7.4平行线的性质-北师大版八年级数学上册第七章平行线的证明
数学北师大版八年级上册 第七章 平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)
数学北师大版八年级上册第七章平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)第七章平行线的证明7.5 三角形内角和定理第2 课时一、教学目标1.掌握三角形内角和定理的两个推理,并能运用这些定理解决简单的问题.2.经历探索与证明的过程,进一步发展推理能力.3.在一题多解、一题多变中,积累解决几何问题的经验,提升解决问题的能力.二、教学重点及难点重点:了解并掌握三角形的外角的定义.难点:掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.三、教学用具多媒体课件,三角板、直尺。
四、相关资源《三角形外角》动画,《三角形其他外角》动画.五、教学过程【新知导入】△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.请试着画出△ABC的其他外角.设计意图:外角概念探究意义不大,所以直接明晰这一概念,通过在图中标注其他外角,深化学生对外角概念的理解,同时,在图中标注其他外角的过程也为发现有关外角的结论做了铺垫.【合作探究】图中,∠ACD与其他角有什么关系?请证明你的结论.通过学生讨论,发现:定理三角形的一个外角等于和它不相邻的两个内角的和.定理三角形的一个外角大于任何一个和它不相邻的内角.已知:△ABC.求证:∠ACD=∠A+∠B,∠ACD>∠A,∠ACD>∠B.证明:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠A+∠B=180°-∠ACB(等式的性质),∵∠ACD+∠ACB=180°(平角的定义)∴∠ACD=180°-∠ACB(等式的性质)∴∠ACD=∠A+∠B(等量代换)∴∠ACD>∠A,∠ACD>∠B.在这里,我们通过三角形的内角和定理直接推导出两个新定理.像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.设计意图:希望发现有关外角的两个定理.可以对学生进行适当的引导,关系既可以是不等关系,也可以是等量关系.【典例精析】例1 已知,如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分线的定义)∴∠DAC=∠C(等量代换)∴AD∥BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代换)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁内角互补,两直线平行)设计意图:例题的图形较复杂,可以给出分析过程,鼓励学生先自行解决,同时对有困难的学生给予必要的指导.“想一想”关注解决问题方法的多样化,通过多种解法,开拓学生思维.例2 如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP,交AC于D,∵∠BPC是△PDC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠PDC是△ABD的外角(外角定义),∴∠PDC>∠A(三角形的一个外角大于任何一个和它不相邻的内角).∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.设计意图:让学生复习“三角形的一个外角大于任何一个和它不相邻的内角”,同时体会某些不等关系的递推和论证过程.鼓励学生寻求多种解法,如还可以连接AP,并延长AP交BC于点D ,这时∠BPC 和∠A分别被分成了两个小角,用“三角形的一个外角大于任何一个和它不相邻的内角”可以证明.【课堂练习】1.判断下列命题的对错.(1)三角形的外角和是指三角形的所有外角的和. ()×(2)三角形的外角和等于它的内角和的2倍. ()√(3)三角形的一个外角等于两个内角的和. ()×(4)三角形的一个外角等于与它不相邻的两个内角的和.()√(5)三角形的一个外角大于任何一个内角. ()×(6)三角形的一个内角小于任何一个与它不相邻的外角.()√2.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )CA.直角三角形B.锐角三角形C.钝角三角形D.无法确定3.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( )BA.120°B.115°C.110°D.105°4.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F等于()A.26°B.63°C.37°D.60°5.如图,如果∠1=100°,∠2=145°,那么∠3等于( )A.110°B.160°C.137°D.115°解析:方法总结:三角形的外角等于与它不相邻的两个内角的和,而不是等于任意两个内角的和.6.如图,求证:(1)∠BDC>∠A.(2)∠BDC=∠B+∠C+∠A.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1+∠2>∠3+∠4(不等式的性质)即:∠BDC>∠BAC.(2)连结AD,并延长AD,如图.则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)设计意图:巩固三角形外角定理.六、课堂小结今天这节课你学到了什么知识?1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角设计意图:通过对三角形外角及性质的学习,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.七、板书设计7.5 三角形内角和定理(2)1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角。
北师大版八年级数学上册第七章《平行线的性质》课件
总结
求证两角相等,首先观察两角的位置(是否 为同位角、内错角等),然后选择合适的性质定 理.若无法直接证得两角相等,则分析由已知条 件可得到哪些结论,再探寻这些结论与所求角的 关系,关系找到后,问题即可解答.
1 (中考·东莞)如图,直线a∥b,∠1=75°,∠2= 35°,则∠3的度数是( C ) A.75° B.55° C.40° D.35°
才有内错角相等.
例2 如图,已知AE∥BC,∠B=∠C, AE是∠DAC 的平分线吗?若是,请写出证明过程;若不是, 请说明理由.
导引:紧扣平行线的性质定理得出角的数量关系, 进而证明角相等.
解: AE是∠DAC 的平分线. 证明如下:∵AE∥BC(已知), ∴∠DAE=∠B(两直线平行,同位角相等), ∠CAE=∠C(两直线平行,内错角相等), 又∵∠B=∠C(已知),∴∠DAE=∠CAE (等量代换), ∴AE是∠DAC 的平分线(角平分线的定义).
4.定理:平行于同一条直线的两条直线平行. (1)已知:如图,b//a,c//a,∠1,∠2,∠3是直线a,b,
c被直线d截出的同位角. 求证:b//c. 证明:∵b//a (已知),
∴∠2=∠1(两直线平行,同位角 相等).
∵c//a(已知), ∴∠3=∠1(两直线平行,同位角相等). ∴∠2 = ∠ 3(等量代换). ∴b//c(同位角相等,两直线平行).
总结
1.求角的度数的基本思路:根据平行线的判定由角的 数量关系得到直线的位置关系,根据平行线的性质 由直线的位置关系得到角的数量关系,通过上述相 互转化,从而找到所求角与已知角之间的关系.
2.两直线平行时,应联想到平行线的三个性质,由两 条直线平行的位置关系得到两个相关角的数量关系, 由角的关系求相应角的度数.
北师版八年级数学 7.4 平行线的性质(学习、上课课件)
感悟新知
知识点 2 平行线的判定与性质
平行线的判定
图示
因为 ∠ 1= ∠ 2, 所以l1 ∥ l2(同位 角 相 等 ,两直 线平行)
因为 ∠ 2= ∠ 3, 所以l 1 ∥ l2(内错 角相等 ,两直线 平行)
知2-讲
平行线的性质
因为 l1 ∥ l2,所 以∠ 1=∠ 2(两直 线平行 , 同位角 相等) 因为 l1 ∥ l2, 所 以∠ 2=∠ 3(两直 线平行 ,内错角 相等)
平行线 互逆 平行线
的判定
的性质
性质定理 证明的一般步骤
感悟新知
续表
平行线的判定与性质
平行线的判定
图示
知2-讲
平行线的性质
因为∠ 3+ ∠ 4=180° ,所以
l1 ∥ l2(同旁内 角互补,两直线
平行)
因为 l1 ∥ l2,所 以∠ 3+ ∠ 4=180°(两直线 平行 ,同旁内
角互补)
感悟新知
知2-讲
特别提醒 平行线的判定与平行线的性质的区别:
平行线的判定是根据两角的数量关系得到两条直线的 位置关系,而平行线的性质是根据两条直线的位置关系 得到两角的数量关系.
感悟新知
知2-练
例2 如图 7-4-2,在△ ABC 中,已知 AD ⊥ BC 于点 D, EF ⊥ BC 于点 F,∠ 1= ∠ 2,试判断 DG 和 BA 的 位置关系,并证明你的结论 .
感悟新知
知2-练
解题秘方:通过 观察图形猜测这两条直线平行, 然后利用已知条件、平行线的性质定 理和判定定理进行证明 .
∵BE 平分∠ABC(已知), ∴∠CBE=12∠ABC=50°(角平分线的定义), ∵AD∥BC(已知),
平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册
∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质
重
难
题
型
突
破
返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=
∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结
考
点
要判断两条直线是否平行,首先要观察图形中与要判断
清
单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后
重
难
题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确
突
破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平
重
难
∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),
北师大版八年级数学上册平行线的判定
已知 ),
∴∠1=∠2( 角平分线定义
),
又∵∠2=∠C(
已知
),
∴∠1=∠C(
等量代换
).
∴BE∥AC(
同位角相等,两直线平行
).
4.如图,∠C=∠1,∠2与∠D互余,DE⊥BF, 求证:AB∥CD. 证明:∵∠C=∠1, ∴EC∥BF, ∵DE⊥BF,∴EC⊥DE, ∴∠C+∠D=90°, 又∵∠2+∠D=90°, ∴∠2=∠C,∴AB∥CD
那么这两条直线平行 条件是什么,结论是什么?
已知:∠1和∠2是直线a、b被直 线c 截出的内错角,且
∠1=∠2.
求证:a∥b
c
a
3 1
b
2
证明:∵∠1=∠2(已知)
∠1=∠3(对顶角相等)
∴∠2=∠3(等量代换)
∴a∥b(同位角相等,两直线平行)
定理:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行。
简述为:内错角相等,两直线平行。
a
符号语言: ∵∠1=∠2
b
∴a∥b
c 1 2
定理:两条直线被第三条直线所截,如果同旁
内角互补,那么这两条直线平行.
已知:∠1和∠2是直线a、b被直线c截出的同旁
内角,且∠1与∠2 互补。
求证:a∥b.
证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义) ∴∠1=180°-∠2(等式的性质) ∵∠3+∠2=180°(平角定义)
• 8.如图7-3-14,已知∠1=∠2,∠3=∠4,∠5=∠6, 试判断ED与FB的位置关系,并说明理由.
解:BF∥DE.理由如下: ∵∠3=∠4, ∴BD∥CF ∴∠5=∠BAF. 又∵∠5=∠6, ∴∠BAF=∠6, ∴AB∥CD, ∴∠2=∠EHA. 又∵∠1=∠2, ∴∠1=∠EHA, ∴BF∥DE.
北师大版数学八年级上册第七章-平行线的证明讲义
实用文档第七章 平行线的证明一、思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧的内角。
于任何一个和它不相邻:三角形的一个外角大推论角的和。
于和它不相邻的两个内:三角形的一个外角等推论。
等于定理:三角形的内角和三角形内角和定理条直线平行。
平行于同一条直线的两互补。
两直线平行,同旁内角等。
两直线平行,内错角相等。
两直线平行,同位角相平行线的性质平行。
同旁内角互补,两直线行。
内错角相等,两直线平行。
同位角相等,两直线平平行线的判定的例子。
,而不具有命题的结论反例:具备命题的条件分类:真命题、假命题部分组成。
结构:由条件和结论两句子。
定义:判断一件事情的命题平行线的证明21180二、考点聚焦考点1 定义与命题例1 下列四个命题中,真命题有 ( )①任意三角形的内角和为180°。
②经过直线外一点,有且只有一条直线与这条直线平行。
③两条直线被第三条直线所截,同旁内角互补;④在同一平面内,若直线a ⊥b ,b ⊥c ,则直线a 与c 不相交。
A.1个B.2个C.3个D.4个变式1-1:对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角。
考点2 平行线的性质和判定例2 如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由。
变式2-1:如图,直线l∥2l,∠A=125°,∠B=85°,1则∠1+∠2= ()A.30°B.35°C.36°D.40°变式2-2:如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数。
北师大版八年级数学上册第七章平行线的证明单元教学设计
(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在探索、发现、总结平行线性质的过程中,培养观察、分析、归纳的能力。
2.引导学生运用演绎推理方法,从特殊到一般,逐步掌握平行线的判定方法,提高学生的逻辑思维能力。
二、学情分析
八年级学生在经过之前的学习,已经具备了一定的几何基础,对几何图形有一定的认识和理解。在此基础上,学生对平行线的概念及性质已有初步的了解,但在判定方法、性质应用等方面仍需加强。此外,学生在演绎推理、问题解决等方面的能力有待提高。因此,在教学过程中,应关注以下学情:
1.学生对平行线性质的理解程度,注重引导学生从直观到抽象,逐步提高对平行线性质的认识。
c.解决实际问题,运用平行线性质求解。
2.学生独立完成练习题,教师巡回指导,对学生的解答进行点评,及时纠正错误,巩固所学知识。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,让学生用自己的话总结平行线的性质、判定方法及其在实际问题中的应用。
2.教师强调本节课的重点知识,提醒学生注意平行线性质及判定方法的灵活运用。
2.教师提出问题:我们已经学过直线、线段、射线等基本概念,那么如何判断两条直线是否平行?这节课我们就来探讨这个问题。
(二)讲授新知
1.教师引导学生回顾同位角、内错角、同旁内角等概念,为后续学习平行线的判定方法打下基础。
2.教师通过几何画板演示,引导学生观察并总结出平行线的性质,如同位角相等、内错角相等、同旁内角互补等。
(二)教学设想
1.创设情境,激发兴趣:
通过生活中的实例,如铁轨、教室墙壁等,引出平行线的概念,激发学生对平行线性质探究的兴趣。
北师大2014年第二版 八年级上册7.4《平行线的性质》
a b
方法一:度量法
65°
c
1 2 65°
a
b
a∥b
∠1=∠2
方法二:裁剪拼接法
c
a∥b
1 2
a b
∠1=都相等呢?
性质发现
a
1 2
结论
平行线的性质定理1b
两条平行线被第三条直线所截, c 同位角相等.
简写为: 两直线平行,同位角相等. 符号语言: ∵a∥b,
∴∠1=∠2.
小明同学遇到的问题是:
(1) 凡是同位角都相等这句话对吗?
(2) 两直线被第三条直线所截,同位角相等吗?
(3) 两条直线在什么情况下, 同位角会相等呢?
b
1
a
2
c a1 b
3
2
4 5 7 6
c
8
1、如图1,直线AB//CD, ∠1=55°,则∠2= 55° _______.
图1
图2
C
3、如图,已知AB ∥ CD, AD ∥ BC。
判断∠ 1与∠ 2是否相等,并说明理由。
D A
1 2
C B
4、已知:如图, ∠ABC+∠C=180°, BD平分∠ABC。∠CBD与∠D相等吗? 请说明理由。
A B C
D
5、已知:如图,BD平分∠ABC, ∠1=∠2 , ∠C=70,求∠ADE的度数。
C 2 B
D
60 °
F
E
平行线性质定理和判定定理的比较
同位角相等 两直线平行 内错角相等 同旁内角互补
线的关系
性质 判定
角的关系
思考: 1、判定与性质的条件与结论有什么关
系? 互换。
师生互动,典例示范
北师大版八年级上册数学第七章平行线的证明素养拓展课件
1
2
∴∠P=90°+ (∠B+∠D).
Hale Waihona Puke 图3一、选择题1.对于命题“若a2>b2,则a>b.”下面四组关于a,b的值中,能说明这个命题是假命题的是 (
A.a=3,b=2
B.a=-3,b=2
C.a=3,b=-1
D.a=-1,b=3
)
答案
1.B 【解析】
反例要满足题设成立,但是结论不成立.当a=-3,b=2时,a2=(-3)2=9,b2=22=4,满足a2>b2,但是a<b,故
∠ABC,∴∠ABD=∠DBC=30°.∵∠ADB=60°,∴∠A=180°-30°-60°=90°,∴△ABD是直角三角形.故选C.
4.如图,将对边平行的纸带按如图所示的方式进行折叠,若∠1=65°,则∠2的大小为 (
A.115°
B.65°
C.55°
)
D.50°
答案
4.D 【解析】
如图,延长DC.∵AB∥DC,∴∠3=∠1=65°,∴∠ACF=∠3=65°,∴∠2=180°-2×65°=50°.故选D.
)
6.[202X海南中考]将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么
∠BAF的大小为 (
A.10°
)
B.15°
C.20°
D.25°
答案
6.A 【解析】
由题意知DE∥AF,∴∠AFD=∠CDE=40°.∵∠B=30°,∴∠BAF=∠AFD-∠B=40°-30°=10°.故选A.
△OAB的外角∠OBD的平分线所在的直线交于点C.试猜想:随着点A,B的移动,∠ACB的大小是否变化?并说明理由.
北师大版八年级数学上册:7.4 平行线的性质
4 平行线的性质1.平行线的性质公理平行线的性质公理:两条平行线被第三条直线所截,同位角相等.简单记为:两直线平行,同位角相等.如图,推理符号表示为:∵AB∥CD,∴∠1=∠2.谈重点两直线平行,同位角相等①两直线平行的性质公理是推理论证后面两个性质定理的基础;②“同位角相等”是在“两直线平行”的前提下才成立的,是平行线特有的性质.要避免一提同位角就以为其相等的错误;③两直线平行的性质公理与两直线平行的判定公理的条件与结论是互逆的.其中判定公理是在已知同位角相等(数量关系)的前提下推理论证两直线的平行位置关系,是由角到线的推理过程;而两直线平行的性质公理是在已知两直线平行的前提下推理论证同位角相等的数量关系,是由线到角的推理过程.【例1】如图,AB∥CD,CE平分∠ACD,若∠1=25°,那么∠2的度数是________.解析:本题考查平行线的性质:两直线平行,同位角相等.由条件CE平分∠ACD,∠1=25°,可得∠ACD=2∠1=50°.而∠2与∠ACD是同位角,根据“两直线平行,同位角相等”可得∠2=∠ACD=50°.答案:50°点评:根据平行直线求角时,要先观察两个角之间的关系.2.平行线的性质定理(1)性质定理1两条平行线被第三条直线所截,同旁内角互补.简单记为:两直线平行,同旁内角互补.符号表示:∵AB∥CD,∴∠2+∠3=180°.(2)性质定理2两条平行线被第三条直线所截,内错角相等.简单记为:两直线平行,内错角相等.符号表示:∵AB∥CD,∴∠2=∠4.点评:①平行线的性质定理是在平行线性质公理的基础上推理得出的;②从平行线得到角相等或互补的关系;③内错角相等或同旁内角互补的前提条件是“两条直线平行”.要避免出现一提内错角就相等或一提同旁内角就互补的错误.【例2-1】某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是().A.30°B.45°C.60°D.75°解析:由邻补角的定义求得∠BAD的度数,又由AB∥CD,可求得∠ADC的度数,再求出∠FDC的度数即可.∵∠EAB=45°,∴∠BAD=180°-∠EAB=180°-45°=135°.∵AB∥CD,∴∠ADC=∠BAD=135°.∴∠FDC=180°-∠ADC=45°.故选B.答案:B点评:此题考查了平行线的性质.注意两直线平行,内错角相等.【例2-2】如图,直线AB,CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于().A.70°B.80°C.90°D.100°解析:由对顶角相等,可得∠BED=∠AEC=100°,由DF∥AB可知同旁内角∠DEB 和∠D互补,可求得∠D=180°-∠BED=80°.故选B.答案:B3.证明的步骤(1)证明的一般步骤:①理解题意;②根据题意正确画出图形;③结合图形,写出“已知”和“求证”;④分析题意,探索证明的思路;⑤依据寻求的思路,运用数学符号和数学语言条理清晰地写出证明过程;⑥检查表达过程是否正确、完善.(2)证明的思路:可以从求证出发向已知追溯,也可以由已知向结论探索,还可以从已知和结论两个方向同时出发,互相接近.点评:对于用文字叙述的命题的证明,要先分清命题的条件和结论,然后根据题意画出图形,写出已知和求证,证明即可.4.借助辅助线构造平行线在有平行线的条件下,证明两个角相等或求某个角,当这两个角不是两条平行线所截得的同位角、同旁内角或内错角时,往往要利用其他的角,转化为平行线所截的角.但有些题目中某些条件所对应的图形没有或不完整,这时就需要通过添加辅助线去构造某些“基本图形”,再由图形联想相关性质,从而确定方法,达到解题的目的.释疑点平行线判定与性质的应用以平行为条件的求值或证明角相等的问题中,关键要分析出哪对角相等(或互补),再进行转化,从而求出结论中的角或完成证明.【例3】证明“垂直于同一条直线的两条直线互相平行”.分析:本题是文字证明题.根据文字证明的一般步骤,先根据题意画出两条直线a,b 都与直线c垂直,根据已知和图形写出本题的已知和求证,已知是直线a⊥c,b⊥c,求证是a∥b.证明两条直线平行,可根据平行线的判定方法,证明同位角相等就可以.然后写出证明过程.解:已知:如图,直线a,b被直线c所截,且a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知),∴∠1=90°,∠2=90°(垂直的定义).∴∠1=∠2(等量代换).∴a∥b(同位角相等,两直线平行).点技巧文字证明题的步骤文字证明题的已知和求证要结合图形来写,因此在分析题意时,要确定应该画什么图形.书写证明过程时,要注重格式,注意推理的条理性,每一步都要有理有据.【例4】如图,AB∥CD,若∠ABE=120°,∠C=35°,则∠BEC=__________.解析:从图形上看,由于没有直线截AB与CD,所以无法直接运用平行线的相关性质,这就需要构造出“两条平行线被第三条直线所截”的基本图形,然后才可以运用平行线的性质.可过E点作EF∥AB,根据AB∥CD,可得EF∥CD,所以∠ABE+∠BEF=180°,∠FEC =∠C,所以∠BEC=∠BEF+∠DCE=60°+35°=95°.答案:95°点评:解决本题有两条思路:一是构造与AB,CD都相交的截线;二是过E点作EF∥AB,根据AB∥CD,可得EF∥CD,这样可将图形转化.5.平行线性质与判定的综合应用(1)平行线的性质与判定的区别平行线的性质定理和判定定理的条件和结论正好相反.性质是由条件“平行”得到结论“角的关系”;判定是由条件“角的关系”得到结论“平行”.具体为:在判定中,把角相等或互补作为判断两直线是否平行的前提.角相等或互补是已知,结论是两直线平行.判定则是由“角相等或互补”推理论证“两直线平行”.在性质中,两直线平行是条件,结论是角相等或互补.性质是用来说明两个角相等或互补的,即由“两直线平行”推理论证“角相等或互补”.释疑点平行线的性质与判定要分清在书写证明过程中,填写推理的根据或者理由时,要注意性质与判定的区别,防止填错.(2)平行线性质的应用平行线的应用包括生活中的实际应用和综合应用.实际应用要挖掘题目中隐含的平行线,利用平行线的性质来解决和角有关的计算问题.而综合应用主要是综合运用平行线的性质和判定来求角的度数或证明,要注意与图形的结合(数形结合)和角的转换.如求方位角和机器零件的角度问题就是实际应用比较多的问题.解决时,确定平行线是关键.【例5-1】如图,已知:AD∥BC,∠A=∠C,求证:AB∥CD.分析:观察图形,发现截平行线AD,BC和AB,CD的直线有三条,应选与∠A=∠C 有关的直线作为“第三条直线”,这样就能很快确定与它们有关的角,从而顺利解决问题.先从AD∥BC出发,选择与∠A有关的第三条直线AB(也可选择与∠C有关的第三条直线CD).因为AD∥BC,所以∠A=∠ABF,又因为∠A=∠C,可得∠C=∠ABF,∠C、∠ABF 是AB,DC被CF所截的同位角,所以AB∥CD.证明:∵AD∥BC(已知),∴∠A=∠ABF(两直线平行,内错角相等).又∵∠A=∠C(已知),∴∠C=∠ABF(等量代换).∴AB∥CD(同位角相等,两直线平行).点评:证明两条直线平行,可以通过同位角、内错角相等或者同旁内角互补.关键是利用有关知识把已知条件转化为上述各角.【例5-2】如图1,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西__________.解析:根据图形,利用平行线的性质解答即可.如图2,∵AC∥BD,∠1=48°,∴∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.答案:48°点评:解答此类题需要正确画出方位角,再结合平行线的性质求解.。
数学八年级平行线的证明知识点
数学八年级平行线的证明知识点数学八年级平行线的证明知识点11、平行线的.性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行初中数学常见公式常见的初中数学公式1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.三角形内角和定理三角形三个内角的和等于180°6.多边形内角和定理n边形的内角的和等于(n-2)×180°7.定理1关于某条直线对称的两个图形是全等形初中5种数学提分方法1.细心地发掘概念和公式2.总结相似类型的题目3.收集自己的典型错误和不会的题目4.就不懂的问题,积极提问、讨论5.注重实践(考试)经验的培养初中数学有理数的运算加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
数学八年级平行线的证明知识点21、为什么要证明①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明2、定义与命题①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义②判断一件事情的句子,叫做命题③一般地,每个命题都由条件和结论两部分组成。
北师大版初中数学八年级上册 第七章 平行线的证明复习、回顾与思考 教案
第七章平行线的证明回顾与思考教学目标1.复习本章的知识点,了解各知识点之间的关系,巩固所学的知识,并能用这些知识解决一些问题。
2.经历知识的总结过程,回顾知识点,发展形成知识结构的能力。
教学重点进一步理解和掌握本章的公理及定理,掌握证明的步骤与格式,在证明过程中发展初步的演绎推理能力。
教学难点掌握证明的方法及应用定理解决问题。
教学方法自主反思,归纳总结.教学教具直尺,三角板,量角器教学过程本节课设计了五个教学环节:知识回顾——做一做——想一想——试一试——反馈练习.第一环节知识回顾活动内容:1.什么是定义?什么是命题?命题由哪两部分组成?举例说明!2.平行线的性质定理与判定定理分别是什么?3.三角形内角和定理是什么?4.与三角形的外角相关有哪些性质?5.证明题的基本步骤是什么?活动目的:通过学生的回顾与思考,使学生对平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质有一个更深层次的认识,为下一步的简易的逻辑推理作好知识准备. 注意事项:由于学生对于上述概念都有较长时间的学习,但知识点是零散的,因此有必要在学生头脑中形成一个清晰的知识网络,如:}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(第二环节 做一做 活动内容:1.下列语句是命题的有( )(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(4)对应角相等的两个三角形是全等三角形;2.下列命题,哪些是真命题?哪些是假命题?如果是真命题,请写出条件与结论,如果是假命题,请举出反例.(1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a |=|b |,则a =b .3. 如图,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.4. 用两个全等的等腰直角三角尺拼成四边形,则此四边形一定是_____。
北师大版八年级数学上册《平行线的性质》平行线的证明
,
∴AD∥BE(
).
,即∠
栏目索引
=∠
,
答案 BAE;两直线平行,同位角相等;BAE;等量代换;∠1;∠2;BAE; DAC;DAC;内错角相等,两直线平行
4 平行线的性质
栏目索引
6.如图7-4-6,已知∠1+∠2=180° ,∠A=∠C,DA平分∠FDB,试证明∠3= ∠4.
图7-4-6
4 平行线的性质
栏目索引
解析 (1)∵四边形ABCD为长方形,∴AD∥BC, ∴∠1+∠2=180° , ∵∠1=110° ,∴∠2=70° . (2)由折叠的性质得∠D'=90° , 若D'C'∥BC,则有∠EGF=∠D'=90° , ∵AD∥BC, ∴∠2=∠EGF=90° , 则当∠2等于90度时,D'C'∥BC.
图7-4-8
4 平行线的性质
证明 ∵AD⊥BC,EF⊥BC(已知), ∴∠ADC=∠EFD=90° (垂直的定义), ∴AD∥EF(同位角相等,两直线平行), ∴∠3=∠BAD(两直线平行,内错角相等), ∠DAC=∠E(两直线平行,同位角相等), ∵AD平分∠BAC(已知), ∴∠BAD=∠DAC(角平分线的定义), ∴∠E=∠3(等量代换).
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135° ,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180° (两直线平行,同旁内角互 补),又因为∠DOB=135° ,所以∠B=180° -135° =45° ,又∠A=∠B,所以 ∠A=45° .
7.4 平行线的性质课件 (30张PPT)北师大版八年级数学上册
所以梯形的另外两个角的度数分别是 80°、65°.
3、如图,由AB//CD,可以得到(C)易错
(A)∠1=∠2
(B)∠2=∠3
(C)∠1=∠4
(D)∠3=∠4
4、如图,已知A、B、C同在一条直线上,D、E、F同在一 条直线上,且∠A=∠F,∠C=∠D,判断AE与BF的位置关 系,并说明理由.
解: ∵∠C=∠D
∴∠1 = ∠D(两直线平行,内错角相等)
∵∠B = ∠D(已知)
∴∠1 = ∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
D C
例2 已知:如图,AB∥CD,∠B =∠D.
求证:AD∥BC. 证法三: 如图,连接 BD (构造两组内错角). ∵ AB∥CD (已知),
A
12
B
D
3 4
C
∴∠1 =∠4 (两直线平行,内错角相等).
条直线与这条直线平行”相矛盾. 这说明∠1 ≠ ∠2 的假设不成立,所以 ∠1 =∠2.
总结归纳
一般地,平行线具有如下性质: 性质1 (定理) 两条平行线被第三条直线所截,同位角
简单说成:两直线平行,同位角相等.
c
应用格式:
1
∵ a∥b(已知),
a
∴∠1 =∠2
2
(两直线平行,同位角相等). b
议一议
(1) 从∠1 = 110° 可以知道∠2 是多少度?为什么?
(2) 从∠1 = 110° 可以知道∠3 是多少度?为什么?
(3) 从∠1 = 110° 可以知道∠4 是多少度?为什么?
解:(1) ∠2 = 110°,
两直线平行,内错角相等. (2)∠3 = 110°,
两直线平行,同位角相等. (3)∠4 = 70°,
云南省大姚县实验中学北师大版(新)八年级数学上册7.4平行线的性质(共13张PPT)
∠A=115°,∠D=100°,梯形另外两 个角各是多少度?为什么? A D
B
C
B层
3、如图,已知直线DE经过点A,DE∥BC, ∠B=44°,∠C=57° A D E ∠DAB等于多少度?
∠EAC等于多少度?
B
C
A层 4、如图,A、B、C、D在同一直线上,
AD∥EF. ∠E=78°时,∠ABE、∠DBE各等于多少度?为什么?
复习回顾检查预习:
1、判断两直线平行的方法有哪些? 两直线平行的性质是什么?它们 之间有什么关系? 2、说出证明“同旁内角互补,两 直线平行”的证明步骤、方法。 3、看课本175页,你能看懂定理 的证明思路吗?
北师大版八年级上册
第七章 平行线的证明 第四节 平行线的性质
云南省大姚县实验中学:赵鹏斌
两直线平行 → ←
判定
证明的一般步骤?
课堂训练整理提高
C层 1 、已知平行线AB、CD被直线AE所截
从∠1=110°,可以知道
C
∠2是多少度ห้องสมุดไป่ตู้为什么?
从∠1=110°,可以知道
A
1 4
2 3
E
∠3是多少度,为什么?
从∠1=110°,可以知道
B
D
∠4是多少度,为什么?
B层
2、如图是梯形有上底的一部分,量得
证明:∵a∥b (已知) ∴∠2=∠3 (两条直线平行,同位角相等) ∵∠1+∠3= 180° (1平角=180°) ∴∠1+∠2=180 ° (等量代换)
合作探究二
1、证明的基本步骤是什么?易错 点有哪些? 2、平行线的条件与性质有什么关 系?
今天的收获
平行的的判定与性质:
平行线的证明+思维图解+++知识考点梳理+课件件+2024-2025学年北师大版数学八年级上册
课标领航·核心素养学段目标1. 探索并ຫໍສະໝຸດ 明平行线的判定定理:两条直线被第三条直
线所截,如果内错角相等(或同旁内角互补),那么这两条
直线平行.
2. 掌握平行线的性质定理Ⅰ:两条平行直线被第三条直
线所截,同位角相等.* 了解定理的证明.
3. 探索并证明平行线的性质定理Ⅱ:两条平行直线被第
行
线
的
证
明
三角形内角和定理
三
角
形
的
外
角
三角形的内角和等
于 180°
三角形的一个外角等于和它不相邻
的两个内角的和
三角形的一个外角大于任何一个和
它不相邻的内角
第七章 平行线的证明
单
元
思
维
图
解
同位角相等,两直线平行
平
行
线
的
证
明
平
行
线
平行线
的判定
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行,同位角相等
∵DA⊥FA,∴∠DAF=90°,
∴∠FAB=∠DAF-∠2=52.5°.
综合与实践
[点拨] 本题考查了平行线的判定与性质,锻炼和提升
学生的推理能力,熟练掌握平行线的判定与性质是解答本题
的关键.
平行线
的性质
两直线平行,内错角相等
两直线平行,同旁内角互补
平行于同一条直线的两条直线
平行
综合与实践
运用平行线的判定与性质解决问题
初中阶段综合与实践领域,可采用项目式学习的方式,
通过平行线判定与性质的学习,使学生能够从给定条件出
发,依据规则推出结论,初步掌握推理的基本形式和规则
北师大版-数学-八年级上册-7.4平行线的性质 导学案
初中-数学-打印版初中-数学-打印版 b a c 21图11.上节课中是如何证明两直线平行的判定定理的?2.同位角一定相等吗?3.两直线平行有哪些性质?1.如图1,a //b ,c 与a 、b 都相交,∠1=50°,则∠2=( )A.40°B.50°C.100°D.130°2.如图2,DE //AB ,若∠ACD=55°,则∠A=( )A.35°B.55°C.65°D.125°3.已知:如图3,AD //BC ,∠ABD=∠D.求证:B D 平分∠ABC.科目 北师大版八年级数学上册 授课时间 课题 授课教师 学习 目标 准确理解并掌握两直线平行,同位角、内错角相等,同旁内角互补;提高自己利用图形分析问题的能力。
旧知回顾 预习自测图2D E AC初中-数学-打印版初中-数学-打印版 图521NMC DEF A B探究点一:两直线平行,同位角相等已知:如图4,直线AB //CD ,∠1和∠2是直线AB ,CD 被直线 EF 截出的同位角.求证:∠1=∠2思考1:同位角相等时,两直线 平行吗? 思考2:如果∠1 ∠2,AB 与CD的位置关系会怎样? 思考3:过直线CD 外一点M ,除直线AB 外,还有其它的直线(该直线必须过点M )与直线CD 平行吗? 备注:请同学们根据前面的思考写出详细的证明过程。
探究点二:两直线平行,内错角相等,同旁内角互补问题1:已知:如图5,直线AB //CD.求证:∠1=∠2思考:请同学们利用上面的定理解决该题, 或者可以用其它的方法。
新知探究图3C A D图421N M C DEFA B初中-数学-打印版初中-数学-打印版 c b a 图6321d问题2:已知:如图6所示,a //b ,a //c. 求证:b //c 思考1:图中∠1与∠2,∠3与∠2在 位置关系上是什么角? 思考2:通过证明,你发现∠1,∠2, ∠3之间的数量关系是什么? 思考3:通过该题的证明,你得到了什么结论?1.如图7所示,已知∠1=∠2,∠B=40°,则∠3= 。
新北师大版八年级数学上册第七章平行线的证明知识点复习
AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。
3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:两直线平行,同旁内角互补 已知:如图直线a∥b,∠1和∠2是直 a 线a,b被直线c截出的同旁内角. 求证: ∠1+∠2=180°. b
1 2
c 3
证明:∵a∥b ( 已知) ∴∠2=∠3 ( 两直线平行,同位角相等 ) ∵∠1+∠3 = 180 ° ( 平角的定义 ) ∴∠1+∠2=180 ° ( 等量代换 )
平行线的性质: 1.两直线平行,同位角相等. 2.两直线平行,内错角相等。 3.两直线平行,同旁内角互补。
2016.12
平行线的性质定理与判定定理的关系: 性质定理的条件是判定定理的结论; 性质定理的结论是判定定理的条件。 性质定理与判定定理是互逆的。 平行线的性质是:由线定角 平行线的判定是:由角定线
2016.12
证明:两直线平行,内错角相等 例1.已知:如图,a∥b, ∠1和∠2是直 线a,b被直线c截出的内错角 . 求证:∠1=∠2
c
证明:∵a∥b ( 已知)
∴∠3=∠2 ( 两直线平行,同位角相等 ) ∵ ∠3=∠1 ( 对顶角相等 ) ∴∠1=∠2 ( 等量代换 )
3
1 2
a
b
2016.12
同位角相等,两直线平行
内错角相等,两直线平行 同旁内角互补,两直线平行 两条直线都和第三条直线平行,则这
——— 公理
两条直线互相平行 在同一平面内,不相交的两条直线叫 做平行线.
2016.12
小结
• 判定两条直线平行的方法: • • • 1、同位角相等,两直线平行. 2、内错角相等,两直线平行. 3、同旁内角互补,两直线平行.
2016.12
议一议 完成一个命题的证明,需要哪些主要环节?与同伴进 行交流
证明一个命题有三个步骤: (1)根据题意,画出图形 ; (2)根据题设、结论、结合图形, 写出已知、求证; (3)写出 证明过程 。
2016.12
知识技能 1.太阳灶、卫星信号接收锅、探照灯以及其他很多 灯具都与抛物线有关.如图,从点 O 照射到抛物线 上的光线 OB ,OC 等反射以后沿着与 POQ 平行的 方向射出.图中如果∠ BOP = 45°,∠ QOC = 88°,那么∠ ABO 和∠ DCO 各是多少度?
2016.12
证明:两直线平行,同位角相等 已知:如图 7-8,直线 AB ∥ CD,∠ 1 和 ∠ 2 是直 线 AB,CD 被直线 EF截出的同位角. 求证:∠ 1 = ∠ 2. 证明:假设 ∠1≠∠2, G 过点 M 作直线 GH,使 ∠EMH = ∠ 2 H ∴GH ∥ CD. 又∵ AB ∥ CD , ∴经过点 M 存在两条直线 AB 和 GH 都与直线 CD 平行. 这与“过直线外一点有且只有一条直 线与这条直线平行”相矛盾. 反证法 则∠ 1 ≠∠ 2 的假设不成立, ∴ ∠ 1 = ∠ 2.
2016.12
定理: 平行于同一条直线的两条直线平行. 已知:如图 7-11,b ∥ a,c ∥ a,∠ 1, ∠ 2,∠ 3 是直线 a,b,c 被直线 d 截出的同位角. 求证:b ∥ c. 证明: ∵ b ∥ a(已知), ∴ ∠2 = ∠1 (两直线平行,同位角相等). ∵ c ∥ a(已知), ∴ ∠3 = ∠1 (两直线平行,同位角相等). ∴ ∠2 = ∠3(等量代换). ∴b∥c (同位角相等,两直线平行).
2016.12
2016.12
1.如图,AB∥CD,则α,β,γ之间 的关系是( ) A.α+β+γ=360° B.α-β+γ=180° 作业 C.α+β-γ=180° D.β+γ-α=180°
2、如图,∠AGD=∠ACB, CD⊥AB,EF⊥AB. 求证:∠1=∠2.
2016.12
知识技能 2.已知:如图,AD∥BC,∠ ABD = ∠ D. 求证:BD 平分 ∠ ABC.
2016.12
数学理解 3.已知:如图,AB ∥ CD,AD ∥ BC. 求证:∠ A = ∠ C,∠ B = ∠ D.
2016.12
数学理解 4.如图,一条直线分别与直线 BE、直线 CE、直线 BF、直线 CF 相交于点 A,G,H,D,且∠ 1 = ∠ 2,∠ B = ∠ C. (1)找出图中相互平行的线,说说它们之间为什么 是平行的; (2)证明:∠ A = ∠ D.
上述三个命题中的条件和结论分别是什么?
2016.12
a
b
2
1
c
c a b
1
2
c
a b
2 1
平行线的性质
定理1: 两直线平行,同位角相等.
定理2: 两直线平行,内错角相等。 定理3: 两直线平行,同旁内角互补。 思考:
平行线的判定定理和性质定理在条件和结论上 有何区别?
2016.12
知识回顾 3、如何判定两条直线平行
《数学》( 北师大.八年级 上册 )
第四节
2016.12
一、温故:
1、证明一个命题有三个步骤: (1)根据题意,画出图形 ; (2)根据题设、结论、结合图形, 写出已知、求证; (3)写出 证明过程 。
2016.12
2、平行线的判定
公理: 同位角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b. 判定定理1: 内错角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b. 判定定理2: 同旁内角互补,两直线平行. 0 ∵∠1+∠2=180 , ∴ a∥b.
2016.12
证明一个命题的一般步骤:
(1)弄清题设和结论;
(2)根据题意画出相应的图形;
(3)根据题设和结论写出已知,求证;
(4)分析证明思路,写出证明过程.来自2016.12小结
• 判定两条直线平行的方法:
1、同位角相等,两直线平行.
2、内错角相等,两直线平行.
3、同旁内角互补,两直线平行.
平行线的性质: 1.两直线平行,同位角相等. 2.两直线平行,内错角相等。 3.两直线平行,同旁内角互补。
证法1:
2016.12
证明:两直线平行,同旁内角互补 已知:如图,直线a//b,∠1和∠2是直线a,b被直 c 线c截出的同旁内角. a 求证:∠1+∠2=180° 3 1 2 b 证法2:∵a//b (已知) ∴∠3=∠2 (两直线平行,内错角相等)
∵∠1+∠3=180°(平角的定义) ∴∠1+∠2=180°(等量代换) 这里的结论,以后可以直接运用.