分数的意义和性质 练习题(培优)_
分数的意义和性质 培优题
分数的意义和性质培优题一、分数的意义和性质1.一个真分数的分子、分母是两个连续自然数,如果分母加3,这个分数变成,则原分数是________。
【答案】【解析】【解答】解:,分母减少3后这个分数是。
故答案为:【分析】如果分母加3,那么分母就比分子多4;现在分数的分子比分母多1,说明约分时分子和分母同时缩小了4倍,这样把的分子和分母同时乘4就可以得到约分前的分数,把约分前的分数的分子减去3即可求出原来的分数。
2.要使是真分数,是假分数,x=________【答案】 9【解析】【解答】解:要使是真分数,那么要使是假分数,那么或者x=9.所以x=93.里有________个【答案】 325【解析】【解答】解:,所以共有325个。
故答案为:325。
【分析】先把带分数化成假分数,然后把假分数化成分母是140的分数,再根据分子确定分数单位的个数即可。
4.一个最简真分数,它的分子、分母的乘积是12,这个分数是________或________。
【答案】;【解析】【解答】解:这个分数是或。
故答案为:;。
【分析】乘积是12的两个数有:1和12、2和6、3和4,最简真分数是指这个数的分子和分母不能再约分,而且分数的分子比分母小。
5.修路队要修一条公路,第一天修了全长的,第二天修了全长的.第一天比第二天少修90米.要修的这条路全长________米。
【答案】1200【解析】【解答】90÷()=90÷=90×=1200(米)故答案为:1200【分析】第一天比第二天少修了全长的=,少修90米,少修长度÷少修长度占全长的几分之几=全长。
6.把的分子加10,要使分数的大小不变,分母应变成( )。
A. 54B. 36C. 30D. 28【答案】 A【解析】【解答】解:5+10=15,15÷5=3,分母:18×3=54。
故答案为:A。
【分析】用原来的分子加上10求出现在的分子,然后计算出分子扩大的倍数;把分母也扩大相同的倍数即可求出现在的分母。
【精品】分数的意义和性质 练习题(培优)
【精品】分数的意义和性质练习题(培优)一、分数的意义和性质1.一个最简真分数,它的分子和分母的积是24,这个分数是________或________【答案】;【解析】【解答】解:1×24=24,2×12=24,3×8=24,4×6=24,组成的最简真分数是或。
故答案为:;【分析】最简分数是分子和分母的公因数只有1的分数,真分数是分子小于分母的分数,由此判断这样的分数即可。
2.分母是8的所有最简真分数的和是________.【答案】 2【解析】【解答】解:故答案为:2【分析】最简分数是分子分母只有公因数1的分数,真分数是分子小于分母的分数,由此确定符合要求的分数并相加即可。
3.填空.(从小到大填写,先填分子,后填分母)分母是8的最简真分数有________,________,________,________,它们的和是________.【答案】;;;;2【解析】【解答】解:根据最简真分数的意义可知,分母是8的最简真分数有,它们的和是。
故答案为:;2【分析】最简分数就是分子和分母是互质数的分数,真分数是分子小于分母的分数,由此确定这些分数并把这些分数相加即可。
4.(1)已知:A=2×3×5B=3×5×7则:[A,B]=________(2)已知:A=2×2×5[A,B]=2×2×5×7则:B=________×5×________【答案】(1)210(2)2;7【解析】【解答】(1)已知:A=2×3×5B=3×5×7则:[A,B]=2×3×5×7=210.(2)已知:A=2×2×5[A,B]=2×2×5×7则:B=2×5×7.故答案为:(1)210;(2)2;7.【分析】用分解质因数的方法求两个数的最小公倍数,把这两个数公有的质因数和各自独有的质因数相乘,它们的乘积就是这两个数的最小公倍数,据此解答.5.里有________个【答案】 325【解析】【解答】解:,所以共有325个。
分数的意义和性质 练习题(培优)_
分数的意义和性质练习题(培优)_一、分数的意义和性质1.的分子加上6,要使分数的大小不变,分母应加上________.【答案】10【解析】【解答】解:3+6=9,9÷3=3;5×3-5=10,分母应加上10。
故答案为:10【分析】先计算现在的分子,然后计算分子扩大的倍数,根据分数的基本性质把分母也扩大相同的倍数后计算分母应加上的数即可。
2.把一个分数约分,用2约了两次,又用3约了一次,得,原来这个分数是________.(分数,先填分子,后填分母)【答案】【解析】【解答】解:故答案为:【分析】根据分数的基本性质,把这个分数的分子和分母同时依次乘3、2、2即可得到原来的分数。
3.一个最简真分数,它的分子和分母的积是24,这个分数是________或________【答案】;【解析】【解答】解:1×24=24,2×12=24,3×8=24,4×6=24,组成的最简真分数是或。
故答案为:;【分析】最简分数是分子和分母的公因数只有1的分数,真分数是分子小于分母的分数,由此判断这样的分数即可。
4.填空.(从小到大填写,先填分子,后填分母)分母是8的最简真分数有________,________,________,________,它们的和是________.【答案】;;;;2【解析】【解答】解:根据最简真分数的意义可知,分母是8的最简真分数有,它们的和是。
故答案为:;2【分析】最简分数就是分子和分母是互质数的分数,真分数是分子小于分母的分数,由此确定这些分数并把这些分数相加即可。
5.一个分数的分子加1,这个分数是1.如果把这个分数的分母加1,这个分数就是,原来的这个分数是________?【答案】【解析】【解答】解:分母加1,分母就比分子大2,2÷(8-7)=2,,分母减去1就是原来的分数。
故答案为:【分析】原来分母比分子多1,分母再加上1,现在分母就比分子多2,这样就能计算出约分时分子和分母同时除以2;把现在的分数的分子和分母同时乘2,然后把分母减去1就是原来的分数。
【数学】分数的意义和性质 练习题(培优)
【数学】分数的意义和性质练习题(培优)一、分数的意义和性质1.修路队要修一条公路,第一天修了全长的,第二天修了全长的.第一天比第二天少修90米.要修的这条路全长________米。
【答案】1200【解析】【解答】90÷()=90÷=90×=1200(米)故答案为:1200【分析】第一天比第二天少修了全长的=,少修90米,少修长度÷少修长度占全长的几分之几=全长。
2.下列算式()的结果在和之间。
A. B. C. D.【答案】 C【解析】【解答】选项A,×<,不符合题意;选项B,×<,不符合题意;选项C,因为×<,×=,=,>,所以<×<,符合题意;选项D,×>,不符合题意.故答案为:C.【分析】根据一个非0数乘小于1的数,积小于这个数;一个非0数乘大于1的数,积大于这个数,比较算式的大小.3.五一班有学生50人,其中男生有30人,男生人数占全班人数的几分之几?正确的是()A. B. C. D.【答案】 C【解析】【解答】3050=故答案为:C【分析】求一个数是另一个数的几分之几,就是这个数除以另一个数的值。
4.生产一个零件,甲要时,乙要时,( )做得快。
A. 甲B. 乙C. 无法确定【答案】 A【解析】【解答】因为=,<,所以甲做得快.故答案为:A.【分析】根据题意可知,生产同一个零件,用的时间越短,工作效率越高,据此比较两人的工作时间即可.5.把7克糖溶在100克水中,水的质量占糖水的( )。
A. B. C.【答案】 C【解析】【解答】100÷(7+100)=100÷107=故答案为:C.【分析】根据题意,要求水的质量占糖水的几分之几,用水的质量÷(水的质量+糖的质量)=水的质量占糖水的分率,据此列式解答.6.在图中涂色部分占整个长方形的()。
A. B. C.【答案】 B【解析】【解答】解:在图中涂色部分占整个长方形的。
【精品】分数的意义和性质 练习题(培优)
【精品】分数的意义和性质练习题(培优)一、分数的意义和性质1. =________________【答案】;2【解析】【解答】解:====6.4-3.375+3.6-4.625=(6.4+3.6)-(3.375+4.625)=10-8=2故答案为:(1);(2)2。
【分析】(1)同分母分数相加减,分母不变,分子相加减。
异分母分数相加减,先根据分数基本性质化为同分母分数,再按分母不变,分子相加减进行计算;(2)分数化小数的方法:用分数的分子除以分数的分母,再把商写成小数的形式;计算时,利用凑整数法,可以使运算简便。
2.把一张长方形的纸连续对折三次,其中的一份是这张纸的________【答案】【解析】【解答】解:把一张纸连续对折三次就把这张纸平均分成8份,其中的一份是这张纸的。
故答案为:【分析】分数的意义:把单位“1”平均分成若干份,表示其中的一份或几份的数叫分数。
3.在横线上填上“>”“<”或“=”。
________ ________ ________ ________【答案】 =;>;>;<【解析】【解答】解:;,所以;,,所以;,,所以故答案为:=;>;>;<。
【分析】分母不相等的可以先通分再比较大小;不是最简分数的可以先约分成最简分数后再比较大小。
4.下面的分数中,是最简分数的是( )。
A. B. C.【答案】 A【解析】【解答】选项A,的分子和分母是互质数,所以它是最简分数;选项B,的分子和分母还有公因数6,不是互质数,所以它不是最简分数;选项C,的分子和分母还有公因数17,不是互质数,所以它不是最简分数.故答案为:A.【分析】分子、分母是互质数的分数,叫做最简分数,据此解答.5.把6米长的绳子平均分成6段,每段长()米。
A. B. 1 C. 6【答案】 B【解析】【解答】解:把6米长的绳子平均分成6段,每段长1米。
故答案为:B。
【分析】把6米长的绳子当做单位“1”,平均分成6份,每段占总长的,即1米。
分数的意义和性质 练习题(培优)_
分数的意义和性质练习题(培优)_一、分数的意义和性质1.如果,,,那么a,b,c中最大的是________,最小的是________.【答案】c;a【解析】【解答】a==1-,b==1-,c==1-,因为<<,所以a<b<c,即最大的是c,最小的是a.故答案为:c;a.【分析】首先将a、b、c拆分,再根据拆分后所得分数分子相同,分母大的反而小,再用1分别减去这几个分数得出1减去大的数差小,减去小的数差大,进而得出最大的数和最小的数.2.里面有________个,2 里面有________个,18个是________。
【答案】7;8;2【解析】【解答】解:里面有7个;,里面有8个,18个是,也就是2。
故答案为:7;8;2【分析】分子在几就表示有几个分数单位,把带分数化成假分数后再判断有几个分数单位。
3.在横线上填上“>”“<”或“=”。
________ ________ 2 ________________ 1 ________ 5 ________【答案】>;=;=;<;>;<【解析】【解答】解:第一个是假分数,第二个是真分数,所以;;;,所以;第一个是带分数,第二个是真分数,所以;,所以。
故答案为:>;=;=;<;>;<【分析】假分数、带分数都比真分数大;分母不相同,要先通分,然后按照同分母分数大小的比较方法比较大小。
假分数和带分数比较大小要先统一然后比较大小。
4.一块饼平均切成8块,妈妈吃了3块,小明吃了2块,还剩下这块饼的()。
A. B. C.【答案】 B【解析】【解答】解:3+2=5(块),8-5=3(块),3÷8=。
故答案为:B。
【分析】妈妈吃的块数+小明吃的块数=两人共吃的块数,总块数-两人共吃的块数=剩下的块数。
求一个数是总数的几分之几用除法。
5.把化成最简分数是( )A. B. C.【答案】B【解析】【解答】==.故答案为:B.【分析】将一个分数化简成最简分数,依据分数的基本性质:分数的分子和分母同时除以它们的最大公因数,分数大小不变,据此约分化简.6.一堆沙子重2吨,第一次运走它的,第二次运走了吨,两次运走的沙子相比,()。
【数学】分数的意义和性质 练习题(培优)
【数学】分数的意义和性质练习题(培优)一、分数的意义和性质1.分母是8的所有最简真分数的和是________.【答案】 2【解析】【解答】解:故答案为:2【分析】最简分数是分子分母只有公因数1的分数,真分数是分子小于分母的分数,由此确定符合要求的分数并相加即可。
2.分数单位是的最大真分数是________,最小假分数是________.【答案】;【解析】【解答】分数单位是的最大真分数是,最小假分数是【分析】最大真分数是分子比分母小于1的分数,最小假分数是分子等于分母的分数。
3.把、、、按从小到大的顺序排列________【答案】【解析】【解答】解:,,,所以。
故答案为:。
【分析】把化成分子是2和3的分数,然后根据同分母、同分子分数大小的比较方法从小到大排列即可。
4.把10g盐溶解到100g水中,盐占盐水的( )。
A. B. C.【答案】C【解析】【解答】10÷(10+100)=10÷110=故答案为:C.【分析】根据题意可知,要求盐占盐水的几分之几,用盐的质量÷(盐的质量+水的质量)=盐占盐水的分率,据此列式解答.5.一个最简真分数,分子和分母的和是12,这样的分数有( )个。
A. 2B. 3C. 4D. 5【答案】A【解析】【解答】解:分子和分母的和是12的最简真分数有、,共2个。
故答案为:A【分析】最简真分数的分子小于分母,且分子和分母只有公因数1。
6.把6米长的绳子平均分成6段,每段长()米。
A. B. 1 C. 6【答案】 B【解析】【解答】解:把6米长的绳子平均分成6段,每段长1米。
故答案为:B。
【分析】把6米长的绳子当做单位“1”,平均分成6份,每段占总长的,即1米。
7.一堆沙子重2吨,第一次运走它的,第二次运走了吨,两次运走的沙子相比,()。
A. 第一次运得多B. 第二次运得多C. 无法比较【答案】 A【解析】【解答】两次运走的沙子相比,第一次运得多。
分数的意义和性质 练习题(培优)_
分数的意义和性质练习题(培优)_一、分数的意义和性质1.a是自然数,化成最简分数是________。
【答案】【解析】【解答】解:化成最简分数是。
故答案为:。
【分析】中的分母可以写成3×(3+a),此时分数的分子和分母都有公因数3+a,将分数的分子和分母同时除以3+a进行化简,所得的最简分数是。
2.解决实际问题.有一种黄豆,每1千克中大约含有400克蛋白质、290克淀粉和200克脂肪.蛋白质的含量是________,淀粉的含量是________,脂肪的含量是________。
【答案】;;【解析】【解答】解:1千克=1000克,蛋白质的含量:400÷1000=;淀粉的含量:290÷1000=;脂肪的含量:200÷1000=。
故答案为:;;【分析】用三种物质的质量分别除以黄豆的质量即可求出三种物质的含量,用分数表示得数时用被除数作分子,除数作分母。
3.填上适当的分数.361平方分米=________平方米2130毫升=________升【答案】;【解析】【解答】361平方分米=361÷100=平方米,2160毫升=2130÷1000=升【分析】解答此题首先要明确1平方米=100平方分米,1升=1000毫升,低级单位化成高级单位要除以进率,然后根据分数与除法的关系,用分数表示各个数字即可。
4.里有________个【答案】 325【解析】【解答】解:,所以共有325个。
故答案为:325。
【分析】先把带分数化成假分数,然后把假分数化成分母是140的分数,再根据分子确定分数单位的个数即可。
5.把5 m长的绳子平均分成8份,每份是全长的________,每份长________。
【答案】; m【解析】【解答】1÷8=,5÷8=(m)故答案为:;m【分析】将这根绳子看做一个整体,平均分成8份,则每份占全长的;每份的长度=总长度÷总段数,将对应的数字代入即可求出答案。
【精品】分数的意义和性质 练习题(培优)
【精品】分数的意义和性质练习题(培优)一、分数的意义和性质1.解决实际问题.有一种黄豆,每1千克中大约含有400克蛋白质、290克淀粉和200克脂肪.蛋白质的含量是________,淀粉的含量是________,脂肪的含量是________。
【答案】;;【解析】【解答】解:1千克=1000克,蛋白质的含量:400÷1000=;淀粉的含量:290÷1000=;脂肪的含量:200÷1000=。
故答案为:;;【分析】用三种物质的质量分别除以黄豆的质量即可求出三种物质的含量,用分数表示得数时用被除数作分子,除数作分母。
2.一个分数用2约分了2次,用3约分了1次,得到的最简分数是.求原来的分数是________.【答案】【解析】【解答】解:故答案为:【分析】根据分数的基本性质,把这个分数的分子和分母同时乘3、2、2即可求出原来的分数。
3.要使是真分数,是假分数,x=________【答案】 9【解析】【解答】解:要使是真分数,那么要使是假分数,那么或者x=9.所以x=94.把、、、按从小到大的顺序排列________【答案】【解析】【解答】解:,,,所以。
故答案为:。
【分析】把化成分子是2和3的分数,然后根据同分母、同分子分数大小的比较方法从小到大排列即可。
5.分母是16的最小真分数是________,最大真分数是________,最小假分数是________,最小带分数是________。
【答案】;;;1【解析】【解答】解:分母是16的最小真分数是,最大真分数是,最小假分数是,最小带分数是故答案为:;;;【分析】最小真分数的分子一定是1,最大真分数的分子比分母小1,最小假分数的分子等于分母,最小带分数的整数部分是1,分数部分的分子也是1。
6.下面说法错误的是()A. 两个不同质数的公因数只有1B. 假分数都比1大C. 求无盖长方体纸箱所需材料的多少就是求长方体的表面积D. 2是偶数,也是质数;9是奇数,也是合数。
分数的意义和性质 练习题(培优)_
分数的意义和性质练习题(培优)_一、分数的意义和性质1.把一个分数约分,用2约了两次,又用3约了一次,得,原来这个分数是________.(分数,先填分子,后填分母)【答案】【解析】【解答】解:故答案为:【分析】根据分数的基本性质,把这个分数的分子和分母同时依次乘3、2、2即可得到原来的分数。
2.比较分数和、和的大小.________ ________【答案】 >;<【解析】【解答】解:,,所以;, 1-,因为,所以。
故答案为:>;<。
【分析】第一组通分后比较大小;第二组:用1分别减去这两个分数求出差,比较两个差的大小,被减数相同,差大的减数就小。
3.在,,,四个分数中,________是真分数,________是假分数,________是最简分数。
【答案】,;,;,,【解析】【解答】真分数:、;假分数:、;最简分数:、、故答案为:,;,;,,【分析】真分数是指分子大于分母的分数,假分数是指分子小于分母的分数,最简分数是指分子与分母不可再约分的分数。
根据以上即可判断出正确答案。
4.在横线上填上“>”“<”或“=”。
________ ________ ________【答案】>;=;>【解析】【解答】>,=,>故答案为:>;=;>【分析】分母不同的分数进行比较,先找其最小公倍数,再进行同分,则分子大的分数值大。
据此进行计算比较大小即可。
5.是真分数,x的值有()种可能。
A. 3B. 4C. 5D. 无法判断【答案】 B【解析】【解答】解:根据真分数的意义可知,x的值可以是1、2、3、4,有4种可能。
故答案为:4。
【分析】真分数是分子小于分母的分数,所以x的值是小于5的非0自然数。
6.五一班有学生50人,其中男生有30人,男生人数占全班人数的几分之几?正确的是()A. B. C. D.【答案】 C【解析】【解答】3050=故答案为:C【分析】求一个数是另一个数的几分之几,就是这个数除以另一个数的值。
【数学】分数的意义和性质 练习题(培优)
【数学】分数的意义和性质练习题(培优)一、分数的意义和性质1.解决实际问题.有一种黄豆,每1千克中大约含有400克蛋白质、290克淀粉和200克脂肪.蛋白质的含量是________,淀粉的含量是________,脂肪的含量是________。
【答案】;;【解析】【解答】解:1千克=1000克,蛋白质的含量:400÷1000=;淀粉的含量:290÷1000=;脂肪的含量:200÷1000=。
故答案为:;;【分析】用三种物质的质量分别除以黄豆的质量即可求出三种物质的含量,用分数表示得数时用被除数作分子,除数作分母。
2.一个最简分数,如果把它的分子除以2,分母乘3后,就得到.这个最简分数是________【答案】【解析】【解答】解:故答案为:【分析】可以采用倒推的方法,把现在的分数的分子乘2,分母除以3,这样就能计算出原来的分数。
3.分数单位是的最大真分数是________,最小假分数是________.【答案】;【解析】【解答】分数单位是的最大真分数是,最小假分数是【分析】最大真分数是分子比分母小于1的分数,最小假分数是分子等于分母的分数。
4.有一筐桃,平均分给6个小朋友,正好还剩1个;平均分给8个小朋友,正好也剩1个。
如果这筐桃的个数不超过50,那么这筐桃可能有________个,也可能有________个。
【答案】 25;49【解析】【解答】6=2×3;8=2×2×2;6和8的最小公倍数是2×3×2×2=24;如果这筐桃的个数不超过50,那么这筐桃可能有25个,也可能有49个。
故答案为:25;49。
【分析】此题主要考查了最小公倍数的应用,先求出6和8的最小公倍数,然后在指定的范围内求出这筐桃的个数,据此解答。
5.把、、、按从小到大的顺序排列________【答案】【解析】【解答】解:,,,所以。
故答案为:。
分数的意义和性质 练习题(培优)_
分数的意义和性质练习题(培优)_一、分数的意义和性质1.一个最简分数是真分数,它的分子和分母的积是15,这个最简分数是________或________。
【答案】;【解析】【解答】解:15=3×5=1×15,所以最简分数是或。
故答案为:;。
【分析】分子和分母的积是15,15=3×5=1×15,则分子和分母的组合有4组,即,,,。
真分数是分子小于分母的分数,最简分数是分子与分母互质的分数,1和15互质,3和5互质,所以结果只能为:,。
2.一个真分数的分子、分母是两个连续自然数,如果分母加3,这个分数变成,则原分数是________。
【答案】【解析】【解答】解:,分母减少3后这个分数是。
故答案为:【分析】如果分母加3,那么分母就比分子多4;现在分数的分子比分母多1,说明约分时分子和分母同时缩小了4倍,这样把的分子和分母同时乘4就可以得到约分前的分数,把约分前的分数的分子减去3即可求出原来的分数。
3.按要求写出分数.以5为分母的所有真分数是________以3为分子的所有假分数是________.【答案】;【解析】【解答】以5为分母的所有真分数是,,,;以3为分子的所有假分数是和【分析】真分数的分子小于分母的分数,假分数是分子大于或是等于分母的分数。
4.把36个文具盒和45支笔分别平均分给若干名小朋友,且保证分到文具盒和笔的人数相同,最多能分给________人,每人分到________个文具盒和________支笔。
【答案】9;4;5【解析】【解答】36=4×9;45=5×9;最多能分给9个小朋友,每人分到4个文具盒和5只笔。
故答案为:9;4;5.【分析】36和45的最大公因数就是最多分的人数,总数÷分的人数=每人分的个数。
5.一排电线杆,原来每两根之间的距离是30米,现在改为45米,如果开始的一根不移动,至少再隔________又会有一根电线杆可以不移动?【答案】 90米【解析】【解答】 30=2×3×5,45=3×3×5,所以30和45的最小公倍数是2×3×3×5=90.故答案为:90米.【分析】根据题意可知,要求至少再隔多少米又会有一根电线杆可以不移动,就是求30和45的最小公倍数,据此解答.6.下列算式()的结果在和之间。
【精品】分数的意义和性质 练习题(培优)
【精品】分数的意义和性质练习题(培优)一、分数的意义和性质1.如下图,竹竿的高度是1米,影子的长度是0.8米.影子的长度是竹竿高度的________.【答案】【解析】【解答】解:0.8÷1=故答案为:【分析】求一个数是另一个数的几分之几用除法计算,用分数表示商时用被除数作分子,除数作分母,结果要化成最简分数。
2.一个分数用2约分了2次,用3约分了1次,得到的最简分数是.求原来的分数是________.【答案】【解析】【解答】解:故答案为:【分析】根据分数的基本性质,把这个分数的分子和分母同时乘3、2、2即可求出原来的分数。
3.分母是8的所有最简真分数的和是________.【答案】 2【解析】【解答】解:故答案为:2【分析】最简分数是分子分母只有公因数1的分数,真分数是分子小于分母的分数,由此确定符合要求的分数并相加即可。
4.分母是16的最小真分数是________,最大真分数是________,最小假分数是________,最小带分数是________。
【答案】;;;1【解析】【解答】解:分母是16的最小真分数是,最大真分数是,最小假分数是,最小带分数是故答案为:;;;【分析】最小真分数的分子一定是1,最大真分数的分子比分母小1,最小假分数的分子等于分母,最小带分数的整数部分是1,分数部分的分子也是1。
5.工程队8天修完一段9千米的路,平均每天修了这段路的()。
A. B. C. D.【答案】 D【解析】【解答】解:根据分数的意义可知,平均每天修了这段路的。
故答案为:D。
【分析】把这条路的总长度看作单位“1”,8天修完就是平均分成8份,每天修1份,也就是每天修这段路的。
6.一堆化肥15吨,用去10吨,用去几分之几?正确的解答是()A. B. 吨 C. 10吨 D.【答案】 D【解析】【解答】10÷15==故答案为:D【分析】用去几分之几,也就是用去的化肥是一堆化肥的几分之几,求一个数是另一个的几分之几,用除法计算,两个数相除的商可以写成分数形式,然后约成最简分数。
分数的意义和性质 练习题(培优)_
分数的意义和性质练习题(培优)_一、分数的意义和性质1.一个最简真分数,它的分子和分母的积是24,这个分数是________或________【答案】;【解析】【解答】解:1×24=24,2×12=24,3×8=24,4×6=24,组成的最简真分数是或。
故答案为:;【分析】最简分数是分子和分母的公因数只有1的分数,真分数是分子小于分母的分数,由此判断这样的分数即可。
2.填空.(从小到大填写,先填分子,后填分母)分母是8的最简真分数有________,________,________,________,它们的和是________.【答案】;;;;2【解析】【解答】解:根据最简真分数的意义可知,分母是8的最简真分数有,它们的和是。
故答案为:;2【分析】最简分数就是分子和分母是互质数的分数,真分数是分子小于分母的分数,由此确定这些分数并把这些分数相加即可。
3.分数单位是的最大真分数是________,最小假分数是________.【答案】;【解析】【解答】分数单位是的最大真分数是,最小假分数是【分析】最大真分数是分子比分母小于1的分数,最小假分数是分子等于分母的分数。
4.一个最简真分数,它的分子、分母的乘积是12,这个分数是________或________。
【答案】;【解析】【解答】解:这个分数是或。
故答案为:;。
【分析】乘积是12的两个数有:1和12、2和6、3和4,最简真分数是指这个数的分子和分母不能再约分,而且分数的分子比分母小。
5.修路队要修一条公路,第一天修了全长的,第二天修了全长的.第一天比第二天少修90米.要修的这条路全长________米。
【答案】1200【解析】【解答】90÷()=90÷=90×=1200(米)故答案为:1200【分析】第一天比第二天少修了全长的=,少修90米,少修长度÷少修长度占全长的几分之几=全长。
【数学】分数的意义和性质 练习题(培优)_
【数学】分数的意义和性质练习题(培优)_一、分数的意义和性质1.把一个分数约分,用2约了两次,又用3约了一次,得,原来这个分数是________.(分数,先填分子,后填分母)【答案】【解析】【解答】解:故答案为:【分析】根据分数的基本性质,把这个分数的分子和分母同时依次乘3、2、2即可得到原来的分数。
2.能化成有限小数的分数是()。
A. B. C. D.【答案】 D【解析】【解答】解:A项中,=;B项中,=;C项中,=;D项中,=0.65。
综上,能化成有限小数的分数是。
故答案为:D。
【分析】有限小数是指小数的小数部分的位数是有限的;分数化小数,用分子除以分母即可。
3.若a+ =b+ ,则a与b的关系是().A. a>bB. a<bC. a=bD. 无法确定【答案】 B【解析】【解答】解:因为,所以a<b。
故答案为:B。
【分析】先根据分子是1的分数大小的比较方法比较出和的大小,然后确定a与b的大小。
因为和相等,一个加数大,另一个加数一定小。
4.一个最简真分数,分子和分母的和是12,这样的分数有( )个。
A. 2B. 3C. 4D. 5【解析】【解答】解:分子和分母的和是12的最简真分数有、,共2个。
故答案为:A【分析】最简真分数的分子小于分母,且分子和分母只有公因数1。
5.在下列算式中,计算结果最接近1的是( )。
A. B. C.【答案】 A【解析】【解答】解:这些选项中,计算结果最接近1的是A项。
故答案为:A。
【分析】A项中,=, B项中=, C项中=,所以计算结果最接近1的是A项。
6.被2、3、5除都余1的最小数是()。
A. 21B. 31C. 61D. 121【答案】 B【解析】【解答】解:2、3、5的最小公倍数是2×3×5=30,30+1=31,所以被2、3、5除都余1的最小数是31。
故答案为:B。
【分析】一个数被几个数除都有余数,而且余数都相等,所以这个数最小是:几个数的最小公倍数+余数。
【精品】分数的意义和性质 练习题(培优)
【精品】分数的意义和性质练习题(培优)一、分数的意义和性质1.如下图,竹竿的高度是1米,影子的长度是0.8米.影子的长度是竹竿高度的________.【答案】【解析】【解答】解:0.8÷1=故答案为:【分析】求一个数是另一个数的几分之几用除法计算,用分数表示商时用被除数作分子,除数作分母,结果要化成最简分数。
2.一个分数用2约分了2次,用3约分了1次,得到的最简分数是.求原来的分数是________.【答案】【解析】【解答】解:故答案为:【分析】根据分数的基本性质,把这个分数的分子和分母同时乘3、2、2即可求出原来的分数。
3.参加团体操表演的学生按照每排4人、5人或8人都正好排完.参加团体操表演的学生至少有()人.A. 20B. 40C. 80【答案】 B【解析】【解答】解:4、5、8的最小公倍数是40,所以参加团体操表演的学生至少有40人。
故答案为:B。
【分析】因为学生按照每排4人、5人或8人都正好排完,说明学生的人数是4、5、8的公倍数,题中问的是至少有多少人参加表演,也就是求这3个数的最小公倍数。
4.下列算式中,结果与不相等的是( )。
A. 0.2÷0.5B. 20÷500C. 4÷10D. 16÷40【答案】 B【解析】【解答】解:A、0.2÷0.5=;B、20÷500=;C、4÷10=;D、16÷40=。
故答案为:B。
【分析】用分数表示商时,用被除数作分子,除数作分母,由此计算后选择即可。
5.把的分子加10,要使分数的大小不变,分母应变成( )。
A. 54B. 36C. 30D. 28【答案】 A【解析】【解答】解:5+10=15,15÷5=3,分母:18×3=54。
故答案为:A。
【分析】用原来的分子加上10求出现在的分子,然后计算出分子扩大的倍数;把分母也扩大相同的倍数即可求出现在的分母。
【精品】分数的意义和性质 练习题(培优)_
【精品】分数的意义和性质练习题(培优)_一、分数的意义和性质1.五(1)班的同学借了《儿童文学》,的同学借了《聪明屋》.的同学借了《少年时代》,的同学借了《漫画世界》,还有的人看《笑林》.借阅________刊物的同学一样多?【答案】《儿童文学》《聪明屋》和《少年时代》【解析】【解答】解:,,所以借阅《儿童文学》《聪明屋》和《少年时代》刊物的同学一样多。
故答案为:《儿童文学》《聪明屋》和《少年时代》【分析】根据分数的基本性质把第二个和第三个两个分数约分成最简分数,然后判断哪些图书借阅的人数一样多。
2.分数单位是的最大真分数是________,最小假分数是________.【答案】;【解析】【解答】分数单位是的最大真分数是,最小假分数是【分析】最大真分数是分子比分母小于1的分数,最小假分数是分子等于分母的分数。
3.在横线上填上“>”“<”或“=”。
________ ________ ________ ________【答案】 =;>;>;<【解析】【解答】解:;,所以;,,所以;,,所以故答案为:=;>;>;<。
【分析】分母不相等的可以先通分再比较大小;不是最简分数的可以先约分成最简分数后再比较大小。
4.在横线上填上“>”“<”或“=”。
________ ________ 2 ________________ 1 ________ 5 ________【答案】>;=;=;<;>;<【解析】【解答】解:第一个是假分数,第二个是真分数,所以;;;,所以;第一个是带分数,第二个是真分数,所以;,所以。
故答案为:>;=;=;<;>;<【分析】假分数、带分数都比真分数大;分母不相同,要先通分,然后按照同分母分数大小的比较方法比较大小。
假分数和带分数比较大小要先统一然后比较大小。
5.修路队要修一条公路,第一天修了全长的,第二天修了全长的.第一天比第二天少修90米.要修的这条路全长________米。
【精品】分数的意义和性质 练习题(培优)
【精品】分数的意义和性质练习题(培优)一、分数的意义和性质1. =________________【答案】;2【解析】【解答】解:====6.4-3.375+3.6-4.625=(6.4+3.6)-(3.375+4.625)=10-8=2故答案为:(1);(2)2。
【分析】(1)同分母分数相加减,分母不变,分子相加减。
异分母分数相加减,先根据分数基本性质化为同分母分数,再按分母不变,分子相加减进行计算;(2)分数化小数的方法:用分数的分子除以分数的分母,再把商写成小数的形式;计算时,利用凑整数法,可以使运算简便。
2.解决实际问题.有一种黄豆,每1千克中大约含有400克蛋白质、290克淀粉和200克脂肪.蛋白质的含量是________,淀粉的含量是________,脂肪的含量是________。
【答案】;;【解析】【解答】解:1千克=1000克,蛋白质的含量:400÷1000=;淀粉的含量:290÷1000=;脂肪的含量:200÷1000=。
故答案为:;;【分析】用三种物质的质量分别除以黄豆的质量即可求出三种物质的含量,用分数表示得数时用被除数作分子,除数作分母。
3.要使是真分数,是假分数,x=________【答案】 9【解析】【解答】解:要使是真分数,那么要使是假分数,那么或者x=9.所以x=94.分数单位是的最大真分数是________,最小假分数是________.【答案】;【解析】【解答】分数单位是的最大真分数是,最小假分数是【分析】最大真分数是分子比分母小于1的分数,最小假分数是分子等于分母的分数。
5.在横线上填上“>”“<”或“=”。
________ ________ 2 ________________ 1 ________ 5 ________【答案】>;=;=;<;>;<【解析】【解答】解:第一个是假分数,第二个是真分数,所以;;;,所以;第一个是带分数,第二个是真分数,所以;,所以。
【数学】分数的意义和性质 练习题(培优)_
【数学】分数的意义和性质练习题(培优)_一、分数的意义和性质1.要使是真分数,是假分数,x=________【答案】 9【解析】【解答】解:要使是真分数,那么要使是假分数,那么或者x=9.所以x=92.分数单位是的最大真分数是________,最小假分数是________.【答案】;【解析】【解答】分数单位是的最大真分数是,最小假分数是【分析】最大真分数是分子比分母小于1的分数,最小假分数是分子等于分母的分数。
3.有一筐桃,平均分给6个小朋友,正好还剩1个;平均分给8个小朋友,正好也剩1个。
如果这筐桃的个数不超过50,那么这筐桃可能有________个,也可能有________个。
【答案】 25;49【解析】【解答】6=2×3;8=2×2×2;6和8的最小公倍数是2×3×2×2=24;如果这筐桃的个数不超过50,那么这筐桃可能有25个,也可能有49个。
故答案为:25;49。
【分析】此题主要考查了最小公倍数的应用,先求出6和8的最小公倍数,然后在指定的范围内求出这筐桃的个数,据此解答。
4.如果是真分数,是假分数,那么n是________.【答案】 7【解析】【解答】解:n是7。
故答案为:7。
【分析】如果是真分数,那么n>6,是假分数,那么n≤7,综上,n=7。
5.在长240米的马路两旁每隔4米载着一棵树(首尾都栽),现在要改成每隔6米栽一棵。
共有________棵不需要移栽。
【答案】 42【解析】【解答】解:4和6的最小公倍数是12,公路一旁不需要移栽的棵树:240÷12+1=21(棵)公路两旁不需要移栽的棵树:21×2=42(棵)故答案为:42。
【分析】先算出4和6的最小公倍数是12,即可得出改成间隔4米或间隔6米会重复栽的棵树是间隔12米栽的树木,再按照植树问题中栽的棵树=总长度÷间隔数+1解答即可。
【数学】分数的意义和性质 练习题(培优)
【数学】分数的意义和性质练习题(培优)一、分数的意义和性质1.分母是8的所有最简真分数的和是________.【答案】 2【解析】【解答】解:故答案为:2【分析】最简分数是分子分母只有公因数1的分数,真分数是分子小于分母的分数,由此确定符合要求的分数并相加即可。
2.把、、、按从小到大的顺序排列________【答案】【解析】【解答】解:,,,所以。
故答案为:。
【分析】把化成分子是2和3的分数,然后根据同分母、同分子分数大小的比较方法从小到大排列即可。
3.和这两个分数()。
A. 意义相同B. 分数单位相同C. 大小相同【答案】 C【解析】【解答】和这两个分数的意义和分数单位都不同,但是它们的大小相同。
故答案为:C。
【分析】根据题意可知,这两个分数的分母不同,所以分数的意义和分数单位都不同,将约分可得,据此解答。
4.己知三个数按从大到小的顺序排列是()A. a>b>cB. c>b>aC. b>a>cD. b>c>a【答案】 D【解析】【解答】解:假设c=1,则a=, b=,所以b>c>a。
故答案为:D。
【分析】假设c=1,则1×c=1,所以前面两个算式的积也是1,由此确定a和b的值,再确定三个字母表示数的大小即可。
5.把一根绳子剪成两段,第一段长米,第二段占全长的,两段相比( )。
A. 第一段长B. 第二段长C. 一样长【答案】 B【解析】【解答】解:两段相比第二段长。
故答案为:B。
【分析】因为第二段占全长的,说明第一段占全长的1-=,>,所以两段相比第二段长。
6.被2、3、5除都余1的最小数是()。
A. 21B. 31C. 61D. 121【答案】 B【解析】【解答】解:2、3、5的最小公倍数是2×3×5=30,30+1=31,所以被2、3、5除都余1的最小数是31。
故答案为:B。
【分析】一个数被几个数除都有余数,而且余数都相等,所以这个数最小是:几个数的最小公倍数+余数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数的意义和性质练习题(培优)_
一、分数的意义和性质
1. =________
________
【答案】;2
【解析】【解答】解:
=
=
=
=6.4-3.375+3.6-4.625
=(6.4+3.6)-(3.375+4.625)
=10-8
=2
故答案为:(1);(2)2。
【分析】(1)同分母分数相加减,分母不变,分子相加减。
异分母分数相加减,先根据分数基本性质化为同分母分数,再按分母不变,分子相加减进行计算;(2)分数化小数的方法:用分数的分子除以分数的分母,再把商写成小数的形式;计算时,利用凑整数法,可以使运算简便。
2.填上适当的分数.
143分=________时
3081立方分米=________立方米
【答案】;
【解析】【解答】143分=143÷60=,3081立方分米=3081÷1000=
【分析】解答此题首先要明确1小时=60分,1立方米=1000立方分米,低级单位化成高级单位要除以进率,然后根据分数与除法的关系,用分数表示各个数字即可。
3.里有________个
【答案】 325
【解析】【解答】解:,所以共有325个。
故答案为:325。
【分析】先把带分数化成假分数,然后把假分数化成分母是140的分数,再根据分子确定分数单位的个数即可。
4.把5 m长的绳子平均分成8份,每份是全长的________,每份长________。
【答案】; m
【解析】【解答】1÷8=,5÷8=(m)
故答案为:;m
【分析】将这根绳子看做一个整体,平均分成8份,则每份占全长的;每份的长度=总长度÷总段数,将对应的数字代入即可求出答案。
5.生产一个零件,甲要时,乙要时,( )做得快。
A. 甲
B. 乙
C. 无法确定
【答案】 A
【解析】【解答】因为=,<,所以甲做得快.
故答案为:A.
【分析】根据题意可知,生产同一个零件,用的时间越短,工作效率越高,据此比较两人的工作时间即可.
6.下面的分数中,( )与0.15相等。
A. B. C.
【答案】 A
【解析】【解答】A,=3÷20=0.15;
B,≈0.143;
C,=3÷5=0.6。
故答案为:A.
【分析】根据题意,分数化成小数:用分母去除分子,能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数,据此解答.
7.把化成最简分数是( )
A. B. C.
【答案】B
【解析】【解答】==.
故答案为:B.
【分析】将一个分数化简成最简分数,依据分数的基本性质:分数的分子和分母同时除以它们的最大公因数,分数大小不变,据此约分化简.
8.下面涂色部分表示的是()。
A. B. C.
【答案】 B
【解析】【解答】解:下面涂色部分表示的是。
故答案为:B。
【分析】把整个正方形当做单位“1”,平均分成3份,涂色部分占其中的1份表示,即可得答案。
9.a是非0自然数,在下面各式中,得数最小的是()。
A. a
B. a
C. a
【答案】 B
【解析】【解答】解:,所以得数最小的是a×。
故答案为:B。
【分析】三个算式都有一个因数a,则另一个因数小,积就小,另一个因数大,积就大。
由此只需要比较另一个因数的大小即可确定积的大小。
10.两个真分数的积一定是()。
A. 1
B. 真分数
C. 假分数
【答案】 B
【解析】【解答】解:两个真分数的乘积一定小于1,一定都是真分数。
故答案为:B。
【分析】真分数都小于1,两个小于1的数相乘的积小于1,也就是积一定是真分数。
11.下列每组中的两个分数相等的是()
A. 和
B. 和
C. 和
【答案】 C
【解析】【解答】选项A,=,>;
选项B,=,>;
选项C,=。
故答案为:C。
【分析】比较两个异分母分数大小,可以先约分,再比较大小;同分母分数比较大小,分子越大,这个分数就越大;同分子分数比较大小,分母越大,这个分数就越小,据此判断。
12.下列()算式结果在和之间。
A. B. C. D.
【答案】 C
【解析】【解答】;;
;;;。
故答案为:C。
【分析】四分之一的分子和分母同时乘以2.5,把分母化为10;八分之五的分子和分母同时乘以1.25,把分母化为10;
都把分母化为10以后,再进行比较。
13.把一根绳子对折三次后,这时每段绳子是全长的()。
A. B. C. D.
【答案】 D
【解析】【解答】解:一根绳子对折三次后,这根绳子平均被分成8份,这时这时每段绳
子是全长的。
故答案为:D。
【分析】一根绳子对折几次,就是把这根绳子平均分成(几个2相乘)份,据此作答即可。
14.一个长方形墙砖长35厘米,宽20厘米,用这种墙砖铺成一个正方形,至少需要多少块?铺成的正方形的面积是多少平方米?
【答案】解:35=5×7
20=2×2×5
所以20和35的最小公倍数是:2×2×5×7=140
即正方形的边长最小是140厘米
140×140=19600(平方厘米)
19600平方厘米=1.96平方米
则地砖的块数为:140×140÷(35×20)
=19600÷700
=28(块)
答:至少要28块砖,铺成的正方形的面积是1.96平方米。
【解析】【分析】用长方形的墙砖铺成正方形,则这个正方形的边长是这个长方形长和宽的最小公倍数,先用短除法或分解质因数法求出35和20的最小公倍数,这个最小公倍数就是正方形的边长。
再根据正方形面积公式:S=a×a,求出正方形的面积,并转换单位为平方米;最后,用“正方形面积÷长方形墙砖的面积=所需墙砖数量”,求出需要多少块墙砖。
15.一瓶饮料有 L,爸爸喝了这瓶饮料的,妈妈喝了,其余的全被小宝喝了。
小宝喝了这瓶饮料的几分之几?
【答案】解:1-- =
答:小宝喝了这瓶饮料的。
【解析】【分析】将这瓶饮料看作单位“1”,那么小宝喝了这瓶饮料的几分之几=1-爸爸喝了这瓶饮料的几分之几-妈妈喝了这瓶饮料的几分之几,据此代入数据作答即可。