第四章指数对数函数练习题
初升高数学暑假衔接(人教版)综合测试第4章:指数函数与对数函数(教师版)
第4章:指数函数与对数函数基础检测卷(试卷满分150分,考试用时120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.函数()32x f x a -=+(0a >且1a ≠)的图象恒过定点()A .()0,1B .()0,3C .()3,3D .()4,1【答案】C【解析】对于函数()f x ,则30x -=,可得3x =,则()0323f a =+=,所以,函数()32x f x a -=+(0a >且1a ≠)的图象恒过定点坐标为()3,3.故选:C.2.设3484log 4log 8log log 16m ⋅⋅=,那么m 等于()A .92B .9C .18D .27【答案】B【解析】348lg 4lg8lg lg log 4log 8log 2lg3lg 4lg8lg3m mm ⋅⋅=⨯⨯== ,lg 2lg3lg9m ∴==,9m ∴=,故选:B.3.函数()()23log 1f x x =+的值域为()A .()0,∞+B .[)0,∞+C .()1,+∞D .[)1,+∞【答案】B【解析】令21u x =+,则1u ≥,又3log y u =在[)1,+∞上单调递增,所以()233log 1log 10x +≥=,故函数()f x 的值域为[)0,∞+.故选:B .4.碘—131经常被用于对甲状腺的研究,它的半衰期大约是8天(即经过8天的时间,有一半的碘—131会衰变为其他元素).今年3月1日凌晨,在一容器中放入一定量的碘—131,到3月25日凌晨,测得该容器内还剩有2毫克的碘—131,则3月1日凌晨,放入该容器的碘—131的含量是()A .8毫克B .16毫克C .32毫克D .64毫克【答案】B【解析】设3月1日凌晨放入该容器的碘—131的含量是x 毫克,由题意,3月1日凌晨到月25日凌晨共经历了3个半衰期,所以31()22x ⋅=,解得16x =,即放入该容器的碘—131的含量是16毫克.故选:B5.若函数(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩对任意12,x x ≠都有2121()()0f x f x x x -<-,则实数a 的取值范围是()A .()01,B .103⎛⎫⎪⎝⎭,C .]1(,17D .1173⎡⎫⎪⎢⎣⎭,【答案】D 【解析】由2121()()0f x f x x x -<-得,()f x 在R 上是减函数,则有01310314log 1a a a a a <<⎧⎪-<⎨⎪-+≥⎩,解得1173a ≤<.故选:D.6.已知函数(log )a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图所示,则下列结论成立的是()A .1,1a c >>B .1,01a c ><<C .01,1a c <<>D .01,01a c <<<<【答案】D【解析】由函数图象可知函数为单调递减函数,结合(log )a y x c =+可知01a <<,当1x =时,log 1)0,1,0(1a c c c +<∴+>∴>,当0x =时,log 0,01a c c >∴<<,故01c <<,故选:D7.函数32()236f x x x x =-+-在区间[2,4]-上的零点必属于区间()A .[2,1]-B .[2.5,4]C .[1,1.75]D .[1.75,2.5]【答案】D【解析】解法一:二分法由已知可求得,(2)280f -=-<,(1)40f =-<,37(2.5)08f =>,(4)380f =>,97(1.75)064f =-<.对于A 项,因为()(2)10f f ->,所以A 项错误;对于B 项,因为()()2.540f f >,所以B 项错误;对于C 项,因为()()1 1.750f f >,所以C 项错误;对于D 项,因为()()1.75 2.50f f <,所以D 项正确.解法二:因为()()322()23623f x x x x x x =-+-=-+,所以()20f =,即函数32()236f x x x x =-+-在区间[2,4]-上的零点为2,故D 正确.故选:D.8.已知1312a ⎛⎫= ⎪⎝⎭,21log 3b =,121log 3c =,则()A .a b c >>B .a c b>>C .c a b>>D .c b a>>【答案】C【解析】因为12x y ⎛⎫= ⎪⎝⎭在R 上单调递减,故1103111222⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即1,12a ⎛⎫∈ ⎪⎝⎭,因为2log y x =在()0,∞+上单调递增,故221log log 103b =<=,因为12log y x =在()0,∞+上单调递减,故112211log log 132=>=c ,故c a b >>.故选:C .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列运算中正确的是()A .383log 8log 5log 5=B136a =C .若114a a -+=,则11223a a -+=D .()2log 71ln ln e 72-⎛⎫+= ⎪⎝⎭【答案】BD【解析】对于选项A ,由换底公式可得353log 8log 8log 5=,故A 不正确;对于选项B22313333262a a a a +=⋅==,故B 正确;对于选项C ,设1122a a t -+=()0t >,两边分别平方可得122a a t -++=,因为114a a -+=,所以216t =,故11224a a -+=,故C 不正确;对于选项D ,()22log 7log 71ln ln e 2ln17072-⎛⎫+=+=+= ⎪⎝⎭,故D 正确.故选:BD .10.关于函数()()01xf x a a a =>≠,且与函数()()log 01a g x x a a =>≠,且说法正确的有()A .()()f x g x 与互为反函数B .()()f x g x 与的图像关于原点对称C .()()f x g x 与必有一交点D .()()f x g x 与的图像关于y x =对称【答案】AD【解析】()()0,1xf x a a a =>≠与函数()()log 0,1a g x x a a =>≠是互为反函数,图像关于y x =对称,故AD 选项正确;()()f x g x 与的图像不关于原点对称,故B 选项错误;当1a >时,()()f x g x 与没有交点,故C 选项错误;故选:AD.11.(多选)定义在[]1,1-上的函数()2943x xf x =-⋅+⋅,则下列结论中正确的是()A .()f x 的单调递减区间是[]0,1B .()f x 的单调递增区间是[]1,1-C .()f x 的最大值是()02f =D .()f x 的最小值是()16f =-【答案】ACD【解析】设3x t =,[]1,1x ∈-,则3x t =是增函数,且1,33t ⎡⎤∈⎢⎥⎣⎦,又函数()2224212y t t t =-+=--+在1,13⎡⎤⎢⎥⎣⎦上单调递增,在[]1,3上单调递减,因此()f x 在[]1,0-上单调递增,在[]0,1上单调递减,故A 正确,B 错误;()()max 02f x f ==,故C 正确;()1019f -=,()16f =-,因此()f x 的最小值是6-,故D 正确.故选:ACD .12.关于函数()|ln |2||f x x =-,下列描述正确的有()A .()f x 在区间(1,2)上单调递增B .()y f x =的图象关于直线2x =对称C .若1212,()(),x x f x f x ≠=则124x x +=D .()f x 有且仅有两个零点【答案】ABD【解析】根据图象变换作出函数()f x 的图象(()ln 2f x x =-,作出ln y x =的图象,再作出其关于y 轴对称的图象,然后向右平移2个单位,最后把x 轴下方的部分关于x 轴翻折上去即可得),如图,由图象知()f x 在(1,2)是单调递增,A 正确,函数图象关于直线2x =对称,B 正确;12()()f x f x k ==,直线y k =与函数()f x 图象相交可能是4个交点,如图,如果最左边两个交点横坐标分别是12,x x ,则124x x +=不成立,C 错误,()f x 与x 轴仅有两个公共点,即函数仅有两个零点,D 正确.故选:ABD .三、填空题:本题共4小题,每小题5分,共20分13.求函数y =的定义域______.【答案】(,3][1,)-∞-⋃+∞【解析】要使原函数有意义,则2ln(22)0x x +-≥,即2221x x +-≥,解得3x ≤-或1x ≥.所以,函数()f x =(,3][1,)-∞-⋃+∞.故答案为:(,3][1,)-∞-⋃+∞14.设a ∈R ,22()()21x xa a f x x ⋅+-=∈+R ,()f x 为奇函数,则a 的值为__________.【答案】1【解析】要使()f x 为奇函数,∵x ∈R ,∴需()()0f x f x +-=,∴()()1222,212121x x x xf x a f x a a +-=--=-=-+++,由12202121x x x a a +-+-=++,得()2212021x x a +-=+,1a ∴=.故答案为:1.15.已知函数()34x f x x =--在区间[1,2]上存在一个零点,用二分法求该零点的近似值,其参考数据如下:(1.6000)0.200f ≈,(1.5875)0.133f ≈,(1.5750)0.067f ≈,(1.5625)0.003f ≈,(1.5562)0.029f ≈-,(1.5500)0.060f ≈-,据此可得该零点的近似值为________.(精确到0.01)【答案】1.56【解析】因为(1.5625)0.003f ≈,(1.5562)0.029f ≈-,即(1.5625)(1.5562)0f f ⋅<,所以由零点存在定理可知()f x 的零点在()1.55621.5625,之间,近似值为1.56.故答案为:1.56.16.若方程2310x ax +-=的两根分别在区间(1,0)-和(0,1)内,则实数a 的取值范围是__________.【答案】(2,2)-【解析】令()231f x x ax =+-,因为方程2310x ax +-=的两根分别在区间(1,0)-和(0,1)内,所以()()()131********f a f f a ⎧-=-->⎪=-<⎨⎪-=+->⎩,解得22a -<<,故答案为:(2,2)-四.解答题:本小题共6小题,共70分。
高中数学第四章指数函数与对数函数经典大题例题(带答案)
高中数学第四章指数函数与对数函数经典大题例题单选题1、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A2、已知函数f(x)=log a(x−b)(a>0且a≠1,a,b为常数)的图象如图,则下列结论正确的是()A.a>0,b<−1B.a>0,−1<b<0C.0<a<1,b<−1D.0<a<1,−1<b<0答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f (x )=log a (x −b )为减函数,所以0<a <1又因为函数图象与x 轴的交点在正半轴,所以x =1+b >0,即b >−1 又因为函数图象与y 轴有交点,所以b <0,所以−1<b <0, 故选:D3、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D.4、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x2+2=f(x),则f(x)为偶函数,当x⩾0时,f(x)=3x+x2+2,又y=3x,y=x2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x−1)>f(3−x),即|2x−1|>|3−x|,解得x<−2或x>43,所以f(2x−1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).故选:D.5、已知函f(x)=log2(√1+4x2+2x)+3,且f(m)=−5,则f(−m)=()A.−1B.−5C.11D.13答案:C分析:令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,则先判断函数g(−x)+g(x)=0,进而可得f(−x)+f(x)=6,即f(m)+f(−m)=6,结合已知条件即可求f(−m)的值.令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,因为g(x)+g(−x)=log2(√1+4x2+2x)+log2(√1+4x2−2x)=log2(1+4x2−4x2)=0,所以f(−x)+f(x)=g(−x)+3+g(x)+3=6,则f(m)+f(−m)=6,又因为f(m)=−5,则f(−m)=11,故选:C.6、设2a=5b=m,且1a +1b=2,则m=()A.√10B.10C.20D.100 答案:A分析:根据指数式与对数的互化和对数的换底公式,求得1a =log m2,1b=log m5,进而结合对数的运算公式,即可求解.由2a=5b=m,可得a=log2m,b=log5m,由换底公式得1a =log m2,1b=log m5,所以1a +1b=log m2+log m5=log m10=2,又因为m>0,可得m=√10.故选:A.7、化简√a3b2√ab23(a14b12)4⋅√a3(a>0,b>0)的结果是()A.ba B.abC.a2bD.b2a答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a3b2√ab23(a 14b12)4⋅√ba=a32b⋅a16b13(a14b12)4⋅a−13⋅b13=a32+16−1+13b1+13−2−13=ab−1=ab故选:B8、函数y=log2(2x−x2)的单调递减区间为()A.(1,2)B.(1,2]C.(0,1)D.[0,1)答案:A分析:先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果由2x−x2>0,得0<x<2,令t=2x−x2,则y=log2t,t=2x−x2在(0,1)上递增,在(1,2)上递减,因为y=log2t在定义域内为增函数,所以y=log2(2x−x2)的单调递减区间为(1,2),故选:A多选题9、已知函数f(x)=|lgx|,则()A.f(x)是偶函数B.f(x)值域为[0,+∞)C.f(x)在(0,+∞)上递增D.f(x)有一个零点答案:BD分析:画出f(x)的函数图象即可判断.画出f(x)=|lgx|的函数图象如下:由图可知,f(x)既不是奇函数也不是偶函数,故A错误;f(x)值域为[0,+∞),故B正确;f(x)在(0,1)单调递减,在(1,+∞)单调递增,故C错误;f(x)有一个零点1,故D正确.故选:BD.10、已知函数f(x)={x2,x∈(−∞,0), lnx,x∈(0,1),−x2+4x−3,x∈[1,+∞),若函数g(x)=f(x)−m恰有2个零点,则实数m可以是()A.−1B.0C.1D.2答案:ABC分析:转化为函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象,根据图象可得解.因为函数g(x)=f(x)−m恰有2个零点,所以函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象如图:由图可知,m=1或m≤0,结合选项,因此m可以为-1,0,1.故选:ABC.小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11、已知函数f(x)=1−2x1+2x,g(x)=lg(√x2+1−x),则()A.函数f(x)为偶函数B.函数g(x)为奇函数C.函数F(x)=f(x)+g(x)在区间[−1,1]上的最大值与最小值之和为0D.设F(x)=f(x)+g(x),则F(2a)+F(−1−a)<0的解集为(1,+∞)答案:BCD分析:根据题意,利用奇偶性,单调性,依次分析选项是否正确,即可得到答案对于A:f(x)=1−2x1+2x ,定义域为R,f(−x)=1−2−x1+2−x=−1−2x1+2x=−f(x),则f(x)为奇函数,故A错误;对于B:g(x)=lg(√x2+1−x),定义域为R,g(−x)=lg(√(−x)2+1−(−x))=−lg(√x2+1−x)=−g(x),则g(x)为奇函数,故B正确;对于C :F (x )=f (x )+g (x ),f (x ),g (x )都为奇函数, 则F (x )=f (x )+g (x )为奇函数,F (x )=f (x )+g (x )在区间[−1,1]上的最大值与最小值互为相反数, 必有F (x )在区间[−1,1]上的最大值与最小值之和为0,故C 正确; 对于D :f (x )=1−2x 1+2x =−(2x +1−22x +1)=22x +1−1,则f (x )在R 上为减函数,g (x )=lg(√x 2+1−x)=√x 2+1+x,则g (x )在R 上为减函数,则F (x )=f (x )+g (x )在R 上为减函数, 若F (2a )+F (−1−a )<0即F (2a )<F (1+a ), 则必有2a >1+a ,解得a >1,即F (2a )+F (−1−a )<0的解集为(1,+∞),故D 正确; 故选:BCD12、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ). A .0<a <1B .a >1C .b >0D .b <0 答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0. 故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.13、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14,则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 12x 1+log 12x 2=log 12(x 1x 2)=f (x 1⋅x 2),C 是;对于D ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 3x 1+log 3x 2=log 3(x 1x 2)=f (x 1⋅x 2),D 是. 故选:CD 填空题14、已知0<a <1,化简:√a 43−2a +a 23=______. 答案:a 13−a 23分析:根据指数幂的基本运算结合指数函数的性质即可求解. 解:√a 43−2a +a 23=√(a 23−a 13)2=|a 23−a 13|,因为0<a <1,23>13,所以a 23<a 13,所以√a 43−2a +a 23=a 13−a 23.所以答案是:a 13−a 23. 15、计算:27−13−(−17)−2+25634−3−1+(√2−1)0=_______.答案:16分析:根据指数幂的运算性质直接求解即可.27−13−(−17)−2+25634−3−1+(√2−1)0=(33)−13−(−7)2+(44)34−13+1=13−49+64−13+1=16. 所以答案是:16.16、若f (x )=1+a3x +1(x ∈R )是奇函数,则实数a =___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.解答题17、已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[−3,1]上是减函数,求a的取值范围.答案:(1)a=0,[ln3,+∞);(2)a∈(−5,−4]解析:(1)根据偶函数的定义,求出a=0,得f(x)=ln(2x2+3),验证定义域是否关于原点对称,求出真数的范围,再由对数函数的单调性,即可求出值域;(2)u(x)=2x2+ax+3,g(u)=lnu,由条件可得,u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,根据二次函数的单调性,得出参数a的不等式,即可求解.解:(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(−x),所以ln(2x2+ax+3)=ln(2x2−ax+3),故a=0,此时,f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t⩾3,所以lnt⩾ln3,故f(x)的值域为[ln3,+∞).(2)设u(x)=2x2+ax+3,g(u)=lnu.因为f(x)在[−3,1]上是减函数,所以u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,故{−a4⩾1,u(x)min =u(1)=5+a >0,解得−5<a ≤−4,即a ∈(−5,−4].小提示:本题考查函数的性质,涉及到函数的奇偶性、单调性、值域,研究函数的性质要注意定义域,属于中档题.18、定义在D 上的函数f(x),如果满足:对任意x ∈D ,存在常数M >0,都有|f(x)|≤M 成立,则称f(x)是D 上的有界函数,其中M 称为函数f(x)的上界,已知函数f(x)=14x+a 2x+1.(1)当a =-1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由; (2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. 答案:(1)(1,+∞),函数f(x)在(-∞,0)上不是有界函数,理由见解析; (2)[-5,1].分析:(1)应用换元法及二次函数的性质求y =t 2-t +1在(1,+∞)上的值域,即知f(x)的值域,进而判断f(x)是否为有界函数.(2)将问题转化为−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,求a 的取值范围.(1)当a =-1时,y =f(x)=(12)2x −(12)x +1 (x <0),令t =(12)x ,x <0,∴t >1,y =t 2-t +1=(t −12)2+34,∴y >1,即函数f(x)在(-∞,0)上的值域为(1,+∞), ∴不存在常数M >0,使得|f(x)|≤M 成立. ∴函数f(x)在(-∞,0)上不是有界函数. (2)由题意知,|f(x)|≤3对x ∈[0,+∞)恒成立,即-3≤f(x)≤3对x ∈[0,+∞)恒成立, 令t =(12)x ,x ≥0,则t ∈(0,1].∴−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,即[−(t +4t)]max ≤a ≤(2t−t)min .设h (t )=−(t +4t ),p (t )=2t −t ,t ∈(0,1],∵h(t)在(0,1]上递增,p(t)在(0,1]上递减,∴h(t)在(0,1]上的最大值为h(1)=-5,p(t)在(0,1]上的最小值为p(1)=1. ∴实数a的取值范围为[-5,1].。
(精选试题附答案)高中数学第四章指数函数与对数函数典型例题
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数典型例题单选题1、函数y=|lg(x+1)|的图像是()A.B.C.D.答案:A分析:由函数y=lgx的图象与x轴的交点是(1,0)结合函数的平移变换得函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),即可求解.由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),显然四个选项只有A选项满足.故选:A.2、青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足L=5+lgV.已知某同学视力的五分记录法的数据为10≈1.259)4.9,则其视力的小数记录法的数据为()(√10A .1.5B .1.2C .0.8D .0.6答案:C分析:根据L,V 关系,当L =4.9时,求出lgV ,再用指数表示V ,即可求解.由L =5+lgV ,当L =4.9时,lgV =−0.1,则V =10−0.1=10−110=√1010≈11.259≈0.8. 故选:C. 3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916)答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0与y =12x +m 的图像,然后通过数形结合求出答案. 函数f (x )={−2x, x <0,−x 2+2x,x ≥0 的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0, 若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916.故m ∈(0,916). 故选:D .4、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e )D .(0,√e ) 答案:B分析:f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0),函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,通过数形结合即可得解.f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0), 函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,即x 2+e −x −12=x 2+ln(x +a),整理的:e −x −12=ln(x +a), y =e −x −12和y =ln(x +a)的图像存在交点,如图:临界值在x=0处取到(虚取),此时a=√e,故当a<√e时y=e−x−12和y=ln(x+a)的图像存在交点,故选:B.5、已知函数f(x)=11+2x,则对任意实数x,有()A.f(−x)+f(x)=0B.f(−x)−f(x)=0C.f(−x)+f(x)=1D.f(−x)−f(x)=13答案:C分析:直接代入计算,注意通分不要计算错误.f(−x)+f(x)=11+2−x +11+2x=2x1+2x+11+2x=1,故A错误,C正确;f(−x)−f(x)=11+2−x −11+2x=2x1+2x−11+2x=2x−12x+1=1−22x+1,不是常数,故BD错误;故选:C.6、已知对数式log(a+1)24−a(a∈Z)有意义,则a的取值范围为()A.(−1,4)B.(−1,0)∪(0,4)C.{1,2,3}D.{0,1,2,3}答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可.由题意可知:{a +1>0a +1≠124−a>0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0. ∵a ∈Z ,∴a 的取值范围为{1,2,3}.故选:C.7、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A .23天B .33天C .43天D .50天答案:B分析:根据题设条件先求出m 、a ,从而得到ℎ=120⋅2110t ,据此可求失去50%新鲜度对应的时间.{10%=m ⋅a 1020%=m ⋅a 20⇒{a 10=2,m =120 ,故a =2110,故ℎ=120⋅2110t , 令ℎ=12,∴2t 10=10,∴t 10lg2=1,故t =100.3≈33,故选:B.8、设2a =5b =m ,且1a +1b =2,则m =( )A .√10B .10C .20D .100答案:A分析:根据指数式与对数的互化和对数的换底公式,求得1a =log m 2,1b =log m 5,进而结合对数的运算公式,即可求解.由2a =5b =m ,可得a =log 2m ,b =log 5m ,由换底公式得1a =log m 2,1b =log m 5,所以1a +1b =log m 2+log m 5=log m 10=2,又因为m >0,可得m =√10.故选:A.9、化简√a3b2√ab23(a 14b12)4⋅√ba3(a>0,b>0)的结果是()A.ba B.abC.a2bD.b2a答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可. √a3b2√ab23(a 14b12)4⋅√ba3=a32b⋅a16b13(a14b12)4⋅a−13⋅b13=a32+16−1+13b1+13−2−13=ab−1=ab故选:B10、方程log2x=log4(2x+3)的解为()A.−1B.1C.3D.−1或3答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.填空题11、函数f(x)=1x+1+lnx的定义域是____________.答案:(0,+∞)分析:根据分母不为零、真数大于零列不等式组,解得结果.由题意得{x>0x+1≠0,∴x>0所以答案是:(0,+∞)小提示:本题考查函数定义域,考查基本分析求解能力,属基础题.]的值域为______.12、函数f(x)=4x−2x+1+3在(−∞,12答案:[2,3)分析:令2x=t,结合二次函数的性质即可得出答案.解:f(x)=(2x)2−2×2x+3=(2x−1)2+2,设2x=t,]时,0<t≤√2,所以2≤(t−1)2+2<3,当x∈(−∞,12]的值域为[2,3).所以f(x)在(−∞,12所以答案是:[2,3).13、若a>0且a≠1,则函数f(x)=a x−4+3的图像恒过的定点的坐标为______.答案:(4,4)分析:任意指数函数一定过定点(0,1),根据该性质求解.令x−4=0,得x=4,所以f(4)=a0+3=4,所以函数f(x)=a x−4+3的图像恒过定点(4,4).所以答案是:(4,4)14、设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底数),则x2、y2的算术平均值的最小值为__________.答案:1分析:利用指数的运算性质可得出x+y=2,再利用基本不等式可求得结果.由已知条件可得e x⋅e y=e x+y=e2,所以,x+y=2,因为x>0,y>0,由基本不等式可得x2+y2≥2xy,≥1,即2(x2+y2)≥x2+y2+2xy=(x+y)2=4,所以,x2+y22当且仅当x=y=1时,等号成立.因此,x 2、y 2的算术平均值的最小值为1.所以答案是:1.15、计算:2√3×√126×√323=___________. 答案:6分析:根据根式指数幂的互化,以及指数幂的运算性质,准确运算,即可求解.根据根式指数幂的互化,以及指数幂的运算性质,可得2√3×√126×√323=2⋅312⋅(22⋅3)16⋅(32)13=21+13−13⋅312+16+13=2×3=6. 所以答案是:6解答题16、某化工企业致力于改良工艺,想使排放的废气中含有的污染物数量逐渐减少.设改良工艺前所排放的废气中含有的污染物数量为r 0mg /m 3,首次改良工艺后所排放的废气中含有的污染物数量为r 1mg /m 3,第n 次改良工艺后所排放的废气中含有的污染物数量为r n mg /m 3,则可建立函数模型r n =r 0−(r 0−r 1)⋅50.5n+P (P ∈R ,n ∈N ∗),其中n 是指改良工艺的次数.已知r 0=2,r 1=1.94(参考数据:lg2≈0.3).(1)试求该函数模型的解析式;(2)若该地环保部门要求,企业所排放的废气中含有的污染物数量不能超过0.08mg /m 3,试问至少进行多少次改良工艺才能使该企业所排放的废气中含有的污染物数量达标?答案:(1)r n =2−0.06⋅50.5n−0.5(n ∈N ∗);(2)6.分析:(1)将r 0=2,r 1=1.94代入函数模型解解得答案;(2)结合题意,解出指数不等式即可.(1)根据题意,1.94=2−(2−1.94)⋅50.5+P ⇒P =−0.5,所以该函数模型的解析式为r n =2−0.06⋅50.5n−0.5(n ∈N ∗).(2)由(1),令r n =2−0.06⋅50.5n−0.5≤0.08⇒50.5n−0.5≥32⇒(0.5n −0.5)lg5≥5lg2⇒n ≥10lg2lg5+1, 则n ≥10×0.30.7+1,10×0.30.7+1≈5.3,而n ∈N ∗,则n ≥6.综上:至少进行6次改良工艺才能使该企业所排放的废气中含有的污染物数量达标.17、若函数y =3x 2−5x +a 的两个零点分别为x 1,x 2,且有−2<x 1<0,1<x 2<3,试求出a 的取值范围. 答案:−12<a <0.分析:根据题意,利用二次函数的性质和根的分布,列出不等式组,即可求出实数a 的取值范围.令f (x )=3x 2−5x +a ,则{f(−2)>0f(0)<0f(1)<0f(3)>0得a 的取值范围是−12<a <0. 故实数a 的取值范围为−12<a <0.小提示:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.18、数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a >0,且a ≠1,M >0,那么log a M n =nlog a M (n ∈R );(2)请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值; (3)因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注lg2019≈3.305)答案:(1)见解析(2)1712 (3)20192020的位数为6677解析:(1)根据指数与对数的转换证明即可.(2)根据对数的运算性质将真数均转换成指数幂的形式再化简即可.(3)分析lg20192020的值的范围再判断位数即可.(1)方法一:设x=log a M所以M=a x所以M n=(a x)n=a nx所以log a M n=nx=nlog a M,得证. 方法二:设x=nlog a M所以xn=log a M所以a xn=M所以a x=M n所以x=log a M n所以nlog a M=log a M n方法三:因为a log a M n=M na nlog a M=(a log a M)n=M n 所以a log a M n=a nlog a M所以log a M n=nlog a M得证.(2)方法一:lg3 lg4(lg8lg9+lg16lg27)=lg3lg22(lg23lg32+lg24lg33) =lg32lg2(3lg22lg3+4lg23lg3)=lg32lg2⋅17lg26lg3=1712.方法二:lg3 lg4(lg8lg9+lg16lg27)=log43(log98+log2716) =log223(log3223+log3324)=12log23(32log32+43log32)=12log23⋅176log32=1712.(3)方法一:设10k<20192020<10k+1,k∈N∗所以k<lg20192020<k+1所以k<2020lg2019<k+1所以k<2020×3.305<k+1所以6675.1<k<6676.1因为k∈N∗所以k=6676所以20192020的位数为6677方法二:设20192020=N所以2020lg2019=lgN所以2020×3.305=lgN所以lgN=6676.1所以N=106676.1=100.1×106676因为1<100.1<10,所以N有6677位数,即20192020的位数为6677小提示:本题主要考查了对数的运算以及利用对数的运算求解数字位数的问题,需要取对数分析对数值进行分析,属于中档题.19、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x2+x−2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果.(2)由题意两次利用完全平方公式,计算求得结果.(1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x−12=√6,∴x+1x+2=6,x+1x=4,∴x2+x﹣2+2=16,∴x2+x﹣2=14.。
(精选试题附答案)高中数学第四章指数函数与对数函数真题
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。
高中数学必修一第四章指数函数与对数函数经典知识题库(带答案)
高中数学必修一第四章指数函数与对数函数经典知识题库单选题1、已知f(x)={2x−x2,x≥5f(x+3),x<5,则f(4)+f(-4)=()A.63B.83C.86D.91答案:C分析:由给定条件求得f(-4)=f(5),f(4)=f(7),进而计算f(5)、f(7)的值,相加即可得解.依题意,当x<5时,f(x)=f(x+3),于是得f(-4)=f(-1)=f(2)=f(5),f(4)=f(7),当x≥5时,f(x)=2x-x2,则f(5)=25-52=7,f(7)=27-72=79,所以f(4)+f(-4)=86.故选:C2、Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e−0.23(t−53),其中K为最大确诊病例数.当I(t∗)=0.95K时,标志着已初步遏制疫情,则t∗约为()(ln19≈3)A.60B.63C.66D.69答案:C分析:将t=t∗代入函数I(t)=K1+e−0.23(t−53)结合I(t∗)=0.95K求得t∗即可得解.∵I(t)=K1+e−0.23(t−53),所以I(t∗)=K1+e−0.23(t∗−53)=0.95K,则e0.23(t∗−53)=19,所以,0.23(t∗−53)=ln19≈3,解得t∗≈30.23+53≈66.故选:C.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.3、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度()A.25天B.30天C.35天D.40天答案:B分析:根据给定条件求出m 及a 10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m ⋅a 1020%=m ⋅a20 ,解得m =120,a 10=2,当ℎ=40%时,40%=120⋅a t, 即40%=120⋅a 10⋅a t−10,解得a t−10=4=(a 10)2=a 20,于是得t −10=20,解得t =30, 所以采摘下来的这种水果30天后失去40%新鲜度. 故选:B4、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t 分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e −kt ,其中k 是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1) A .3B .3.6C .4D .4.8 答案:B分析:根据题意求出k 的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e −kt 即可求得t 的值.由题可知:50=20+(100−20)e −12k ⇒(e −k )12=38⇒e −k =(38)112, 冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e −kt ⇒(e −k )t =34⇒t ⋅ln e −k =ln 34⇒t =ln34ln (38)112=12(ln 3−2ln 2)ln 3−3ln 2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.5、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0, 所以(12)a+(12)b=1,故选:B .6、用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( ) A .0.9B .0.7C .0.5D .0.4 答案:B分析:利用二分法求函数零点的近似值的条件及方法分析判断即得.依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.7∈(0.68,0.72),且满足|0.72-0.68|<0.1, 所以所求的符合条件的近似值为0.7. 故选:B7、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2) 答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13, ∴a 的取值范围是(0,13].故选:C .8、我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)(x ∈[120,500])之间的函数关系可近似表示为y ={13x 3−80x 2+5040x,x ∈[120,144)12x 2−200x +80000,x ∈[144,500],当处理量x 等于多少吨时,每吨的平均处理成本最少( ) A .120B .200C .240D .400 答案:D分析:先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分x ∈[120,144)和x ∈[144,500]分析讨论求出其最小值即可由题意得二氧化碳每吨的平均处理成本为S ={13x 2−80x +5040,x[120,144)12x −200+80000x,x ∈[144,500],当x ∈[120,144)时,S =13x 2−80x +5040=13(x −120)2+240,当x =120时,S 取得最小值240, 当x ∈[144,500] 时,S =12x +80000x−200≥2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时取等号,此时S 取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D多选题9、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项. 依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD10、已知函数f(x)=lg(√x2−2x+2−x+1),g(x)=2x+62x+2则下列说法正确的是()A.f(x)是奇函数B.g(x)的图象关于点(1,2)对称C.若函数F(x)=f(x)+g(x)在x∈[1−m,1+m]上的最大值、最小值分别为M、N,则M+N=4D.令F(x)=f(x)+g(x),若F(a)+F(−2a+1)>4,则实数a的取值范围是(−1,+∞)答案:BCD分析:利用函数的奇偶性的定义,可判定A错误;利用图像的平移变换,可判定B正确;利用函数的图象平移和奇偶性,可得判定C正确;利用函数的单调性,可判定D正确.由题意函数f(x)=lg(√x2−2x+2−x+1)=lg(√(x−1)2+1−(x−1)),因为√(x−1)2+1−(x−1)>0恒成立,即函数f(x)的定义域为R,又因为f (0)=lg(√2+1)≠0,所以f (x )不是奇函数,所以A 错误; 将g (x )=2x +62x +2的图象向下平移两个单位得到y =2x +62x +2−2=2−2x2+2x , 再向左平移一个单位得到ℎ(x )=2−2x+12+2x+1=1−2x 1+2x,此时ℎ(−x )=1−2−x1+2−x =2x −12x +1=−ℎ(x ),所以ℎ(x )图象关于点(0,0)对称, 所以g (x )的图象关于(1,2)对称,所以B 正确;将函数f (x )的图象向左平移一个单位得m (x )=lg(√x 2+1−x), 因为m (−x )+m (x )=lg(√x 2+1+x)+lg(√x 2+1−x)=lg1=0, 即m(−x)=−m(x),所以函数m (x )为奇函数, 所以函数f (x )关于(1,0)点对称,所以F (x )若在1+a 处 取得最大值,则F (x )在1−a 处取得最小值,则F(1+a)+F(1−a)=f(1+a)+f(1−a)+g(1+a)+g(1−a)=0+4=4,所以C 正确; 由F(a)+F(−2a +1)>4,可得f(a)+f(1−2a)+g(a)+g(1−2a)>4, 由f (x )=lg(√(x −1)2+1−(x −1)), 设m (x )=lg(√x 2+1−x),t =√x 2+1−x , 可得t ′=√x 2+1−1<0,所以t =√x 2+1−x 为减函数,可得函数m (x )=lg(√x 2+1−x)为减函数,所以函数f (x )=lg(√(x −1)2+1−(x −1))为单调递减函数, 又由g (x )=2x +62x +2=1+42x +2为减函数,所以F (x )为减函数, 因为F (x )关于点(1,2)对称,所以F (a )+F (−2a +1)>4=F(a)+F(2−a),即F(−2a +1)>F(2−a), 即−2a +1<2−a ,解得a >−1,所以D 正确. 故选:BCD.小提示:求解函数有关的不等式的方法及策略: 1 、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为f(x 1)>f(x 2)的形式;②根据函数f (x )的单调性去掉对应法则“f ”转化为形如:“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解. 2 、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.11、为了得到函数y =ln (ex)的图象,可将函数y =ln x 的图象( ) A .纵坐标不变,横坐标伸长为原来的e 倍 B .纵坐标不变,横坐标缩短为原来的1eC .向上平移一个单位长度D .向下平移一个单位长度 答案:BC分析:根据函数图像变换求得结果.解:由题意函数y =lnx 的图象纵坐标不变,横坐标缩短为原来的1e ,可得到函数y =ln (ex)的图象,则A 错误,B 正确; 因为y =ln (ex)=ln x +1,则将函数y =ln x 的图象向上平移一个单位可得到函数y =ln (ex)的图象, 则C 正确,D 错误. 故选:BC. 填空题12、已知函数f(x)={x +1,x ≤0,log 2x,x >0则函数y =f [f (x )]的所有零点之和为___________.答案:12分析:利用分段函数,分类讨论,即可求出函数y =f [f (x )]的所有零点,从而得解.解:x ⩽0时,x +1=0,x =−1,由f(x)=−1,可得x +1=−1或log 2x =−1,∴x =−2或x =12; x >0时,log 2x =0,x =1,由f(x)=1,可得x +1=1或log 2x =1,∴x =0或x =2; ∴函数y =f [f (x )]的所有零点为−2,12,0,2,所以所有零点的和为−2+12+0+2=12所以答案是:12.13、对于实数a 和b ,定义运算“∗”:a ∗b ={a 2−ab,b 2−ab, a ≤ba >b ,设f(x)=(2x −1)∗(x −1),且关于x 的方程为f(x)=m(m ∈R )恰有三个互不相等的实数根,则m 的取值范围是___________. 答案:(0,14)分析:根据代数式2x −1和x −1之间的大小关系,结合题中所给的定义,用分段函数的形式表示函数f (x )的解析式,画出函数的图象,利用数形结合求出m 的取值范围. 由2x −1≤x −1可得x ≤0,由 2x −1>x −1可得x >0, 所以根据题意得f (x )={(2x −1)2−(2x −1)(x −1),x ≤0(x −1)2−(2x −1)(x −1),x >0,即 f (x )={2x 2−x ,x ≤0x −x 2,x >0,作出函数f (x )的图象如图,当x >0时,f (x )=x −x 2开口向下,对称轴为x =12, 所以当x >0时,函数的最大值为f (12)=12−(12)2=14, 函数的图象和直线y =m (m ∈R )有三个不同的交点. 可得m 的取值范围是(0,14),所以答案是:(0,14)14、当x ∈[k −12,k +12), k ∈Z 时,f(x)=k .若函数g(x)=xf(x)−mx −1没有零点,则正实数m 的取值范围是___________. 答案:[1,43)∪[85,2)分析:将问题转化为函数f(x)与ℎ(x)=1x +m 图象的交点问题,结合图象得出正实数m 的取值范围. 当x =0时,g(0)=−1≠0当x ≠0时,xf(x)−mx −1=0可化为f(x)=1x +m 作出函数f(x)与ℎ(x)=1x +m 的图象由图可知当x <0时,要使得函数g(x)=xf(x)−mx −1没有零点 必须满足−1≤ℎ(−12)<0,解得1≤m <2当x >0时,要使得函数g(x)=xf(x)−mx −1没有零点必须满足1≤ℎ(32)<2或者2≤ℎ(52)<3,解得13≤m <43或85≤m <135综上,m ∈[1,43)∪[85,2) 所以答案是:[1,43)∪[85,2)小提示:关键点睛:解决本题的关键在于将问题转化为函数图象的交点问题,结合数形结合的思想方法解决问题. 解答题15、已知f(x)=(log12x)2−2log12x+4,x∈[2 , 4].(1)设t=log12x,x∈[2 , 4],求t的最大值与最小值;(2)求f(x)的值域.答案:(1)最大值-1,最小值-2;(2)[7,12]解析:(1)t=log12x,x∈[2,4],可得t在x∈[2,4]上是减函数,即可得出.(2)f(x)=t2−2t+4=(t−1)2+3=g(t),可得g(t)在t∈[−2,−1]单调递减,即可得出值域.(1)t=log12x,x∈[2,4],∴t在x∈[2,4]上是减函数,∴x=2时t有最大值log122=−1;x=4时t有最小值log124=−2.(2)f(x)=t2−2t+4=(t−1)2+3=g(t),∴g(t)在t∈[−2,−1]单调递减,∴t=−2(即x=4),取得最大值,g(−2)=12.t=−1(即x=2),取得最小值,g(−1)=7.所以函数f(x)的值域[7,12].小提示:利用换元法求函数值域是常用的方法也是重要方法.。
高中试卷-第4章 指数函数与对数函数 练习(1)(含答案)
第四章 指数函数与对数函数复习与小结一、选择题1.(2019·广东佛山一中高一期中)函数()()21log 1f x x =-的定义域为( )A .()1,+¥B .()2,+¥C .()()1,22,U +¥D .()()1,33,+¥U 【答案】C【解析】:要使函数有意义x 需满足:210log (1)0x x ->ìí-¹î,得1x >,且2x ¹,故函数的定义域为()()1,22,U +¥.故选:C 2.(2019·贵州高一期中)计算:1324lg100ln e +-=( )A .7-B .3-C .1D .7【答案】C【解析】原式1222(2)lg103ln e =+-223=+-1=.故选:C 3.(2019·广西高一期中)以下函数在R 上是减函数的是( )A .2y x =-B .12log y x=C .1y x=D .1(2xy =【答案】D【解析】选项A :在R 上先增后减;选项B :定义域为:(0,+∞),在(0,+∞)上是减函数,不满足在R 上是减函数;选项C :定义域中就没有0,不满足在R 上是减函数;选项D 正确.故选:D .4.(2019·吉林高一期中)2()log 5f x x x =+-的零点所在区间为( )A .()1,2B .()2,3C .()3,4D .()4,5【答案】C【解析】201(1)log 154f =+-=-<,202(2)log 252f =+-=-<,22g 3(3)log 35lo 203f =+-=-<,204(4)log 451f =+-=>22(5)log 55log 055f =+-=>,根据零点存在性定理可得()()340f f ×<,则2()log 5f x x x =+-的零点所在区间为()3,4故选:C5.(2019·江西宜春九中高一期中)若0.33131(,log 2,log 53a b c -===则,它们的大小关系正确的是()A .a b c >>B .b a c>>C .c b a>>D .a c b>>【答案】A【解析】∵y 13xæö=ç÷èø为减函数,y13log x =为减函数,∴a 0.31133-æöæö==ç÷ç÷èøèø>1,c113351log log ==<0,又y =log 3x 为增函数,∴0=log 31<b =log 32<log 33=1,∴a >b >c .故选:A .6.(2019·山东高一期中)若1log 13a <,则a 的取值范围是( )A .10,3æöç÷èøB .1,13æöç÷èøC .10,(1,)3æö+¥ç÷èøU D .110,,33æöæöÈ+¥ç÷ç÷èøèø【答案】C【解析】当1a >时,1log 013a<<,成立,当01a <<时,1log 1log 3a a a <=,103a <<,综上1(0,)(1,)3a Î+¥U .故选:C .7.(2019·河北邯郸一中高一期中)已知函数()f x 是奇函数,且当0x <时,()51xf x -=-,则()75 log 3log 7f ×的值为( )A .4-B .2-C .23D .43【答案】B【解析】5575555log 3log 7 log 3log 7==log 3log 7log 5××513log =-;又x <0时,f (x )=5﹣x ﹣1,且f (x )为奇函数;∴()75 log 3log 7f ×51355115133log f log flog -æöæöæö=-=-=--=-ç÷ç÷ç÷èøèøèø2.故选:B .8.(2019·河北高一期中)函数1()lg 2xf x x æö=-ç÷èø的零点个数为( )A .3B .0C .1D .2【答案】D【解析】由1()|lg |(02xf x x =-=得1||()2xlgx =,分别作出函数|lg |y x =与,1(2xy =的图象如图:由图象可知两个函数有2个交点,即函数1()|lg |()2xf x x =-的零点个数为2个,故选:D.9.(2019·江苏高一期中)数学学习的最终目标:让学习者会用数学眼光观察世界,会用数学思维思考世界,会用数学语言表达世界.“双11”就要到了,电商的优惠活动很多,某同学借助于已学数学知识对“双11”相关优惠活动进行研究.已知2019年“双11”期间某商品原价为a 元,商家准备在节前连续2次对该商品进行提价且每次提价10%,然后在“双11”活动期间连续2次对该商品进行降价且每次降价10%.该同学得到结论:最后该商品的价格与原来价格a 元相比( ).A .相等B .略有提高C .略有降低D .无法确定【答案】C【解析】设现价为b ,则222(110%)(110%)(10.01)b a a =+-=-,则b a <,则该商品的价格与原来价格相比略有降低,故选:C.10.(2019·福建厦门外国语学校高一期中)一元二次方程2510x x m -+-=的两根均大于2,则实数m 的取值范围是( )A .21,4éö-+¥÷êëøB .(),5-¥-C .21,54éö--÷êëøD .21,54æö--ç÷èø【答案】C【解析】设()251f x x x m =-+-,则二次函数()y f x =的图象开口向上,对称轴为直线522x =>.由于一元二次方程2510x x m -+-=的两根均大于2,则()()25410250m f m ìD =--³ïí=-->ïî,解得2154m -£<-,因此,实数m 的取值范围是21,54éö--÷êëø.二、填空题11.(2019·陕西高一期中)已知函数1()ln 21xf x x-=++,若()1f a =,则()f a -= 【答案】3【解析】()121xf x lnx-=++;()121xf x lnx+-=+-.故f (x )+()4f x -=,则()()43f a f a -=-=12.(2017·北京清华附中高一期中)已知函数()2x f x -=,给出下列命题:①若0x >,则()1f x <;②对于任意的1x ,2x ÎR ,120x x -¹,则必有1212()[()()]0x x f x f x --<;③若120x x <<,则2112()()x f x x f x <;④若对于任意的1x ,2x ÎR ,120x x -¹,则1212()()22f x f x x x f ++æö>ç÷èø,其中所有正确命题的序号是_____.【答案】②④【解析】1()22xxf x -æö==ç÷èø,对于①,当0x >时,1(0,1)2xæöÎç÷èø,故①错误.对于②,1()2xf x æö=ç÷èø在R 上单调递减,所以当12x x <时2()()f x f x >,即:1212()[()()]0x x f x f x --<,故②正确.对于③()f x x 表示图像上的点与原点连线的斜率,由1()2xf x æö=ç÷èø的图像可知,当120x x <<时,1212()()f x f x x x >,即:2112()()x f x x f x >,故③错误.对于④,由()f x 得图像可知,1212()()22f x f x x x f ++æö>ç÷èø,故④正确.综上所述,正确命题的序号是②④.13.(2017·天津高一期中)若关于x 的不等式2log 0a x x -<在内恒成立,则a 的取值范围是__________.【答案】1[,1)2【解析】由2log 0a x x -<,得2log a x x <,在同一坐标系中作2y x =和y log a x =的草图,如图所示要使2log 0a x x -<在æççè内恒成立,只要y log a x =在æççè内的图象在2y x =的上方,于是01a <<.因为x =1y 2=所以只要x =,1y log 2a=³12a £,即12a ³.又01a <<,所以112a £<即实数a 的取值范围为112a £<.14.(2019·苏州市相城区高一期中)已知函数若42log ,04()1025,4x x f x x x x ì<=í-+>î…,a b c d ,,,是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是_____.【答案】()24,25【解析】先画出函数42log ,04()1025,4x x f x x x x ì<=í-+>î…的图象,如图所示:因为a b c d ,,,互不相同,不妨设a b c d <<<,且()()()()f a f b f c f d ===,而44log log b -=,即有44log log 0a b +=,可得1ab =,则abcd cd =,由10c d +=,且c d <,可得2252c d cd +æö<=ç÷èø,且2(10)(5)25cd c c c =-=--+,当4c =时,6d =,此时24cd =,但此时b ,c 相等,故abcd 的范围为(24,25).故答案为:2425(,).三、解答题15.(2018·河北高一期中)已知函数f(x)=b ⋅a x (a,b 为常数且a >0,a ≠1)的图象经过点A(1,8),B(3,32),(1)试求a,b 的值;(2)若不等式a x +b x ―2m ≥1在x ∈[―1,2]有解,求m 的取值范围.【答案】(1)a =2,b =4;(2)m ≤192【解析】(1)则,.(2)a x +b x ―2m ≥1在x ∈[―1,2]有解等价于在2m ≤2x +4x ―1在x ∈[―1,2]有解设t =2x 由x ∈[―1,2]得t ∈[12,4]则2m ≤t 2+t ―1在t ∈[12,4]上有解,令ℎ(t)=t 2+t ―1,t ∈[12,4]则2m ≤ℎ(t)max ,又ℎ(t)=t 2+t ―1=(t +12)2―54在[12,4]上为增函数,所以ℎ(t)max =ℎ(4)=19所以2m ≤19,所以m ≤192.16.(2019·湖北高一期中)已知A, B 两地的距离是130 km ,每辆汽车的通行费为50元.按交通法规规定, A, B 两地之间的公路车速应限制在50~100 km/h .假设汽油的价格是7元/L , 一辆汽车的耗油率(L/h )与车速的平方成正比,如果此车的速度是90 km/h ,那么汽车的耗油率为22.5 L/h ,司机每小时的工资是70元.从A 地到B 地最经济的车速是多少?如果不考虑其它费用,这次行车的总费用是多少(精确到1元)?【答案】最经济的车速是60 km/h ,此时的行车总费用约为353元.【解析】设车速为(50100)x x <<,油耗率为m ,行车总费用为()f x ,因为一辆汽车的耗油率(L/h )与车速的平方成正比,所以2m kx =(0k >),又此车的速度是90 km/h 时,汽车的耗油率为22.5 L/h ,所以222.590k =´,解得1360k =,故21360m x =,因此,由题意可得,()211301307131307091077050505050353360363f x x x x x x ´´=´´+´+=++³=+»,当且仅当7131307036x x´´=,即60x =时,()f x 取最小值.因此,从A 地到B 地最经济的车速是60 km/h ,此时的行车总费用约为353元.17.(2019·广东实验中学高一期中)已知定义域为R 的函数()221x x af x -+=+是奇函数(1)求a 的值(2)判断并证明该函数在定义域R 上的单调性(3)若对任意的t R Î,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围。
第四章 指数函数与对数函数【章节复习专项训练】(解析版)
第四章指数函数与对数函数【章节复习专项训练】【考点1】:指数、对数的运算例题1.下列各式正确的是()A .248πππ=B .23e =C .ln 6ln 2ln 3=D .lg 4lg 252+=【答案】D 【分析】由指数的运算法则可判断AB ;由换底公式可判断C ;由对数的加法运算法则可判断D.【详解】对于A ,22644ππππ+==,故A 错误;对于B ,23e =,故B 错误;对于C ,3ln 6log 6ln 3=,故C 错误;对于D ,()lg 4lg 25lg 425lg1002+=⨯==,故D 正确.故选:D.【变式1】以下对数式中,与指数式56x =等价的是()A .5log 6x =B .5log 6x =C .6log 5x =D .log 65x =【答案】A 【分析】根据指数式和对数式的关系即可得出.【详解】根据指数式和对数式的关系,56x =等价于5log 6x =.故选:A.【变式2】已知log 92a =-,则a 的值为()A .3-B .13-C .3D .13【答案】D 【分析】直接将对数式化为指数式求解即可.【详解】∵log 92a =-,0a >,∴29a -=,解得13a =,故选:D.【点睛】本题主要考查了对数的概念,属于基础题.【变式3】若1log 24a =,则a =()A .2B .4C .12D .14【答案】C 【分析】利用指数式与对数式的互化以及指数幂的运算即可求解.【详解】2111log 2442aa a =⇒=⇒=.故选:C 【点睛】本题考查了指数式与对数式的互化,考查了基本知识的掌握情况,属于基础题.【变式4】计算122121(2)()248n n n ++-⋅⋅(n ∈N *)的结果为()A .416B .22n+5C .2n 2-2n +6D .1(22n -7【答案】D 【分析】结合指数的运算公式化简即可求出结果.【详解】原式272221722626222122222n n n n n n -+-----⋅⎛⎫==== ⎪⋅⎝⎭,故选:D.【考点2】:指数函数、对数函数的概念例题1.下列函数表达式中,是对数函数的有()①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1).A .1个B .2个C .3个D .4个【答案】B 【分析】根据对数函数的概念确定正确选项.【详解】形如log a y x =(0a >且1a ≠)的函数为对数函数,故③④为对数函数,所以共有2个.故选:B 【点睛】本小题主要考查对数函数的概念,属于基础题.【变式1】已知正整数指数函数()(2)x f x a a =-,则(2)f =()A .2B .3C .9D .16【答案】C 【分析】由函数是指数函数可求出3a =,即可求出(2)f .【详解】因为函数()(2)x f x a a =-是指数函数,所以21a -=,则3a =,所以()3x f x =,+∈x N ,所以2(2)39f ==.故选:C.【点睛】本题考查指数函数概念的理解,属于基础题.【变式2】若函数()f x 是指数函数,且()22f =,则()f x =()A .xB .2xC .12x⎛⎫ ⎪⎝⎭D .2x⎫⎪⎪⎝⎭【答案】A 【分析】利用待定系数法求解即可.【详解】解:由题意,设()(0xf x a a =>且)1a ≠,因为()22f =所以22a =,解得a =所以()xf x =.故选:A.【点睛】本题考查待定系数法求指数函数解析式,是基础题.【变式3】已知函数2x y a =⋅和2x b y +=都是指数函数,则a b +=()A .不确定B . 0C .1D . 2【答案】C 【分析】根据指数函数的概念,得到1a =,0b =,即可求出结果.【详解】因为函数2x y a =⋅是指数函数,所以1a =,由2x b y +=是指数函数,得0b =,所以1a b +=.故选:C.【点睛】本题主要考查由指数函数概念求参数的问题,属于基础题型.【变式4】已知函数f (x )=log a (x +1),若f (1)=1,则a =()A .0B .1C .2D .3【答案】C 【分析】根据指数式与对数式互化公式,结合代入法进行求解即可.【详解】∵f (1)=log a (1+1)=1,∴a 1=2,则a =2,故选:C.【考点3】:指数函数、对数函数的图像和性质例题1.如图,若1C ,2C 分别为函数log a y x =和log b y x =的图象,则()A .01a b <<<B .01b a <<<C .1a b >>D .b a l>>【答案】B 【分析】根据对数函数的图象特征,即可直接得到,a b 大小关系.【详解】根据1C ,2C 分别为函数log a y x =和log b y x =的图象,可得01b <<,01a <<,且b a <.故选:B 【点睛】本题考查根据对数函数图象求参数范围,注意规律的总结,属简单题.【变式1】函数()()ln 31y x x =-+的定义域是()A .()1,3-B .[]1,3-C .()(),13,-∞-+∞D .(][),13,-∞-+∞【答案】A 【分析】由对数函数定义要求其真数大于零构建不等式,求解即可.【详解】在对数函数()()ln 31y x x =-+中,真数()()()()310310x x x x -+>⇒-+<,所以()1,3x ∈-.故选:A 【点睛】本题考查求对数函数的定义域,属于基础题.【变式2】函数12(1)log 1y x =+-的图象一定经过点()A .()1,1B .()1,0C .()2,1D .()2,0【答案】C 【分析】根据对数函数的性质,结合图象的平移变换规律进行求解即可.【详解】把12log y x =的图象向右平移1个单位,再向上平移1个单位即可得到12(1)log 1y x =+-的图象,因为12log y x =的图象恒过(1,0)点,所以12(1)log 1y x =+-的图象经过点(2,1).故选:C 【点睛】本题考查了对数型函数恒过定点问题,考查了函数图象的平移变换性质,属于基础题.【变式3】已知函数()2xy a =-,且当0x <时,1y >,则实数a 的取值范围是()A .3a >B .23a <<C .4a >D .34a <<【答案】B 【分析】利用指数函数的性质求解即可【详解】当0x <时,1021y a >∴<-<,,解得23a <<,故选:B.【变式4】函数y =2|x |的图象是()A .B .C.D.【答案】B 【分析】将函数写成分段函数,再结合指数函数的图象,即可容易判断.【详解】y =2|x |=2,01,02x x x x ⎧≥⎪⎨⎛⎫<⎪ ⎪⎝⎭⎩,故当0x ≥时,函数图象同2x y =单调递增;当0x <时,函数图象同1()2xy =单调递减,且0x =时,1y =.满足以上条件的只有B .故选:B .【点睛】本题考查指数型函数的图象,属简单题.【考点4】:函数的零点与方程的解整式的乘法例题1.设1x ,2x 分别是函数()1x f x xa =-和()log 1a g x x x =-的零点(其中1a >),则122x x +的取值范围是()A .[2,)+∞B .(2,)+∞C .[3,)+∞D .(3,)+∞【答案】D 【分析】解法一:(图象法)根据题意可知12,x x 分别为x y a =与1y x =和log a y x =与1y x=交点的横坐标,,再根据同底数的指数对数函数互为反函数,有121x x =.代入1222122x x x x +=+,再根据区间(1,)+∞上单调递增,所以1223x x +>.解法二:(定义法)根据函数零点的定义可知1x 、2x 是方程1x a x=和1log a x x =的根,又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.代入1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.【详解】解:解法一:(图象法)根据函数零点的定义可知函数x y a =与1y x =的图象交点为111,x x ⎛⎫ ⎪⎝⎭,同理可得函数log a y x =与1y x =的图象交点为221,x x ⎛⎫ ⎪⎝⎭.又因为函数x y a =与log a y x =的图象关于直线y x =对称,函数1y x=的图象也关于直线y x =对称,所以点111,x x ⎛⎫ ⎪⎝⎭与点221,x x ⎛⎫ ⎪⎝⎭关于直线y x =对称,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D解法二:(定义法)根据函数零点的定义可知1x 是方程1xa x=的根,所以1x 也是函数1()xF x a x=-的零点.同理可得2x 是方程1log a x x=的根,即221log a x x =,所以212x ax =,所以21x 也是函数1()xF x a x=-的零点.又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D 【点睛】本题考查了方程的根的确定、反函数性质的应用以及利用函数的单调性求最值,属于基础题.【变式1】函数()33x f x x =+的零点所在区间为()A .()1,0-B .()0,1C .()1,2D .()2,3【答案】A 【分析】判断出所给区间的端点值的乘积小于0可得答案.【详解】()()31213103f --=+-=-<;()()3003010f =+=>;()()3113140f =+=>;()()32232170f =+=>;()()33333540f =+=>;所以()()100f f -<.故选:A.【变式2】已知函数(),0ln ,0x e x f x x x ⎧≤=⎨>⎩,()()g x f x a =+,若()g x 恰有2个零点,则实数a的取值范围是()A .()1,0-B .[)1,0-C .()0,1D .(]0,1【答案】B 【分析】利用数形结合的方法,作出函数()f x 的图象,简单判断即可.【详解】依题意,函数()y f x =的图象与直线y a =-有两个交点,作出函数图象如下图所示,由图可知,要使函数()y f x =的图象与直线y a =-有两个交点,则01a <-≤,即10a -≤<.故选:B .【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.【变式3】函数()232f x x x =-+的零点是()A .()1,0B .()1,0和()2,0C .1和2D .以上都不是【答案】C 【分析】当()0f x =时对应的x 的值即为所求的零点.【详解】令()0f x =,即2320x x -+=,解得:1x =或2x =,()f x ∴的零点是1和2.故选:C .【点睛】本题考查函数零点的求解问题,易错点是误认为零点为一个点的坐标,实际零点是函数值为零时,对应的自变量的值.【变式4】已知函数21ln ()xf x x -=,那么方程f (x )=0的解是()A .1=x eB .x =1C .x =eD .x =1或x =e【答案】C 【分析】通过解方程求得()0f x =的解.【详解】依题意()21ln 0xf x x -==,所以1ln 0,ln 1,x x x e -===.故选:C 【点睛】本小题主要考查函数零点的求法,属于基础题.【考点5】:用二分法求方程的近似解例题1.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在(1,1.5)内的近似解的过程中,有f (1)<0,f (1.5)>0,f (1.25)<0,则该方程的根所在的区间为()A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定【答案】B 【分析】根据零点存在性定理即可判断零点所在区间.【详解】∵f (1.25)·f (1.5)<0,且f (x )是单调增函数,∴该方程的根所在的区间为(1.25,1.5).故选:B.【变式1】下列函数不宜用二分法求零点的是()A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2++2D .f (x )=-x 2+4x -1【答案】C 【分析】根据二分法的概念可知,只有存在区间[](),a b a b <,使得()()0f a f b <,才能应用二分法求零点,即可判断出各选项对应的函数是否可用二分法求零点.【详解】对于A ,存在区间[]0,2,使得()()020f f <,所以A 宜用;对于B ,存在区间4,1e -⎡⎤⎣⎦,使得()()410f e f -<,所以B 宜用;对于C ,()(20f x x =≥,不存在区间[](),a b a b <,使得()()0f a f b <,所以C 不宜用;对于D ,存在区间[]0,1,使得()()010f f <,所以D 宜用.故选:C .【点睛】本题主要考查二分法的概念的理解以及应用,属于容易题.【变式2】函数33()log 2f x x x=-在区间[1,3]内有零点,则用二分法判断含有零点的区间为()A .31,2⎡⎤⎢⎥⎣⎦B .3,22⎡⎤⎢⎥⎣⎦C .52,2⎡⎤⎢⎥⎣⎦D .5,32⎡⎤⎢⎥⎣⎦【答案】C【分析】先求(1),(3)f f ,再求(2)f ,发现(3),(2)f f 异号,再求5(2f 的值,再利用零点存在性定理判断即可【详解】解:因为31(1)0,(3)022f f =-<=>,3433333(2)log 2log 2log 3log log 04f =-=-==<,353333355355log log log 3log log log 022524f ⎛⎫=-=-=>=> ⎪⎝⎭因此,函数f (x )的零点在区间52,2⎡⎤⎢⎥⎣⎦内,故选:C.【点睛】此题考查二分法判断零点,考查了零点存在性定理的应用,属于基础题.【变式3】用二分法求函数()f x 在(,)a b 内的唯一零点时,精确度为0.001,则经过一次二分就结束计算的条件是()A .||0.2a b -<B .||0.002a b -<C .||0.002a b ->D .||0.002a b -=【答案】B【分析】根据二分法的步骤分析可得.经过一次二分后,零点所在区间长度为||2b a -,结束计算的条件是零点所在区间的长度满足精确度,由此可得.【详解】据二分法的步骤知,经过一次二分后,零点所在区间长度为||2b a -,此时结束计算,所以||2b a -0.001<,所以||0.002b a -<.故选B【点睛】本题考查了二分法的步骤,属于基础题.【变式4】下面关于二分法的叙述,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循D.只有在求函数零点时才用二分法【答案】B【分析】A C D进行判断,可以排除,从而选B.根据二分法的概念对,,【详解】只有函数的图象在零点附近是连续不断且在该零点左右两侧函数值异号,オ可以用二分法求函数的零点的近似值,故A错;二分法有规律可循,可以通过计算机来进行,故C错;求方程的近似解也可以用二分法,故D错.故选B.【点睛】本题考查了二分法的概念,属于基础题.。
高中数学第四章指数函数与对数函数典型例题(带答案)
高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
职高数学第四章指数函数对数函数习题及答案
(3)将根式 写成分数指数幂的形式
参考答案:
1、(1)4,3,64(2) ,4,12(3) ,2,8
2、(1) (2) (3)
练习4.1.2
1计算:
2、化简:
3、计算:
参考答案:
1、
2、
3、
练习4.1.3
1、指出幂函数y=x4和y=x 的定义域,并在同一个坐标系中作出它们的图像
4.1实数指数幂习题
练习4.1.1
1、填空题
()64的3次方根可以表示为,其中根指数为,被开方数为;
(2)12的4次算术根可以表示为,其中根指数为,被开方数为;
(3)38的平方根可以表示为,其中根指数为,被开方数为
2、将根式转化为分数指数幂的形式,分数指数幂转化为根式
(1)将根式 写成分数指数幂的形式
3.一台价值10万元的新机床.按每年8%的折旧率折旧,问20年后这台机床还值几万元
参考答案:
1、y=1000(1-10%)x
2、y=200(1+10.2%)10
3、10(1-8%)20
4.3 对数习题
练习4.3.1
1、2的多少次幂等于8?
2、3的多少次幂等于81?
3、将 对数式写成指数式
参考答案:
1、3
2、4
3、
练习4.3.2、4.3.3
1、 =
2、化简:
3、3lg2+lg125=
参考答案:
1、
2、
3、3
4.4 对数函数习题
练习4.4.1
1、若函数 的图像经过点(4,2),则底 =().
2、若函数 的图像经过点(9,3),则底 =( ).
3、求函数y=lg4x的定义域
高一数学(必修一)《第四章-指数函数与对数函数》练习题及答案解析-人教版
高一数学(必修一)《第四章 指数函数与对数函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.某超市宣传在“双十一”期间对顾客购物实行一定的优惠,超市规定:①如一次性购物不超过200元不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去该超市购物分别付款176元和441元,如果他只去一次购买同样的商品,则应付款( )A .608元B .591.1元C .582.6元D .456.8元2.德国天文学家,数学家开普勒(J. Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为( )A .4329dB .30323dC .60150dD .90670d3.函数()f x = )A .()1,0-B .(),1-∞-和()0,1C .()0,1D .(),1-∞-和()0,∞+4.将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90100a <<B .90110a <<C .100110a <<D .80100a <<5.某市工业生产总值2018年和2019年连续两年持续增加,其中2018年的年增长率为p ,2019年的年增长率为q ,则该市这两年工业生产总值的年平均增长率为( )A .2p q +;B .()()1112p q ++-;C ;D 1.6.某污水处理厂为使处理后的污水达到排放标准,需要加入某种药剂,加入该药剂后,药剂的浓度C (单位:3mg/m )随时间t (单位:h )的变化关系可近似的用函数()()()210010419t C t t t t +=>++刻画.由此可以判断,若使被处理的污水中该药剂的浓度达到最大值,需经过( )A .3hB .4hC .5hD .6h7.某同学参加研究性学习活动,得到如下实验数据:以下函数中最符合变量y 与x 的对应关系的是( )A .129y x =+B .245y x x =-+C .112410x y =⨯- D .3log 1y x =+ 8.某种植物生命力旺盛,生长蔓延的速度越来越快,经研究,该一定量的植物在一定环境中经过1个月,其覆盖面积为6平方米,经过3个月,其覆盖面积为13.5平方米,该植物覆盖面积y (单位:平方米)与经过时间x (x ∈N )(单位:月)的关系有三种函数模型x y pa =(0p >,1a >)、log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)可供选择,则下列说法正确的是( )A .应选x y pa =(0p >,1a >)B .应选log a y m x =(0m >,1a >)C .应选y nx α=(0n >,01α<<)D .三种函数模型都可以9.已知函数()21,1,8, 1.x x f x x x ⎧-≤=⎨>⎩若()8f x =,则x =( ) A .3-或1 B .3- C .1 D .310.函数e 1()sin 2e 1x x f x x +=⋅-的部分图象大致为( ) A . B .C .D .二、填空题11.2021年8月30日第九届未来信息通信技术国际研讨会在北京开幕.研讨会聚焦于5G 的持续创新和演进、信息通信的未来技术前瞻与发展、信息通信技术与其他前沿科技的融合创新.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫作信噪比.若不改变信道带宽W ,而将信噪比S N从11提升至499,则最大信息传递速率C 大约会提升到原来的______倍(结果保留1位小数).(参考数据:2log 3 1.58≈和2log 5 2.32≈)12.已测得(,)x y 的两组值为(1,2)和(2,5),现有两个拟合模型,甲21y x =+,乙31y x =-.若又测得(,)x y 的一组对应值为(3,10.2),则选用________作为拟合模型较好.13.半径为1的半圆中,作如图所示的等腰梯形ABCD ,设梯形的上底2BC x =,则梯形ABCD 的最长周长为_________.三、解答题14.如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?15.以贯彻“节能减排,绿色生态”为目的,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (百元)与月处理量x (吨)之间的函数关系可近似地表示为212800200y x x =-+. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(提示:平均处理成本为y x) (2)该单位每月处理成本y 的最小值和最大值分别是多少百元? 16.如图,以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系O xyz -,点P 在线段AB 上,点Q 在线段DC 上.(1)当2PB AP =,且点P 关于y 轴的对称点为M 时,求PM ;(2)当点P 是面对角线AB 的中点,点Q 在面对角线DC 上运动时,探究PQ 的最小值.17.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t ,100150)X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100X ∈,110),则取105X =,且105X =的概率等于需求量落入[100,110)的频率),求T 的分布列.18.为发展空间互联网,抢占6G 技术制高点,某企业计划加大对空间卫星网络研发的投入.据了解,该企业研发部原有100人,年人均投入()0a a >万元,现把研发部人员分成两类:技术人员和研发人员,其中技术人员有x 名(*x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加4x %,技术人员的年人均投入调整为275x a m ⎛⎫- ⎪⎝⎭万元. (1)要使调整后研发人员的年总投入不低于调整前的100人的年总投入,则调整后的技术人员最多有多少人?(2)是否存在实数m 同时满足两个条件:①技术人员的年人均投入始终不减少;②调整后研发人员的年总投入始终不低于调整后技术人员的年总投入?若存在,求出m 的值;若不存在,请说明理由.19.某公司今年年初用81万元收购了一个项目,若该公司从第1年到第x (N x +∈且1x >)年花在该项目的其他费用(不包括收购费用)为()20x x +万元,该项目每年运行的总收入为50万元.(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以56万元的价格卖出;②当年平均盈利最大时,以92万元的价格卖出.假如要在这两种方案中选择一种,你会选择哪一种?请说明理由.20.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ekt P P -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,求正整数n 的最小值.21.某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x (0200x <,N x ∈)台,若年产量不足70台,则每台设备的额外成本为11402y x =+万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为2264002080101y x x =+-万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)写出年利润W (万元)关于年产量x (台)的关系式;(2)当年产量为多少台时,年利润最大,最大值为多少?22.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)a y b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.四、多选题23.函数()()22x x af x a R =+∈的图象可能为( )A .B .C .D .五、双空题24.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt (其中k 为常数;t 表示时间,单位:小时;y 表示病毒个数),则k=____,经过5小时,1个病毒能繁殖为____个.25.已知长为4,宽为3的矩形,若长增加x ,宽减少2x ,则面积最大,此时x =__________,面积S =__________.参考答案与解析1.【答案】B【分析】根据题意求出付款441元时的实际标价,再求出一次性购买实际标价金额商品应付款即可.【详解】由题意得购物付款441元,实际标价为10441=4909元 如果一次购买标价176+490=666元的商品应付款5000.9+1660.85=591.1元.故选:B.2.【答案】B【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r =''2r r '= 结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r土星的公转时间为T ',距离太阳的平均距离为r '由题意知2r r '= 10753T d '= 所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭所以1075310753 2.82830409.484T d '==≈⨯=故选:B.3.【答案】B【分析】分别讨论0x ≥和0x <,利用二次函数的性质即可求单调递减区间.【详解】当0x ≥时()f x 210x -+≥解得11x -≤≤,又21y x =-+为开口向下的抛物线,对称轴为0x =,此时在区间()0,1单调递减当0x <时()f x == ()21y x =+为开口向上的抛物线,对称轴为1x =-,此时在(),1-∞-单调递减综上所述:函数()f x =(),1-∞-和()0,1.故选:B.4.【答案】A【分析】首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据0y >,求x 的取值范围,即可得到a 的取值范围.【详解】设每个涨价x 元,涨价后的利润与原利润之差为y 元则290,(10)(40020)1040020200a x y x x x x =+=+⋅--⨯=-+.要使商家利润有所增加,则必须使0y >,即2100x x -<,得010,9090100x x <<∴<+<,所以a 的取值为90100a <<.故选:A5.【答案】D【分析】设出平均增长率,并根据题意列出方程,进行求解【详解】设该市2018、2019这两年工业生产总值的年平均增长率为x ,则由题意得:()()()2111x p q +=++解得11x =,21x =因为20x <不合题意,舍去 故选D .6.【答案】A【分析】利用基本不等式求最值可得.【详解】依题意,0t >,所以11t +>所以()()()()()()221001100110010010164191012116121t t C t t t t t t t ++===≤==++++++++++ 当且仅当1611t t +=+,即t =3时等号成立,故由此可判断,若使被处理的污水中该药剂的浓度达到最大值,需经过3h .故选:A .7.【答案】D 【分析】结合表格所给数据以及函数的增长快慢确定正确选项.【详解】根据表格所给数据可知,函数的增长速度越来越慢A 选项,函数129y x =+增长速度不变,不符合题意. BC 选项,当3x ≥时,函数245y x x =-+、112410x y =⨯-增长越来越快,不符合题意. D 选项,当3x ≥时,函数3log 1y x =+的增长速度越来越慢,符合题意.故选:D8.【答案】A【解析】根据指数函数和幂函数的增长速度结合题意即可得结果.【详解】该植物生长蔓延的速度越来越快,而x y pa =(0p >,1a >)的增长速度越来越快 log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)的增长速度越来越慢故应选择x y pa =(0p >,1a >).故选:A.9.【答案】B【分析】根据分段函数的解析式,分段求解即可.【详解】根据题意得x ≤1x2−1=8或188x x >⎧⎨=⎩ 解得3,x =-故选:B10.【答案】B【分析】结合图象,先判断奇偶性,然后根据x 趋近0时判断排除得选项.【详解】解:()e 1sin 2e 1x x f x x +=⋅-的定义域为()(),00,∞-+∞()()()e 1e 1sin 2sin 2e 1e 1x x x xf x x x f x --++-=⋅-=⋅=⎡⎤⎣⎦-- ()f x ∴是偶函数,排除A ,C . 又0x >且无限接近0时,101x x e e +>-且sin 20x >,∴此时()0f x >,排除D故选:B .11.【答案】2.5【分析】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,根据题意求出21C C ,再利用指数、对数的运算性质化简计算即可【详解】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,则由题意可知()122log 111log 12C W W =+= ()222log 1499log 500C W W =+= 所以()()232322222222122222log 25log 500log 2log 523log 523 2.328.96 2.5log 12log 2log 32log 32 1.58 3.58log 23C W C W ⨯+++⨯====≈=≈+++⨯所以最大信息传递速率C 会提升到原来的2.5倍.故答案为:2.512.【答案】甲【分析】将3x =分别代入甲乙两个拟合模型计算,即可判断.【详解】对于甲:3x =时23110y =+=,对于乙:3x =时8y =因此用甲作为拟合模型较好.故答案为:甲13.【答案】5【分析】计算得出AB CD ==ABCD 的周长为y,可得出22y x =++()0,1t,可得出224y t =-++,利用二次函数的相关知识可求得y 的最大值.【详解】过点B 、C 分别作BE AD ⊥、CF AD ⊥垂足分别为E 、F则//BE CF ,//BC EF 且90BEF ∠=,所以,四边形BCFE 为矩形所以2EF BC x ==AB CD =,BAE CDF ∠=∠和90AEB DFC ∠=∠= 所以,Rt ABE Rt DCF ≅所以12AD EF AE DF x -===-,则OF OD DF x =-= CF =AB CD ∴===设梯形ABCD 的周长为y ,则2222y x x =++=++其中01x <<令()0,1t =,则21x t =-所以()2222212425y t t t ⎛=+-+=-++=-+ ⎝⎭所以,当t =y 取最大值,即max 5y =. 故答案为:5.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.14.【答案】(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.【分析】(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得(502)S x x =-,根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-由题意得(502)300x x -=解得1215,10x x ==50225x -≤12.5x ∴≥15x ∴=所以,AB 的长为15米时,矩形花园的面积为300平方米;(2)由题意得()()22502250212.5312.5,12.525S x x x x x x =-=-+=--+≤<12.5x ∴=时, S 取得最大值,此时312.5S =所以,当 x 为12.5米时, S 有最大值,最大值是312.5平方米.15.【答案】(1)400吨 (2)最小值800百元,最大值1400百元【分析】(1)求出平均处理成本的函数解析式,利用基本不等式求出最值;(2)利用二次函数单调性求解最值.(1)由题意可知,二氧化碳的每吨平均处理成本为18002200y x x x =+-,显然[]400,600x ∈由基本不等式得:1800222200y x x x =+-≥= 当且仅当1800200x x =,即400x =时,等号成立 故每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)212800200y x x =-+ 对称轴220012200x -=-=⨯ 函数212800200y x x =-+在[400,600]单调递增 当400x =时,则2min 14002400800800200y =⨯-⨯+= 当600x =时,则2max 160026008001400200y =⨯-⨯+= 答:该单位每月处理成本y 的最小值800百元,最大值1400百元.16.【答案】【分析】(1)根据空间直角坐标系写出各顶点的坐标,再由2PB AP =求得121,,33OP ⎛⎫= ⎪⎝⎭,得到P 与M 的坐标,再利用两点距离公式求解即可;(2)由中点坐标公式求得111,,22P ⎛⎫ ⎪⎝⎭,再根据题意设点(,1,)Q a a ,最后利用两点间的距离公式与一元二次函数配方法求PQ 的最小值.(1)所以()22211222131133333PM ⎛⎫⎛⎫=++-++= ⎪ ⎪⎝⎭⎝⎭. (2)因为点P 是面对角线AB 的中点,所以111,,22P ⎛⎫ ⎪⎝⎭,而点Q 在面对角线DC 上运动,故设点(,1,)Q a a[0,1]a ∈则(PQ a ===[0,1]a ∈所以当34a =时,PQ 取得最小值33,1,44Q ⎛⎫ ⎪⎝⎭. 17.【答案】(1)80039000,[100,130)65000,[130,150]X X T X -∈⎧=⎨∈⎩(2)0.7(3)59400 【分析】(1)由题意先分段写出,当[100x ∈,130)和[130x ∈,150)时的利润值,利用分段函数写出即可;(2)由(1)知,利润T 不少于57000元,当且仅当120150x ,再由直方图知需求量[120X ∈,150]的频率为0.7,由此估计得出结论;(3)先求出利润与X 的关系,再利用直方图中的频率计算利润分布列,最后利用公式求其数学期望.(1)解:由题意得,当[100X ∈,130)时500300(130)80039000T X X X =--=-当[130X ∈,150]时50013065000T =⨯=80039000,[100,130)65000,[130,150]X X T X -∈⎧∴=⎨∈⎩(2)解:由(1)知,利润T 不少于57000元,当且仅当120150X .由直方图知需求量[120X ∈,150]的频率为0.7所以下一个销售季度的利润T 不少于57000元的概率的估计值为0.7;(3)解:由题意及(1)可得:所以T 的分布列为:18.【答案】(1)最多有75人 (2)存在 7m =【分析】(1)根据题目要求列出方程求解即可得到结果(2)根据题目要求①先求解出m 关于x 的取值范围,再根据x 的取值范围求得m 的取值范围,之后根据题目要求②列出不等式利用基本不等式求解出m 的取值范围,综上取交集即可 (1)依题意可得调整后研发人员有()100x -人,年人均投入为()14%x a +万元则()()10014%100x x a a -+≥,解得075x ≤≤.又4575x ≤≤,*x ∈N 所以调整后的奇数人员最多有75人.(2)假设存在实数m 满足条件.由条件①,得225x a m a ⎛⎫-≥ ⎪⎝⎭,得2125x m ≥+. 又4575x ≤≤,*x ∈N 所以当75x =时,2125x +取得最大值7,所以7m ≥. 由条件②,得()()210014%25x x x a a m x ⎛⎫-+≥- ⎪⎝⎭,不等式两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥- ⎪⎪⎝⎭⎝⎭,整理得100325x m x ≤++因为10033725x x ++≥=,当且仅当10025x x =,即50x =时等号成立,所以7m ≤. 综上,得7m =.故存在实数m 为7满足条件.19.【答案】(1)第4年 (2)选择方案②,理由见解析【分析】(1)设项目运行到第x 年的盈利为y 万元,可求得y 关于x 的函数关系式,解不等式0y >可得x 的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.(1)解:设项目运行到第x 年的盈利为y 万元则()25020813081=-+-=-+-y x x x x x由0y >,得230810x x -+<,解得327x <<所以该项目运行到第4年开始盈利.(2)解:方案①()22308115144=-+-=--+y x x x当15x =时,y 有最大值144.即项目运行到第15年,盈利最大,且此时公司的总盈利为14456200+=万元方案②818130303012y x x x x x ⎛⎫=-+-=-+≤- ⎪⎝⎭ 当且仅当81x x=,即9x =时,等号成立. 即项目运行到第9年,年平均盈利最大,且此时公司的总盈利为12992200⨯+=万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②.20.【答案】10【分析】由题可得()400180%e k P P --=,求得ln 54k =,再由000.5%e kt P P -≥可求解. 【详解】由题意,前4个小时消除了80%的污染物因为0e kt P P -=⋅,所以()400180%ek P P --= 所以40.2e k -=,即4ln0.2ln5k -==-,所以ln 54k =则由000.5%e kt P P -≥,得ln 5ln 0.0054t ≥- 所以4ln 20013.2ln 5t ≥≈ 故正整数n 的最小值为14410-=.21.【答案】(1)2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩;(2)当年产量为80台时,年利润最大,最大值为1320万元.【分析】(1)根据题意,分段表示出函数模型,即可求解;(2)根据题意,结合一元二次函数以及均值不等式,即可求解.(1)当070x <<,*N x ∈时 211100406006060022W x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭; 当70200x ≤≤,*N x ∈时26400208064001001016001480W x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭. ∴.2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩; (2)①当070x <<,*N x ∈时 221160600(60)120022W x x x =-+-=--+ ∴当60x =时,y 取得最大值,最大值为1200万元.②当70200x ≤≤,*N x ∈时6400148014801320W x x ⎛⎫=-+≤- ⎪⎝⎭ 当且仅当6400x x =,即80x =时,y 取得最大值1320∵13201200>∴当年产量为80台时,年利润最大,最大值为1320万元.22.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元(3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. (1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠ ()log 0,0,1b y a x a b b =≠>≠和(0)a y b a x =+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元.(3)令()()()1701010210f x g x x x x ==-+--(10,)x ∞∈+因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增 ∴当10x =+()g x取得最小值,且最小值为(10g +=∴k ≥23.【答案】ABD【解析】根据函数解析式的形式,以及图象的特征,合理给a 赋值,判断选项.【详解】当0a =时()2x f x =,图象A 满足; 满足;图象C 过点()0,1,此时0a =,故C 不成立.故选:ABD【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.24.【答案】2ln2 1024【详解】当t=0.5时,y=2,∴2=12e k ,∴k=2ln 2,∴y=e 2t ln 2 当t=5时,y=e 10ln 2=210=1 024.25.【答案】1 1212【详解】S =(4+x) 32x ⎛⎫- ⎪⎝⎭=-22x +x +12=-12 (x 2-2x)+12=-12 (x -1)2+252. 当x =1时,S max =252,故填1和252.。
(完整版)高职数学第四章指数函数与对数函数题库
高职数学第四章指数函数与对数函数题库一、选择题01-04-01.= ( ) A.52a B.2ab - C.12a b D.32b02-04-01.下列运算正确的是( ) A.342243⋅=2 B.4334(2)=2C.222log 2log x x =D.lg11=03-04-01.若0a >,且,m n 为整数,则下列各式中正确的是( ) A.m m n na a a ÷= B.m n m n a a a =C.()n m m n a a +=D.01n n a a -÷= 04-04-01.=⋅⋅436482( )A.4B.8152C.272 D.805-04-01.求值1.0lg 2log ln 2121-+e 等于( ) A.12- B.12 C.0 D.106-04-01.将25628=写成对数式( )A.2256log 8=B.28log 256=C.8256log 2=D.2562log 8=07-04-01.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A.x y 3.0log = (x >0)B. y=x 2+x (x ∈R) C.y=3x (x ∈R) D.y=x 3(x ∈R)08-04-01.下列函数,在其定义域内,是减函数的是( ) A.12y x = B.2x y = C.3y x = D.x y 3.0log = (x >0)09-04-01.下列各组函数中,表示同一函数的是( )A.2x y x=与y x = B.y x =与yC.y x =与2log 2x y =D.0y x =与1y =09-04-01. 化简10021得( )A.50B.20 C .15 D .1010-04-01. 化简832_得( ) A.41 B. 21 C.2 D .4 11-04-01.化简232-⎪⎪⎭⎫ ⎝⎛y x 的结果是( )A.64y x - B .64-y x C .64--y x D .34y x12-04-01.求式子23-·1643的值,正确的是( ) A.1 B .2 C .4 D .813-04-01.求式子42·48的值,正确的是( )A.1 B .2 C .4 D .814-04-01.求式子573⎪⎭⎫ ⎝⎛·08116⎪⎭⎫ ⎝⎛÷479⎪⎭⎫ ⎝⎛的值,正确的是( ) A. 1281 B .1891 C .2561 D .1703 15-04-01.求式子23-·45·0.255的值,正确的是( ) A.1 B .21 C .41 D .81 16-04-01. 已知指数函数y=a x (a >0,且a ≠1)的图象经过点(2,16),则函数的解析式是( )A.x y 2= B .x y 3= C .x y 4= D .xy 8= 17-04-01. 已知指数函数y=a x(a >0,且a ≠1)的图象经过点(2,16),则函数的值域是( )A.()+∞,1B.()+∞,0 C .[)+∞,0 D .()0,∞-18-04-01.已知指数函数y=a x (a >0,且a ≠1)的图象经过点(2,16),x=3时的函数值是( )A.4 B .8 C .16 D .6419-04-01.下列函数中,是指数函数的是( )A.y=(-3)xB.y=x-⎪⎭⎫ ⎝⎛52 C.y= x 21 D.y=3x 420-04-01.下列式子正确是( ) A.log 2(8—2)=log 28—log 22 B.lg (12—2)=2lg 12lg ; C.9log 27log 33=log 327—log 39. D.()013535≠=-a a a 21-04-01.计算22log 1.25log 0.2+=( )A.2-B.1-C.2D.122-04-01.当1a >时,在同一坐标系中,函数log a y x =与函数1x y a ⎛⎫= ⎪⎝⎭的图象只可能是( )23-04-01.设函数()log a f x x = (0a >且1a ≠),(4)2f =,则(8)f =( )A.2B.12C.3D. 13二、填空题 24-04-01. 将分数指数幂53-b 写成根式的形式是 。
高中数学第四章指数函数与对数函数考点精题训练(带答案)
高中数学第四章指数函数与对数函数考点精题训练单选题1、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( ) A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D.2、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞) 答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43,所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞). 故选:D.3、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天. A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x =1.01x ,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D .4、已知函数y =a x 、y =b x 、y =c x 、y =d x 的大致图象如下图所示,则下列不等式一定成立的是( )A .b +d >a +cB .b +d <a +cC .a +d >b +cD .a +d <b +c 答案:B分析:如图,作出直线x =1,得到c >d >1>a >b ,即得解.如图,作出直线x =1,得到c >d >1>a >b , 所以b +d <a +c . 故选:B5、化简√a 3b 2√ab 23(a 14b 12)4⋅√b a3 (a >0,b >0)的结果是( )A .b aB .ab C .a 2b D .b 2a 答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a 3b 2√ab 23(a 14b 12)4⋅√b a=a 32b⋅a 16b 13(a 14b 12)4⋅a −13⋅b 13=a 32+16−1+13b1+13−2−13=ab −1=ab故选:B6、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a 3·√a 6=(−a )13⋅a 16=−a 13⋅a 16=−a13+16=−a 12=−√a .故选:A.7、设函数f(x)=ln|2x +1|−ln|2x −1|,则f (x )( )A .是偶函数,且在(12,+∞)单调递增B .是奇函数,且在单调递减 C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在(−∞,−12)单调递减 答案:D分析:根据奇偶性的定义可判断出f (x )为奇函数,排除AC ;当x ∈(−12,12)时,利用函数单调性的性质可判断出f (x )单调递增,排除B ;当x ∈(−∞,−12)时,利用复合函数单调性可判断出f (x )单调递减,从而得到结果. 由f (x )=ln |2x +1|−ln |2x −1|得f (x )定义域为{x |x ≠±12},关于坐标原点对称,又f (−x )=ln |1−2x |−ln |−2x −1|=ln |2x −1|−ln |2x +1|=−f (x ), ∴f (x )为定义域上的奇函数,可排除AC ;当x ∈(−12,12)时,f (x )=ln (2x +1)−ln (1−2x ),∵y =ln (2x +1)在(−12,12)上单调递增,y =ln (1−2x )在(−12,12)上单调递减, ∴f (x )在(−12,12)上单调递增,排除B ;当x ∈(−∞,−12)时,f (x )=ln (−2x −1)−ln (1−2x )=ln 2x+12x−1=ln (1+22x−1), ∵μ=1+22x−1在(−∞,−12)上单调递减,f (μ)=lnμ在定义域内单调递增,根据复合函数单调性可知:f (x )在(−∞,−12)上单调递减,D 正确.故选:D.小提示:本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据f (−x )与f (x )的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.8、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t 分钟后物体的温11(,)22度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅lne−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.多选题9、已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0其中有可能成立的关系式有()A.①B.②⑤C.②③D.④答案:AB分析:画出指数函数y=2x,y=3x的图象,利用单调生即可得出答案. 如图所示,数y=2x,y=3x的图象,由图象可知:( 1 ) 当时x>0,若2a=3b,则a>b;( 2 ) 当x=0时,若2a=3b,则a=b=0;( 3 ) 当x<0时,若2a=3b,则a<b.综上可知,有可能成立的关系式是①②⑤ . 故选:AB10、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14,则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 12x 1+log 12x 2=log 12(x 1x 2)=f (x 1⋅x 2),C 是;对于D ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 3x 1+log 3x 2=log 3(x 1x 2)=f (x 1⋅x 2),D 是. 故选:CD11、下列函数中,有零点且能用二分法求零点的近似值的是( ) A .y =2x −3B .y ={−x +1,x ≥0x +1,x <0C .y =x 2−3x +3D .y =|x −2| 答案:AB分析:根据二分法定义,只有零点两侧函数值异号才可用二分法求近似值. 对于选项A ,当x =1时,y =21−3=−1<0,当x =12时,y =212−3=1>0,所以能用二分法求零点的近似值.对于选项B ,当x =2时,y =−2+1=−1<0,当x =12时,y =−12+1=12>0,能用二分法求零点的近似值.对于选项C ,y =x 2−3x +3=(x −32)2+34>0,故不能用二分法求零点的近似值.对于选项D ,y =|x −2|≥0,故不能用二分法求零点的近似值. 故选:AB .12、已知函数f (x )={−2−x +a,x <0,2x−a,x >0.(a ∈R ),下列结论正确的是( ) A .f (x )是奇函数B .若f (x )在定义域上是增函数,则a ≤1C .若f (x )的值域为R ,则a ≥1D .当a ≤1时,若f (x )+f (3x +4)>0,则x ∈(−1,+∞) 答案:AB分析:对于A 利用函数奇偶性定义证明;对于B ,由增函数定义知−2−0+a ≤20−a 即可求解; 对于C ,利用指数函数的单调性,求出分段函数每段函数上的值域,结合f (x )的值域为R ,即可求解;对于D ,将f (x )+f (3x +4)>0等价于f (x )>f (−3x −4),利用函数定义域及单调性即可求解;对于A ,当x <0时,−x >0,f(x)=−2−x +a ,f(−x)=2−x −a =−(−2−x +a)=−f(x);当x >0时,−x <0,f(x)=2x −a ,f(−x)=−2x +a =−(2x −a)=−f(x),所以f (x )是奇函数,故A 正确;对于B ,由f (x )在定义域上是增函数,知−2−0+a ≤20−a ,解得a ≤1,故B 正确; 对于C ,当x <0时,f(x)=−2−x +a 在区间(−∞,0)上单调递增,此时值域为(−∞,a −1),当x >0时,f(x)=2x −a 在区间(0,+∞)上单调递增,此时值域为(1−a,+∞),要使f (x )的值域为R ,则a −1>1−a ,解得a >1,故C 错误;对于D ,当a ≤1时,由于−2−0+a ≤20−a ,则f (x )在定义域上是增函数,f (x )+f (3x +4)>0等价于f (x )>f (−3x −4),即{x ≠0−3x −4≠0x >−3x −4,解得x ∈(−1,0)∪(0,+∞),故D 错误; 故选:AB13、下面几个结论正确的是( ) A .已知a =(√32)23,b =(45)13,c =ln3,则a <b <cB .已知a =312,b =√63,c =log 47,则a <c <b C .已知a =0.32,b =log 20.3,c =20.3,则b <c <a D .已知log 12a >log 12b >0,则a b <a a <b a答案:AD 分析:对于A ,a =(√32)23=(34)13<(45)13<1,c =ln3>1,即可得到大小关系;对于B ,a 6=(312)6=27,b 6=(√63)6=36可得到a <b ,再选取中间量32,通过比较,得到最终结果;对于C ,b <0,a <1,c >1,可得到大小关系;对于D ,通过构造对数函数和幂函数,利用函数的单调性可得到最终结果.对于A ,a =(√32)23=(34)13<(45)13<1,c =ln3>1,所以a <b <c ;故A 正确; 对于B ,a 6=(312)6=27,b 6=(√63)6=36>27∴a <b c =log 47,∵32=log 4432,∵(32)3=278,b 3=6>278∴b >32(432)2=64>72=49∴c <32,∴c <b ∵a >32∴c <a 最终为:c <a <b .故B 错误;对于C ,b =log 20.3<0,a =0.32=0.09<1,c =20.3>20=1∴b <a <c ;故C 错误; 对于D ,当log 12a >log 12b >0时,∵y =log 12x 在定义域内是减函数,故得到0<a<b<1,∵y=a x是减函数,故得到a b<a a,又因为y=xα在x>0时是增函数,故得到a a< b a,故D正确.故选:AD.填空题14、把满足log23×log34×⋅⋅⋅×log n+1(n+2),n∈N∗为整数的n叫作“贺数”,则在区间(1,50)内所有“贺数”的个数是______.答案:4分析:利用换底公式计算可得log23×log34×⋅⋅⋅×log n+1(n+2)=log2(n+2),即可判断.解:因为log23×log34×⋅⋅⋅×log n+1(n+2)=lg3lg2×lg4lg3×⋅⋅⋅×lg(n+2)lg(n+1)=lg(n+2)lg2=log2(n+2),又log24=2,log28=3,log216=4,log232=5,log264=6,……,所以当n+2=4,8,16,32时,log2(n+2)为整数,所以在区间(1,50)内“贺数”的个数是4.所以答案是:415、函数f(x)=2√2−x+lg(x+3)的定义域为______.答案:(−3,2)分析:根据给定函数有意义列出不等式组,求解即可得原函数定义域.函数f(x)=2√2−x lg(x+3)有意义,则有{2−x>0x+3>0,解得−3<x<2,所以函数f(x)的定义域为(−3,2).所以答案是:(−3,2)16、牛奶中细菌的标准新国标将最低门槛(允许的最大值)调整为200万个/毫升,牛奶中的细菌常温状态下大约20分钟就会繁殖一代,现将一袋细菌含量为3000个/毫升的牛奶常温放置于空气中,经过________分钟就不宜再饮用.(参考数据:lg2≈0.301,lg3≈0.477)答案:188分析:根据题意列出不等式计算即可.设经过x 个周期后细菌含量超标, 即3000×2x >2000000,即2x >20003,所以x >log 220003=lg2000−lg3lg2=lg2+3−lg3lg2≈9.4,而20×9.4=188,因此经过188分钟就不宜再饮用. 所以答案是:188. 解答题17、对于定义在区间[m,n ]上的两个函数f (x )和g (x ),如果对任意的x ∈[m,n ],均有|f (x )−g (x )|≤1成立,则称函数f (x )与g (x )在[m,n ]上是“友好”的,否则称为“不友好”的.已知函数f (x )=log a (x −3a ),g (x )=log a 1x−a (a >0,a ≠1).(1)若f (x )与g (x )在区间[a +2,a +3]上都有意义,求a 的取值范围; (2)讨论函数f (x )与g (x )在区间[a +2,a +3]上是否“友好”. 答案:(1)(0,1) (2)答案见解析分析:(1)由题意解不等式组{a +2−3a >0a +2−a >0即可;(2)假设存在实数a ,使得f (x )与g (x )在区间[a +2,a +3]上是“友好”的,即|f (x )−g (x )|=|log a (x 2−4ax +3a 2)|≤1,即−1≤log a (x 2−4ax +3a 2)≤1,只需求出函数y =log a (x 2−4ax +3a 2)在区间[a +2,a +3]上的最值,解不等式组即可. (1)若f (x )与g (x )在区间[a +2,a +3]上都有意义,则必须满足{a +2−3a >0a +2−a >0,解得a <1,又a >0且a ≠1,所以a 的取值范围为(0,1). (2)假设存在实数a ,使得f (x )与g (x )在区间[a +2,a +3]上是“友好”的,则|f (x )−g (x )|=|log a (x 2−4ax +3a 2)|≤1,即−1≤log a (x 2−4ax +3a 2)≤1,因为a ∈(0,1),则2a ∈(0,2),a +2>2,所以[a +2,a +3]在x =2a 的右侧,由复合函数的单调性可得y=log a(x2−4ax+3a2)在区间[a+2,a+3]上为减函数,从而当x=a+2时,y max=log a(4−4a),当x=a+3时,y min=log a(9−6a),所以{log a(4−4a)≤1log a(9−6a)≥−10<a<1,即{4−4a≥a9a−6a2−1≤00<a<1,解得0<a≤9−√5712,所以当0<a≤9−√5712时,f(x)与g(x)在区间[a+2,a+3]上是“友好”的;当9−√5712<a<1时,f(x)与g(x)在区间[a+2,a+3]上是“不友好”的.18、近年来,中美贸易摩擦不断,美国对我国华为百般刁难,并拉拢欧美一些国家抵制华为5G,然而这并没有让华为却步.今年,我国华为某企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本250万元,每生产x千部手机,需另投入成本R(x)万元,且R(x)={10x2+100x,0<x<40701x+10000x −9450,x≥40,由市场调研知,每部手机的售价为0.7万元,且全年内生产的手机当年能全部销售完.(1)求2020年的利润W(x)(万元)关于年产量x(千部)的函数关系式(利润=销售额-成本).(2)2020年产量为多少时,企业所获利润最大?最大利润是多少.答案:(1)W(x)={−10x2+600x−250,0<x<40−(x+10000x)+9200,x≥40;(2)2020年产量为100千部时,企业所获得利润最大,最大利润为9000万元.分析:(1)根据2020年的利润等于年销售量减去固定成本和另投入成本,分段求出利润W(x)关于x的解析式;(2)根据(1)求出利润W(x)的函数解析式,分别利用二次函数的性质和基本不等式求得每段的最大值,即可得到结论.(1)解:由题意可知,2020年的利润定于年销售额减去固定成本和另投入成本,当0<x<40时,W(x)=0.7×1000x−(10x2+100x)−250=−10x2+600x−250当x≥40时,W(x)=0.7×1000x−(701x+10000x −9450)−250=−(x+10000x)+9200,所以W(x)={−10x2+600x−250,0<x<40−(x+10000x)+9200,x≥40.(2)当0<x<40时,W(x)=−10x2+600x−250=−10(x−30)2+8750,此时函数W(x)开口向上的抛物线,且对称轴为x=30,所以当x=30时,W(x)max=W(30)=8750(万元);当x≥40时,W(x)=−(x+10000x)+9200,因为x+10000x ≥2√x⋅10000x=200,当且仅当x=10000x即x=100时,等号成立,即当x=100时,W(x)max=W(100)=−200+9200=9000(万元),综上可得,当x=100时,W(x)取得最大值为9000(万元),即2020年产量为100千部时,企业获利最大,最大利润为9000万元.。
高中数学第四章指数函数与对数函数专项训练(带答案)
高中数学第四章指数函数与对数函数专项训练单选题1、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN).它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至4000,则C大约增加了()附:lg2≈0.3010A.10%B.20%C.50%D.100%答案:B分析:根据题意,计算出log24000log21000的值即可;当SN =1000时,C=Wlog21000,当SN=4000时,C=Wlog24000,因为log24000log21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.2、已知a=log20.2,b=20.2,c=0.20.3,则A.a<b<c B.a<c<b C.c<a<b D.b<c<a答案:B分析:运用中间量0比较a,c,运用中间量1比较b,ca=log20.2<log21=0,b=20.2>20=1,0<0.20.3<0.20=1,则0<c<1,a<c<b.故选B.小提示:本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.3、设4a=3b=36,则1a +2b=()A.3B.1C.−1D.−3答案:B分析:先求出a =log 436,b =log 336,再利用换底公式和对数的运算法则计算求解. 因为4a =3b =36,所以a =log 436,b =log 336, 则1a =log 364,2b =log 369,所以则1a+2b =log 364+log 369=log 3636=1.故选:B.4、若ln2=a ,ln3=b ,则log 818=( ) A .a+3b a 3B .a+2b 3aC .a+2b a 3D .a+3b 3a答案:B分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B5、下列说法正确的个数是( )(1)49的平方根为7; (2)√a n n=a (a ≥0); (3)(a b )5=a 5b 15; (4) √(−3)26=(−3)13. A .1B .2 C .3D .4 答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a 5b −5;(4)符号错误 49的平方根是±7,(1)错;(2)显然正确;(a b )5=a 5b −5,(3)错;√(−3)26=313,(4)错,正确个数为1个, 故选:A6、关于函数f (x )={2x −a,0≤x <2b −x,x ≥2,其中a,b ∈R ,给出下列四个结论:甲:6是该函数的零点; 乙:4是该函数的零点;丙:该函数的零点之积为0; 丁:方程f (x )=52有两个不等的实根若上述四个结论中有且只有一个结论错误,则该错误的结论是( ) A .甲B .乙C .丙D .丁 答案:B分析:由已知函数的单调性判断甲乙中有一个结论错误,假设甲正确,结合丙正确求得a,b 的值,得到函数解析式,再说明丁正确,则答案可求. 当x ∈[0,2)时,f (x )=2x −a 为增函数,当x ∈[2,+∞),f (x )=b −x 为减函数,故6和4只有一个是函数的零点, 即甲乙中有一个结论错误,一个结论正确,故丙丁均正确. 由两零点之积为0,则必有一个零点为0, 则f (0)=20−a =0⇒a =1,①若甲正确,则f (6)=0,即b −6=0,则b =6, 可得f (x )={2x −1,0≤x <26−x,x ≥2,由f (x )=52可得:{0≤x <22x−1=52或{x ≥26−x =52, 解得:x =log 272或x =72,方程f (x )=52有两个不等的实根, 故丁正确,故甲正确,乙错误.②若乙正确,则f (4)=0,即b −4=0,则b =4, 可得f (x )={2x −1,0≤x <24−x,x ≥2,由f (x )=52可得:{0≤x <22x−1=52或{x ≥24−x =52, 解得:x =log 272,方程f (x )=52只有一个实根, 故丁错误,不满足题意. 故甲正确,乙错误. 故选:B.7、已知函数f(x)={log 12x,x >0,a ⋅(13)x,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞) 答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围. 令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x=0,此时函数有无数个零点,不符合题意;当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1,则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件; 当a >0时,要使直线y =1与y =f(x)的图象只有一个交点, 则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点, 因为x ≤0 时,f (x )=a ⋅(13)x∈[a,+∞),此时f (x ) 最小值为a , 所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞), 故选:B.8、(32)12−100的值为( ) A .﹣2B .2C .﹣4D .4 答案:B解析:利用指数幂的运算性质可得计算结果. 解:(32)12−100=3−1=2. 故选:B . 多选题9、当0<x ≤12时,4x ≤log a x ,则a 的值可以为( ) A .√22B .√32C .√63D .√2 答案:ABC分析:分a >1和0<a <1,分别作函数f(x)=4x 与g(x)=log a x 的图象,观察在x =12处的函数值关系可解. 分别记函数f(x)=4x ,g(x)=log a x 由图1知,当a >1时,不满足题意;当0<a <1时,如图2,要使0<x ≤12时,不等式4x≤log a x 恒成立,只需满足f(12)≤g(12),即412≤log a 12,即2≤log a 12,解得√22≤a <1.故选:ABC10、某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( )A .该单位每月处理量为400吨时,才能使每吨的平均处理成本最低B .该单位每月最低可获利20000元C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40000元才能使该单位不亏损 答案:AD分析:根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案.由题意可知,二氧化碳每吨的平均处理成本为yx =12x +80000x−200≥2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时等号成立,故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A 正确; 设该单位每月获利为S 元,则S =100x −y =100x −(12x 2+80000−200x)=−12x 2+300x −80000=−12(x −300)2−35000, 因为x ∈[400,600], 所以S ∈[−80000,−40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D 正确,BC 错误, 故选:AD小提示:本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题. 11、下列四个等式正确的是( ) A .lg (lg10)=0B .lg (lne )=0C .若lgx =10,则x =10D .若lnx =e ,则x =e 2 答案:AB分析:根据对数式与指数式的互化,对数的运算对各选项作出判断. 对于A ,因为lg10=1,所以lg (lg10)=0,故A 正确; 对于B ,因为lne =1,所以lg(lne)=0,故B 正确; 对于C ,若lgx =10,则x =1010,故C 错误; 对于D ,若lnx =e ,则x =e e ,故D 错误. 故选:AB.小提示:本题主要考查了对数式与指数式的互化,对数的运算,属于基础题. 12、已知实数x,y,z 满足2a =log 2b =1c ,则下列关系式中可能成立的是( )A .b =c >aB .c =a >bC .b >c >aD .c >b >a 答案:ACD分析:根据2a =log 2b =1c,令y 1=2x ,y 2=log 2x ,y 3=1x,在同一坐标系作出函数图象求解.因为2a =log 2b =1c ,令y1=2x,y2=log2x,y3=1x,记y1=2x与y3=1x 交点纵坐标为m,y2=log2x与y3=1x交点纵坐标为t,当y=t时,A正确;当y=m时,B错误;当t<y<m时,C正确当y<t时,D正确故选:ACD13、在同一坐标系中,f(x)=kx+b与g(x)=log b x的图象如图,则下列关系不正确的是()A.k<0,0<b<1B.k>0,b>1C.f(1x)>0(x>0),g(x)>0(x>0)D.x>1时,f(x)−g(x)>0答案:ABC分析:根据图象确定k,b的取值范围,结合图像判断CD选项的正确性.由图象可知k>0,0<b<1,所以AB选项错误.当x>1时,g(x)<0,所以C选项错误.当x>1时,f(x)>0,g(x)<0,所以f(x)−g(x)>0,所以D选项正确.故选:ABC 填空题14、若alog 43=12,则3a +9a =___________; 答案:6分析:首先利用换底公式表示a =log 32,再代入3a +9a 求值.由条件得a =12log 34=log 32,所以3a +9a =3log 32+9log 32=3log 32+3log 34=2+4=6. 所以答案是:6 15、函数f (x )=3x −3−x 3x +3−x+2,若有f (a )+f (a -2)>4,则a 的取值范围是________.答案:(1,+∞)分析:构造函数F (x )=f (x )-2,则f (a )+f (a -2)>4等价于F (a )+F (a -2)>0,分析F (x )奇偶性和单调性即可求解.设F (x )=f (x )-2,则F (x )=3x −3−x3x +3−x ,易知F (x )是奇函数,F (x )=3x −3−x3x +3−x =32x −132x +1=1-232x +1在R 上是增函数,由f (a )+f (a -2)>4得F (a )+F (a -2)>0, 于是可得F (a )>F (2-a ),即a >2-a ,解得a >1. (1,+∞)16、已知函数f(x)={x +1,x ≤0,log 2x,x >0则函数y =f [f (x )]的所有零点之和为___________.答案:12分析:利用分段函数,分类讨论,即可求出函数y =f [f (x )]的所有零点,从而得解.解:x ⩽0时,x +1=0,x =−1,由f(x)=−1,可得x +1=−1或log 2x =−1,∴x =−2或x =12;x >0时,log 2x =0,x =1,由f(x)=1,可得x +1=1或log 2x =1,∴x =0或x =2; ∴函数y =f [f (x )]的所有零点为−2,12,0,2,所以所有零点的和为−2+12+0+2=12 所以答案是:12. 解答题17、运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 答案:(1) y =130×18x+2×130360x ,x ∈[50,100] (或y =2340x+1318x ,x ∈[50,100]).(2) 当x =18√10千米/时,这次行车的总费用最低,最低费用的值为26√10元.分析:(1)先确定所用时间,再乘以每小时耗油与每小时工资的和得到总费用表达式,(2)利用基本不等式求最值即得结果. (1)设所用时间为t =130x(h),y =130x×2×(2+x 2360)+14×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x+2×130360x ,x ∈[50,100](或y =2340x+1318x ,x ∈[50,100]).(2)y =130×18x+2×130360x ≥26√10, 当且仅当130×18x=2×130360x ,即x =18√10时等号成立.故当x =18√10千米/时,这次行车的总费用最低,最低费用的值为26√10元.小提示:本题考查函数解析式以及利用基本不等式求最值,考查综合分析求解能力,属中档题. 18、(1)(log 37+log 73)2−log 949log 73−(log 73)2;(2)log √39+12lg25+lg2−log 49×log 38+2log 23−1+ln √e . 答案:(1)2;(2)4.分析:(1)将(log 37+log 73)2展开再根据对数的运算求解; (2)根据对数的运算求解即可.解:(1)原式=(log 37)2+(log 73)2+2log 37×log 73−log 37log 73−(log 73)2=(log 37)2+2−(log 37)2=2.(2)原式=log 31232+12lg52+lg2−log 2232×log 323+2log 232+lne 12=4log 33+lg5+lg2−log 23×3log 32+32+12 =4+lg (5×2)−3+2=4+1−1=4.。
高中数学必修一第四章指数函数与对数函数典型例题(带答案)
高中数学必修一第四章指数函数与对数函数典型例题单选题1、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x −2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.2、函数f(x)=2x −1x 的零点所在的区间可能是( ) A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916). 故选:D .4、函数y =2x −2−x ( )A .是R 上的减函数B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数, 故函数y =2x −2−x 是R 上的增函数. 故选:B.5、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果. 若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 6、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+aB .a+b 1−aC .a−b 1+aD .a−b 1−a答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b 1−a.故选:B .8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、已知函数f (x )={e x −1,x ≥a,−(x +1)2,x <a (a ∈R ) ,则( ) A .任意a ∈R ,函数f (x )的值域为R B .任意a ∈R ,函数f (x )都有零点C .任意a ∈R ,存在函数g (x )满足g (−|x |)=f (x )D .当a ∈(−∞,−4]时,任意x 1≠x 2,(x 1−x 2)(f (x 1)−f (x 2))>0答案:BD分析:画出分段函数图像,根据图像逐项分析即可得到结果设函数y=e x−1和y=−(x+1)2的左右两交点坐标为(x1,y1),(x2,y2)对于选项A,由图像可知,当a<x1时,f(x)的值域不为R,故A错误对于选项B,由图像可知,无论a取何值,函数f(x)都有零点,故B正确对于选项C,当x>0时g(−|x|)=g(−x),g(−|−x|)=g(−x)由图像可知f(−x)≠f(x)所以不存在函数g(x)满足g(−|x|)=f(x)对于选项D,若x1<a,x2<a,因为y=−(x+1)2为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立若x1>a,x2>a因为y=e x−1为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立当x1,x2不在同一区间时,因为a∈(−∞,−4],所以y=e x−1(x>a)的图像在y=−(x+1)2(x<a)的图像的上方,所以也满足对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立故D正确故选:BD10、已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0其中有可能成立的关系式有()A.①B.②⑤C.②③D.④答案:AB分析:画出指数函数y=2x,y=3x的图象,利用单调生即可得出答案.如图所示,数y=2x,y=3x的图象,由图象可知:( 1 ) 当时x>0,若2a=3b,则a>b;( 2 ) 当x=0时,若2a=3b,则a=b=0;( 3 ) 当x<0时,若2a=3b,则a<b.综上可知,有可能成立的关系式是①②⑤ .故选:AB11、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−2×0.5)x≥22.4,解得x的范围,可得答案.0.2依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,×0.5万册,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2则该杂志销售收入为(10−x−2×0.5)x万元,0.2所以(10−x−2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,0.2故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x (x >2)元时的发行量是解题关键. 填空题 12、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒ 原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2 =(1+1232)(1+1216)(1+128)×(1−128)×2 =(1+1232)(1+1216)×(1−1216)×2 =(1+1232)×(1−1232)×2 =(1−1264)×2 =2−1263所以答案是:2−1263﹒13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、写出一个同时具有下列性质①②③的函数f(x)=________.①定义域为R;②值域为(−∞,1);③对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.答案:f(x)=1−12x(答案不唯一)分析:直接按要求写出一个函数即可.f(x)=1−12x ,定义域为R;12x>0,f(x)=1−12x<1,值域为(−∞,1);是增函数,满足对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.所以答案是:f(x)=1−12x(答案不唯一).解答题15、已知函数f(x)=1−2a|x|+1(a>0,a≠1).(1)判断f(x)的奇偶性并证明;(2)若f(x)在[−1,1]上的最大值为13,求a的值.答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值.解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。
(精选试题附答案)高中数学第四章指数函数与对数函数经典大题例题
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数经典大题例题单选题1、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为()A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x 与y 3=10−x =(110)x是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A .故选:A2、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( )A .−1或2B .−1C .2D .12 答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值.由题意可得{m 2−m −1=1m >0m ≠1,解得m =2. 故选:C.3、已知函数f(x)=2x −x −1,则不等式f(x)>0的解集是( ).A .(−1,1)B .(−∞,−1)∪(1,+∞)C .(0,1)D .(−∞,0)∪(1,+∞)答案:D分析:作出函数y =2x 和y =x +1的图象,观察图象可得结果.因为f (x )=2x −x −1,所以f (x )>0等价于2x >x +1,在同一直角坐标系中作出y =2x 和y =x +1的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式2x>x+1的解为x<0或x>1.所以不等式f(x)>0的解集为:(−∞,0)∪(1,+∞). 故选:D.小提示:本题考查了图象法解不等式,属于基础题.4、已知函数f(x)=11+2x,则对任意实数x,有()A.f(−x)+f(x)=0B.f(−x)−f(x)=0C.f(−x)+f(x)=1D.f(−x)−f(x)=13答案:C分析:直接代入计算,注意通分不要计算错误.f(−x)+f(x)=11+2−x +11+2x=2x1+2x+11+2x=1,故A错误,C正确;f(−x)−f(x)=11+2−x −11+2x=2x1+2x−11+2x=2x−12x+1=1−22x+1,不是常数,故BD错误;故选:C.5、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I 1,高速列车的声强为I 2,由声强级得95=10lg (I 110−12),45=10lg (I 210−12),求出I 1、I 2相除可得答案.设普通列车的声强为I 1,高速列车的声强为I 2,因为普通列车的声强级是95dB ,高速列车的声强级为45dB ,所以95=10lg (I 110−12),45=10lg (I210−12), 95=10lg (I110−12)=10(lgI 1+12),解得−2.5=lgI 1,所以I 1=10−2.5, 45=10lg (I210−12)=10(lgI 2+12),解得−7.5=lgI 2,所以I 2=10−7.5, 两式相除得I 1I 2=10−2.510−7.5=105, 则普通列车的声强是高速列车声强的105倍.故选:B.6、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( ) A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2)答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13,∴a 的取值范围是(0,13].故选:C .7、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg 101≈2.0043,lg 99≈1.9956) ( )天.A .200天B .210天C .220天D .230天答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x =1.01x ,即(1.010.99)x =100,∴x =log 1.010.99100=lg 100lg 1.010.99=lg 100lg 10199=2lg 101−lg 99 ≈22.0043−1.9956=20.0087≈230.故选:D .8、若函数f (x )=ln(ax +√x 2+1)是奇函数,则a 的值为( )A .1B .-1C .±1D .0答案:C分析:根据函数奇函数的概念可得ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0,进而结合对数的运算即可求出结果.因为f (x )=ln(ax +√x 2+1)是奇函数,所以f (-x )+f (x )=0.即ln(−ax +√x 2+1)+ln(ax +√x 2+1)=0恒成立,所以ln [(1−a 2)x 2+1]=0,即(1−a 2)x 2=0 恒成立,所以1−a 2=0,即a =±1.当a =1时,f (x )=ln(x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意;当a =−1时,f (x )=ln(−x +√x 2+1),定义域为R ,且f (−x )+f (x )=0,故符合题意;故选:C.9、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN),它表示:在受噪声干扰的信道中,最大信息传递速率C取决于信道带宽W、信道内信号的平均功率S、信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至5000,则C大约增加了()(附:lg2≈0.3010)A.20%B.23%C.28%D.50%答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解.将信噪比SN 从1000提升至5000时,C大约增加了Wlog2(1+5000)−Wlog2(1+1000)Wlog2(1+1000)=log25001−log21001log21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B.10、若n<m<0,则√m2+2mn+n2−√m2−2mn+n2等于()A.2m B.2n C.−2m D.−2n答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m+n|−|m−n|,∵n<m<0,∴m+n<0,m−n>0,∴原式=−(m+n)−(m−n)=−2m.故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可. 填空题11、已知0<a<1,化简:√a43−2a+a23=______.答案:a 13−a23分析:根据指数幂的基本运算结合指数函数的性质即可求解.解:√a 43−2a +a 23=√(a 23−a 13)2=|a 23−a 13|, 因为0<a <1,23>13,所以a 23<a 13,所以√a 43−2a +a 23=a 13−a 23. 所以答案是:a 13−a 23. 12、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果. √a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34,所以答案是:a 34.13、设x 13=2,则√x 53⋅x −1=___________.答案:4分析:由根式与有理数指数幂的关系,结合指数幂的运算性质,求值即可.由√x 53⋅x −1=x 53⋅x −1=x 23=(x 13)2=22=4. 所以答案是:4.14、若log 2[log 3(log 4x )]=0,则x =________.答案:64分析:利用对数的运算性质以及指数式与对数式的互化即可求解.log 2[log 3(log 4x )]=0⇒log 3(log 4x )=1⇒log 4x =3⇒x =43=64.所以答案是:64小提示:本题考查了对数的运算性质以及指数式与对数式的互化,考查了基本运算求解能力,属于基础题.15、已知10p =3,用p 表示log 310=_____.答案:1p ##p −1 分析:根据指数和对数的关系,以及换底公式,分析即得解.∵10p =3,∴p =lg3,∴log 310=1g101g3=11g3=1p . 所以答案是:1p .解答题16、已知函数f (x )=ax 2+bx +1(a ≠0)的图象关于直线x =1对称,且函数y =f (x )+2x 为偶函数,函数g (x )=1−2x .(1)求函数f (x )的表达式;(2)求证:方程f (x )+g (x )=0在区间[0,1]上有唯一实数根;(3)若存在实数m ,使得f (m )=g (n ),求实数n 的取值范围.答案:(1)f (x )=(x −1)2(2)证明见解析(3)(−∞,0]分析:(1)根据二次函数的对称轴以及奇偶性即可求解a,b ,进而可求解析式,(2)根据函数的单调性以及零点存在性定理即可判断,(3)将条件转化为函数值域,即可求解.(1)∵f (x )=ax 2+bx +1的图象关于直线x =1对称,∴−b 2a =1⇒b =−2a .又y =f (x )+2x =ax 2+(b +2)x +1为偶函数,∴b =−2,a =1.∴f (x )=x 2−2x +1=(x −1)2.(2)设ℎ(x )=f (x )+g (x )=(x −1)2+1−2x ,∵ℎ(0)=1>0,ℎ(1)=−1<0,∴ℎ(0)·ℎ(1)<0.又f (x )=(x −1)2,g (x )=1−2x 在区间[0,1]上均单调递减,∴ℎ(x )在区间[0,1]上单调递减,∴ℎ(x )在区间[0,1]上存在唯一零点.∴方程f (x )+g (x )=0在区间[0,1]上有唯一实数根.(3)由题可知f (x )=(x −1)2≥0,g (x )=1−2x <1,若存在实数m ,使得f (m )=g (n ),则g (n )∈[0,1),即1−2n ≥0,解得n ≤0.∴n 的取值范围是(−∞,0].17、已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )是二次函数,其图象与x 轴交于A (1,0),B (3,0)两点,与y 轴交于C (0,6).(1)求f (x )的解析式;(2)若方程f (x )−2a +2=0有两个不同的实数根,求a 的取值范围.答案:(1)f (x )={2x 2−8x +6,x ≥0,2x 2+8x +6,x <0.(2){0}∪(4,+∞)分析:(1)当x ≥0时,利用待定系数法得到f (x )=2x 2−8x +6,再使用奇偶性,得出f (x )=2x 2+8x +6(x <0)即可;(2)利用数形结合解决.(1)依题意可设,当x ≥0时,f (x )=k (x −1)(x −3).由f (0)=6,得3k =6,∴k =2,∴f (x )=2(x −1)(x −3)=2x 2−8x +6(x ≥0).当x <0时,−x >0,则f (−x )=2x 2+8x +6.又f (x )是偶函数,∴f (−x )=f (x ),∴f (x )=2x 2+8x +6(x <0).∴f (x )={2x 2−8x +6,x ≥0,2x 2+8x +6,x <0.(2)依题意知f (x )=2a −2有两个不同的实数根,即y =f (x )与y =2a -2在同一坐标系中的图象有两个不同的交点. 作出函数f (x )的图象,如图所示.由图,可知只需满足条件2a -2=-2或2a −2>6,∴a =0或a >4,即实数a 的取值范围是{0}∪(4,+∞).18、(1)求值:[(−3)2]32+0.125−13+(√23)6−(37)0(2)化简4√a 23⋅b −13÷(−23a −13b −13) 答案:(1)32;(2)−6a分析:(1)根据指数幂的运算性质即可得解.(2)根据指数幂的运算性质即可得解.(1)原式=(32)32+(0.53)−13+(213)6−1=33+0.5−1+22−1=27+2+4−1=32 (2)原式=4a 23⋅b −13−23a −13b −13=4×(−32)a 23+13⋅b −13+13=−6a ⋅b 0=−6a19、已知a 12+a −12=3,求下列各式的值.(1)a +a −1;(2)a 2+a −2;(3)a 32+a −32+2a 2+a −2+3.答案:(1)7(2)47(3)25 分析:(1)将所给的等式两边平方,整理即可求得a +a −1的值;(2)将(1)中所得的结果两边平方,整理即可求得a 2+a −2的值;(3)首先利用立方差公式可得a 32+a −32=(a 12+a −12)(a −1+a −1),然后结合(1)(2)的结果即可求得代数式的值.(1)将a 12+a −12=3两边平方,得a +a −1+2=9,所以a +a −1=7.(2)将a +a −1=7两边平方,得a 2+a −2+2=49,所以a 2+a 2=47.(3)∵a 12+a −12=3,a +a −1=7,a 2+a 2=47,∴a32+a−32=(a12)3+(a−12)3=(a12+a−12)(a−1+a−1)=3×(7−1)=18,∴a 32+a−32+2a2+a−2+3=18+247+3=25.。
高中试卷-第四章 指数与对数函数-综合检测卷(培优解析版)(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第四章 指数与对数函数本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.设函数211log (2)(1)()2(1)x x x f x x -+-<ì=í³î,则()()22log 12f f -+=( )A .3B .6C .9D .12【答案】C 【解析】:函数211log (2),1()2,1x x x f x x -+-<ì=íî…,即有2(2)1log (22)123f -=++=+=,221log 12l g 122o 11(log 12)2212622f -==´=´=,则有2(2)(log 12)369f f -+=+=.故选:C.2.已知113xy æö=ç÷èø,23x y =,310x y -=,410x y =,则在同一平面直角坐标系内,它们的图象大致为( )A .B .C .D .【答案】A【解析】23x y =与410xy =是增函数,113x y æö=ç÷èø与311010x x y -æö==ç÷èø是减函数,在第一象限内作直线1x =,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A .故选:A 3.设函数()ln(2)ln(2)=+--f x x x ,则f (x )是( )A .奇函数,且在(0,2)上是增函数B .奇函数,且在(0,2)上是减函数C .偶函数,且在(0,2)上是增函数D .偶函数,且在(0,2)上是减函数【答案】A【解析】依题意,2020x x +>ìí->î,解得22x -<<,即f (x )的定义域为(-2,2),因()()()()ln 2ln 2f x x x f x -=--+=-,则f (x )是奇函数,又()ln 2y x =+在(0,2)上单调递增,()ln 2y x =-在(0,2)上单调递减,则()ln 2y x =--在(0,2)上单调递增,所以f (x )在(0,2)上单调递增.故选:A4.若函数()22log 1,11()2,1x x f x x ax x ì+-<£=í->î的值域为R ,则a 的取值范围是( )A .[]22-,B .(],2-¥C .[]0,1D .[)0,¥+【答案】D【解析】:由11x -<£时,()2()log 1(,1]f x x =+Î-¥,因为函数()f x 的值域为R ,所以当1x >时,[)21,()2f x x ax +¥Í=-, 分两种情况讨论:①当1a £时, 22x ax -12a >-,所以只需121a -£,解得0a ³,所以01a ££;②当1a >时,()22min 2x ax a -=-,所以只需21a -£,显然成立,所以1a >.综上,a 的取值范围是[0,)+¥.故选:D.5.已知函数()113x f x -æö=ç÷èø,设51(log )6a f =,1()2b f =,32(2)c f =,则a b c ,,的大小关系为( )A .a c b<<B .a b c <<C .c b a <<D .c a b<<【答案】A 【解析】可知()f x 在(,1)-¥上单调递增,(1,)+¥上单调递减,且图像关于1x =对称5511log log 165<=-,而32223<<可得a c b <<故选:A6.已知函数()()2lg 1f x x ax a =+--,给出下述论述,其中正确的是( )A .当0a =时,()f x 的定义域为()(),11,-¥-È+¥B .()f x 一定有最小值C .当0a =时,()f x 的定义域为RD .若()f x 在区间[)2,+¥上单调递增,则实数a 的取值范围是{}4a a ³-【答案】A【解析】对A ,当0a =时,解210x ->有()(),11,x Î-¥-È+¥,故A 正确;对B ,当0a =时,()()2lg 1f x x =-,此时()(),11,x Î-¥-È+¥,()210,x -Î+¥,此时()()2lg 1f x x =-值域为R ,故B 错误;对C ,由A ,()f x 的定义域为()(),11,-¥-È+¥,故C 错误;对D ,若()f x 在区间[)2,+¥上单调递增,此时21y x ax a =+--在[)2,+¥上单调递增,所以对称轴22a x =-£,解得4a ³-,但当4a =-时,()()2lg 43f x x x =-+在2x =处无定义,故D 错误.故选:A.7.已知函数()()e 2,1ln 1,1x x f x x x -ì-£ï=í->ïî,则函数()()()21g x f f x f x =-+éùëû的零点个数是( )A .4B .5C .6D .7【答案】B 【解析】令()t f x =,()0g x =,则()210f t t -+=,即()21f t t =-,分别作出函数()y f t =和直线21y t =-的图象,如图所示,由图象可得有两个交点,横坐标设为1t ,2t ,则10t =,212t <<,对于()t f x =,分别作出函数()y f x =和直线2y t =的图象,如图所示,由图象可得,当()10f x t ==时,即方程()0f x =有两个不相等的根,当()2t f x =时,函数()y f x =和直线2y t =有三个交点,即方程()2t f x =有三个不相等的根,综上可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+éùëû的零点个数是5.故选:B.8.已知函数2,0()2,0x x f x x x x -£ì=í-+>î,若方程21()()08f x bf x ++=有六个相异实根,则实数b 的取值范围( )A .12,2æö--ç÷èøB .()2,0-C .91,82æö--ç÷èøD.9,8æ-ççè【答案】D 【解析】()f x 的图像如图所示:则要使方程21()()08f x bf x ++=有六个相异实根即使2108t bt ++=在(0,1)t Î上有两个相异实根;则21020121108b b b ìD =->ïïï<-<íïï++>ïî解得:98b -<<故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()223,0ln 2,0x x x f x x x ì+-£=í->î,则下列说法正确的是( )A .[](1)3f f =-B .()f x 的值域为R C .方程()f x k =最多只有两个实数解D .方程[]()0f f x =有5个实数解【答案】ABD【解析】[]()()(1)ln1223f f f f =-=-=-,故A 正确.()0f x =等价于20230x x x £ìí+-=î或0ln 20x x >ìí-=î,故3x =-或2e x =,故方程()0f x =有2个实数解,下面考虑[]()0f f x =的解,令()t f x =,则()0f t =的解为3t =-或2e t =,再考虑()3f x =-或()2e f x =的解,即20233x x x £ìí+-=-î或22023ex x x £ìí+-=î或0ln 23x x >ìí-=-î或20ln 2e x x >ìí-=î,故2x =-或0x =或1x =-1ex =或22e e x +=,共5个不同的解,故D 正确.()f x 的图象如图所示:由图象可得()f x 的值域为R ,故B 正确.当43k -<£-时,直线y k =与()y f x =的交点个数为3,故此时()f x k =有3个不同的实数根,故C 错误.故选:ABD.10.定义在R 上的函数()y f x =满足在(]0,1上单调递增,()()33f x f x +=-,且图象关于点()4,0对称,则下列选项正确的是( )A .()00f =B .()()()202020212022f f f <<C .()y f x =在[]1,3上单调D .函数()f x 在[]0,2022上可能有2023个零点【答案】AC【解析】()()33f x f x +=-所以()y f x =的对称轴为3x =,且()()6f x f x +=-,又()y f x =图象关于点()4,0对称,则()()44f x f x +=--,所以()()8f x f x +=--,()()86f x f x +=-+,所以()()2f x f x +=-,所以()()4f x f x +=,所以()y f x =的周期为4,所以()0,0为()y f x =的对称中心,所以()y f x =奇函数,且定义域为R ,所以()00f =,所以A 正确;根据周期性()()()()()()20200,20211,20222f f f f f f ===,且()()400f f ==,又()y f x =对称轴为3x =,所以()()240f f ==,且函数()y f x =满足在(]0,1上单调递增,所以()()()021f f f =<,所以()()()202020222021f f f =<,所以B 错误;函数()y f x =满足在(]0,1上单调递增,且周期为4,所以函数()y f x =满足在(]4,5上单调递增,又()y f x =图象关于点()4,0对称,所以()y f x =在(]3,4单调递增,又()y f x =对称轴为3x =,所以()y f x =在(]2,3单调递减,且()y f x =在(]1,2单调递减,且()20f =,所以()y f x =在[]1,3单调递减,所以C 正确;对于D ,()y f x =在[)0,4上有且仅有2个零点,且周期为4,()y f x =在[)0,2020上有且仅有1010个零点,在[]2020,2022上有且仅有2个零点,函数()f x 在[]0,2022上可能有1012个零点,所以D 错误.故选:AC.11.已知函数()2()lg f x x ax a =+-,下列说法中正确的是( )A .若()f x 的定义域为R ,则40a -££B .若()f x 的值域为R ,则4a £-或0a ³C .若2a =,则()f x 的单调减区间为()1-¥-,D .若()f x 在()21--,上单调递减,则12a £【答案】BD 【解析】对于A ,若()f x 的定义域为R ,则20x ax a +->在R 上恒成立,所以240a a +<,所以40a -<<,所以A 错误;对于B ,若()f x 的值域为R ,则240a a +³,所以0a ³或4a £-,所以B 正确:对于C ,若2a =,则()2()lg 22f x x x =+-,函数的定义域为(,1(1)-¥--+¥U ,设222,lg u x x v u =+-=,即求函数222u x x =+-的减区间,由复合函数的单调性原理得函数的单减区间为(,1-¥-,所以C 错误;对于D ,若()f x 在(2,1)--上单调递减,则2(1)(1)0a a -+--³且12a -³-,所以12a £,所以D 正确.故选:BD12.已知函数()221,0log 1,0x x f x x x ì+£ï=í->ïî,则方程()()22210f x f x a -+-=的根的个数可能为( )A .2B .6C .5D .4【答案】ACD【解析】画出()f x的图象如图所示:令()t f x =,则22210t t a -+-=,则24(2)a D =-,当0D =,即22a =时,1t =,此时()1f x =,由图1y =与()y f x =的图象有两个交点,即方程()()22210f x f x a -+-=的根的个数为2个,A 正确;当0D >时,即22a <时,1t =±,则0<£故111<£111-£-<,当1t =()1f x =(1,1)Î-,则x 有2解,当1t =+t (1,2]Î,则x 有3解;若t (2,1Î,则x 有2解,故方程()()22210f x f x a -+-=的根的个数为5个或4个,CD 正确;故选:ACD三 填空题:本题共4小题,每小题5分,共20分.13.函数1()=()22x f x -的单调递增区间为______.【答案】[)1,-+¥【解析】作出函数1()=()22x f x -的图象如图,(1()2x y =图像先向下平移2个单位,再将x 轴下方的部分沿x 轴翻折到x 轴上方即可得到1()=()22x f x -的图像)由图可知,函数1()=()22x f x -的增区间为[)1,-+¥.故答案为:[)1,-+¥.14.关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ì=-->ï-ï<<ïíï=-³ï=-³ïî,解得1653a <£,所以实数a 的取值范围是16(5,]3.故答案为:16(5,315.函数()()212log 321f x x x =--+的单调递增区间是___________.【答案】11,33æö-ç÷èø##11,33éö-÷êëø【解析】由23210x x --+>得23210x x +-<,解得113x -<<,所以函数()()212log 321f x x x =--+的定义域为11,3æö-ç÷èø.设内层函数2321u x x =--+,对称轴方程为13x =-,抛物线开口向下,函数2321u x x =--+在区间11,3æö--ç÷èø上单调递增,在区间11,33æö-ç÷èø上单调递减,外层函数12log y u =为减函数,所以函数()f x 的单调递增区间为11,33æö-ç÷èø.故答案为:11,33æö-ç÷èø.16.已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x Î时,()()2log 1f x x =+,则函数()2y f x x =-的零点个数是______.【答案】2【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()2y f x x =-的零点问题即()20y f x x =-=的解,即函数()y f x =和2y x =的图像交点问题,根据()f x 的性质可得函数图像,结合2y x =的图像,由图像可得共有2个交点,故共有2个零点,故答案为:2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数11()212x xf x a +=×-+.(1)当12a =-时,求函数f (x )在x ∈[﹣1,1]上的值域;(2)若函数f (x )在实数集R 上存在零点,求实数a 的取值范围.【答案】(1)3,12éù--êúëû;(2)1,8éö-+¥÷êëø.【解析】(1)根据题意,当12a =-时,11()21(2)122x xx x f x =--+=-++,设t =2x ,则1,22t éùÎêúëû,∴152,2t t éù+Îêúëû,3(),12f x éùÎ--êúëû;(2)11()2102x x f x a +=×-+=,即()222210x x a ×+-= 令2x t =,所以2210a t t ×+-=(*)有正根,设(*)的两根为t 1,t 2当a <0时,0D ³即可,即1+8a ≥0,解得108a -£<;当a =0时,t =1符合;当a >0时,12102t t a×=-<,显然符合题意,故实数a 的取值范围1,8éö-+¥÷êëø.18.已知函数log a y x =过定点(),m n ,函数()2xf x n x m=++的定义域为[]1,1-.(Ⅰ)求定点(),m n 并证明函数()f x 的奇偶性;(Ⅱ)判断并证明函数()f x 在[]1,1-上的单调性;(Ⅲ)解不等式()()210f x f x -+<.【答案】(Ⅰ)定点为()1,0,奇函数,证明见解析;(Ⅱ)()f x 在[]1,1-上单调递增,证明见解析;(Ⅲ)1|03x x ìü£<íýîþ.【解析】(Ⅰ)Q 函数log a y x =过定点(),m n ,\定点为()1,0,()21xf x x \=+,定义域为[]1,1-,()()21xf x f x x -\-==-+.\函数()f x 为奇函数.(Ⅱ)()f x 在[]1,1-上单调递增.证明:任取[]12,1,1x x Î-,且12x x <,则()()()()()()()()()()22122112121212222222121212111111111x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++.Q []12,1,1x x Î-,12x x <,120x x \-<,1210x x ->,\()()120f x f x -<,即()()12f x f x <,\函数()f x 在区间[]1,1-上是增函数.(Ⅲ)()()210f x f x -+<,即()()21f x f x -<-,Q 函数()f x 为奇函数()()21f x f x \-<-()f x Q 在[]1,1-上为单调递增函数,12111121x x x x -£-£ìï\-£-£íï-<-î, 011113x x x ìï\-££íïï<î,解得:103x £<.故不等式的解集为:1|03x x ìü£<íýîþ19.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为a 亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的2倍时,所用时间是10年.(1)求森林面积的年增长率;(2(3)为使森林面积至少达到6a 亩,至少需要植树造林多少年(精确到整数)?(参考数据:lg20.3010=,lg30.4771=)【答案】(1)11021-;(2)5;(3)26.【解析】(1)设年增长率为x ,则()1012a x a +=,即()1012x +=,解得11021x =-,因此,森林面积的年增长率为11021-;(2)设已植树造林n年,则110121na æö+-=ç÷èø,即110222n =,1102n \=,解得5n =,因此,该地已经植树造林5年;(3)设至少需要植树造林m 年,则1101216ma a æö+-³ç÷èø,可得1026m ³,所以,2lg 6lg 2lg 3lg 3log 6110lg 2lg 2lg 2m +³===+,10lg 3100.4771101025.8lg 20.3010m ´\³+=+»,因此,至少需要植树造林26年.20.设函数()22x x f x k -=×-是定义R 上的奇函数.(1)求k 的值;(2)若不等式()21x f x a >×-有解,求实数a 的取值范围;(3)设()444()x x g x f x -=+-,求()g x 在[1,)+¥上的最小值,并指出取得最小值时的x 的值.【答案】(1)1;(2)54a <;(3)最小值为2-,此时2log (1x =+.【解析】(1)因为()22x x f x k -=×-是定义域为R 上的奇函数,所以()00f =,所以10k -=,解得1k =,所以()22x x f x -=-,当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >×-有解,所以211122x xa æöæö<-++ç÷ç÷èøèø有解,所以只需2max11122x xa éùæöæö<-++êúç÷ç÷èøèøêúëû,因为221111551222244x x x æöæöæö-++=--+£ç÷ç÷ç÷èøèøèø(1x =时,等号成立),所以54a <;(3)因为()444()x x g x f x -=+-,所以()()44422x x x xg x --=+--,可令22x x t -=-,可得函数t 在[)1,+¥递增,即32t ³,则2442x x t -=+-,可得函数2()()42g x h t t t ==-+,32t ³,由()h t 为开口向上,对称轴为322t =>的抛物线,所以2t =时,()h t 取得最小值2-,此时222x x -=-,解得2log (1x =,所以()g x 在[)1,+¥上的最小值为2-,此时2log (1x =.21.已知定义域为R 的函数2()2xx b f x a -=+是奇函数.(1)求a ,b 的值;(2)用定义证明()f x 在(,)-¥+¥上为减函数;(3)若对于任意t R Î,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的范围.【答案】(1)1a =,1b =;(2)证明见解析;(3)1(,)3-¥-.【解析】:(1)()f x Q 为R 上的奇函数,(0)0f \=,可得1b =又(1)f f -=-Q (1)\11121222a a----=-++,解之得1a =经检验当1a =且1b =时,12()21x x f x -=+,满足()()f x f x -=-是奇函数.(2)由(1)得122()12121x x x f x -==-+++,任取实数1x 、2x ,且12x x <则21121212222(22)()()2121(21)(21)x x x x x x f x f x --=-=++++12x x <Q ,可得1222x x <,且12(21)(21)0x x ++>12()()0f x f x \->,即12()()f x f x >,函数()f x 在(,)-¥+¥上为减函数; (3)根据(1)(2)知,函数()f x 是奇函数且在(,)-¥+¥上为减函数.\不等式22(2)(2)0f t t f t k -+-<恒成立,即222(2)(2)(2)f t t f t k f t k -<--=-+也就是:2222t t t k ->-+对任意的t R Î都成立.变量分离,得232k t t <-对任意的t R Î都成立,2211323()33t t t -=--Q ,当13t =时有最小值为13-13k \<-,即k 的范围是1(,)3-¥-.22.已知函数2328()log 1mx x nf x x ++=+.(Ⅰ)若4,4m n ==,求函数()f x 的定义域和值域;(Ⅱ)若函数()f x 的定义域为R ,值域为[0,2],求实数,m n 的值.【答案】(Ⅰ)定义域为{}1x x ¹-,值域为3(,log 8]-¥;(Ⅱ)5,5m n ==.【解析】(Ⅰ)若4,4m n ==,则232484()log 1x x f x x ++=+,由2248401x x x ++>+,得到2210x x ++>,得到1x ¹-,故定义域为{}1x x ¹-.令224841x x t x ++=+,则2(4)840t x x t --+-=当4t =时,0x =符合.当4t ¹时,上述方程要有解,则2644(4)0,0t t ìD =--³í¹î,得到04t £<或48t <£,又1x ¹-,所以0t ¹,所以08t <£,则值域为3(,log 8]-¥.(Ⅱ)由于函数()f x 的定义域为R ,则22801mx x nx ++>+恒成立,则06440m mn >ìí-<î,即016m mn >ìí>î,令2281mx x nt x ++=+,由于()f x 的值域为[0,2],则[1,9]t Î,而2()80t m x x t n --+-=,则由644()()0,t m t n D =---³解得[1,9]t Î ,故1t =和9t =是方程644()()0t m t n ---=即2()160t m n t mn -++-=的两个根,则10169m n mn +=ìí-=î,得到55m n =ìí=î,符合题意.所以5,5m n ==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
让孩子更优秀!
《指数函数与对数函数》测试题
一、选择题
1、函数x
x
a a x f 2211)(-+=(0>a 且1≠a ),则函数)(x f 是( )
A .奇函数
B .偶函数
C .非奇非偶函数
D .既是奇函数又是偶函数 2、设p =2log 8,q =5log 8,用p 、q 表示5lg 式子是( )
A .pq
B .
q p q + C .q p pq ++1 D .pq
pq
+1 3.下列运算错误的是( )
A.1
(0)n n a a a -=≠ B.()n n n ab a b = C.()m n mn a a = D.01a =
4、若()[]1log log log 222=x ,则x =( )
A .0
B .2
C .8
D .16 5、已知1>a ,1-<b ,则函数b a y x +=的图象必定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
6、已知a
a
-=12log 3,则3log 2=( )
A .a a 22-
B .a a -12
C .12-a a
D .2
2-a a
7、函数()
23log 22
1+-=x x y 的单调增区间是( )
A .)1,(-∞
B .),2(+∞
C .⎪⎭⎫ ⎝⎛∞-23,
D .⎪⎭⎫
⎝⎛+∞,23
8.已知函数⎩⎨⎧>≤=)
0(log )0(3)(2x x x x f x ,那么)]41
([f f 的值为 ( )
A.9
B.91
C.9-
D.9
1
-
9.函数2()(1)x f x a =-在R 上是减函数,则a 的取值范围是( )
A.1>a
B.2a >
C.2a <
D.12a << 10.若2lg(2)lg lg x y x y -=+,则2
log x
y
的值为( ) A.0 B.-2 C.2 D.0或2
11.考察如下四个结论:
①x x a a log 2)(log 2= ②
y x
y x a a a log log log = ③n a a x n
x log log = ④)(log log log xy y x a a a =⋅ 其中正确的结论有( )
A. 1个
B. 2个
C. 3个
D. 4个 12.
3
log 9
log 28的值是( ) A.
32 B. 1 C. 2
3
D. 2 13.函数2)1(log 282
11+-+-=+x y x 的定义域是( )
A.{x │x >1}
B.{x │x ≤2}
C.{x │1<x <2}
D.{x │1<x ≤2} 14.函数31x y =-的定义域是( )
A .(-∞,0)∪(0,+∞)
B . (-∞,+∞)
C . (-∞,0)
D .[)+∞,0 15. 函数22log x y =在区间()()+∞⋃∞-,00,上( )
A.是奇函数,且在()+∞,0上是增函数
B.是偶函数,且在()+∞,0上是增函数
C.是奇函数,且在()+∞,0上是减函数
D.是偶函数,且在()+∞,0上是减函数
让孩子更优秀!
二、填空题:
1、4log 233log =__________;x =-+)223(log )
12(
,则x =__________; 2
1
8log =
x ,则x =__________。
2、已知()077log 2
=+-x x a ,则x =__________。
3、函数)2(l o g 2-=x y 的反函数为__________,反函数的定义域为__________,值域为__________。
4、函数)
13(log 28+-=x y a x (0>a 且1≠a )的定义域为__________。
5、设1052==b a ,则
b
a 1
1+=__________。
6、已知函数)2(log x y a -=是x 的增函数,则a 的取值范围为__________。
7.化简
x
x x x 32的结果是_________________.
8.若2log 2,log 3,m n a a m n a +===________________. 9.若4
log 15
a
>,则a 的取值范围是_________________. 10.设0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===,则,,a b c 的大小关系是___________
三、解答题:
1、计算下列各式的值:
(1)2log 9log 1.0lg 2lg 25lg 21
32⨯--+ (2)2lg 50lg 2lg 25lg 2++
(3)25lg 50lg 2lg )2(lg 2+⋅+的
2、1
325
432
2
+--->x x x x a a (0>a 且1≠a )中x 的取值范围。
3、求函数3
2241++-⎪
⎭
⎫
⎝⎛=x x y 的单调区间。
4、已知3234+∙-=x x y ,当其值域为]7,1[时,求x 的取值范围。
5、若α、β是方程02lg lg 22=--x x 的两个根,求αββαlog log +的值。
6、已知x
x
x f a
-+=11log )((0>a 且1≠a ) (1)求)(x f 的定义域; (2)判断)(x f 的奇偶性; (3)求使0)(>x f 的x 取值范围。
7.已知函数1
()(1)1
x x
a f x a a -=>+,判断函数的奇偶性。