2017届天津市五区县高三上学期期末考试l理科数学试卷
【天津市五区县】2017届高三上学期期末考试(理)数学试卷-答案
天津市五区县2017届高三上学期期末考试(理)数学试卷答 案1~5.DACBD6~8.ACD9.810.24-11.32+12.4ln3-1314.(,e)-∞三、解答题:15.(本小题满分13分)解:(I)函数2()2cos cos cos212f x x x x a x x a =++=++π2sin(2)16x a =+++,……………………4分 故函数()f x 的最小正周期为πT =.………………………6分(II )由题意得πππ7π0,,2,2666x x ⎡⎤⎡⎤∈+∈⎢⎥⎢⎥⎣⎦⎣⎦,……………………10分 故min ()112f x a =-++=,所以2a =.……………………13分16.(本小题满分13分)解:(Ⅰ)由题意知,7名队员中分为两部分,3人为女棋手,4人为男棋手,设事件A =“恰有1位女棋手”,则()1334471235C C P A C ==,………………………4分 所以参加第一阶段的比赛的队员中,恰有1位女棋手的概率为1235.…………5分 (Ⅱ)随机变量X 的所有可能取值为0,2,4.其中()22344718035C C P X C ===, ()133134344716235C C C C P X C +===, ()0434471435C C P X C ===.………………………………9分所以,随机变量X 分布列为随机变量X 的数学期望()181613602435353535E X =⨯+⨯+⨯=.………………………………13分 17.(本小题满分13分)解:(Ⅰ)法一:∵~AGD CGE △△,知23DG AD AG GE EC GC ===,且AC =, 故35GC AC == 同理可得35GE DE ==,且3EC =,222GC GE EC +=,ED AC ⊥.………2分 又∵PA ⊥平面ABCD ∴PA ED ⊥……3分而PA AC A =∴ED ⊥平面PAC .ED ⊂平面PDE ,故平面PDE ⊥平面PAC ;……4分法二:∵PA ⊥平面ABCD ∴AB PA ⊥ 又∵AB AD ⊥,故可建立建立如图所示坐标系.由已知(0,2,0)D ,(2,1,0)E ,(2,4,0)C ,(0,0,)P λ(0λ>)∴(2,4,0)AC =,(0,0,)AP λ=,(2,1,0)DE =- ∴4400DE AC ⋅=-+=,0DE AP ⋅=.……3分,∴DE AC ⊥,DE AP ⊥,∴ED ⊥平面PAC,ED ⊂平面PDE ,平面PDE ⊥平面PAC ;……4分 (Ⅱ)(i )由(Ⅰ),平面PAC 的一个法向量是(2,1,0)DE =-,因为PAB △为等腰直角三角形,故2PA =,(2,1,2)PE =-. 设直线PE 与平面PAC 所成的角为θ,则sin cos ,PE DE θ=<>=8分 (ii )设平面PCD 的一个法向量为000(,,)n x y z =,(2,2,0)DC =,(0,2,2)DP =-由n DC ⊥,n DP ⊥∴0000220220x y y z +=⎧⎨-+=⎩,令01x =,则(1,1,1)n =--,………10分 ∴cos ,n DE <>==.………11分显然二面角A PC D --的平面角是锐角,∴二面角A PC D --.………13分(其他方法可酌情给分) 18.(本小题满分13分)解:(I )当2n ≥时,2n A n =,21(1)n A n -=-,两式相减:121n n n a A A n -=-=-;当1n =时,111a A ==,也适合21n a n =-,故数列{}n a 的通项公式为21n a n =-.………3分 (II )由题意知:2122n n n n a n c -==,12n n C c c c =+++,123135212222n n n C -=++++, 23411352122222n n C n +-=++++,两式相减可得:1231122221222222n n n C n +-=++++-,……… 4分 即123-111111121()2222222n n n C n +-=+++++-, -111121(1)2222n n n C n +-=+--,2332n n n C +=-.………7分 (III )21212121n n n b n n -+=++-,显然212122121n n n n -++>=+-, 即2n b >,122n n B b b b n =+++>;………9分 另一方面,21212222112212121212121n n n n n n n n -++=-++=+-+-+--+, 即122213b =+-,222235b =+-,…,11222121n b n n ⎛⎫=+- ⎪-+⎝⎭,2222222(2)(2)(2)22221335212121n B n n n n n =+-++-+++-=+-<+-++, 即:222n n B n <<+.………13分19.(本小题满分14分)解:(Ⅰ)由已知得2222262c a cb ab a b c ⎧+=⎪=⎨⎪=+⎩,解得21a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=.……………5分 (Ⅱ)由题意知12(2,0),(2,0)A A -,……………6分设00(,)P x y ,则100:(2)2A P y l y x x =++,得00(,(2))2y M m m x ++. 且由点P 在椭圆上,得22003(1)4x y =-.……………8分若以MP 为直径的圆过点2A ,则220A M A P ⋅=,……………9分 所以20000000(2,(2))(2,)(2)(2)(2)022y y m m x y m x m x x -+⋅-=--++=++ 2000000033(4)(2)(2)44(2)(2)(2)(2)(2)(2)022x x x m x m m x m x x --+--++=---+=++……………12分 因为点P 是椭圆C 上不同于12,A A 的点,所以02x ≠±. 所以上式可化为3(2)(2)04m m --+=,解得14m =.……………14分20.(本小题满分14分)解法一:(Ⅰ)2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥ 所以:2min (2)0x x c -+≥,而22x x c -+在1x =处取得最小值,所以:120c -+≥,1c ≥;……………4分(Ⅱ)因为x α=为()f x 的极值点,所以21()20k f c ααα'==-+=,所以22c αα=-+,又因为()y f x m =-有不同的零点,αβ,所以()()f f αβ=, 即32321133c d c d ααααββ-++=-++, 整理得:21(23)()03αβαβ+--=,所以23αβ+=.……………9分(Ⅲ)满足条件的实数c 存在,由2()2f x x x c '=-+,知过00(,())A x f x 点与曲线相切的直线1l 为:000()()+()y f x x -x f x '=,且21002k x x c =-+ 将000()()+()y f x x -x f x '=与()y f x =联立即得B 点的横坐标,所以000()()+(())f x x -x f x f x '= 即:3223200000011(2)()33x x cx d x x c x x x x cx d -++=-+-+-++ 整理得:2001(23)()03x x x x +--= 由已知0x x ≠,所以0230x x +-=所以032x x =-,即B 点的横坐标为032x -所以过点B 的曲线的切线斜率为22()2k f x x x c '==-+200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-因此当且仅当330c -=时,1k 、1k 成比例,这时1c =即存在实数1c =,使12k k 为定值……………14分 解法二:(Ⅰ)2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥, 所以2(2)c x x ≥--对任意的[0,)x ∈+∞恒成立,故2max [(2)]c x x ≥--, 即2max [(2)]1x x --=,故c 的取值范围是[1,)+∞;…………… 4分(Ⅱ)因为x α=为()f x 的极值点,且()y f x m =-有两个零点,()αβαβ≠, 所以()0f x m -=的三个实数根分别为,,ααβ, 由根与系数的关系得12313ααβαβ-++=+=-=;……………9分 (Ⅲ)满足条件的实数c 存在,因为2()2f x x x c '=-+,所以过00(,())A x f x 点且与曲线C 相切的直线1l 为:000()()+()y f x x -x f x '=,其中21002k x x c =-+.设1l 与C 交于另一点11(,)B x y ,则001,,x x x 必为方程000()()()()f x f x x x f x '=-+的三个实数根,由000()()()()f x f x x x f x '=-+,得32200001(2)()()3x x cx d x x c x x f x -++=-+-+ 因为上述方程的右边不含三次项和二次项, 所以0011313x x x -++=-=,所以1032x x =- 所以22111()2k f x x x c '==-+200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-.因此当且仅当330c -=时,1k 、1k 成比例,这时1c =,即存在实数1c =,使12k k 为定值.……………14分。
天津市五区县2017届高三上学期期末考试数学(理)试题 含答案
绝密★启用前天津市部分区2016~2017学年度第一学期期末考试高三数学(理科)试卷温馨提示:使用答题卡的区,学生作答时请将答案写在答题卡上;不使用答题卡的区,学生作答时请将答案写在试卷上.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第I卷1至2页,第Ⅱ卷2至4页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘帖考试用条形码。
答卷时,考生务必将答案涂写在答题卡上。
考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题,共40分)注意事项:1.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件,A B互斥,那么()()()=+.P A B P A P B如果事件,A B相互独立,那么()()()=.P A B P A P B锥体的体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高。
柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合2{1,4},{|log,}A B y y x x A ===∈,则A B =(A ){}1,4 (B ){}0,1,4 (C ){}0,2 (D ){}0,1,2,4(2)设变量x ,y 满足约束条件240,330,10.x y x y x y +-⎧⎪+-⎨⎪--⎩≤≥≤则目标函数2z x y =-的最小值为(A )165- (B)3- (C )0 (D )1(3)阅读右边的程序框图,运行相应的程序,则输出v 的值为(A )4 (B)5 (C)6 (D )7(4)已知ABC ∆是钝角三角形,若2,1==BC AC ,且ABC ∆3 则=AB(A 3 (B 7(C )22 (D )3(5)设{na }是公比为q 的等比数列,则“1q >” 是“{na }为单调递增数列”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(6)已知双曲线22221x y a b-=(0,0a b >>)的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线230x y -+=平行,则双曲线的方程为(A )221164x y -=(B )22194x y -=(C )22149x y -=(D )22184x y -=(7)在ABC ∆中,D 在AB 上,:1:2AD DB =,E为AC 中点,CD 、BE 相交于点P ,连结AP .设AP xAB yAC =+,x y ∈R (),则x ,y 的值分别为 (A)11,23(B )12,33(C)12,55(D )11,36(8)已知2()(3)e x f x x=-(其中x ∈R ,e 是自然对数的底数),当10t >时,关于x 的方程12[()][()]0f x t f x t --=恰好有5个实数根,则实数2t 的取值范围是(A )(2e,0)- (B )(]2e,0- (C )32e,6e -⎡⎤-⎣⎦ (D )(32e,6e-⎤-⎦第Ⅱ卷(非选择题,共110分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共110分.二、填空题:本大题共有6小题,每小题5分,共30分。
天津市五区县高三上学期期末考试数学理试题Word版含答案
( 19)(本小题满分 14 分)
已知椭圆
x2 C : a2
y2 b2
1 (a
b
0) 的左、右焦点分别为
F1 , F2 ,上顶点为 B ,若
BF1F2 的周长为 6 ,且点 F1 到直线 BF2 的距离为 b . (Ⅰ)求椭圆 C 的方程;
(Ⅱ)设 A1, A2 是椭圆 C 长轴的两个端点,点 P 是椭圆 C 上不同于 A1, A2 的任意一点,
解:( I)函数 f ( x) 2cos 2 x 2 3 sin xcos x a cos 2x 1 3 sin 2x a
2sin(2 x ) a 1 , 6
故函数 f (x) 的最小正周期为 T .
…………………… 4 分 ……………………… 6 分
( II)由题意得 x 0, , 2 x
7 ,
,
4x x2 , x 1,
若方程 f ( x) kx 有且仅有一个实数解,则实数 k 的
ex ,
x 1.
取值范围为 __________.
三、解答题:本大题共 6 小题,共 80 分 . 解答应写出文字说明,证明过程或演算步骤 . (15)(本小题满分 13 分)
已知函数 f x 2cos x(cos x 3sin x) a ( a R ) .
( A) 1, 4
( B) 0, 1, 4
(C) 0, 2 ( D) 0, 1, 2, 4
(2)设变量 x , y 满足约束条件
x 2y 4≤0, 3x y 3≥0, 则目标函数 z x y 1≤0.
x 2 y的最小值为
( A) 16 5
( B) 3
( C) 0
(3)阅读右边的程序框图,运行相应的程序,则输出
2017届高三上学期期末(理科)数学试卷
天津市红桥区2017届高三上学期期末数学(理科)试卷1.设集合{}0M x x x =≥∈R ,,{}21,N x x x <=∈R ,则M N =I ( ) A .[]0,1 B .()0,1 C .(]0,1 D .[)0,1 2.甲、乙两人射击比赛,两人平的概率是12,甲获胜的概率是13,则甲不输的概率为( ) A .25 B .56 C .16 D .133.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A .13 B .12 C .1 D .324.已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220y px p =>的准线分别交于O 、A 、B 三点,O 为坐标原点.若双曲线的离心率为2,AOB △,则p =( ) A .1 B .32C .2D .35.若a 、b 为空间两条不同的直线,α、β为空间两个不同的平面,则直线a ⊥平面α的一个充分不必要条件是( )A .a β∥且αβ⊥B .a β⊂且αβ⊥C .a b ⊥且b α∥D .a β⊥且αβ∥6.已知α,()0,πβ∈,且()1tan 2αβ-=,1tan 7β=-,则2αβ-的值是( ) A .π4- B .3π4- C .π4- D .3π47.已知正方形ABCD 的面积为2,点P 在边AB 上,则PD PC •u u u r u u u r 的最大值为( )A B .32 C .2 D8.设方程()1e 110x m --+=的两根分别为1x ,2x ()12x x <,方程e 10x m --=的两根分别为3x ,4x ()34x x <.若10,2m ⎛⎫∈ ⎪⎝⎭,则()()4132x x x x +-+的取值范围为( )A .(),0-∞B .3,ln 5⎛⎫-∞ ⎪⎝⎭C .3ln ,05⎛⎫ ⎪⎝⎭D .(),1-∞-9.i 为虚数单位,复数2i 1i=+_________. 10.直线10ax y ++=被圆2220x y ax a -++=截得的弦长为2,则实数a 的值是_______.11.执行如图所示的程序框图,若输入的a 的值为3,则输出的i =__________.12.在ABC △中,已知角A ,B ,C 所对的边分别为a ,b ,c ,且()2cos cos c a B b A b -=,则sin sin A B =__________.13.已知实数x ,y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩,若目标函2z x ay =+,仅在点()3,4取得最小值,则a 的取值范围是__________.14.设函数()241,4log ,04x f x x x x ⎧+≥⎪=⎨⎪<<⎩若()()f a f b c ==,()0f b '<,则a ,b ,c 的大小关系是_________.15.(13分)设函数()2πsin co sin 4f x x sx x ⎛⎫=-- ⎪⎝⎭. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数π6f x ⎛⎫- ⎪⎝⎭在π0,2⎡⎤⎢⎥⎣⎦上的最大值与最小值. 16.(13分)如图,在直角梯形11AA B B 中,190A AB ∠=o ,11A B AB ∥,11122AB AA A B ===,直角梯形11AA C C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AAC C ⊥平面11AA B B .点M 为线段BC 的中点,点P 是线段1BB 中点.(Ⅰ)求证:11AC AP ⊥;(Ⅱ)求二面角P AM B --的余弦值.17.(13分)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且2212b S +=,22S q b =(Ⅰ)求n a 与n b ;(Ⅱ)设数列{}n c 满足1n nc S =,求{}n c 的前n 项和n T . 18.(13分)数列{}n a 的前n 项和为n S ,()*2n n S a n n -=∈N . (1)求证:数列{}1n a +成等比数列;(2)求数列{}n a 的通项公式;(3)数列{}n a 中是否存在连续三项可以构成等差数列?若存在,请求出一组适合条件的三项;若不存在,请说明理由.19.(14分)已知点)P 和椭圆C :22142x y +=. (1)设椭圆的两个焦点分别为1F ,2F ,试求12PF F △的周长及椭圆的离心率;(2)若直线l()200y m m -+=≠与椭圆C 交于两个不同的点A ,B ,设直线PA 与PB 的斜率分别为1k ,2k ,求证:120k k +=.20.(14分)已知函数()()()2212e x f x ax a x a a =++⎡⎤⎣⎦+-∈R .(1)当0a ≥时,讨论函数()f x 的单调性;(2)设()22ln bx g x x=,当1a =时,若对任意()10,2x ∈,存在()21,2x ∈,使()()12f x g x ≥,求实数b 的取值范围.。
天津五区联考2017-2018高三上学期期末数学(理)试题及答案
13.3
14. ,
1 1 3 e
三、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,证明过程或演算步骤. (15) (本小题满分 13 分) 解: (Ⅰ) f x cos x sin x 2 3 sin x cos x
2 2
cos 2 x 3 sin 2 x
由 g n 1 g n
2 n 1 7 2
n 3
2n 7 9 2n n 3 …………………………11 分 2n 2 2
得:当 9 2n 0 2 n 4 n N 时, g 2 g 3 g 4 g 5 ; 当 9 2n 0 n 5 n N 时, g 5 g 6 g 7 ; 所以对任意 n 2 ,且 n N 均有 g 5 g n ,故 k 5 .………………13 分
(18) (本小题满分 13 分) 解: (Ⅰ)设数列 an 的公比为 q ,则由条件得:
2 a3 2 a2 a4 ,
……………………………1分
又 a1 2 ,则 2 2q 2 2 2q 2q 3 4 q 2 1 2q 1 q 2 , 因为 1 q 0 ,解得: q 2 , 故 an 2 . (Ⅱ)由(Ⅰ)得: bn 2nan n 2 则 Sn 1 2 2 2 n 2
3 , 0 , 0 , C 0 ,1, 0 ,
由 AC 2 DE 3 得 E 0, 0 ,
3 , A 0 ,1, 3 …………6 分 2
依题意 AE 0 , 1,
天津市五区县2017-2018学年高三上学期期末数学试卷(理科) Word版含解析
2017-2018学年天津市五区县高三(上)期末数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x2﹣x﹣2>0},B={x|1<x≤3},则(∁R A)∩B=()A.A、(1,2]B.[﹣1,2] C.(1,3]D.(﹣∞,﹣1)∪(2,+∞)2.设变量x,y满足约束条件,则目标函数z=x+y的最小值为()A.﹣3 B.﹣2 C.D.13.“辗转相除法”的算法思路如右图所示.记R(a\b)为a除以b所得的余数(a,b∈N*),执行程序框图,若输入a,b分别为243,45,则输出b的值为()A.0 B.1 C.9 D.184.设x∈R,则“x<1”是“x|x|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.如图,圆O是△ABC的外接圆,AB=BC,DC是圆O的切线,若AD=4,CD=6,则AC 的长为()A.5 B.4 C.D.36.若双曲线﹣=1的一条渐近线平行于直线x +2y +5=0,一个焦点与抛物线y 2=﹣20x的焦点重合,则双曲线的方程为( )( )A .﹣=1 B .﹣=1C .﹣=1D .﹣=17.已知定义在R 上的函数f (x )=x 2+|x ﹣m |(m 为实数)是偶函数,记a=f (loge ),b=f (log 3π),c=f (e m )(e 为自然对数的底数),则a ,b ,c 的大小关系( ) A .a <b <c B .a <c <b C .c <a <b D .c <b <a8.已知定义域为R 的奇函数f (x )的周期为4,且x ∈(0,2)时f (x )=ln (x 2﹣x +b ),若函数f (x )在区间[﹣2,2]上恰有5个零点,则实数b 应满足的条件是( )A .﹣1<b ≤1B .﹣1<b <1或b=C .<bD .<b ≤1或b=二、填空题:本大题共有5小题,每小题5分,共30分。
2017-2018年天津市部分区高三(上)期末数学试卷和答案(理科)
程序,则输出 S 的值为( A. B. C. D.
)
第 1 页(共 20 页)
5. (5 分)已知双曲线
(a>0,b>0)的一个焦点为 F(﹣2,0) ,且 )
双曲线的两条渐近线的夹角为 60°,则双曲线的方程为( A. B.
C.
或 x2
D.
或
6. (5 分) 在△ABC 中, 内角 A, B, C 所对的边分别是 a, b, c. 已知 sin C=sin 2B, 且 b=2,c= A. B. ,则 a 等于( C.2 D.2 )
(Ⅰ)求证:BD⊥平面 ACDE;
第 3 页(共 20 页)
(Ⅱ)求平面 BCD 与平面 BAE 所成角(锐角)的大小; (Ⅲ)若 F 为 AB 的中点,求直线 EF 与平面 BDE 所成角的大小.
18. (13 分)已知{an}是等比数列,满足 a1=2,且 a2,a3+2,a4 成等差数列. (Ⅰ)求{an}的通项公式; (Ⅱ)设 bn=2nan,数列{bn}的前 n 项和为 Sn,g(n)= N*) ,求正整数 k 的值,使得对任意 n≥2 均有 g(k)≥g(n) . 19. (14 分)设椭圆 M:x2+y2+2x﹣15=0 的圆心. (Ⅰ)求椭圆的方程; (Ⅱ)已知过椭圆右焦点 F2 的直线 l 交椭圆于 A,B 两点,过 F2 且与 l 垂直的直 线 l1 与圆 M 交于 C,D 两点,求四边形 ABCD 面积的取值范围. 20. (14 分)已知函数 f(x)=ln x+a(1﹣x) (a∈R) . (Ⅰ)讨论 f(x)的单调性; (Ⅱ)当 a=﹣ 时,令 g(x)=x2﹣1﹣2f(x) ,其导函数为 g′(x) .设 x1,x2 是 函数 g(x)的两个零点,判断 是否为 g′(x)的零点?并说明理由. (a>b>0)的左焦点为 F1,离心率为 .F1 为圆 (n≥2,n∈
天津五区县2017届高三一模理科综合试题及答案
天津市部分区2017年高三质量调查试卷(一)
理科综合化学部分参考答案
选择题共6题,每题6分,共36分
1.D 2.A 3.B 4.D 5.C 6.D
7.(14分,除注明外每空2分。
)
(1)第三周期第ⅥA族(1分)(1分)
(2)S2->O2->Na+(1分)Cl2+H2S=2HCl+S↓(合理即可)
(3)(1分)4AgBr+N2H4= 4Ag+N2↑+4HBr1:2
(4)氧化钠过氧化钠
(5)b
8.(18分,除注明外每空2分。
)
(1)羧基、硝基
(2)ac
(3)丙烯醇
(4)6(任写一种即可)
(5)(共4分,其中第一步1分,第二步条件和产物正确得2分,第三步条件和产物正确得1分。
若顺序颠倒不得分,条件或产物的结构简式写错不得分)
9.(18分,每空2分。
)
(1)2H+ + SnO=Sn2++H2O c Sn2++2e-= Sn
(2)①KMnO4或KClO3蒸馏烧瓶
②缺少温度计D与E之间缺少干燥装置
③Sn 4++4OH -=H 2SnO 3↓+H 2O
④92.0%
10.(14分,除标明外,每空2分)
(1) ①6a+b+2c 3
②>(1分) 由图可知,随着温度的升高,K 1增大、K 2减小,则△H 1>0、 △H 2<0,所以a >b
(2) b (1分)
(3) ①ad ②0.04 mol·L −1·min −1
1200 ③p 1>p 2>p 3。
【最新经典文档】2017- 天津市南开区高三(上)期末数学试卷和答案(理科)
18.已知数列 { an} 的前 n 项和 Sn 满足: Sn=2( an﹣1),数列 { bn} 满足:对任意 n ∈ N*有 a1b1+a2b2+…+anbn=(n﹣1)?2n+1+2. ( 1)求数列 { an} 与数列 { bn} 的通项公式;
第 3 页(共 19 页)
( 2)记 cn= ,数列 { cn} 的前 n 项和为 Tn,证明:当 n≥6 时, n| Tn﹣ 2| <1.
? x0∈(﹣∞, 0),
成立,所以 B 不正确;
“若 tan α≠1,则
”是真命题,正确;
{ an} 为等比数列,则 “1a< a2<a3”是“4a<a5”的充分必要条件.所以 D 不正确; 故选: C.
6.(3 分)已知抛物线 C:y2=2px(p>0)的焦点为 F,准线 l:x=﹣ ,点 M 在
19.已知椭圆 C: + =1(a>b>0)过点 P(﹣ 1,﹣1),c 为椭圆的半焦距,
且 c= b.过点 P 作两条互相垂直的直线 l1,l2 与椭圆 C 分别交于另两点 M,N. ( 1)求椭圆 C 的方程; ( 2)若直线 l1 的斜率为﹣ 1,求△ PMN 的面积; ( 3)若线段 MN 的中点在 x 轴上,求直线 MN 的方程. 20.设函数 f (x)=x2﹣ 2x+alnx(a∈R) ( 1)当 a=2 时,求函数 f(x)在点( 1,f( 1))处的切线方程; ( 2)若函数 f( x)存在两个极值点 x1,x2( x1<x2) ①求实数 a 的范围;
,
则 k 的取值范围是
.
13.( 3 分)在直角三角形 ABC中,∠ ACB=90°,AC=BC=,2 点 P 是斜边 AB 上的
天津市部分区2017届高三质量调查理科数学试题(一)含答案(1)
数学试题(文科)
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分 . 在每个小题给出的四个选项中,有 且只有一项符合题目要求 .
1. 在 ABC 中,角 A,B,C 的对边分别为 a,b,c , 则“ a b ”是“ sin A sin B ”的
.
17. (本题满分 12 分)
已知函数 f x
3 sin 2x
cos2 x
1 ,x
R.
2
2
( 1 )求函数 f x 的最小值和最小正周期; ( 2 )设 ABC 的内角 A,B,C 的对边分别为 a,b,c ,且满足 c 3, f C 0,sin B 2sin A ,求 a,b 的值 .
18. (本题满分 12 分) 山西某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(本科学历)的
直线 y
5 上找到一点 P, 在椭圆 C 上找到一点 Q, 满足 PM
NQ ?若存在,求出直线 l 的
3
方程;若不存在,说明理由 .
21. (本题满分 12 分)
已知函数 f x ln x ax2 bx (其中 a, b 为常数,且 a 0)在 x 1 处取得极值 . ( 1 )当 a 1时,求 f x 的单调区间; ( 2 )若 f x 在 0,e 上的最大值为 1,求 a 的值 .
5 的概率为 ,求 x, y 的值 .
39
19. (本题满分 12 分) 如图,已知多面体 EABCDF 的底面 ABCD 是边长为 2 的正方形, EA
1 且 FD EA 1.
2
( 1 )求多面体 EABCDF 的体积; ( 2 )求直线 EB 与平面 ECF 所成角的正弦值; ( 3 )记线段 BC 的中点为 K, 在平面 ABCD 内过点 K 作一 条直线与平面 ECF 平行,要求保留作图的痕迹, 但不要求证明 .
高三数学上学期期末考试试题 理4
天津市部分区2016~2017学年度第一学期期末考试高三数学(理科)试卷温馨提示:使用答题卡的区,学生作答时请将答案写在答题卡上;不使用答题卡的区,学生作答时请将答案写在试卷上.题 号 一 二三总 分1516 17 18 19 20 得 分.第I 卷1至2页,第Ⅱ卷2至4页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘帖考试用条形码.答卷时,考生务必将答案涂写在答题卡上.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题,共40分)注意事项:1.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分. 参考公式:如果事件,A B 互斥,那么()()()P AB P A P B =+.如果事件,A B 相互独立,那么()()()P A B P A P B =.锥体的体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高. 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合2{1,4},{|log ,}A B y y x x A ===∈,则AB =(A ){}1,4(B ){}0,1,4(C ){}0,2(D ){}0,1,2,4(2)设变量x ,y 满足约束条件240,330,10.x y x y x y +-⎧⎪+-⎨⎪--⎩≤≥≤则目标函数2z x y =-的最小值为(A )165-(B )3-(C )0(D )1(3)阅读右边的程序框图,运行相应的程序,则输出v 的值为(A )4 (B )5 (C )6 (D )7(4)已知ABC ∆是钝角三角形,若2,1==BC AC ,且ABC ∆3, 则=AB(A 3 (B 7 (C )22 (D )3(5)设{n a }是公比为q 的等比数列,则“1q >” 是“{n a }为单调递增数列”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(6)已知双曲线22221x y a b-=(0,0a b >>)的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线230x y -+=平行,则双曲线的方程为(A )221164x y -=(B )22194x y -= (C )22149x y -=(D )22184x y -= (7)在ABC ∆中,D 在AB 上,:1:2AD DB =,E 为AC 中点,CD 、BE 相交于点P ,连结2424 4AP .设AP xAB yAC =+,x y ∈R (),则x ,y 的值分别为 (A )11,23 (B )12,33 (C )12,55 (D )11,36(8)已知2()(3)e xf x x =-(其中x ∈R ,e 是自然对数的底数),当10t >时,关于x 的方程12[()][()]0f x t f x t --=恰好有5个实数根,则实数2t 的取值范围是(A )(2e,0)- (B )(]2e,0-(C )32e,6e -⎡⎤-⎣⎦ (D )(32e,6e -⎤-⎦第Ⅱ卷(非选择题,共110分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共110分.二、填空题:本大题共有6小题,每小题5分,共30分.(9)已知a ,∈b R ,i 是虚数单位,若(12i)(2i)2i a b -+=-,则a b +的值为__________. (10)在261(4)x x-的展开式中,3x -的系数为__________. (用数字作答) (11)某空间几何体的三视图如图所示,则该几何体的表面积是__________.(12)在平面直角坐标系xOy 中,由曲线1y x=(0x >) 与直线y x =和3y =所围成的封闭图形的面积为 __________.(13)在直角坐标系xOy 中,已知曲线1:C 11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),曲线2:C cos sin x a y θθ=⎧⎨=⎩(θ为参数,1a >),若1C 恰好经过2C 的焦点,则a 的值为__________.(14)已知24,1,()e ,1.xx x x f x x ⎧-<⎪=⎨≥⎪⎩ 若方程()f x kx =有且仅有一个实数解,则实数k 的取值范围为__________.PA BECD三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知函数()2cos (cos )f x x x x a =+(a ∈R ). (I )求()f x 的最小正周期; (II )当[0,]2x π∈时,()f x 的最小值为2,求a 的值.(16)(本小题满分13分)某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自A 学校且1名为女棋手,另外4名来自B 学校且2名为女棋手.从这7名队员中随机选派4名队员参加第一阶段的比赛.(I )求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;(II )设X 为选出的4名队员中A 、B 两校人数之差的绝对值,求随机变量X 的分布列和数学期望.(17)(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AB AD ⊥,//AD BC ,122AD BC ==,E 在BC 上,且112BE AB ==,侧棱PA ⊥平面ABCD .(I )求证:平面PDE ⊥平面PAC ; (II )若PAB ∆为等腰直角三角形.(i )求直线PE 与平面PAC 所成角的正弦值; (ii )求二面角A PC D --的余弦值.(18)(本小题满分13分)已知数列{}n a 的前n 项和2=n A n (n *∈N ),11n n n n na ab a a ++=+(n *∈N ),数列{}n b 的前n 项和为n B .(I )求数列{}n a 的通项公式;(II )设2n n n a c =(n *∈N ),求数列{}n c 的前n 项和n C ; (III )证明: 222<<+n n B n (n *∈N ). (19)(本小题满分14分)已知椭圆2222: 1 (0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若12BF F ∆的周长为6,且点1F 到直线2BF 的距离为b .(Ⅰ)求椭圆C 的方程;(Ⅱ)设12,A A 是椭圆C 长轴的两个端点,点P 是椭圆C 上不同于12,A A 的任意一点,直线1A P 交直线x m =于点M ,若以MP 为直径的圆过点2A ,求实数m 的值. (20)(本小题满分14分)已知函数321()3f x x x cx d =-++(,c d ∈R ),函数()f x 的图象记为曲线C . (I )若函数()f x 在[0,)+∞上单调递增,求c 的取值范围; (II )若函数()y f x m =-有两个零点,()αβαβ≠,且x α=为()f x 的极值点,求2αβ+的值;(III )设曲线C 在动点00(,())A x f x 处的切线1l 与C 交于另一点B ,在点B 处的切线为2l ,两切线的斜率分别为12,k k ,是否存在实数c ,使得12k k 为定值?若存在,求出c 的值;若不存在,说明理由.天津市部分区2016~2017学年度第一学期期末考试高三数学(理科)参考答案一、选择题:1-4 DACB 5-8 DACD二、填空题:9.8 10. 24-11. 32+ 12. 4ln 3-14. (,e)-∞ 三、解答题:15.(本小题满分13分)解:(I)函数2()2cos cos cos 212f x x x x a x x a =++=+++2sin(2)16x a π=+++, ……………………4分故函数()f x 的最小正周期为T π=. ………………………6分 (II )由题意得70,,2,2666x x ππππ⎡⎤⎡⎤∈+∈⎢⎥⎢⎥⎣⎦⎣⎦, ……………………10分故min ()112f x a =-++=,所以2a =. ……………………13分 16.(本小题满分13分)解:(I )由题意知,7名队员中分为两部分,3人为女棋手,4人为男棋手,设事件A =“恰有1位女棋手”,则()1334471235C C P A C ==,………………………4分 所以参加第一阶段的比赛的队员中,恰有1位女棋手的概率为1235.…………5分 (II )随机变量X 的所有可能取值为0,2,4.其中()22344718035C C P X C ===, ()133134344716235C C C C P X C +===, ()0434471435C C P X C ===. ………………………………9分 所以,随机变量X 分布列为()1816136024********E X =⨯+⨯+⨯=. ………………………………13分解:(Ⅰ)法一:∵△AGD△CGE ,知23DG AD AG GE EC GC ===,且25,AC = 故3655GC AC ==. 同理可得33555GE DE ==,且3EC =,222GC GE EC +=,ED AC ⊥. ………2分 又∵PA ⊥平面ABCD ∴PA ED ⊥ ……3分 而PAAC A =∴ED ⊥平面PAC .ED ⊂平面PDE ,故平面PDE ⊥平面PAC ; ……4分法二:∵PA ⊥平面ABCD ∴AB PA ⊥ 又∵AB AD ⊥,故可建立建立如图所示坐标系.由已知(0,2,0)D ,(2,1,0)E ,(2,4,0)C ,(0,0,)P λ(0λ>)∴(2,4,0)AC =,(0,0,)AP λ=,(2,1,0)DE =-∴4400DE AC ⋅=-+=,0DE AP ⋅=.……3分, ∴DE AC ⊥,DE AP ⊥,∴ED ⊥平面PAC ,ED ⊂平面PDE ,平面PDE ⊥平面PAC ;……4分(Ⅱ)(i )由(Ⅰ),平面PAC 的一个法向量是(2,1,0)DE =-,因为PAB ∆为等腰直角三角形,故2PA =,(2,1,2)PE =-.设直线PE 与平面PAC 所成的角为θ,则5sin cos ,5PE DE θ=<>=………8分 (ii )设平面PCD 的一个法向量为n 000(,,)x y z =,(2,2,0)DC =,(0,2,2)DP =- 由n DC ⊥,n DP ⊥∴0000220220x y y z +=⎧⎨-+=⎩,令01x =,则n (1,1,1)=--, ………10分∴cos <n ,2115535DE +>==⨯.………11分 显然二面角A PC D --的平面角是锐角, ∴二面角A PC D --的余弦值为515.………13分(其他方法可酌情给分)解:(I )当2n ≥时,2=n A n ,21(1)-=-n A n , 两式相减:121-=-=-n n n a A A n ;当1n =时,111==a A ,也适合21=-n a n ,故数列{}n a 的通项公式为21=-n a n ;. ………3分 (II )由题意知:2122-==n n n na n c ,12n n C c c c =+++,123135212222-=++++n nn C , 23411352122222+-=++++n n C n ,两式相减可得:1231122221222222+-=++++-n n n C n , ……… 4分 即123-111111121()2222222+-=+++++-n n n C n , -111121(1)2222+-=+--n n n C n ,2332+=-n n n C .………7分 (III )21212121-+=++-n n n b n n ,显然212121212221212121-+-++>⋅=+-+-n n n n n n n n , 即2n b >,122n n B b b b n =+++>; ………9分另一方面,21212222112212*********-++=-++=+-+-+--+n n n n n n n n , 即122213=+-b ,222235=+-b ,…,11222121⎛⎫=+- ⎪-+⎝⎭n b n n ,2222222(2)(2)(2)22221335212121=+-++-+++-=+-<+-++n B n n n n n , 即:222<<+n n B n . ………13分 19.(本小题满分14分)解:(Ⅰ)由已知得2222262c a cb ab a b c ⎧+=⎪=⎨⎪=+⎩,解得231a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)由题意知12(2,0),(2,0)A A -, ……………6分 设00(,)P x y ,则100:(2)2A P y l y x x =++,得00(,(2))2yM m m x ++. 且由点P 在椭圆上,得22003(1)4x y =-. ……………8分 若以MP 为直径的圆过点2A ,则220A M A P ⋅=, ……………9分所以20000000(2,(2))(2,)(2)(2)(2)022y y m m x y m x m x x -+⋅-=--++=++2000000033(4)(2)(2)44(2)(2)(2)(2)(2)(2)022x x x m x m m x m x x --+--++=---+=++……………12分因为点P 是椭圆C 上不同于12,A A 的点,所以02x ≠±. 所以上式可化为3(2)(2)04m m --+=,解得14m =. ……………14分 20.(本小题满分14分)解法一:(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥所以2min (2)0x x c -+≥,而22x x c -+在1x =处取得最小值,所以120c -+≥,1c ≥;……………4分 (II )因为x α=为()f x 的极值点,所以21()20k f c ααα'==-+=,所以22c αα=-+, 又因为()y f x m =-有不同的零点,αβ,所以()()f f αβ=,即32321133c d c d ααααββ-++=-++, 整理得:21(23)()03αβαβ+--=, 所以23αβ+=.……………9分(III )满足条件的实数c 存在,由2()2f x x x c '=-+, 知过00(,())A x f x 点与曲线相切的直线1l 为:000()()+()y f x x -x f x '=,且21002k x x c =-+ 将000()()+()y f x x -x f x '=与()y f x =联立即得B 点得横坐标,所以000()()+(())f x x -x f x f x '=即:3223200000011(2)()+33x x cx d x x c x -x x x cx d -++=-+-++ 整理得:2001(23)()03x x x x +--= 由已知0x x ≠,所以0230x x +-=所以032x x =-,即B 点的横坐标为032x - 所以过点B 的曲线的切线斜率为22()2k f x x x c '==-+200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-因此当且仅当 330c -=时,1k 、1k 成比例, 这时1c =即存在实数1c =,使12k k 为定值.……………14分 解法二:(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥,所以2(2)c x x ≥--对任意的[0,)x ∈+∞恒成立,故2max [(2)]c x x ≥--, 即2max [(2)]1x x --=,故c 的取值范围是[1,)+∞;…………… 4分(II )因为x α=为()f x 的极值点,且()y f x m =-有两个零点,()αβαβ≠, 所以()0f x m -=的三个实数根分别为,,ααβ,由根与系数的关系得12313ααβαβ-++=+=-=;……………9分 (III )满足条件的实数c 存在,因为2()2f x x x c '=-+,所以过00(,())A x f x 点且与曲线C 相切的直线1l 为:000()()+()y f x x -x f x '=,其中21002k x x c =-+.设1l 与C 交于另一点11(,)B x y ,则001,,x x x 必为方程'000()()()+()f x f x x -x f x =的三个实数根由'000()()()+()f x f x x -x f x =得32200001(2)()+()3x x cx d x x c x -x f x -++=-+ 因为上述方程的右边不含三次项和二次项, 所以0011313x x x -++=-= ,所以1032x x =- 所以'22111()2k f x x x c ==-+ 200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-.因此当且仅当 330c -=时,1k 、1k 成比例, 这时1c =,即存在实数1c =,使12k k 为定值. ……………14分天津市部分区2016~2017学年度第一学期期末考试高三数学(理科)参考答案一、选择题:1-4 DACB 5-8 DACD 二、填空题:9.8 10. 24- 11. 3285+ 12. 4ln 3- 13.5 14. (,e)-∞ 三、解答题:15.(本小题满分13分)解:(I )函数2()2cos 23sin cos cos 213sin 2f x x x x a x x a =++=+++2sin(2)16x a π=+++, ……………………4分故函数()f x 的最小正周期为T π=. ………………………6分 (II )由题意得70,,2,2666x x ππππ⎡⎤⎡⎤∈+∈⎢⎥⎢⎥⎣⎦⎣⎦, ……………………10分故min ()112f x a =-++=,所以2a =. ……………………13分 16.(本小题满分13分)解:(I )由题意知,7名队员中分为两部分,3人为女棋手,4人为男棋手,设事件A =“恰有1位女棋手”,则()1334471235C C P A C ==,………………………4分 所以参加第一阶段的比赛的队员中,恰有1位女棋手的概率为1235.…………5分 (II )随机变量X 的所有可能取值为0,2,4.其中()22344718035C C P X C ===, ()133134344716235C C C C P X C +===, ()0434471435C C P X C ===. ………………………………9分所以,随机变量X 分布列为X24P18351635135随机变量X 的数学期望()1816136024********E X =⨯+⨯+⨯=. ………………………………13分 17.(本小题满分13分) 解:(Ⅰ)法一:∵△AGD△CGE ,知23DG AD AG GE EC GC ===,且25,AC = 故36555GC AC ==. 同理可得33555GE DE ==,且3EC =,222GC GE EC +=,ED AC ⊥. ………2分 又∵PA ⊥平面ABCD ∴PA ED ⊥ ……3分 而PAAC A =∴ED ⊥平面PAC .ED ⊂平面PDE ,故平面PDE ⊥平面PAC ; ……4分法二:∵PA ⊥平面ABCD ∴AB PA ⊥ 又∵AB AD ⊥,故可建立建立如图所示坐标系.由已知(0,2,0)D ,(2,1,0)E ,(2,4,0)C ,(0,0,)P λ(0λ>)∴(2,4,0)AC =,(0,0,)AP λ=,(2,1,0)DE =-∴4400DE AC ⋅=-+=,0DE AP ⋅=.……3分, ∴DE AC ⊥,DE AP ⊥,∴ED ⊥平面PAC ,ED ⊂平面PDE ,平面PDE ⊥平面PAC ;……4分(Ⅱ)(i )由(Ⅰ),平面PAC 的一个法向量是(2,1,0)DE =-,因为PAB ∆为等腰直角三角形,故2PA =,(2,1,2)PE =-.设直线PE 与平面PAC 所成的角为θ,则5sin cos ,5PE DE θ=<>=………8分 (ii )设平面PCD 的一个法向量为n 000(,,)x y z =,(2,2,0)DC =,(0,2,2)DP =- 由n DC ⊥,n DP ⊥∴0000220220x y y z +=⎧⎨-+=⎩,令01x =,则n (1,1,1)=--, ………10分∴cos <n ,2115535DE +>==⨯.………11分 显然二面角A PC D --的平面角是锐角, ∴二面角A PC D --的余弦值为515.………13分(其他方法可酌情给分) 18.(本小题满分13分)解:(I )当2n ≥时,2=n A n ,21(1)-=-n A n , 两式相减:121-=-=-n n n a A A n ;当1n =时,111==a A ,也适合21=-n a n ,故数列{}n a 的通项公式为21=-n a n ;. ………3分 (II )由题意知:2122-==n n n na n c ,12n n C c c c =+++,123135212222-=++++n nn C , 23411352122222+-=++++n n C n ,两式相减可得:1231122221222222+-=++++-n n n C n , ……… 4分 即123-111111121()2222222+-=+++++-n n n C n , -111121(1)2222+-=+--n n n C n ,2332+=-n n n C . ………7分 (III )21212121-+=++-n n n b n n ,显然212121212221212121-+-++>⋅=+-+-n n n n n n n n , 即2n b >,122n n B b b b n =+++>; ………9分另一方面,21212222112212*********-++=-++=+-+-+--+n n n n n n n n , 即122213=+-b ,222235=+-b ,…,11222121⎛⎫=+- ⎪-+⎝⎭n b n n ,2222222(2)(2)(2)22221335212121=+-++-+++-=+-<+-++n B n n n n n , 即:222<<+n n B n . ………13分19.(本小题满分14分)解:(Ⅰ)由已知得2222262c a cb ab a b c ⎧+=⎪=⎨⎪=+⎩,解得21a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)由题意知12(2,0),(2,0)A A -, ……………6分 设00(,)P x y ,则100:(2)2A P y l y x x =++,得00(,(2))2yM m m x ++. 且由点P 在椭圆上,得22003(1)4x y =-. ……………8分 若以MP 为直径的圆过点2A ,则220A M A P ⋅=, ……………9分所以20000000(2,(2))(2,)(2)(2)(2)022y y m m x y m x m x x -+⋅-=--++=++2000000033(4)(2)(2)44(2)(2)(2)(2)(2)(2)022x x x m x m m x m x x --+--++=---+=++……………12分因为点P 是椭圆C 上不同于12,A A 的点,所以02x ≠±. 所以上式可化为3(2)(2)04m m --+=,解得14m =. ……………14分 20.(本小题满分14分)解法一:(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥所以2min (2)0x x c -+≥,而22x x c -+在1x =处取得最小值,所以120c -+≥,1c ≥;……………4分 (II )因为x α=为()f x 的极值点,所以21()20k f c ααα'==-+=,所以22c αα=-+, 又因为()y f x m =-有不同的零点,αβ,所以()()f f αβ=,即32321133c d c d ααααββ-++=-++, 整理得:21(23)()03αβαβ+--=, 所以23αβ+=.……………9分 (III )满足条件的实数c 存在,由2()2f x x x c '=-+, 知过00(,())A x f x 点与曲线相切的直线1l 为:000()()+()y f x x -x f x '=,且21002k x x c =-+ 将000()()+()y f x x -x f x '=与()y f x =联立即得B 点得横坐标,所以000()()+(())f x x -x f x f x '=即:3223200000011(2)()+33x x cx d x x c x -x x x cx d -++=-+-++ 整理得:2001(23)()03x x x x +--= 由已知0x x ≠,所以0230x x +-=所以032x x =-,即B 点的横坐标为032x - 所以过点B 的曲线的切线斜率为22()2k f x x x c '==-+200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-因此当且仅当 330c -=时,1k 、1k 成比例, 这时1c =即存在实数1c =,使12k k 为定值.……………14分 解法二:(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥,所以2(2)c x x ≥--对任意的[0,)x ∈+∞恒成立,故2max [(2)]c x x ≥--, 即2max [(2)]1x x --=,故c 的取值范围是[1,)+∞;…………… 4分(II )因为x α=为()f x 的极值点,且()y f x m =-有两个零点,()αβαβ≠, 所以()0f x m -=的三个实数根分别为,,ααβ, 由根与系数的关系得12313ααβαβ-++=+=-=;……………9分 (III )满足条件的实数c 存在,因为2()2f x x x c '=-+,所以过00(,())A x f x 点且与曲线C 相切的直线1l 为:000()()+()y f x x -x f x '=,其中21002k x x c =-+.设1l 与C 交于另一点11(,)B x y ,则001,,x x x 必为方程'000()()()+()f x f x x -x f x =的三个实数根由'000()()()+()f x f x x -x f x =得32200001(2)()+()3x x cx d x x c x -x f x -++=-+ 因为上述方程的右边不含三次项和二次项, 所以0011313x x x -++=-= ,所以1032x x =- 所以'22111()2k f x x x c ==-+ 200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-.因此当且仅当 330c -=时,1k 、1k 成比例, 这时1c =,即存在实数1c =,使12k k 为定值. ……………14分文本仅供参考,感谢下载!。
天津市五区县高三上学期期末考试数学(理)试题(有答案)-最新推荐
天津市部分区第一学期期末考试高三数学(理科)试卷第Ⅰ卷(选择题 共40分)参考公式:如果事件,A B 互斥,那么()()()P AB P A P B =+.如果事件,A B 相互独立,那么()()()P A B P A P B =锥体的体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高. 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}21,4,|log ,A B y y x x A ===∈,则AB =( )A . {}14,B . {}0,14,C . {}0,2D .{}0,1,24,2.设变量,x y 满足约束条件24033010x y x y x y +-≤⎧⎪+-≥⎨⎪--≤⎩,则目标函数2z x y =-的最小值为( )A .165-B . 3-C .0D .1 3.阅读下边的程序框图,运行相应的程序,则输出v 的值为( )A .4B . 5C . 6D . 74.已知ABC ∆是钝角三角形,若1,2AC BC ==,且ABC ∆的面积为2,则AB =( )A B C. .35.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件6.已知双曲线()222210,0x y a b a b-=>>的焦点的渐近线的距离为2,且双曲线的一条渐近线与直线230x y -+=平行,则双曲线的方程为( )A .221164x y -= B .22194x y -= C. 22149x y -= D .22184x y -= 7.在ABC ∆中,D 在AB 上,:1:2AD DB =,E 为AC 中点,CD BE 、相交于点P ,连结AP .设(),AP xAB yAC x y R =+∈,则,x y 的值分别为( ) A .1123, B .1233, C. 1255, D .1136,8.已知()()23xf x x e =-(其中,x R e ∈是自然对数的底数),当10t >时,关于x 的方程()()120f x t f x t --=⎡⎤⎡⎤⎣⎦⎣⎦恰好有5个实数根,则实数2t 的取值范围是( )A .()2,0e -B . (]2,0e - C. 32,6e e -⎡⎤-⎣⎦ D .(32,6e e -⎤-⎦第Ⅱ卷(非选择题 共110分)二、填空题:本大题共有6小题,每小题5分,满分30分.9.已知,,a b R i ∈是虚数单位,若()()1222i ai b i -+=-,则a b +的值为__________.10.在6214x x ⎛⎫- ⎪⎝⎭的展开式中,3x -的系数为__________.(用数字作答)11.某空间几何体的三视图如图所示,则该几何体的表面积是____________.12.在平面直角坐标系xOy 中,由曲线()10y x x=>与直线y x =和3y =所围成的封闭图形的面积为__________.13.在直角坐标系xOy 中,已知曲线11:1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),曲线2cos :sin x a C y θθ=⎧⎨=⎩(θ为参数,1a >),若1C 恰好经过2C 的焦点,则a 的值为 .14.已知()24,1,1xx x x f x e x ⎧-<=⎨≥⎩,若方程()f x kx =有且仅有一个实数解,则实数k 的取值范围为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15. (本小题满分13分)已知函数()()()2cos cos f x x x x a a R =+∈. (1)求()f x 的最小正周期; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2,求a 的值. 16. (本小题满分13分)某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名自A 学校且1名为女棋手,另外4名自B 学校且2名为女棋手.从这7名队员中随机选派4名队员参加第一阶段的比赛. (1)求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;(2)设X 为选出的4名队员中A B 、两校人数之差的绝对值,求随机变量X 的分布列和数学期望.17. (本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,1,//,2,2AB AD AD BC AD BC E ⊥==在BC 上,且112BE AB ==,侧棱PA ⊥平面ABCD.(1)求证:平面PDE ⊥平面PAC ; (2)若PAB ∆为等腰直角三角形.(i )求直线PE 与平面PAC 所成角的正弦值; (ii )求二面角A PC D --的余弦值. 18. (本小题满分13分) 已知数列{}n a 的前n 项和()()2**11,n n n nn na a A nn N bn N a a ++=∈=+∈,数列{}n b 的前n 项和为n B .(1)求数列{}n a 的通项公式; (2)设()*2n n na c n N =∈,求数列{}n c 的前n 项和n C ; (3)证明:()*222n n B n n N <<+∈.19. (本小题满分14分)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,F F ,上顶点为B ,若12BF F ∆的周长为6,且点1F 到直线2BF 的距离为b . (1)求椭圆C 的方程;(2)设12,A A 是椭圆C 长轴的两个端点,点P 是椭圆C 上不同于12,A A 的任意一点,直线1A P 交直线x m =于点M ,若以MP 为直径的圆过点2A ,求实数m 的值. 20. (本小题满分14分)已知函数()()321,,3f x x x cx d c d R =-++∈,函数()f x 的图像记为曲线C . (1)若函数()f x 在[)0+∞,上单调递增,求c 的取值范围;(2)若函数()y f x m =-有两个零点(),αβαβ≠,且x α=为()f x 的极值点,求2αβ+的值;(3)设曲线C 在动点()()00,A x f x 处的切线1l 与C 交于另一点B ,在点B 处的切线为2l ,两切线的斜率分别为12,k k ,是否存在实数c ,使得12k k 为定值?若存在,求出c 的值;若不存在,说明理由.试卷答案一、选择题1-4 DACB 5-8 DACD二、填空题9.8 10. 24-11. 32+4ln 3-(,e)-∞三、解答题15.(本小题满分13分)解:(I)函数2()2cos cos cos 212f x x x x a x x a =++=+++2sin(2)16x a π=+++, ……………………4分16.(本小题满分13分)解:(I )由题意知,7名队员中分为两部分,3人为女棋手,4人为男棋手,设事件A =“恰有1位女棋手”,则()1334471235C C P A C ==,………………………4分 所以参加第一阶段的比赛的队员中,恰有1位女棋手的概率为1235.…………5分 (II )随机变量X 的所有可能取值为0,2,4.其中()22344718035C C P X C ===, ()133134344716235C C C C P X C +===,()0434471435C C P X C ===. ………………………………9分 所以,随机变量X 分布列为随机变量X 的数学期望()181613602435353535E X =⨯+⨯+⨯=. ………………………………13分17.(本小题满分13分) 解:(Ⅰ)法一:∵△AGD△CGE ,知23DG AD AG GE EC GC ===,且AC = 故35GC AC ==. 同理可得355GE DE ==,且3EC =,222GC GE EC +=,ED AC ⊥. ………2分又∵PA ⊥平面ABCD ∴PA ED ⊥ ……3分 而PAAC A =∴ED ⊥平面PAC .ED ⊂平面PDE ,故平面PDE ⊥平面PAC ; ……4分法二:∵PA ⊥平面ABCD ∴AB PA ⊥ 又∵AB AD ⊥,故可建立建立如图所示坐标系.由已知(0,2,0)D ,(2,1,0)E ,(2,4,0)C ,(0,0,)P λ(0λ>)∴(2,4,0)AC =,(0,0,)AP λ=,(2,1,0)DE =-∴4400DE AC ⋅=-+=,0DE AP ⋅=.……3分,∴DE AC ⊥,DE AP ⊥,∴ED ⊥平面PAC ,ED ⊂平面PDE ,平面PDE ⊥平面PAC ; (4)分(Ⅱ)(i )由(Ⅰ),平面PAC 的一个法向量是(2,1,0)DE =-,因为PAB ∆为等腰直角三角形,故2PA =,(2,1,2)PE =-.设直线PE 与平面PAC 所成的角为θ,则sin cos ,PE DE θ=<>=分 (ii )设平面PCD 的一个法向量为n 000(,,)x y z =,(2,2,0)DC =,(0,2,2)DP =- 由n DC ⊥,n DP ⊥∴0000220220x y y z +=⎧⎨-+=⎩,令01x =,则n (1,1,1)=--, ………10分∴cos <n,DE >==.………11分 显然二面角A PC D --的平面角是锐角, ∴二面角A PC D --的余弦值为515.………13分(其他方法可酌情给分) 18.(本小题满分13分)解:(I )当2n ≥时,2=n A n ,21(1)-=-n A n , 两式相减:121-=-=-n n n a A A n ;当1n =时,111==a A ,也适合21=-n a n ,故数列{}n a 的通项公式为21=-n a n ;. ………3分 (II )由题意知:2122-==n n n n a n c ,12n n C c c c =+++,123135212222-=++++n nn C , 23411352122222+-=++++n n C n ,两式相减可得:1231122221222222+-=++++-n n n C n , ……… 4分 即123-111111121()2222222+-=+++++-n n n C n , -111121(1)2222+-=+--n n n C n ,2332+=-n n n C . ………7分 (III )21212121-+=++-n n n b n n ,显然212122121-++>=+-n n n n ,即2n b >,122n n B b b b n =+++>; ………9分另一方面,21212222112212*********-++=-++=+-+-+--+n n n n n n n n , 即122213=+-b ,222235=+-b ,…,11222121⎛⎫=+- ⎪-+⎝⎭n b n n ,2222222(2)(2)(2)22221335212121=+-++-+++-=+-<+-++n B n n n n n , 即:222<<+n n B n . ………13分 19.(本小题满分14分)解:(Ⅰ)由已知得2222262c a cb ab a b c ⎧+=⎪=⎨⎪=+⎩,解得21a b c =⎧⎪=⎨⎪=⎩.所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)由题意知12(2,0),(2,0)A A -, ……………6分 设00(,)P x y ,则100:(2)2A P y l y x x =++,得00(,(2))2yM m m x ++. 且由点P 在椭圆上,得22003(1)4x y =-. ……………8分 若以MP 为直径的圆过点2A ,则220A M A P ⋅=, ……………9分所以20000000(2,(2))(2,)(2)(2)(2)022y y m m x y m x m x x -+⋅-=--++=++2000000033(4)(2)(2)44(2)(2)(2)(2)(2)(2)022x x x m x m m x m x x --+--++=---+=++……………12分 因为点P 是椭圆C 上不同于12,A A 的点,所以02x ≠±. 所以上式可化为3(2)(2)04m m --+=,解得14m =. ……………14分 20.(本小题满分14分)解法一(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥所以2min (2)0x x c -+≥,而22x x c -+在1x =处取得最小值,所以120c -+≥,1c ≥;……………4分 (II )因为x α=为()f x 的极值点,所以21()20k f c ααα'==-+=,所以22c αα=-+, 又因为()y f x m =-有不同的零点,αβ,所以()()f f αβ=,即32321133c d c d ααααββ-++=-++, 整理得:21(23)()03αβαβ+--=, 所以23αβ+=.……………9分 (III )满足条件的实数c 存在, 由2()2f x x x c '=-+,知过00(,())A x f x 点与曲线相切的直线1l 为:000()()+()y f x x -x f x '=,且21002k x x c =-+ 将000()()+()y f x x -x f x '=与()y f x =联立即得B 点得横坐标,所以000()()+(())f x x -x f x f x '=即:3223200000011(2)()+33x x cx d x x c x -x x x cx d -++=-+-++ 整理得:2001(23)()03x x x x +--= 由已知0x x ≠,所以0230x x +-= 所以032x x =-,即B 点的横坐标为032x - 所以过点B 的曲线的切线斜率为22()2k f x x x c '==-+200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-因此当且仅当 330c -=时,1k 、1k 成比例, 这时1c =即存在实数1c =,使12k k 为定值.……………14分 解法二:(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥,所以2(2)c x x ≥--对任意的[0,)x ∈+∞恒成立,故2max [(2)]c x x ≥--, 即2max [(2)]1x x --=,故c 的取值范围是[1,)+∞;…………… 4分(II )因为x α=为()f x 的极值点,且()y f x m =-有两个零点,()αβαβ≠, 所以()0f x m -=的三个实数根分别为,,ααβ, 由根与系数的关系得12313ααβαβ-++=+=-=;……………9分 (III )满足条件的实数c 存在,因为2()2f x x x c '=-+,所以过00(,())A x f x 点且与曲线C 相切的直线1l 为:000()()+()y f x x -x f x '=,其中21002k x x c =-+.设1l 与C 交于另一点11(,)B x y ,则001,,x x x 必为方程'000()()()+()f x f x x -x f x =的三个实数根 由'000()()()+()f x f x x -x f x =得32200001(2)()+()3x x cx d x x c x -x f x -++=-+ 因为上述方程的右边不含三次项和二次项, 所以0011313x x x -++=-= ,所以1032x x =- 所以'22111()2k f x x x c ==-+ 200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-.因此当且仅当 330c -=时,1k 、1k 成比例,这时1c =,即存在实数1c =,使12k k 为定值. …14分。
2017年高考天津理科数学试题及答案(word解析版)
2017年高考天津理科数学试题及答案(word解析版)2017年普通高等学校招生全国统一考试(天津卷)数学(理科)参考公式:• 如果事件A ,B 互斥,那么()()()P A B P A P B =+U ; • 如果事件A ,B 相互独立,那么()()()P AB P A P B =;• 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高;• 锥体体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷(共40分)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2017年天津,理1,5分】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I ( )(A ){}2 (B ){}1,2,4 (C ){}1,2,4,6 (D ){}|15x x ∈-≤≤R 【答案】B【解析】{}[]{}()1,2,4,61,51,2,4A B C =-=U I I ,故选B . (2)【2017年天津,理2,5分】设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为( )(A )23(B )1 (C )32(D )3【答案】D【解析】目标函数为四边形ABCD 及其内部,其中324(0,1),(0,3),(,3),(,)233A B C D --,所以直线z x y =+过点B 时取最大值3,故选D .(3)【2017年天津,理3,5分】阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )(A )0 (B )1 (C )2 (D )3 【答案】C【解析】依次为8N = ,7,6,2N N N ===,输出2N =,故选C .(4)【2017年天津,理4,5分】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】10sin 121262πππθθθ-<⇔<<⇒<,0θ=,1sin 2θ<,不满足1212ππθ-<,所以是充分不必要条件,故选A .(5)【2017年天津,理5,5分】已知双曲线22221(0,0)xy a b ab-=>>的左焦点为F 2F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) (A )22144x y -= (B )22188x y -= (C )22148x y -=(D )22184x y -=【答案】B【解析】由题意得224,14,22188x y a b c a b c ==-⇒===-=-,故选B .(6)【2017年天津,理6,5分】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) (A )a b c << (B )c b a << (C )b a c << (D )b c a << 【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以在0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在[)0,+∞上是增函数,()()5.15.122log log a g g =-=,0.822<,又4 5.18<<, 5.122log 3<<,所以即0.85.1202log 3<<<,()()()0.85.122log 3g g g <<,所以b a c <<,故选C .(7)【2017年天津,理7,5分】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则( )(A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π= 【答案】A 【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33kk ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .(8)【2017年天津,理8,5分】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是( )(A )47[,2]16- (B )4739[,]1616- (C )[3,2]-(D )39[23,]16-【答案】A【解析】不等式()2x f x a ≥+为()()()*2xf x a f x -≤+≤,当1x ≤时,()*式即为22332xx x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+,又2214732416x x x ⎛⎫-+-=---⎪⎝⎭(14x =时取等号), 223339393241616x x x ⎛⎫-+=-+≥⎪⎝⎭(34x =时取等号),所以47391616a -≤≤,当1x >,()*式为222x x a x x x--≤+≤+,322222x x x a x x --≤+≤+,又32322322x x x x ⎛⎫--=-+≤- ⎪⎝⎭(当23x =时取等号),222222x x xx+≥⨯(当2x =时取等号),所以232a -≤,综上47216a -≤≤,故选A .二、填空题:本大题共6小题,每小题5分,共30分. (9)【2017年天津,理9,5分】已知a ∈R ,i 为虚数单位,若i 2i a -+为实数,则a 的值为 . 【答案】2-【解析】()(2)(21)(2)2122(2)(2)555a i a i i a a i a a i i i i -----+-+===-++-为实数,则20,25a a +==-. (10)【2017年天津,理10,5分】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π【解析】设正方体边长为a ,则226183aa =⇒=,外接球直径为344279233,πππ3382R a V R ===⨯=.(11)【2017年天津,理11,5分】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为 . 【答案】2【解析】直线为23210x y ++= ,圆为22(1)1xy +-= ,因为314d =< ,所以有两个交点.(12)【2017年天津,理12,5分】若,a b ∈R ,0ab >,则4441a b ab++的最小值为 . 【答案】4【解析】442241414a b a b ab ab+++≥≥ ,当且仅当2,1a b ==时取等号. (13)【2017年天津,理13,5分】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,()AE AC AB λλ∈=-R u u u r u u u r u u u r,且4AD AE ⋅=-u u u r u u u r ,则λ的值为 . 【答案】311 【解析】32cos603AB AC ⋅=⨯⨯︒=u u u r u u u r,1233AD AB AC=+u u u r u u u r u u u r ,则()1233AD AE AB AC AC ABλ⎛⎫⋅=+- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r212334934333311λλλ=⨯+⨯-⨯-⨯=-⇒=.(14)【2017年天津,理14,5分】用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答)【答案】1080【解析】413454541080A C C A +=.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)【2017年天津,理15,13分】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(1)求b 和sin A 的值; (2)求πsin(2)4A +的值. 解:(1)在ABC △中,a b >,故由3sin 5B =,可得4cos 5B =.由已知及余弦定理,2222cos 13b a c ac B =+-=,所以13b =sin sin a bA B=,得sin 313sin a B A b ==.所以b 13,sin A 313.(2)由(1)及a c <,得213cos A ,所以12sin 22sin cos 13A A A ==,25cos212sin 13A A =-=-.故πππ72sin(2)sin 2cos cos2sin 444A A A +=+. (16)【2017年天津,理16,13分】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解:(1)随机变量X 的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=, 11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,1111111111(2)(1)(1)(1)2342342344P X ==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X ==⨯⨯=. 所以,随机变量X 的分布列为X0 1 2 3P 14 112414 124随机变量X 的数学期望1111113()012342442412E X =⨯+⨯+⨯+⨯=. (2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)(1)(0)P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=.所以,这2辆车共遇到1个红灯的概率为1148. (17)【2017年天津,理17,13分】如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点D E N ,,分别为棱PA PC BC ,,的中点,M 是线段AD 的中点,4PA AC ==,2AB =. (1)求证://MN 平面BDE ;(2)求二面角C EM N --的正弦值; (3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为7,求线段AH 的长. 解:如图,以A 为原点,分别以AB u u u r ,AC u u u r ,APu u u r 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得()0,0,0A ,()2,0,0B ,()0,4,0C ,()0,0,4P ,()0,0,2D ,()0,2,2E ,()0,0,1M ,()1,2,0N .(1)()0,2,0DE =uu u r ,()2,0,2DB =-u u u r.设(,,)x y z =n ,为平面BDE 的法向量,则00DE DB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n , 即20220y x z =⎧⎨-=⎩.不妨设1z =,可得(1,0,1)=n .又()1,2,1MN =-u u u u r,可得MN ⋅=u u u u rn .因为MN ⊄平面BDE ,所以//MN 平面BDE . (2)易知1(1,0,0)=n 为平面CEM 的一个法向量.设2(,,)x y z =n为平面EMN 的法向量,则220EM MN ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur n n ,因为(0,2,1)EM =--u u u u r ,(1,2,1)MN =-u u u u r ,所以2020y z x y z --=⎧⎨+-=⎩.不妨设1y =,可得2(4,1,2)=--n.因此有121212cos ,|||21⋅<>==n n n n|n n 12105sin ,<>=n n.二面角C EM N--105(3)依题意,设AH h =(04h ≤≤),则()0,0,H h ,进而可得(1,2,)NH h =--u u u u r,(2,2,2)BE =-u u u r.由已知, 得2||7|cos ,|||||523NH BE NH BE NH BE h ⋅<>===+⨯u u u u r u u u ru u u u r u u u r u u u u r u u u r ,整理得2102180hh -+=,解得85h =,或12h =. 所以,线段AH 的长为85或12. (18)【2017年天津,理18,13分】已知{}na 为等差数列,前n 项和为()nS n *∈N ,{}nb 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}nb 的通项公式;(2)求数列{}221n n a b -的前n 项和()n *∈N . 解:(1)设等差数列{}n a 的公差为d ,等比数列{}nb 的公比为q .由2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =.所以,2nnb =.由3412b a a =-,可得138d a -=①.由114=11S b ,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32na n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}nb 的通项公式为2nnb =.(2)设数列{}221n n a b -的前n 项和为n T ,由262n a n =-,1214n n b --=,有221(31)4nn n a b n -=-⨯,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯L ,23414245484(31)4n nT n +=⨯+⨯+⨯++-⨯L ,上述两式相减,得231324343434(31)4nn n T n +-=⨯+⨯+⨯++⨯--⨯L 112(14)4(31)414n n n +⨯-=---⨯-1(32)48n n +=--⨯-得1328433n nn T +-=⨯+.所以,数列{}221n n a b-的前n 项和为1328433n n +-⨯+.(19)【2017年天津,理19,14分】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)ypx p =>的焦点,F 到抛物线的准线l 的距离为12. (1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD ∆6,求直线AP 的方程; 解:(1)设F 的坐标为(),0c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,22234ba c =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24yx=.(2)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-. 将1x my =+与22413y x +=联立,消去x ,整理得22(34)60my my ++=,解得0y =,或2634my m -=+. 由点B 异于点A ,可得点222346,3434m m B m m ⎛⎫-+- ⎪++⎝⎭.由21,Q m ⎛⎫- ⎪⎝⎭,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+. 所以2222236||13232m m AD m m -=-=++.又因为APD ∆的面积为6,故2216262||32m m m ⨯⨯=+,整理得 2326|20m m -+=,6||m ,6m =.直线AP的方程为3630x +-=,或3630x -=.(20)【2017年天津,理20,14分】设a ∈Z ,已知定义在R上的函数432()2336f x x x x x a =+--+在区间()1,2 内有一个零点0x ,()g x 为()f x 的导函数. (1)求()g x 的单调区间;(2)设00[1,)(,2]m x x ∈U ,函数()()()()0h x g x m x f m =--,求证:()()00h m h x <;(3)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q ∈U 满足041||p x q Aq-≥. 解:(1)由432()2336f x xx x x a=+--+,可得32()()8966g x f x xx x '==+--,可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或14x =.当x 变化时,()(),g x g x '的变化情况如下表:x (),1-∞- 11,4⎛⎫- ⎪⎝⎭ 1,4⎛⎫+∞ ⎪⎝⎭()g x ' + - + ()g x ↗ ↘ ↗所以,()g x 的单调递增区间是(),1-∞-,1,4⎛⎫+∞ ⎪⎝⎭,单调递减区间是11,4⎛⎫- ⎪⎝⎭. (2)由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,0()()()()h x g x m x f m =--.令函数10()()()()H x g x x x f x =--,则10()()()H x g x x x ''=-.由(1)知,当[1,2]x ∈时,()0g x '>,故当0[1,)x x ∈时,1()0H x '<,1()H x 单调递减;当0(,2]x x ∈时,1()0H x '>,1()H x 单调递增.因此,当00[1,)(,2]x x x ∈U 时,1100()()()0H x H x f x >=-=,可得1()0H m >,()0h m >.令函数2()()()()H x g x x x f x =--,则2()()()H x g x g x ''=-.由(1)知,()g x 在[1,2]上单调递增,故当0[1,)x x ∈时,2()0H x '>,2()H x 单调递增;当0(,2]x x ∈时,2()0H x '<,2()H x 单调递减.因此,当00[1,)(,2]x x x ∈U 时,220()()0H x H x <=,可得2()0H m <,0()0h x <. 所以,0()()0h m h x <.(3)对于任意的正整数p ,q ,且00[1)(,],2p x x q ∈U ,令pm q=,函数0()()()()h g m x x x m f =--.由(2)知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点;当0(,2]m x ∈时()h x 在区间0(),x m 内有零点.所以()h x 在(1,2)内至少有一个零点,不妨设为1x ,则110()()()()0p ph g x f q x qx =--=. 由(1)知()g x 在[1,2]上单调递增,故10()()12()g x g g <<<,于是432234041()|()||2336|||||()()(2)2p pf f p p p q p q pq aq q q x qg x g g q +--+-=≥=.因为当[12],x ∈时,()0g x >,故()f x 在[1,2]上单调递增,所以()f x 在区间[1,2]上除0x 外没有其他的零点,而0p x q ≠,故()0pf q≠. 又因为p ,q ,a 均为整数,所以432234|2336|p p q p q pq aq +--+是正整数,从而432234|2336|1p p q p q pq aq +--+≥.041|2|()p x q g q-≥.只要取()2A g =,就有041||p x q Aq-≥.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市五区县2016-2017学年度第一学期期末
考试
高三文科数学试卷
本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,第I卷第1至2页,第Ⅱ卷3至8页。
全卷满分150,考试时间120分钟。
第I卷(选择题共4 0分)
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中.只有一项是符合题目要求的.
(l)已知集合{}{}
2
=∈>=∈-+<,则集合等于M x R x N x R x x
|2,|430
(A) {}|2x x < (B){}|22x x -≤≤ (C) {}|21x x -≤< (D){}|12x x <≤
(2)已知变量x ,y 满足约束条件10,0,20,y x y x y -≤⎧⎪
+≥⎨⎪--≤⎩
则z=x+2y 的最大值为
(A)6 (B)5 (C)4 (D)3 (3)阅读右边的程序框图,运行相应的程序,输出的结果为 (A)126 (B)127 (C) 63 (D) 64
(4)设,m n R ∈,则“3,3m n ≥≥”是“229m n +≥”的 ( )
(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件
(5)若直线20x y a -+=与圆22(2)1x y -+=有公共点,则实数a 的取值范围是 ( )
(A) ⎡⎣
(B)(
(C) 22⎡---+⎣
(D)2⎡-+⎣
(6)将函数()3sin()2
3
x
f x π=+的图象向右平移3
π
个单位长度,再把图象上所有
点的横坐标 伸长到原来的2倍(纵坐标不变),得到()y g x =的图象,则
()y g x =的解析式为
( )
(A)()3sin()6
g x x π=+ (B)()3sin()3
g x x π
=+
(C)()3sin()4
3
x g x π
=+ (D)()3sin()4
6
x g x π
=+
(7)已知函数()x f x a x b =+-的零点0(,1)()x n n n Z ∈+∈,其中常数a ,b 满足
01b a <<<,则n 的值为 ( )
(A)2 (B)1 (C) -2 (D) -l (8)已如()f x 是定义在R 上的偶函数,且满足(2)()f x f x +=,当[]0,1x ∈时,()2f x x =.若在区间[-2,
3]上方程2()0ax a f x +-=恰有四个不相等的实数根,则实数a 的取值范围 是 ( )
(A)22
(,)53
(B) 2(,)5
+∞ (C) 2(0,)3
(D)2(0,)5
第Ⅱ卷
二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上.
(9)已知复数z 满足12i z i -+=⋅,则复数z=___________.
(10)已知一圆柱内接于球O ,且圆柱的底面直径与母线长均为2,则球O 的表面积为__________.
(11)若双曲线22
221x y a b
-=的左顶点与抛物线22(0)y px p =>的焦点的距离为4,
且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,2),则双曲线的焦距为_________.
(12)如图,△ABC 内接于O ,过BC 中点D 作平行于AC 的
直线l ,l 交AB
于E ,交O 在A 点处的切线于点P ,若PE=6 ,ED=3,则AE 的长为 ____________.
(13)已知1log ()log (0m m a m b
-=>≠∈且m 1,a,b R),则2a-b 的最大值 为__________.
(14)定义平面向量的一种运算:sin ,a b a b a b ⊗=,给出下列命题: ①a b b a ⊗=⊗;②()()a b a λλ⊗=b ⊗;③()()()a b c a c b c +⊗=⊗+⊗; ④若1122(,),(,)a x y b x y ==,则1221a b x y x y ⊗=-。
其中所有真命题的序号是___________.
三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
1 5.(本小题满分13分)
某中学田径队共有42名队员,其中男生2 8名、女生1 4名,采用分层抽样的方法选出6人参加一个座谈会.
(I)求运动员甲被抽到的概率以及选出的男、女运动员的人数; (Ⅱ)若从参加会议的运动员中选出2名运动员清扫会场卫生,用列举法求恰好有1名女队员的概率. 1 6.(本小题满分13分) 已知函数2()cos 2sin ()2
6x
f x x π
=--
(I)求()f x 的最大值;
(Ⅱ)设△ABC 的内角A,B,C 的对应边分别为a ,b ,c,且7,(2),6
2
A a f A π
==-
sin B C =,求△ABC 的面积.
17.(本小题满分13分) 已
知
四
棱
锥
A-BCDE
,
其
中
CD ,
1,2AB BC AC BE CD =====,CD ⊥平面ABC,BE ∥
F 为AD 的中点.
(I)求证:EF ∥平面ABC ; (Ⅱ)求证:平面ADE ⊥平面ACD ;
(Ⅲ)求直线AE 和平面BCDE 所成角的正弦值.
18.(本小题满分13分)
已知椭圆2222:1x y C a b +=的两焦点12(1,0),(1,0)F F -
(I)求椭圆C 的标准方程;
(Ⅱ)经过椭圆C 的上顶点B 的直线与椭圆另一个交点为A ,且满足
22BA BF ⋅=
,
求2ABF ∆外接圆的面积. 19.(本小题满分14分)
已知数列{}n a 前n 项和为n S ,首项为1a ,且1
,,2
n n a S 成等差数列. (I)求数列{}n a 的通项公式;
(Ⅱ)数列{}n b 满足221223log log n n n b a a ++=⋅,求证:12311111
2
n b b b b +++⋅⋅⋅+< 20.(本小题满分1 4分)
已知函数32()f x ax bx =+在点(3,(3))f 处的切线方程为122270x y +-=. (I)求函数()f x 的解析式;
(Ⅱ)若方程21
()2f x x m =-+有三个不同的解,求实数m 的取值范围;
(Ⅲ)若不等式23
()(1)0()2
f x x k x k R -++≥∈对于(,0)x ∈-∞恒成立,求实数k 的
取值范围.。