中,按如图的方式粘贴面积分别为12,10的两个小正方形,粘贴后,这两个小正方形重合部分的面积为3,则空白部分的面积为( ) A.8B.19C.67D.230-6二、填空题(共6小题,每小题3分,共18分)11.如果x(x-6)=x·x-6,请写出一个满足条件的x的值 .12.如果20n是一个整数,那么最小的正整数n是 .13.若a,b互为相反数,c,d互为倒数,则a2-b2+3cd= .14.(2022·北京平谷区期末)如图,∠AOB=90°,按以下步骤作图:①以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D;②分别以点C,D为圆心,以大于12CD的长为半径作弧,两弧交于点P;③作射线OP.如图,点M在射线OP上,过M作MH⊥OB于点H,若MH=2,则OM= .15.(2022·河北邢台信都区期中)一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是 .16.(2022·福建三明三元区期中)对于任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72第一次→[72]=8第二次→[8]=2第三次→[2]=1.类似地,只需进行3次操作后变为1的所有正整数中,最大的是 .三、解答题(共6小题,共52分)17.(共3小题,每小题3分,共9分)计算:(1)12×3-982;(2)|-38|-214-3(-1)2020;(3)33+(π+3)0-27+|3-2|.18.(6分)求下列各式中x的值.(1)4(x-3)2=9;(2)(x+10)3+125=0.19.(9分)小丽想用一块面积为36 cm2的正方形纸片,如图所示,沿着边的方向裁出一块面积为20 cm2的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?20.(9分)(2022·湖南邵阳期末)如图(1),这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图(2),使得A与-1重合,那么D在数轴上表示的数是 . 图(1) 图(2)21.(9分)(2022·山西太原期中)高空抛物是一种不文明的危险行为.据研究,从高处坠落的物品,其下落的时间t (s)和高度h (m)近似满足公式t=ℎ5(不考虑阻力的影响).(1)求物体从40 m 的高空落到地面的时间.(2)小明说物体从80 m 的高空落到地面的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由.(3)已知从高空坠落的物体所带能量(单位:J)=10×物体质量(kg)×高度(m).某质量为0.05 kg 的鸡蛋经过6 s 落在地上,这个鸡蛋在下落过程中所带能量有多大?你能得到什么启示?22.(10分)(2021·辽宁朝阳期末)在进行二次根式化简时,我们有时会碰上如53,23,23+1一样的式子,这样的式子我们可以将其进一步化简:53=5×33×3=533,23=2×33×3=63,23+1=2(3-1)(3+1)(3-1)=3-1.以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:(1)化简:25+3.(2)若a 是2的小数部分,求3a 的值.(3)化简:13+1+15+3+17+5+…+12023+2021.第二章 实数12345678910ABDDBBBAC D11.7(答案不唯一,大于等于6的数均可)12.513.114.2215.73.5 cm 216.2551.A 使式子4+x 有意义,则4+x ≥0,即x ≥-4,则x 的取值范围是x ≥-4.2.B 在所列的7个数中,无理数是π3,2.131 331 333 1…(相邻两个1之间3的个数逐次加1),3-9,共3个,故选B .3.D 由题意得这个数为64,∴这个数的立方根为364=4.4.D 由题意,得1+2a=3,解得a=1.5.B ∵442=1 936,452=2 025,1 936<2 022<2 025,∴44<2022<45,∵n 为整数且n<2022<n+1,∴n 的值为44.6.B ∵x -3+(y+2)2=0,∴x-3=0,y+2=0,∴x=3,y=-2,∴y x =(-2)3=-8.∵-8的立方根是-2,∴y x 的立方根是-2.7.B序号分析正误①-(-8)2=-8×② 27-5 7=-3 7√③27-2 3=3 3-2 3=3×④(5+2)2=9+4 5√∵答对1题得25分,答错或者不答不得分,∴嘉嘉的得分是25×2=50(分).8.A 由勾股定理,得AC=AB 2+BC 2=10,AM=AC=10,所以M 点的坐标是10-1.9.C ①若m ≤3,则32×m=36,解得m=4>3(舍);②若m>3,则3m 2=36,解得m=±23,∵m=-23<3,应舍去,∴m=23.10.D ∵两个小正方形的面积分别为12,10,∴两个小正方形的边长分别为23,10,∴两个小正方形重合部分的边长为(23+10-大正方形的边长).∴两个小正方形的重合部分是正方形.∵两个小正方形重合部分的面积为3,∴重合部分的边3,∴大正方形的边长是23+10-3=3+10,∴空白部分的面积为(3+10)2-(12+10-3)=230-6.11.7(答案不唯一,大于等于6的数均可) ∵x (x -6)=x ·x -6,∴x ≥0,x -6≥0,解得x ≥6,故写一个满足条件的x 的值即可,例如:7(答案不唯一,大于等于6的数均可).12.5 ∵20n 是一个整数,∴25n 是一个整数,∴最小正整数n 的值为5.13.1 根据题意得a+b=0,cd=1,则原式=(a +b )(a -b )+3cd =0+1=1.14.22 由作图可知,OM 平分∠AOB ,∴∠AOM=∠BOM=45°.∵MH ⊥OB ,∴∠OHM=90°,∴∠HOM=∠HMO=45°,∴OH=MH ,∴OM=2MH=22.15.73.5 cm 2∵正方体木块的体积是343 cm 3,∴正方体木块的棱长为3343=7(cm),要将该正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为7÷2=3.5(cm),∴每个小正方体木块的表面积为6×3.52=73.5(cm 2).16.255 (逆推法)∵[3]=1,[15]=3,[255]=15,∴只需进行3次操作后变为1的所有正整数中,最大的是255.17.【参考答案】(1)原式=12×3-982(1分)=36-49(2分)=6-7=-1.(3分)(2)原式=38-94-31(1分)=2-32-1(2分)=-12.(3分)(3)原式=3+1-33+2-3(2分)=3-33.(3分)18.【参考答案】(1)因为4(x-3)2=9,所以(x-3)2=94,所以x-3=32或x-3=-32,解得x=92或x=32.(3分)(2)因为(x+10)3+125=0,所以(x+10)3=-125,所以x+10=3-125,所以x+10=-5,解得x=-15.(3分)19.【参考答案】不同意,小丽不能裁出符合要求的长方形纸片.(4分)理由如下:因为正方形的面积为36 cm 2,所以正方形的边长为6 cm .根据已知可设长方形的宽为x cm,则长为2x cm .长方形面积=x ·2x=2x 2=20,解得x=10,则2x=210,因为210 cm >6 cm,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.(9分)20.【参考答案】(1)这个魔方的棱长为364=4.(3分)(2)∵魔方的棱长为4,∴小立方体的棱长为2,(4分)∴阴影部分的面积为12×2×2×4=8,(5分)8=22.(6分)(3)-1-22(9分)21.【参考答案】(1)由题意得,当h=40 m 时,t=ℎ5=405=8=22(s).(3分)(2)不正确.(4分)理由:当h=80 m 时,t=805=16=4(s),∵4≠2×22,∴小明的说法不正确.(6分)(3)当t=6 s 时,6=ℎ5,解得h=180(m).该鸡蛋在下落过程中所带能量=10×0.05×180=90(J).(8分)启示:严禁高空抛物.(答案不唯一).(9分)22.【参考答案】(1)25+3=2(5-3)(5+3)(5-3)=2(5-3)2=5-3.(3分)(2)因为a 是2的小数部分,所以a=2-1,所以3a =32-1=3(2+1)(2-1)(2+1)=3(2+1)=32+3.(6分)(3)13+1+15+3+17+5+…+12023+2021=3-12+5-32+7-52+…+2023-20212=-1+3-3+5-5+7-…-2021+20232=-1+20232=2023-12.(10分)。

北师大版八年级数学上名校课堂专题训练(二)(含答案)

北师大版八年级数学上名校课堂专题训练(二)(含答案)

专题训练(二) 利用勾股定理解决最短路径问题1.如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是()A.6 cm B.12 cmC.13 cm D.16 cm2.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.521 B.25C.105+5 D.353.如图,长方体的底面边长分别为2 cm和4 cm,高为5 cm,若一只蚂蚁从点P开始经过4个侧面爬行一圈达到点Q,则蚂蚁爬行的最短路径长为多少?4.(青岛中考改编)如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底3 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离的平方是多少?5.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.参考答案1.C2.B3.如图是长方体的展开图,连接PQ,则PQ即为蚂蚁爬行的最短路程.易知PP′=12 cm,QP′=5 cm.由勾股定理,得PQ2=PP′2+P′Q2=122+52=169.所以PQ=13 cm.所以蚂蚁爬行的最短路径长为13 cm.4.如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′C即为最短距离.A′C2=A′D2+CD2=92+132=250(cm2).5.(1)如图,木柜的表面展开图是两个长方形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89.∵l1>l2,∴最短路径的长是89.。

北师大版八年级上册数学第二章检测试题(附答案)

北师大版八年级上册数学第二章检测试题(附答案)

北师大版八年级上册数学第二章检测试题(附答案)一、单选题(共12题;共24分)1.计算: ()A. 5B. 7C. -5D. -72.的平方根是()A. B. ±5 C. 5 D. ±3.若的整数部分为a,小数部分为b,则a﹣b的值为()A. ﹣B. 6-C. 8﹣D. ﹣64.在3.14,,﹣,π这四个数中,无理数有()A. 1个B. 2个C. 3个D. 4个5.估计介于()之间.A. 1.4与1.5B. 1.5与1.6C. 1.6与1.7D. 1.7与1.86.下列计算正确的是()A. B.C. D.7.下列各式中,正确的是()A. B. =1 C. D. =±0.58.设点P的坐标是(1+ ,-2+a),则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.16的算术平方根是()A. 4B. ±4C. ±2D. 210.下列各式计算正确的是()A. B. C. D.11.下列根式中,最简二次根式是()A. B. C. D.12.计算的结果是()A. B. C. D.13.化简: =________.14.下列各数:,,,1.414,,3.12122,,3.161661666…(每两个1之间依次多1个6)中,无理数有________个,有理数有________个,负数有______个,整数有________个.15.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3 ,按此规定,=________16.写出两个无理数,使它们的和为有理数________.17.已知为两个连续的整数,且,则 = ________ .18.我们在二次根式的化简过程中得知:,…,则________三、计算题(共3题;共30分)19.已知a=5+ ,b=5﹣2 ,求a2﹣3ab+b2的值.20.计算21.设a,b,c为△ ABC的三边,化简四、解答题(共4题;共20分)22.实数a,b在数轴上的位置如图所示,则化简|a+b|+23.已知x+12平方根是± ,2x+y﹣6的立方根是2,求3xy的算术平方根.24.已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.25.阅读下面材料:随着人们认识的不断深入,毕达哥拉斯学派逐渐承认不是有理数,并给出了证明.假设是有理数,那么存在两个互质的正整数p,q,使得= ,于是p= q,两边平方得p2=2q2.因为2q2是偶数,所以p2是偶数,而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,代入上式,得4s2=2q2,即q2=2s2,所以q也是偶数,这样,p和q都是偶数,不互质,这与假设p,q互质矛盾,这个矛盾说明,不能写成分数的形式,即不是有理数.请你有类似的方法,证明不是有理数.26.计算:(1)+ ﹣(2)|1﹣|+| ﹣|+| ﹣2|27.著名数学家斐波那契曾研究一列数,被称为斐波那契数列(按照一定顺序排列的一列数称为数列),这个数列的第n个数为[()n﹣()n](n为正整数),例如这个数列的第8个数可以表示为[()8﹣()8].根据以上材料,写出并计算:(1)这个数列的第1个数;(2)这个数列的第2个数.28.我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题,求的立方根.华罗庚脱口而出,你知道怎样迅速准确地计算出结果的吗?请按照下面的问题试一试:(1)由,确定的立方根是________位数;(2)由的个位数是确定的立方根的个位数是________;(3)如果划去后面的三位得到数,而,由此能确定的立方根的十位数是________;所以的立方根是________;(4)用类似的方法,请说出的立方根是________.29.计算:(1)=________,=________,=________,=________,=________,(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(3)利用你总结的规律,计算:.答案一、单选题1. A2. D3. B4.B5.C6.C7.B8.D9. A 10. A 11. D 12. B二、填空题13. 14.3;5;4;2 15.2 16.等17.7 18. 2019三、计算题19.解:a=5+ ,b=5﹣2 ,∴a2﹣3ab+b2的值=(5+2 )2﹣3×(5+2 )×(5﹣2 )+(5﹣2 )2=25+20 +24﹣3×(25﹣24)+25﹣20 +24=95.20. 解:原式=-8+1-9 =-16.21.解:由三角形三边关系(两边之和大于第三边),原式=a+b+c+b+c-a+a+c-b+a+b-c=2(a+b+c)四、解答题22.解:由数轴可得:a<0<b,且|a|>|b|,则a+b<0,b﹣a>0,所以|a+b|+=|a+b|+|b﹣a|=﹣a﹣b+b﹣a=﹣2a.23.解:由题意可知:x+12=13,2x+y﹣6=8,∴x=1,y=12,∴3xy=3×1×12=36,∴36的算术平方根为624. 【解答】解:由已知得,2a﹣1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:± =±4.25.解:假设是有理数,则存在两个互质的正整数m,n,使得= ,于是有2m3=n3,∵n3是2的倍数,∴n是2的倍数,设n=2t(t是正整数),则n3=8t3,即8t3=2m3,∴4t3=m3,∴m也是2的倍数,∴m,n都是2的倍数,不互质,与假设矛盾,∴假设错误,∴不是有理数五、综合题26. (1)解:原式=0.2﹣2﹣=﹣2.3(2)解:原式= ﹣1+ ﹣+2﹣=127. (1)解:第1个数,当n=1时,(﹣)= × =1(2)解:第2个数,当n=2时,[()2﹣()2]= (+ )(﹣)= ×1× =128. (1)两(2)9(3)3;39(4)29. (1);0.7;0;6;(2)解:分类讨论:当时,;当时,;当时,;综上所述:= ;(3)解:利用(2)中得到的规律,可得原式=|3.14﹣π|=π﹣3.14.。

(常考题)北师大版初中数学八年级数学上册第二单元《实数》测试卷(有答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第二单元《实数》测试卷(有答案解析)(2)

一、选择题1.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 2.估算65-的值,它的整数部分是( ) A .2B .3C .4D .5 3.若2x -+|y+1|=0,则x+y 的值为( )A .-3B .3C .-1D .1 4.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 5.与数轴上的点一—对应的数是( ) A .分数或整数B .无理数C .有理数D .有理数或无理数 6.一个正方形的面积为29,则它的边长应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 7.计算()()202020203232-⨯+的结果为( ) A .-1 B .0 C .1 D .±1 8.如图,点A 表示的数可能是( )A 21B 6C 11D 17 9.在实数3.14,227-,9 1.750,-π中,无理数有( ) A .2个B .3个C .4个D .5个 10.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++,其中n 1232020a a a a +( ) A .201920202020 B .202020202021 C .202020212021 D .20212021202211.估计()122+432⨯的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间12.下列说法中正确的是( ) A .81的平方根是9 B .16的算术平方根是4C .3a -与3a -相等D .64的立方根是4±二、填空题13.已知|a +1|+2b -=0,则ab =_____.14.计算()()2323-⨯+的结果是_____.15.若2|1|0++-=a b ,则2020()a b +=_________.16.如图,设AB 是已知线段,经过点B 作BD AB ⊥,使12BD AB =,连接DA ,在DA 上截取DE DB =;在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.已知线段AB 的长为80cm ,则线段AC 的长为____cm .17.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.18.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.19.2x +有意义,则实数x 的取值范围是_________. 20.有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m .三、解答题21.计算:(12105 (2)2(13)27-+22.(1()03853 3.14π-+-;(2)解方程:()321160x --=.23.计算:(1)(π﹣2020)0﹣233+-84+|1﹣3|. (2)12273+﹣()()3-232+.24.规定一种新运算a bad bc c d=-,如213(2)23218=⨯-⨯-=-. (1)若1xy =-,则2363x y-=________; (2)当1x =-时,求223213222x x x x -++--+--的值. 25.(1)计算:81812+⨯; (2)如图,已知//a b ,把三角板的直角顶点放在直线b 上.若140∠=︒,求2∠的度数.26.求下列各式中x 的值.(1)2(2)36x --=(2)33(1)24x -=-【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 2.B解析:B【分析】-1,最后两边都加上6,即可求出它的整数部分.【详解】 解:253<<,32∴-<-,364∴<<, ∴63和4之间,它的整数部分是3,故选:B .【点睛】本题考查了估算无理数的大小,主要考查学生的计算能力,属于基础题,能够确定带根号无理数的范围是解题的关键.3.D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.4.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.5.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.6.C解析:C【分析】一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.C解析:C【分析】利用二次根式的运算法则进行计算,即可得出结论.【详解】解:))2020202022⨯ 202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦ 2020(1)=-1=.故选:C .【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.8.C解析:C【分析】先确定点A 表示的数在3、4之间,再根据夹逼法逐项判断即得答案.【详解】解:点A 表示的数在3、4之间,A 、因为12<<,所以213<<,故本选项不符合题意;B <<23<<,故本选项不符合题意;C <,所以34<<,故本选项符合题意;D <<,所以45<<,故本选项不符合题意;故选:C .【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键.9.A解析:A【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案.【详解】3=-,∴3.14,227-,- 1.7,0都是有理数,-π是无理数,共2个,故选:A.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.10.B解析:B【分析】11(1)n n=++,然后把代数式进行化简,再进行计算,即可得到答案.【详解】解:∵n为正整数,∴==21(1)n nn n+++=11(1)n n++;∴2020a+=(1+112⨯)+(1+123⨯)+(1+134⨯)+…+(1+120202021⨯)=2020+1﹣1111111 2233420202021 +-+-++-=2020+1﹣1 2021=2020 20202021.故选:B.【点睛】本题考查了二次根式的化简求值,解题的关键是用裂项法将分数1n(n1)+代成111n n-+,,寻找抵消规律求和.11.C解析:C【分析】原式利用二次根式乘法运算法则计算得到结果,估算即可.【详解】解:(2+∵16<24<25,即42<2<52,∴4<<5,∴6<2+<7,∴(6和7之间.故选:C.【点睛】此题考查了估算无理数的大小,以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.12.C解析:C【分析】根据平方根,立方根,算术平方根的定义解答即可.【详解】A.81的平方根为9±,故选项错误;B2,故选项错误;C,故选项正确;D.64的立方根是4,故选项错误;故选:C.【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键.二、填空题13.-2【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:由题意得a+1=0b﹣2=0解得a=﹣1b=2所以ab=﹣1×2=﹣2故答案为:﹣2【解答】本题考查了非负数的性解析:-2【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,所以,ab=﹣1×2=﹣2.故答案为:﹣2.【解答】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431 -=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.15.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及解析:1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可.【详解】∵|1|0-=b0,|1|0b -≥,∴a+2=0,b-1=0,∴a=-2,b=1,∴202020201()(21)a b +-+==,故答案为:1.【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.16.【分析】根据通过勾股定理计算得AD ;结合计算得AE 从而得到AC 的值即可得到答案【详解】∵∴∵的长为80cm ∴cm ∴cm ∵∴cm ∴cm ∴cm 故答案为:【点睛】本题考查了勾股定理二次根式线段和与差的知识解析:)401 【分析】 根据BD AB ⊥、12BD AB =,通过勾股定理计算得AD ;结合DE DB =,计算得AE ,从而得到AC 的值,即可得到答案.【详解】∵BD AB ⊥ ∴90ABD ∠= ∵12BD AB =,AB 的长为80cm ∴40BD =cm ∴AD ==cm∵DE DB =∴40DE =cm∴)401AE AD DE =-=cm∴)401AC AE ==cm故答案为:)401. 【点睛】本题考查了勾股定理、二次根式、线段和与差的知识;解题的关键是熟练掌握勾股定理和二次根式的性质,从而完成求解. 17.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9根据新定义得出a ,b 的值,再求和即可.【详解】解:∵,b}=b , ∴a ,b又∵a 和b 为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a ,b 的值是解题关键. 18.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.19.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.20.1【分析】先根据正方体的体积得出其棱长再求出体积达到125m3时的棱长进而可得出结论【详解】解:设正方体集装箱的棱长为a∵体积为64m3∴a==4m;设体积达到125m3的棱长为b则b==5m∴b-解析:1【分析】先根据正方体的体积得出其棱长,再求出体积达到125m3时的棱长,进而可得出结论.【详解】解:设正方体集装箱的棱长为a,∵体积为64m3,∴=4m;设体积达到125m3的棱长为b,则,∴b-a=5-4=1(m).故答案为:1.【点睛】本题考查的是立方根,熟知正方体的体积公式是解题的关键.三、解答题21.(12)4.【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:(1=(1-+(2)2=13-+=4.【点睛】本题考查了二次根式的混合运算,熟知二次根式的运算法则是解题关键.x=22.(1)4-;(2)3【分析】(1)根据立方根,绝对值,零指数幂分别计算,然后在相加减即可(2)先变形得()318x -=,再利用立方根的定义得到12x -=,解方程即可【详解】(1)原式(231=--+231=--+4=(2)()32116x -=则()318x -=故12x -=解得3x =【点睛】本题考查了实数的混合运算,以及立方根解方程,掌握立方根的定义,零指数幂的性质是解题关键.23.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()1221--+=121+=2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键.24.(1)12;(2)7-【分析】(1)利用新定义的运算得到618xy +,将xy 的值代入即可求解(2)先将x 的值代入求解,再利用新定义的运算求解即可【详解】(1)2363x y -=618xy +1xy =-∴原式=()618611812xy +=⨯-+=(2)当1x =-时,223321222x x x x --++--+-=4352----=()()()()42357-⨯---⨯-=- 【点睛】本题考查了新定义的计算,解题关键是能熟练运用新定义中的计算规律结合实数的运算法则求解.25.(1)1;(2)50°【分析】(1)先化成最简二次根式,再利用二次根式混合运算的法则计算即可;(2)先利用平角的定义求得∠3的度数,再利用平行线的性质即可求解.【详解】解:(1)8181223222212++⨯=⨯=⨯=. (2)∵140︒∠=,∴3180190180409050︒︒︒︒︒︒∠=-∠-=--=,∵//a b ,∴2350︒∠=∠=.【点睛】本题考查了二次根式的混合运算,平行线的性质,熟记性质并准确识图是解题的关键. 26.(1)32x =±;(2)1x =- 【分析】(1)利用平方根的概念解方程;(2)利用立方根的概念解方程【详解】解:(1)2(2)36x --= 2436x -=249x =294x =∴32x =± (2)33(1)24x -=-3(1)8x -=- ∴12x -=- ∴1x =-【点睛】本题考查平方根和立方根概念的应用,理解相关概念正确计算是解题关键.。

北师大版八年级数学上名校课堂单元测试(二)(含答案)

北师大版八年级数学上名校课堂单元测试(二)(含答案)

单元测试(二) 实数(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.顽皮的小聪同学在黑板上写出了下面四个实数,你认为是无理数的是( )A.13B.3 C .3 D .0.3· 2.下列运算中,正确的是( )A.9=±3B.3-8=2C .(-2)0=0D .2-1=123.下列说法中,正确的有( )①-64的立方根是-4;②49的算术平方根是±7;③127的立方根是13;④116的平方根是14. A .1个 B .2个 C .3个 D .4个4.下列一定没有平方根的是( )A .-xB .-2x -1C .-x 2D .-2-x 25.在实数2,0,5,π3,327,0.101 001 000 1…(每两个1之间依次多1个0)中,无理数有( )A .2个B .3个C .4个D .5个6.下列二次根式中,属于最简二次根式的是( )A.14B.48C.a bD.4a +47.一个自然数的算术平方根是x ,则下一个自然数的算术平方根是( )A .x +1B .x 2+1 C.x +1 D.x 2+18.下列各组数中互为倒数的一组是( )A .-2与(-2)2 B.||-2与 2C .-2与3-8D .-2与-229.小马虎同学在作业本上做了以下四道题,其中正确的是( )A.2+3= 5 B .2+2=2 2C .a x -b x =(a -b)x D.8+182=4+9=2+3=5 10.如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个二、填空题(每小题4分,共16分)11. 16的平方根是________. 12.计算||2-5+||3-5的结果为________.13.已知a 是10的整数部分,b 是10的小数部分,则(b -10)a 的立方根是________.14.我们规定:“如果x n =a ,那么x 叫做a 的n 次方根,例如:因为24=16,(-2)4=16, 所以16的四次方根就是2和-2.”请你计算:81的四次方根是________,32的五次方根是________.三、解答题(共54分)15. (12分)把下列各数填入相应的集合内:-12,0,0.16,312,0.15,3,-53,π3,16,3-8,3.141 592 6,0.101 001 000 1…. 整数集合{ …};分数集合{ …};正数集合{ …};负数集合{ …};有理数集合{ …};无理数集合{ …}.16.(12分)计算:(1)(-6)2-25+(-3)2; (2)50×8-6×32.17.(8分)对于任意实数a、b规定两种运算:a※b表示a2+b2的算术平方根,a☆b表示(a +1)×(b-1)的立方根,按照上述规则计算(5※12)+[2☆(-8)]的值.18.(8分)已知m+n-5的算术平方根是3,m-n+4的立方根是-2,试求2m+13m-n+2的值.19.(14分)(黔西南州中考)阅读材料:小明在学习二次根式后,发现在一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a、b、m、n均为整数),则有a+b2=m2+2n2+2mn 2.所以a=m2+2n2,b=2mn,这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得:a=________,b=________;(2)利用所探索的结论,找一组正整数a、b、m、n填空:________+________3=(______+______3)2;(3)若a+43=(m+n3)2,且a、m、n均为正整数,求a的值.参考答案1.B2.D3.B4.D5.C6.A7.D8.D9.C 10.C 11.±2 12.1 13.-3 14.±3 215.0,16,3-8-12,0.16,312,0.15,3.141 592 6 0.16,312,0.15,3,π3,16,3.141 592 6,0.101 001 000 1 -12,-53,3-8 -12,0,0.16,312,0.15,16,3-8,3.141 592 6 3,-53,π3, 0.101 001 000 1…, 16.(1)原式=4.(2)原式=17.17. 由题意得(5※12)+[2☆(-8)]=52+122+3(2+1)×(-8-1)=13-3 =10.18.根据题意得⎩⎪⎨⎪⎧m +n -5=9,m -n +4=-8,解得⎩⎪⎨⎪⎧m =1,n =13. 所以3m -n +2=-8,2m +1=3,所以2m +13m -n +2=3-8=-2.19.(1)因为a +b 3=(m +n 3)2,所以a +b 3=m 2+3n 2+2mn 3,所以a =m 2+3n 2,b =2mn.故答案为:m 2+3n 2,2mn.(2)设m =1,n =1,所以a =m 2+3n 2=4,b =2mn =2.故答案为4、2、1、1.(30由题意,得:a =m 2+3n 2,b =2mn.因为4=2mn ,且m 、n 为正整数,所以m =2,n =1或者m =1,n =2,所以a =22+3×12=7,或a =12+3×22=13.。

(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测卷(有答案解析)(4)

(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测卷(有答案解析)(4)

一、选择题1.若表示a ,b 两个实数的点在数轴上的位置如图所示,则化简()2a b a b -++的结果等于( )A .2b -B .2bC .2a -D .2a 2.估算65 ) A .2B .3C .4D .5 3.下列各数中,介于6和7之间的数是( ) A 72+B 45C 472D 354.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 5.a 2a 的值不可以是( )A .12B .8C .18D .286.172178a a b --=+a b - ).A .3±B .3C .5D .5± 7.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .81111911=8.在实数3.14,227-,9 1.750,-π中,无理数有( ) A .2个B .3个C .4个D .5个 9.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等 10.3大的实数是( )A .﹣5B .0C .3D 211.下列说法正确的是( )A 5B .55C .25 3D 5的点12.在代数式13x -中,字母x 的取值范围是( ) A .x >1 B .x ≥1 C .x <1 D .x 13≤ 二、填空题13.计算()()2323-⨯+的结果是_____.14.如图,数轴上点A 表示的数是__________.15.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号) 16.用“<”连接2的平方根和2的立方根_________.17.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:431232-7543)2=※________. 18.1248________________. 19.2(1)10a b -+=,则20132014a b +=___________.20.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 三、解答题21.已知a 的平方等于4,b 的算术平方根等于4,c 的立方等于8,d 的立方根等于8, (1)求a ,b ,c ,d 的值;(2d a bc的值. 22.计算:(1)()2412--⨯;(2)()3393+-.23.计算:()22021(3)333-⎛⎫--+- ⎭+⎪⎝. 24.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算:281156415497-⨯=-==2241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证;(2)请你利用代数式的运算对以上规律加以证明.25.(1)计算:818152+⨯; (2)如图,已知//a b ,把三角板的直角顶点放在直线b 上.若140∠=︒,求2∠的度数.26.如图,一只蚂蚁从点A 沿数轴向右爬22个单位长度后到达点B ,点A 表示的数是2-,设点B 所表示的数为m .(1)求m 的值;(2)求2m m -+【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由数轴可判断出a <0<b ,|a|>|b|,得出a−b <0,a +b <0,然后再根据这两个条件对式子化简.【详解】解:∵由数轴可得a <0<b ,|a|>|b|,∴a−b <0,a +b <0,∴a b -|a−b|+|a +b|=b- a −(a +b )=b- a –a-b=−2a .故选:C .【点睛】此题考查数轴,二次根式的化简,绝对值的化简,先利用条件判断出绝对值符号里代数式的正负性,掌握求绝对值的法则以及二次根式的性质,是解题的关键.2.B解析:B【分析】-1,最后两边都加上6,即可求出它的整数部分.【详解】 解:253<<,32∴-<-,364∴<<,∴63和4之间,它的整数部分是3,故选:B .【点睛】本题考查了估算无理数的大小,主要考查学生的计算能力,属于基础题,能够确定带根号无理数的范围是解题的关键.3.B解析:B【分析】根据夹逼法逐项判断即得答案.【详解】解:A 、47<<425∴<<,故本选项不符合题意;B 、∵<<67∴<<,故本选项符合题意;C 、36<425∴<<,故本选项不符合题意;D 、25<<56∴<<,故本选项不符合题意.故选:B .【点睛】本题考查了无理数的估算,属于常考题型,掌握夹逼法解答的方法是关键.4.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确; 故选D .【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.5.D解析:D【分析】是否为同类二次根式即可.【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D.【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.6.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a≥0,∴a=17,∴b+8=0,解得b=-8,∴==,5故选:C.【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键.7.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.8.A解析:A【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案.【详解】=-,3∴3.14,22-,- 1.7,0都是有理数,7-π是无理数,共2个,故选:A .【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.9.C解析:C【解析】 因为1a b ⨯==,故选C. 10.C解析:C【详解】1.732≈ ,A,B,D 选项都比1.732小,只有故选C.11.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D 错误;故选:C .【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.12.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x ﹣1≥0,解得x≥1,故选:B .【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;二、填空题13.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431 -=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.14.【分析】根据勾股定理得到圆弧的半径长利用数轴上两点间的距离公式即可求解【详解】解:根据题意可得:圆的半径为则点A表示的数是故答案为:【点睛】本题考查勾股定理数轴上两点间的距离利用勾股定理求出半径长是解析:1【分析】根据勾股定理得到圆弧的半径长,利用数轴上两点间的距离公式即可求解.【详解】=则点A表示的数是1,故答案为:1【点睛】本题考查勾股定理、数轴上两点间的距离,利用勾股定理求出半径长是解题的关键.15.②【分析】根据有理数近似数字平方根立方根等概念即可判断【详解】解:①正有理数负有理数和零统称为有理数故原说法错误;②根据四舍五入可知近似数170所表示的准确数的范围是说法正确;③的平方根是原说法错误解析:②【分析】根据有理数、近似数字、平方根、立方根等概念即可判断.【详解】解:①正有理数、负有理数和零统称为有理数,故原说法错误;②根据四舍五入可知,近似数1.70所表示的准确数a的范围是1.695 1.705a<,说法正确;=的平方根是2±,原说法错误;4④立方根是它本身的数是0和±1,原说法错误;故答案为:②.【点睛】本题考查学生对概念的理解,解题的关键是正确理解有理数、近似数字、平方根、立方根等概念,本题属于基础题型.16.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析:【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案.【详解】解:2的平方根为,2∴,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义.17.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】-※解:2=2-=2=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.18.【分析】利用二次根式的乘法运算法则进行计算即可【详解】解:=故答案为:【点睛】本题考查二次根式的乘法熟练掌握二次根式的乘法运算法则是解答的关键【分析】利用二次根式的乘法运算法则进行计算即可.【详解】=【点睛】本题考查二次根式的乘法,熟练掌握二次根式的乘法运算法则是解答的关键.19.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 20.7【分析】由无理数的估算先求出ab 的值再进行计算即可【详解】解:∵∴∵为两个连续的整数∴∴;故答案为:7【点睛】本题考查了无理数的估算解题的关键是正确求出ab 的值从而进行解题解析:7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵<< ∴34<<,∵a、b 为两个连续的整数,a b <<,∴3a =, 4b =,∴ 347a b +=+=;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a 、b 的值,从而进行解题.三、解答题21.(1)a =±2,b =16,c =2,d =512;(2)6或2【分析】(1)结合题意,根据乘方、算数平方根、立方根的性质计算,即可得到答案;(2)结合(1)的结论,根据有理数混合运算以及算数平方根的性质计算,即可得到答案.【详解】(1)∵a 2=4,∴a =±2 b 4=,∴b =16∵c 3=8,∴c =2 3d 8=,∴d =512;(2)当a =2a 26==当a =-2a 22==∴a 的值为6或2. 【点睛】本题考查了乘方、算数平方根、立方根、有理数混合运算的知识;解题的关键是熟练掌握乘方、算数平方根、立方根的性质,从而完成求解.22.(1)2;(2)0.【分析】(1)先计算乘方,再计算乘法和减法,即可得到答案;(2)由算术平方根和立方根进行化简,即可得到答案.【详解】解:(1)原式412422=-⨯=-=;(2)()3393330+-=-=. 【点睛】本题考查了有理数的混合运算,算术平方根,立方根,解题的关键是熟练掌握运算法则进行解题.23.【分析】先计算零指数幂、负整数指数幂以及平方,再计算加减混合运算.【详解】解:原式111999=+-+ 10=.【点睛】本题主要考查了实数的混合运算,解题的关键是熟练掌握零指数幂、负整数指数幂以及平方的性质.24.(1)见解析;(2)见解析【分析】(1)答案不唯一,如选择6,13,20这三个数,按照已知等式方法计算即可; (2)设中间那个数为n ,列得2(7)(7)n n n --+,根据平方差公式及合并同类项法则计算即可.【详解】解:(1)答案不唯一,如:在图中框出如图,213620169120497-⨯=-==;(2)证明:设中间那个数为n ,则:2(7)(7)497n n n --+==∴2(7)(7)7n n n --+=..【点睛】此题考查数字计算规律探究,掌握有理数混合运算法则,整式的混合运算法则以及化简算术平方根是解题的关键.25.(1)1;(2)50°【分析】(1)先化成最简二次根式,再利用二次根式混合运算的法则计算即可;(2)先利用平角的定义求得∠3的度数,再利用平行线的性质即可求解.【详解】解:(1)818122322221 52522++⨯=⨯=⨯=.(2)∵140︒∠=,∴3180190180409050︒︒︒︒︒︒∠=-∠-=--=,∵//a b,∴2350︒∠=∠=.【点睛】本题考查了二次根式的混合运算,平行线的性质,熟记性质并准确识图是解题的关键.26.(12;(2)22【分析】(1)根据题意得出B表示的数,确定出m的值即可;(2)把m的值代入,然后根据绝对值的性质进行计算即可得解.【详解】(1)根据题意得:2222m=-=∴m2;(2)当2m=2222m m-+222222=+22=-22=22=【点睛】本题考查了数轴,绝对值的性质,二次根式的加减,理解数轴上的数向右移动加是解题的关键.。

【北师大版】八年级上数学:第2章《实数》单元试卷(含答案)

【北师大版】八年级上数学:第2章《实数》单元试卷(含答案)

第二章 实数 单元检测题(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.下面四个实数,你认为是无理数的是( )A .13B . 3C .3D .0.3 2.下列四个数中,是负数的是( )A .|-2|B .(-2)2C .- 2D .(-2)23.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a<4;④a 是18的算术平方根.其中,所有正确说法的序号是( )A .①④B .②③C .①②④D .①③④4.实数a ,b 在数轴上的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( )A .2a +bB .-2a +bC .bD .2a -b5.k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k<m =nB .m =n<kC .m<n<kD .m<k<n 6.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③(-4)2的平方根是-4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有( )A .1个B .2个C .3个D .4个 7.下列计算正确的是( )A .(-3)(-4)=-3×-4B .42-32=42-32C .62= 3D .62=3 8.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 9.下列各式中,正确的是( )A .22+32=2+3B .32+53=(3+5)2+3C .152-122=15+12·15-12D .412=21210.规定用符号[m]表示一个实数m 的整数部分,例如[23]=0, [3.14]=3,按此规定[10+1]的值为( )A .3B .4C .5D .6二、填空题(每小题3分,共24分)11.-5的相反数是___.12.16的算术平方根是____.13.写出一个比-3大的无理数___.14.计算:8-18=____.15.比较大小:22____π.(填“>”、“<”或“=”)16.已知一个正数的平方根是3x -2和5x +6,则这个数是____. 17.若x ,y 为实数,且|x +2|+y -3=0,则(x +y)的值为____. 18.已知m =20132014-1,则m 2-2m -=____.三、解答题(共66分)19.(10分)(1) (-π)0-(13)-1+|3-2|+3;(2) 1+(-12)-1-(3-2)2÷(13-3)020.(10分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3;(2) (2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3.21.(10分)(1)有这样一个问题:2与下列哪些数相乘,结果是有理数?A .32B .2-2C .2+3D .32E .0问题的答案是(只需填字母):____;(2)如果一个数与2相乘的结果是有理数,则这个数的一般形式是什么.(用代数式表示)22.(12分)计算:(1)32+50+1345-18; (2)22÷52×1234; (3)(6-412+38)÷2 2.23.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.24.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC 中,请判断AB ,BC ,AC 三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.25.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=.②参照(三)式化简25+3=.(2)化简:13+1+15+3+17+5+…+199+97.答案:一、选择题(每小题3分,共30分)1—5 BCCCD 6---10 CDCCB 二、填空题(每小题3分,共24分)11.-5的相反数是. 12.16的算术平方根是__4__.13.写出一个比-3大的无理数__-2__.14.计算:8-18=.15.比较大小:22__<__π.(填“>”、“<”或“=”)16.已知一个正数的平方根是3x -2和5x +6,则这个数是__494__.17.若x ,y 为实数,且|x +2|+y -3=0,则(x +y)的值为__1__. 18.已知m =20132014-1,则m 2-2m -=__0__.三、解答题(共66分)19.(10分)(1) (-π)0-(13)-1+|3-2|+3;解:原式=0(2) 1+(-12)-1-(3-2)2÷(13-3)0.解:原式=-3+320.(10分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3; 解:原式=a 2-5b 2=-13(2) (2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3. 解:原式=x 2-5=-221.(10分)(1)有这样一个问题:2与下列哪些数相乘,结果是有理数?A .32B .2-2C .2+3D .32 E .0问题的答案是(只需填字母):__A ,D ,E __;(2)如果一个数与2相乘的结果是有理数,则这个数的一般形式是什么.(用代数式表示) 解:(2)设a 为有理数,这个数为x ,则x ·2=a ,∴x =a 2=22a22.(12分)计算:(1)32+50+1345-18; (2)22÷52×1234; 解:原式=62+ 5 解:原式=35(3)(6-412+38)÷2 2. 解:原式=123+223.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.解:(1)在Rt △OAB 中,由勾股定理得OB 2=OA 2+AB 2,所以OC =OB =OA 2+AB 2=22+32=13, 即点C 表示数13(2)画图略.在△ODE 中,∠EDO =90°,OD =5,DE =2,则OF =OE =29,即F 点为-2924.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.解:(1)AB=4,AC=32+32=32,BC=12+32=10,所以AB的长度是有理数,AC和BC的长度是无理数(2)图略25.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__5-3__.②参照(三)式化简25+3=__5-3__.(2)化简:13+1+15+3+17+5+…+199+97.解:(1)①2×(5-3)(5+3)(5-3)=2(5-3)(5)2-(3)2=5-3②5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-33-1 2+5-32+7-52+……+99-972=99-12=311-12(2)原式=。

(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测卷(有答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测卷(有答案解析)(2)

一、选择题1.下列计算正确的是( )A .1=B 2=C =D 2.若制作的一个长方体底面积为24,长、宽、高的比为4:2:1,则此长方体的体积为( )A .216B .C .D .3...的是( )AB .23<<C .5D .|22= 4.下列说法中不正确的是( )A .0是绝对值最小的实数B 2=C .3是9的一个平方根D .负数没有立方根5.已知|a+b ﹣0=,则(a ﹣b )2017的值为( )A .1B .﹣1C .2015D .﹣20156.已知:,,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等 7.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③B .①②④C .①③④D .②③④ 8.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9B .3C .1D .81 9.下列说法正确的是( )A .4的平方根是2B ±4C .-36的算术平方根是6D .25的平方根是±510.估计( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 11.下列计算正确的是( )A= B 3 C D . 12.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D =5二、填空题13.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 14.旧知回顾:在七年级学习“平方根”时,我们会直接开方解形如2810x -=的方程(解为129,9x x ==-).解题运用:方程(18)(1)170x x x -++=解为_________. 15.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a的范围是1.695 1.705a <;4±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)16.用“<”连接2的平方根和2的立方根_________.17.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知}a =}b b =,且a 和b 是两个连续的正整数,则a+b =_____.18.计算:2=___________.19.已知b>0=_____.20.已知M 是满足不等式a <<N M N +的平方根为__________.三、解答题21.计算:(1)022)(3)---(222.计算:(101122-⎛⎫- ⎪⎝⎭23.求下列各式中x 的值.(1)2(2)36x --=(2)33(1)24x -=-24.计算下列各题:(1(2)()(3)(225.2-.26.已知3m -的平方根是6±,3=,求m n +的算术平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】二次根式的混合运算,加减法的基础是同类二次根式;除法运算按照法则进行,二次根式的化简,先乘后化简即可.【详解】∵=∴选项A错误;∵2=∴选项B错误;∵∴选项C错误;∵∴选项D正确.故选D.【点睛】本题考查了二次根式的混合运算,熟记二次根式混合运算的基本法则,特别是同类二次根式是加减运算的基础是解题的关键.2.C解析:C【分析】设出长宽高,利用底面积,求出高,最后再求出体积【详解】设长方体的高为x,则长为4x,宽为2x,由题意得:4x×2x=24解得x x=(舍去)长方体的体积为故答案选:C【点睛】主要考查的是平方根的定义及算术平方根意义,,熟练掌握定义是解题的关键.3.C解析:C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:AB 、23,说法正确,不符合题意;C 、5的平方根是,故原题说法错误,符合题意;D 、|22-=,说法正确, 不符合题意;故选C .【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数. 4.D解析:D【分析】根据实数,平方根和立方根的概念逐一判断即可.【详解】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A 正确;2,故B 正确;9的平方根是3±,故C 正确;任何数都有立方根,故D 错误;故选D .【点睛】本题考查了实数的概念,求一个数的平方根或立方根,熟练掌握平方根和立方根的概念是本题的关键.5.A解析:A【详解】解:由题意得122a b a b +=⎧⎨+=⎩解得:10a b =⎧⎨=⎩()()20172017101a b ∴-=-=6.C解析:C【解析】 因为1a b ⨯==,故选C. 7.D解析:D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确; ∵116的算术平方根是14,∴④正确; 正确的是②③④,故选:D .【点睛】 本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.第II 卷(非选择题)请点击修改第II 卷的文字说明8.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 9.D解析:D根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.10.C解析:C【分析】原式利用二次根式乘法运算法则计算得到结果,估算即可.【详解】解:(2+∵16<24<25,即42<2<52,∴4<<5,∴6<2+<7,∴(6和7之间.故选:C.【点睛】此题考查了估算无理数的大小,以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.11.D解析:D【分析】根据二次根式的化简、立方根的化简、二次根式的加减乘除法则进行判断即可;【详解】A,故A错误;B,故B错误;C3=6,故C错误;D、,故D正确;故选:D.本题考查了二次根式的化简、立方根的化简、二次根式的加减乘除,熟练掌握计算法则是解题的关键;12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.【分析】先将原方程化为即可类比题目中解方程的方法求解即可【详解】解:合并同类项得移项得解得故答案为:【点睛】本题考查了利用平方根解方程及整式的乘法运算掌握平方根的定义是解答此题的关键解析:1x =2x =-【分析】先将原方程化为2180x -=,即可类比题目中解方程的方法求解即可.【详解】解:(18)(1)170x x x -++=,21718170x x x --+=,合并同类项,得2180x -=,移项,得218x =,解得1x =,2x =-故答案为:1x =,2x =-.【点睛】本题考查了利用平方根解方程及整式的乘法运算,掌握平方根的定义是解答此题的关键. 15.②【分析】根据有理数近似数字平方根立方根等概念即可判断【详解】解:①正有理数负有理数和零统称为有理数故原说法错误;②根据四舍五入可知近似数170所表示的准确数的范围是说法正确;③的平方根是原说法错误 解析:②【分析】根据有理数、近似数字、平方根、立方根等概念即可判断.【详解】解:①正有理数、负有理数和零统称为有理数,故原说法错误;②根据四舍五入可知,近似数1.70所表示的准确数a 的范围是1.695 1.705a <,说法正确;4=的平方根是2±,原说法错误;④立方根是它本身的数是0和±1,原说法错误;故答案为:②.【点睛】本题考查学生对概念的理解,解题的关键是正确理解有理数、近似数字、平方根、立方根等概念,本题属于基础题型.16.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析:【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案.【详解】解:2的平方根为,2 ∴,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义. 17.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9【分析】根据新定义得出a ,b 的值,再求和即可.【详解】解:∵,b}=b , ∴a ,b又∵a 和b 为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a ,b 的值是解题关键. 18.2【分析】根据二次根式的性质化简即可【详解】2故答案为:2【点睛】此题考查二次根式的性质掌握二次根式的性质:是解答此题的关键解析:2【分析】根据二次根式的性质化简即可.【详解】2=2,故答案为:2【点睛】此题考查二次根式的性质.掌握二次根式的性质:2a a ==,是解答此题的关键. 19.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 20.±3【分析】先通过估算确定MN 的值再求M+N 的平方根【详解】解:∵∴∵∴∵∴∴a 的整数值为:-1012M=-1+0+1+2=2∵∴N=7M+N=99的平方根是±3;故答案为:±3【点睛】本题考查了算解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵<< ∴221, ∵< ∴23<<,∵a <<∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵<∴78<<,N=7, M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.三、解答题21.(1)859;(2)- 【分析】(1)根据零指数幂、负指数幂和二次根式的性质计算即可;(2)化简二次根式,在进行加减即可;【详解】解:(1)原式=1159-+=859;(2)原式=()-【点睛】本题主要考查了二次根式的运算,结合零指数幂、负指数幂计算是解题的关键.22.3--【分析】先分别计算负指数、二次根式化简、0指数和绝对值,再进行加减即可.【详解】解:原式(212=--- ,212=---+=3-【点睛】本题考查了负指数、二次根式化简、0指数和绝对值有关的实数计算,熟练按照法则进行计算是解题关键.23.(1)32x =±;(2)1x =- 【分析】(1)利用平方根的概念解方程;(2)利用立方根的概念解方程【详解】解:(1)2(2)36x --= 2436x -=249x =294x = ∴32x =±(2)33(1)24x -=-3(1)8x -=-∴12x -=-∴1x =-【点睛】本题考查平方根和立方根概念的应用,理解相关概念正确计算是解题关键.24.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.25.4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.26.m n +的算术平方根为【分析】根据算术平方根和立方根的定义列式求出m 、n 的值,然后代入代数式求出m +n 的值,再根据算术平方根的定义解答.【详解】解:∵3m -的平方根是6±,∴23(6)m -=±,∴39m =, ∵3=,∴3427n +=,∴6n =,∴m n +==.【点睛】本题考查了算术平方根和平方根、立方根的定义,是基础题,熟记概念并列式求出m、n 的值是解题的关键.。

最新北师版八年级初二上册数学第2章《实数》单元测试试卷及答案

最新北师版八年级初二上册数学第2章《实数》单元测试试卷及答案

新版北师大版八年级数学上册第2章《实数》单元测试试卷及答案(2)本检测题满分:100分,时间:90分钟一、选择题(每小题3分,共30分)1. 有下列说法:(1)开方开不尽的数的方根是无理数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确的说法的个数是( ) A .1 B .2 C .3 D .4 2. ()20.9-的平方根是( )A .0.9-B .0.9±C .0.9D .0.81 3. 若、b 为实数,且满足|-2|+=0,则b -的值为( )A .2B .0C .-2D .以上都不对 4. 下列说法错误的是( )A .5是25的算术平方根B .1是1的一个平方根C .的平方根是-4D .0的平方根与算术平方根都是05. 要使式子有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤2 6. 若均为正整数,且,,则的最小值是( )A.3B.4C.5D.6 7. 在实数,,,,中,无理数有( )A.1个B.2个C.3个D.4个 8. 已知=-1,=1,=0,则的值为( )A.0 B .-1 C. D.9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )第9题图A .2B .8C .3D .210. 若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A. 2B. 4C.±2D. ±4二、填空题(每小题3分,共24分)11. 已知:若≈1.910,≈6.042,则≈ ,±≈ .12. 绝对值小于的整数有_______. 13.的平方根是 ,的算术平方根是 .14. 已知5-a +3+b ,那么.15. 已知、b 为两个连续的整数,且,则= . 16. 若5+的小数部分是,5-的小数部分是b ,则+5b = .17. 在实数范围内,等式+-+3=0成立,则= . 18. 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= 三、解答题(共46分)19.(6分)已知,求的值.20.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 由于,,即7)3()4(22=+,1234=⨯,所以347+1227+32)34(2+=+.根据上述方法化简:42213-.21.(6分)已知28-++=b a a M 是()8+a 的算术平方根,423+--=b a b N 是()3-b 的立方根,求N M +的平方根. 22. (6分)比较大小,并说理:(1)与6;(2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是, 5-的整数部分是b ,求+b 的值.24.(8分) 若实数满足条件,求的值.25.(8分)阅读下面问题:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3122334989999100+⋅⋅⋅+++++++.参考答案一、选择题1.C 解析:本题考查对无理数的概念的理解.由于0是有理数,所以(3)应为无理数包括正无理数和负无理数.2.B 解析:=0.81,0.81的平方根为3.C 解析:∵ |-2|+=0,∴=2,b=0,∴b-=0-2=-2.故选C.4.C 解析:A.因为=5,所以A正确;B.因为±=±1,所以1是1的一个平方根说法正确;C.因为±=±=±4,所以C错误;D.因为=0,=0,所以D正确.故选C.5. D 解析:∵二次根式的被开方数为非负数,∴ 2-x≥,解得x≤2.6.C 解析:∵均为正整数,且,,∴的最小值是3,的最小值是2,则的最小值是5.故选C.7. A 解析:因为所以在实数,0,,,中,有理数有,0,,,只有是无理数.8.C 解析:∵∴,∴.故选C.9.D 解析:由图表得,64的算术平方根是8,8的算术平方根是2.故选D.10.C 解析:因为169的算术平方根为13,所以 =13.又121的平方根为,所以 =-11,所以4的平方根为,所以选C.二、填空题11.604.2 0.019 1 解析:;±0.019 1.12.±3,±2,±1,0 解析:,大于-的负整数有:-3、-2、-1,小于的正整数有:3、2、1,0的绝对值也小于. 13.3 解析:;,所以的算术平方根是3.14. 8 解析:由5-a +3+b ,得,所以.15.11 解析:∵,、b 为两个连续的整数,又<<,∴ =6,b =5,∴ .16.2 解析:∵ 2<<3,∴ 7<5+<8,∴ =-2.又可得2<5-<3,∴ b =3-.将、b 的值代入+5b 可得+5b =2.故答案为2.17.8 解析:由算术平方根的性质知,又+-y +3=0,所以2- =0,-2=0,-y +3=0,所以=2,y =3,所以==8.18.1 解析:[2☆(-4)]×[(-4)☆(-2)]=2-4×(-4)2=×16=1.三、解答题 19.解:因为,所以,即,所以.故,从而,所以,所以.20. 解:根据题意,可知,由于,所以.21. 解:因为是的算术平方根,所以又是的立方根,所以解得所以M=3,N=0,所以M + N=3.所以M + N的平方根为22.分析:(1)可把6转化成带根号的形式再比较被开方数即可比较大小;(2)可采用近似求值的方法来比较大小.解:(1)∵ 6=,35<36,∴<6;(2)∵ -+1≈-2.236+1=-1.236,- ≈-0.707,1.236>0.707,∴<.23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴=-2.又∵-2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴b=2,∴+b=-2+2=.24. 分析:分析题中条件不难发现等号左边含有未知数的项都有根号,而等号右边的则都没有.由此可以想到将等式移项,并配方成三个完全平方数之和等于0的形式,从而可以分别求出的值.解:将题中等式移项并将等号两边同乘4得,∴,∴,∴,,,∴,,,∴∴.∴ =120.25. 解:(1)671+1(76)(76)(76)⨯-=+-=76-.(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++。

北师大版八年级数学上名校课堂期末复习题(二)(含答案)

北师大版八年级数学上名校课堂期末复习题(二)(含答案)

期末复习(二) 实数各个击破命题点1 实数的分类【例1】 (新疆中考)下列各数中,属于无理数的是( ) A. 3 B .-2 C .0 D.13【思路点拨】 观察题设给出的四个选项,易发现-2和0均属于整数,即为有理数;因为13=0.3·,即为无限循环小数,是有理数;因为3是无限不循环小数,即为无理数. 【方法归纳】 无理数指的是无限不循环小数,常见的形式有三种:含π的形式;开方开不尽的数;构造型无限不循环小数的形式.熟记无理数的三种形式是解此类型问题的关键.1.(常德中考改编)下列各数:13,π,38,0,3,其中无理数的个数是( ) A .1个 B .2个 C .3个 D .4个2.有六个数:0.142 7,(-0.5)3,3.141 6,227,-2π,0.102 002 000 2……,若无理数的个数为x ,整数的个数为y ,非负数的个数为z ,求x +y +z 的值.命题点2 平方根的概念和性质【例2】 (通辽中考)4的算术平方根是( )A .-2B .±2 C. 2 D .2【思路点拨】 先求得4的值,再继续求所得数的算术平方根即可.【方法归纳】 要注意本题实质求的是2的平方根,而不是4的平方根.3.若a 2=4,b 2=9,且ab <0,则a -b 的值为( )A .-2B .±5C .5D .-54.-27的立方根与81的平方根之和是________.5.若|a -2|+b -3+(c -4)2=0,则a -b +c =________.命题点3 估算无理数的大小【例3】(杭州模拟)如图,数轴上有A、B、C、D四点,根据图中各点的位置,判断哪一点表示的数与4-26最接近?( )A.A B.B C.C D.D【思路点拨】先确定26的范围,再求出4-26的范围,根据数轴上点的位置得出即可.【方法归纳】估算无理数的大小的关键是找到距离该无理数最近的左右两个整数.6.下列无理数中,在-2与1之间的是( )A.- 5 B.- 3 C. 3 D. 57.设a=19-1,a在两个相邻整数之间,则这两个整数是( )A.1和2 B.2和3 C.3和4 D.4和5命题点4实数的概念和意义【例4】(福州中考)a的相反数是( )A.|a| B.1a C.-a D. a【思路点拨】两个数互为相反数,则这两个数只有符号不同.【方法归纳】有理数的概念和性质同样也适用于无理数.【例5】(广安中考)实数a在数轴上的位置如图所示,则|a-1|=________.【思路点拨】观察数轴,不难发现a<-1,所以a-1<0,再由绝对值的性质可得出结果.【方法归纳】运用实数的性质解决问题时,一是要类比与有理数相关的性质解决问题,包括一些细节问题的处理,比如求一个数的倒数,结果一定要化成最简形式;求一个数的绝对值,要先判断其正负等等.二是要注意实数与有理数的不同之处,比如数轴上的点与实数是一一对应的,而与有理数就不是一一对应.8.如图,数轴上A、B两点对应的实数分别是1和3,若点A关于B点的对称为点C,则点C所对应的实数为( )A.23-1 B.1+ 3C .2+ 3D .23+19.计算:||3-π=________.10.-55的倒数为________. 命题点5 二次根式有意义的条件【例6】 (随州中考)若代数式1x -1+x 有意义,则实数x 的取值范围是( ) A .x ≠1 B .x ≥0C .x ≠0D .x ≥0且x ≠1【方法归纳】 二次根式有意义的条件是被开方数为非负数,有时需要注意二次根式是否位于分母.11.若3-m 为二次根式,则m 的取值范围是( )A .m ≤3B .m <3C .m ≥3D .m >312.式子x 2-x有意义的x 的取值范围是________. 命题点6 二次根式的运算【例7】 计算:(-3)0-8+|1-2|+3(2-3).【方法归纳】 有理数的运算法则和运算律在实数范围内仍适用,按照实数的运算顺序进行运算,对于能化简的应先化简后计算.a 0=1(a ≠0),a -p =1a p (a ≠0),负数的绝对值是它的相反数.13.计算412+313-8的结果是( ) A.3+ 2 B. 3C.33D.3- 214.(泰安中考)化简:3(2-3)-24-|6-3|=________.整合集训一、选择题(每小题3分,共24分)1.81的算术平方根是( )A .9B .±9C .±3D .32.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab>0C .a -b>0 D.||a -||b >03.下列各式计算正确的是( )A.3a ·a =3aB.a ·1a =a ·1a=1 C.8a 9=4a 3D.m (m -3)=m ·m -34.若20n 表示整数,则满足条件的最小正整数n 为( )A .5B .4C .3D .2 5.已知x =2+1,则代数式x +1x -1的值为( ) A.2+1 B.2+2C .3 D.2-1 6.如图所示,数轴上表示2和5的对应点分别为C 和B ,若点C 是AB 的中点,则点A 表示的数是( )A .- 5B .2- 5C .4- 5 D.5-27.已知a 、b 为两个连续整数,且a <7<b ,则a +b 的值为( )A .1B .5C .6D .无法确定8.已知m 为正整数,且2<m <3,则满足此条件的所有m 值的和为( )A .24B .25C .26D .27二、填空题(每小题4分,共16分)9.若x -3在实数范围内有意义,则x 的取值范围是________.10.新定义一种运算“@”,其运算法则为:x@y =xy +4,则(2@6)@8=________.11.已知一个正数的两个平方根分别为2m -6和3+m ,则(-m)2 016的值为________.12.若||x -5+(y +15)2+z -1=0,则3xyz =________. 三、解答题(共60分)13.(12分)计算下列各题: (1)1925;(2)3-21027;(3)81+3-27+16900;(4)-3-191125×2536.14.(12分)比较大小: (1)17+15与910;(2)24与5.1;(3)10与103.15.(10分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.16.(12分)例:当a >0时,如a =6,则|a|=|6|=6,故此时a 的绝对值是它本身;当a =0时,|a|=0,故此时a 的绝对值是零;当a <0时,如a =-6,则|a|=|-6|=6=-(-6),故此时a 的绝对值是它的相反数.所以综合起来一个数的绝对值要分三种情况,即|a|=⎩⎪⎨⎪⎧a ,当a >0,0,当a =0,-a.当a <0.这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式a 2的各种展开的情况;(2)猜想a 2与|a|的大小关系.17.(14分)几百年前的某一天,数字王国的国王召集他的臣民们开会.整数、分数等大批臣民纷纷到场,一时间会场里你推我挤,熙熙攘攘,吵个不休.国王非常生气,就想了一个办法,让他们排排站,他画了一条直线,指定直线上的某点O 为数零的位置,叫原点,并且规定向右的方向为正方向,负整数和正整数分别站在原点左右两侧指定的位置上,正分数和负分数在数O 的指挥下也找到了自己的位置,这时±2,±3,±…,还有π等无理数不干了:“国王,我们站在哪里呢?”“别着急,直线上有你们的位置”.于是国王亲自动手找到了他们各自的位置.这时这条直线排满了有理数、无理数,国王下令:“这条直线就叫做数轴吧.”(1)请你画一条数轴;(2)在你所画的数轴上,你能找出2、3、5的位置吗?怎样找到的?(3)-2,-3,-5的位置呢?(4)通过阅读以上材料和解题,你明白了什么?参考答案【例1】 A【例2】 C【例3】 D【例4】 C【例5】 1-a【例6】 D【例7】 原式=1-22+2-1+3×2-3×3=1-22+2-1+6-3=-2+6-3.题组训练1.B 2.根据题意,得:x =2,y =0,z =4.则x +y +z =6.3.B4.0或-65.36.B7.C8.A9.π-3 10.-5 11.A 12.x <2 13.B 14.-6 整合集训1.D 2.C 3.B 4.A 5.A 6.C 7.B 8.C 9. x ≥3 10.6 11.1 12.-113.(1)原式=345. (2)原式=-43. (3)原式=11.(4)原式=1.14.(1)17+15>910. (2)24<5.1. (3)10<103. 15.由题意知a +b =0,cd =1,x =± 2.当x =2时,原式=-2+2=0.当x =-2时,原式=-2-2=-2 2.故原式的值为0或-2 2.16.(1)写出类似例的文字描述:a 2=⎩⎪⎨⎪⎧a ,当a >0,0,当a =0,-a.当a <0.(2)a 2=|a|. 17.(1)如图:(2)以单位1为直角边作一等腰直角三角形OAB ,所以OB = 2.以OB 为一直角边,B 为直角顶点,1为另一直角边再建直角三角形,所以斜边为 3.以2,3为直角边再建立直角三角形,所以斜边为 5.这样2,3,5线段的长度就确定了.以O 为圆心,2,3,5分别为半径画弧交于原点右方的点,即为2,3,5对应的点.(3)交于原点左方的点即为-2,-3,-5所对应的点.(4)有理数和无理数都可以用数轴上的点来表示,实数与数轴上的点具有一一对应的关系.。

北师大版2019-2020八年级数学上册第二章实数单元测试题2(较难 附答案)

北师大版2019-2020八年级数学上册第二章实数单元测试题2(较难 附答案)

北师大版2019-2020八年级数学上册第二章实数单元测试题2(较难附答案)1x的取值范围是()A.x≠2B.x≥2C.x≤2D.x>22.-的立方根是()A.3 B.±3 C.-D.±3.下列运算正确的是()A.B.C.D.4.若,则的正确结果是()A.-1 B.1 C.-5 D.55.下列四个结论中,正确的是()①-0.064的立方根是0.4 ②8的立方根是±2③27的立方根是3 ④的算术平方根是A.①②B.②③C.①④D.③④6.无理数2﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.下列实数中,是无理数的为()A.B.2.18118111811118 C.D.8.下列实数中,是无理数的为()A.3.14 B.C.D.9.一组数据:,3.131131113…(相两个3之间依次多一个1),﹣π,,其中是无理数的个数有()A.1个B.2个C.3个D.4个10.下列计算正确的是()A.+=B.3﹣=2 C.×=2D.÷=311.一个正方形的面积是3,则它的周长是__.12.观察下列等式,(式子中的“!”是一种数学运算符号).1! = 1 ,2! = 2 ⨯1 ,3! = 3 ⨯ 2 ⨯1 ,4! = 4 ⨯ 3 ⨯ 2 ⨯1 ……;则计算______________________13.用计算器计算:≈________ (精确到百分位).14.整数的取值范围是,若与是同类二次根式,则____________15.对于任意两个正数m ,n ,定义运算※为:m ※n =,计算(8※3)×(18※27)的结果为__________.16.从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为_____ 17.如果,则的值为__________. 18.已知,则 ______ .19.已知a 、b 互为相反数,c 、d 互为倒数,则=_____________. 20.定义新运算:A*B=A+B+AB ,则下列结论正确的是_____(填序号)①2*1=5 ②(2A )*B=2(A*B ) ③A*(B+C )=A*B+A*C ④A*B=B*A21.22.计算:; 化简:.23.计算:﹣12+(﹣12)﹣2+π)0.24.计算25.(1);(2)26.解方程(1)2(x﹣1)2=8;(2)(x﹣2)3=﹣1.27.计算()﹣(+)28.已知是的算术平方根,是的立方根,求的平方根.参考答案1.B【解析】分析: 根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.详解: 由题意得,x−2≥0,解得x≥2,故选:B.点睛: 本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.2.C【解析】【分析】根据立方根的定义解答即可.【详解】∵-=-=-9,∴-的立方根是-.故选C.【点睛】本题主要考查平方根和立方根,掌握平方根和立方根的概念是解题关键.3.B【解析】分析:根据二次根式的相关性质化简结算即可判断.详解:根据二次根式的加减,可由与不是同类二次根式,因此不能计算,故不正确;根据二次根式的加减,可得=2-=,故正确;根据二次根式的性质,可知,故不正确;根据二次根式的性质,可知,故不正确.故选:B.点睛:此题主要考查了二次根式的化简,关键是灵活利用二次根式的性质对式子变形即可,比较简单,是常考题.4.A【解析】分析:≥0,≥0,根据非负数的性质列方程求x,y.详解:因为≥0,≥0,所以x-2=0,3-y=0,解得x=2,y=3.所以x-y=2-3=-1.故选A.点睛:初中阶段内的非负数有:绝对值;偶数次方;算术平方根,非负数的性质是:如果几个非负数的和为0,那么这几个非负数都等于0,此时可得方程(组),解方程(组)即可求得未知数的值.5.D【解析】【分析】根据立方根和算术平方根的定义进行判断即可.【详解】①-0.064的立方根是-0.4,故错误.②8的立方根是2,故错误.③27的立方根是3,正确.④的算术平方根是,正确.故选:D.【点睛】考查立方根和算术平方根定义,正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.6.B【解析】【分析】首先得出2的取值范围进而得出答案.【详解】∵2=,∴6<<7,∴无理数2-3在3和4之间.故选B.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.7.D【解析】【分析】无理数,也称为无限不循环小数,不能写作两整数之比.根据定义即可得出结论.【详解】解:A、为有理数,故A选项不符合题意;B、2.18118111811118为有理数,故B选项不符合题意;C、=0.2为有理数,故C选项不符合题意;D、为无理数,故D选项符合题意;故答案为:D.【点睛】本题考查无理数的知识.解题关键是掌握无理数的三种形式:(1)开方开不尽的数;(2)无限不循环小数;(3)含有的数.8.C【解析】【分析】根据无理数的三种形式找出无理数的选项.【详解】3.14是有理数,是有理数,=3,无理数为.故答案选C.【点睛】本题考查了无理数的知识点,解题的关键是熟练的掌握无理数的性质.9.B【解析】【分析】根据无理数的定义求解即可.【详解】所列4个数中无理数有3.131131113…(相两个3之间依次多一个1),-π这两个,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.10.C【解析】【分析】结合选项分别进行二次根式的加减运算和乘除运算,然后选择正确选项.【详解】A、和不能合并,故本选项错误;B、3﹣=2,原式计算错误,故本选项错误;C、×=2,计算正确,故本选项正确;D、÷=,原式计算错误,故本选项错误.故选:C.【点睛】本题考查了二次根式的加减法和乘除法,解答本题的关键是掌握二次根式的加减法则和乘除法则.11.【解析】设正方形的边长为a,∵正方形的边长为3,∴a2=3,∴(舍去),∴正方形的周长是故答案为12.9900【解析】【分析】根据规律可得:.【详解】=9900.故答案为:9900【点睛】本题考核知识点:数的规律. 解题关键点:观察总结.13.0.24【解析】≈2.236﹣2=0.236≈0.24,故答案为:0.24.14.8或18【解析】【分析】根据同类二次根式的定义可知,将化简为最简二次根式后,如果根式部分与相同,则为所求.【详解】解:∵与是同类二次根式,,,∴或,故答案为:8或18.【点睛】本题考查的是同类二次根式的定义,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.15.3+3【解析】【分析】利用新定义得到再把二次根式化为最简二次根式,然后利用乘法公式展开后合并即可.【详解】故答案为:【点睛】考查二次根式的混合运算,读懂题目中的运算法则列出式子进行运算是解题的关键.16.【解析】【分析】根据有理数的定义找到﹣1、0、、、0.3、π、这六个数中有理数的个数,根据概率公式计算可得.【详解】解:∵﹣1、0、、0.3、π、这六个数中,无理数有、π这2个数,∴抽取到无理数的概率为=,故答案为:.【点睛】本题考查了概率公式以及无理数,根据无理数的定义找出六个数中的无理数的个数是解题的关键.17.3【解析】【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】∵,∴a﹣6=0,b﹣3=0,∴a=6,b=3,∴===3.故答案为:3.【点睛】本题考查了非负数的性质:算术平方根、偶次方,几个非负数的和为0时,这几个非负数都为0.18.【解析】分析:先由非负性的性质得出3a+1=0,b﹣1=0,求出a,b代入式子计算即可.详解:∵+=0,∴3a+1=0,b﹣1=0,∴a=﹣,b=1,∴﹣a2﹣b2012=﹣()2﹣12012=﹣﹣1=﹣.故答案为:﹣.点睛:本题是非负数的性质:算术平方根,主要考查了一元一次方程的解法,有理数的运算,解答本题的关键是求出a,b.19.-1【解析】∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∴a2−b2=(a+b)(a−b)=0,∴原式=0−=−1.20.①④.【解析】【分析】原式各项利用已知的新定义计算得到结果,即可做出判断.【详解】解:①2*1=2+1+2×1=5,正确;②(2A)*B=2A+B+2AB,2(A*B)=2A+2B+2AB,∴(2A)*B≠2(A*B),错误;③A*(B+C)=A+B+C+A(B+C)=A+B+C+AB+AC,A*B+A*C=A+B+AB+A+C+AC=2A+B+C+AB+AC,∴A*(B+C)≠A*B+A*C,错误;④A*B=A+B+AB、B*A=B+A+AB,∴A*B=B*A,正确;故答案为:①④.【点睛】本题主要考查有理数混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.21.【解析】试题分析:先化简各二次根式,再计算即可.试题解析:解:原式===.22.;.【解析】【分析】(1)先利用积的乘方得到原式=(﹣1)(﹣1)(+1),然后根据平方差公式计算即可;(2)先进行二次根式的混合运算,然后合并即可.【详解】(1)原式=(﹣1)(﹣1)(+1)=(﹣1)×(2﹣1)=﹣1;(2)原式=a+﹣a=.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.【解析】试题分析:根据乘方的意义,负整指数幂的性质,零次幂的性质和特殊角的锐角三角函数值求解即可.试题解析:﹣12+(﹣12)﹣2+π)0+2cos30°点睛:(1)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①()10p pa a a -=≠(a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数. (3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.24.(1);(2)1.【解析】【分析】(1)先根据二次根式的乘法法则和除法法则进行化简,然后再根据二次根式加减法法则进行计算即可,\(2)根据平方差公式进行计算即可,【详解】解:,, ,,,.【点睛】本题主要考查二次根式的乘除,加减计算,解决本题的关键是要熟练掌握二次根式的乘除,加减法法则.25.(1)3;(2)1【解析】分析:(1)先计算乘法后在合并即可;(2)根据实数的混合运算顺序依次计算即可.详解:(1)=2+3-2=3;(2)=(2+)--1= 1点睛:本题考查了实数的混合运算,熟记运算顺序和法则是解题的关键。

北师大八年级数学上《第2章实数》单元测试含答案解析

北师大八年级数学上《第2章实数》单元测试含答案解析

第2章实数一、填空题(共9小题)1.计算: +(﹣1)﹣1+(﹣2)0= .2.计算: = .3.计算:(π﹣3.14)0++(﹣)﹣1﹣4cos45°=.4.计算= .5.计算:(﹣2)3+(﹣1)0= .6. = .7.计算: = .8.计算:﹣ ++= .9.计算:2﹣1﹣(π﹣3)0﹣= .二、解答题(共21小题)10.计算:﹣|﹣|+(﹣)0.11.计算:3×(﹣2)+|﹣4|﹣()0.12.计算:|﹣1|++(3.14﹣π)0﹣4cos60°.13.计算:|﹣2|+(﹣1)﹣(π﹣)0.14.计算:.15.(1)计算:cos45°﹣()0(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x+6…第三步=x+2…第四步小明的做法从第步开始出现错误,正确的化简结果是.16.|﹣|+()﹣1﹣(﹣π)0﹣3tan30°.17.计算:3tan30°﹣|﹣|﹣()﹣2+(π﹣3.14)0.18.计算:|﹣|﹣+()﹣1+2sin60°.19.计算:()﹣2+﹣2cos45°+|2﹣3|.20.计算:(﹣π)0+|1﹣|﹣()﹣1﹣2sin60°.21.计算:|﹣2|﹣4sin45°+(﹣1)+.22.计算:.23.计算:2cos45°﹣+(﹣)﹣1+(π﹣3.14)0.24.计算:()﹣1+|1﹣|﹣﹣2sin60°.25.计算: +(﹣1)﹣+(π﹣3)0﹣.26.计算:.27.计算:|﹣2|+(3﹣π)0﹣2﹣1+.28.计算:|﹣4|﹣+cos30°.29.计算:.30.计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.第2章实数参考答案与试题解析一、填空题(共9小题)1.计算: +(﹣1)﹣1+(﹣2)0= 2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案.【解答】解:原式=2﹣1+1=2.故答案为:2.【点评】本题考查了实数的运算,涉及了零指数幂、负整数指数幂的知识,解答本题的关键是掌握各部分的运算法则.2.计算: = 3 .【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据有理数乘方的法则、负整数指数幂及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=1×4﹣1=3.故答案为:3.【点评】本题考查的是实数的运算,熟知有理数乘方的法则、负整数指数幂及0指数幂的计算法则是解答此题的关键.3.计算:(π﹣3.14)0++(﹣)﹣1﹣4cos45°=﹣2 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项化为最简二次根式,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+2﹣3﹣4×=﹣2.故答案为:﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.计算= 2.【考点】实数的运算;零指数幂.【分析】首先根据算术平方根的计算方法,求出的值是多少;然后根据a0=1(a≠0),求出的值是多少;最后再求和,求出算式的值是多少即可.【解答】解: =2.故答案为:2.【点评】(1)此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.5.计算:(﹣2)3+(﹣1)0= ﹣7 .【考点】实数的运算;零指数幂.【专题】计算题.【分析】先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣8+1=﹣7.故答案为:﹣7.【点评】本题考查的是实数的运算,熟知有理数乘方的法则及0指数幂的计算法则是解答此题的关键.6.(•营口)= 2 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行零指数幂、负整数指数幂、特殊角的三角函数值等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+2﹣2×=2.故答案为:2.【点评】本题考查了实数的运算,涉及了零指数幂、负整数指数幂、特殊角的三角函数值等知识,属于基础题.7.计算: = ﹣1 .【考点】实数的运算;零指数幂.【专题】计算题.【分析】根据零指数幂的意义得到原式=1﹣2,然后进行减法运算.【解答】解:原式=1﹣2=﹣1.故答案为﹣1.【点评】本题考查了实数的运算:实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.也考查了零指数幂.8.计算:﹣ ++= .【考点】实数的运算.【专题】计算题.【分析】本题涉及二次根式,三次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣ ++=﹣6++3=﹣.故答案为﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.9.计算:2﹣1﹣(π﹣3)0﹣= ﹣1 .【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】本题涉及0指数幂、负指数幂、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1﹣=﹣1.故答案为:﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握0指数幂、负指数幂、立方根考点的运算.二、解答题(共21小题)10.计算:﹣|﹣|+(﹣)0.【考点】实数的运算;零指数幂.【分析】本题涉及二次根式化简、绝对值、零指数幂三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣|﹣|+(﹣)0=2﹣+1=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式化简、绝对值、零指数幂等考点的运算.11.计算:3×(﹣2)+|﹣4|﹣()0.【考点】实数的运算;零指数幂.【分析】分别进行零指数幂、绝对值、有理数的乘法运算,然后合并即可.【解答】解:原式=﹣6+4﹣1=﹣3.【点评】本题考查了实数的运算,属于基础题,掌握各部分的运算法则.12.计算:|﹣1|++(3.14﹣π)0﹣4cos60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据去绝对值法则和负整数指数幂以及零指数幂的运算法则化简,再由特殊角的锐角三角函数计算即可.【解答】解:原式=1+(﹣3)+1﹣4×=1﹣3+1﹣2=﹣3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值13.计算:|﹣2|+(﹣1)2013﹣(π﹣)0.【考点】实数的运算;零指数幂.【分析】分别根据绝对值的性质、有理数乘方的法则即0指数幂的计算法则计算出各数,再根据实数运算的法则进行解答即可.【解答】解:原式=2﹣1﹣1=0.【点评】本题考查的是实数的运算,熟知绝对值的性质、有理数乘方的法则即0指数幂的计算法则是解答此题的关键.14.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】首先计算乘方,化简二次根式,再根据零指数幂和负整数指数幂运算法则教师,然后进行乘法,加减即可.【解答】解:原式=2﹣1﹣5+1+9,=6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值15.(1)计算:cos45°﹣()0(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x+6…第三步=x+2…第四步小明的做法从第二步开始出现错误,正确的化简结果是.【考点】实数的运算;分式的加减法;零指数幂;特殊角的三角函数值.【专题】阅读型.【分析】(1)根据0次幂,三角函数即可解答;(2)根据分式的化简,即可解答;【解答】解:(1)原式==1﹣1=0.(2)小明的做法从地二步开始出现错误;正确化简结果是:.故答案为:二,.【点评】本题考查了0次幂、三角函数值、分式的化简,解决本题的关键是明确分式的加减不要去掉分母.16. |﹣|+()﹣1﹣(2013﹣π)0﹣3tan30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=+5﹣1﹣=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.计算:3tan30°﹣|﹣|﹣()﹣2+(π﹣3.14)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用绝对值的代数意义化简,第三项利用负指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=3×﹣﹣4+1=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.计算:|﹣|﹣+()﹣1+2sin60°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2+6+2×=6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.计算:()﹣2+﹣2cos45°+|2﹣3|.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】首先根据算术平方根、负整数指数幂的运算方法,以及45°的三角函数值,还有绝对值的求法计算,然后根据加法交换律和加法结合律,求出算式()﹣2+﹣2cos45°+|2﹣3|的值是多少即可.【解答】解:()﹣2+﹣2cos45°+|2﹣3|===()+(3)=5=【点评】(1)此题主要考查了算术平方根的含义以及求法,以及绝对值的含义和求法,要熟练掌握.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°等特殊角的三角函数值.20.计算:(2013﹣π)0+|1﹣|﹣()﹣1﹣2sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+﹣1﹣3﹣2×=1+﹣1﹣3﹣=﹣3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、特殊角的三角函数值等考点的运算.21.计算:|﹣2|﹣4sin45°+(﹣1)2013+.【考点】实数的运算;特殊角的三角函数值.【分析】本题涉及绝对值、特殊角的三角函数值、乘方、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果..【解答】解:|﹣2|﹣4sin45°+(﹣1)2013+=2﹣4×﹣1+2=2﹣2﹣1+2=1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、乘方、二次根式等考点的运算.22.计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行负整数指数幂、二次根式的化简及绝对值的运算,代入特殊角的三角函数值合并即可.【解答】解:原式===.【点评】本题考查了实数的运算,涉及了绝对值、负整数指数幂及特殊角的三角函数值,属于基础题.23.计算:2cos45°﹣+(﹣)﹣1+(π﹣3.14)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行特殊角的三角函数值、二次根式的化简、负整数指数幂、零指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=2×﹣4﹣4+1=﹣7.【点评】本题考查了实数的运算,涉及了特殊角的三角函数值、二次根式的化简、负整数指数幂、零指数幂等知识,属于基础题.24.计算:()﹣1+|1﹣|﹣﹣2sin60°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】分别进行负整数指数幂、绝对值、开立方、特殊角的三角函数值等运算,然后按照实数的运算法则计算即可.【解答】解:原式=2+﹣1+2﹣2×=3.【点评】本题考查了实数的运算,涉及了负整数指数幂、绝对值、开立方、特殊角的三角函数值等知识,属于基础题.25.计算: +(﹣1)2013﹣+(π﹣3)0﹣.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用平方根定义化简,第二项利用乘方的意义化简,第三项利用负指数幂法则计算,第四项利用零指数幂法则计算,最后一项利用立方根定义化简,计算即可得到结果.【解答】解:原式=4﹣1﹣4+1﹣2=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.26.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【专题】推理填空题.【分析】本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==1+1﹣2+4=4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.27.计算:|﹣2|+(3﹣π)0﹣2﹣1+.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】分别根据绝对值的性质、0指数幂及负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2+1﹣﹣3=﹣.【点评】本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.28.计算:|﹣4|﹣+cos30°.【考点】实数的运算;特殊角的三角函数值.【专题】计算题.【分析】本题涉及绝对值、平方根、特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4﹣4+=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握绝对值、平方根、特殊角的三角函数等考点的运算.29.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣+2×=1﹣2+1=0.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负整数指数幂、特殊角的三角函数值等考点的运算.30.计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,二次根式的化简,任何非0数的0次幂等于1进行计算即可得解.【解答】解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2﹣1,=+4﹣2﹣1,=3﹣.【点评】本题考查了实数的运算,主要利用了特殊角的三角函数值,负整数指数幂,二次根式的化简,零指数幂,是基础运算题,注意运算符号的处理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(二) 实数
(时间:45分钟 满分:100分)
一、选择题(每小题3分,共30分)
1.顽皮的小聪同学在黑板上写出了下面四个实数,你认为是无理数的是( )
A.13
B.3 C .3 D .0.3· 2.下列运算中,正确的是( )
A.9=±3
B.3-8=2
C .(-2)0=0
D .2-1=12
3.下列说法中,正确的有( )
①-64的立方根是-4;②49的算术平方根是±7;③127的立方根是13;④116的平方根是14
. A .1个 B .2个 C .3个 D .4

4.下列一定没有平方根的是( )
A .-x
B .-2x -1
C .-x 2
D .-
2-x 2
5.在实数2,0,5,π3,327,0.101 001 000 1…(每两个1之间依次多1个0)中,无理数有( )
A .2个
B .3个
C .4个
D .5

6.下列二次根式中,属于最简二次根式的是( )
A.14
B.48
C.a b
D.4a +4
7.一个自然数的算术平方根是x ,则下一个自然数的算术平方根是( )
A .x +1
B .x 2+1 C.x +1 D.x 2+1
8.下列各组数中互为倒数的一组是( )
A .-2与(-2)2 B.||-2与 2
C .-2与3-8
D .-2与-22
9.小马虎同学在作业本上做了以下四道题,其中正确的是( )
A.2+3= 5 B .2+2=2 2
C .a x -b x =(a -b)x D.8+182
=4+9=2+3=5 10.如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间表示整数的点共有( )
A .6个
B .5个
C .4个
D .3个
二、填空题(每小题4分,共16分)
11. 16的平方根是________. 12.计算||2-5+||3-5的结果为________.
13.已知a 是10的整数部分,b 是10的小数部分,则(b -10)a 的立方根是________.
14.我们规定:“如果x n =a ,那么x 叫做a 的n 次方根,例如:因为24=16,(-2)4=16, 所以16的四次方根就是2和-2.”请你计算:81的四次方根是________,32的五次方根是________.
三、解答题(共54分)
15. (12分)把下列各数填入相应的集合内:
-12,0,0.16,312,0.15,3,-53,π3
,16,3-8,3.141 592 6,0.101 001 000 1…. 整数集合{ …};
分数集合{ …};
正数集合{ …};
负数集合{ …};
有理数集合{ …};
无理数集合{ …}.
16.(12分)计算:
(1)(-6)2-25+(-3)2; (2)50×8-
6×32
.
17.(8分)对于任意实数a、b规定两种运算:a※b表示a2+b2的算术平方根,a☆b表示(a +1)×(b-1)的立方根,按照上述规则计算(5※12)+[2☆(-8)]的值.
18.(8分)已知m+n-5的算术平方根是3,m-n+4的立方根是-2,试求2m+1
3m-n+2
的值.
19.(14分)(黔西南州中考)阅读材料:
小明在学习二次根式后,发现在一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:
设a+b2=(m+n2)2(其中a、b、m、n均为整数),则有a+b2=m2+2n2+2mn 2.
所以a=m2+2n2,b=2mn,这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得:a=________,b=________;
(2)利用所探索的结论,找一组正整数a、b、m、n填空:________+________3=(______+______3)2;
(3)若a+43=(m+n3)2,且a、m、n均为正整数,求a的值.
参考答案
1.B
2.D
3.B
4.D
5.C
6.A
7.D
8.D
9.C 10.C 11.±2 12.1 13.-3 14.±3 2
15.0,16,3-8
-12,0.16,312
,0.15,3.141 592 6 0.16,312,0.15,3,π3,16,3.141 592 6,0.101 001 000 1 -12,-53
,3-8 -12,0,0.16,312
,0.15,16,3-8,3.141 592 6 3,-53,π3
, 0.101 001 000 1…, 16.(1)原式=4.
(2)原式=17.
17. 由题意得(5※12)+[2☆(-8)]=52+122+3(2+1)×(-8-1)=13-3 =10.
18.根据题意得⎩⎪⎨⎪⎧m +n -5=9,m -n +4=-8,解得⎩
⎪⎨⎪⎧m =1,n =13. 所以3m -n +2=-8,2m +1=3,
所以2m +13m -n +2=3-8=-2.
19.(1)因为a +b 3=(m +n 3)2,
所以a +b 3=m 2+3n 2+2mn 3,
所以a =m 2+3n 2,b =2mn.
故答案为:m 2+3n 2,2mn.
(2)设m =1,n =1,
所以a =m 2+3n 2=4,b =2mn =2.
故答案为4、2、1、1.
(30由题意,得:a =m 2+3n 2,b =2mn.
因为4=2mn ,且m 、n 为正整数,
所以m =2,n =1或者m =1,n =2,
所以a =22+3×12=7,或a =12+3×22=13.。

相关文档
最新文档