高考数学复习第2章基本初等函数导数及其应用第2讲函数的定义域和值域文北师大版28

合集下载

高考高考数学一轮复习第2章基本初等函数导数及其应用第2讲函数的定义域和值域知能训练轻松闯关理北师大

高考高考数学一轮复习第2章基本初等函数导数及其应用第2讲函数的定义域和值域知能训练轻松闯关理北师大

第2讲函数的定义域和值域1.函数f (x )=|x -2|-1lg (x -1)的定义域是()A .[3,+∞)B.⎝ ⎛⎭⎪⎫-13,1 C.⎝ ⎛⎭⎪⎫-13,3 D .(-∞,-3)解析:选A.由⎩⎪⎨⎪⎧|x -2|-1≥0,x -1>0,x -1≠1得⎩⎪⎨⎪⎧x -2≥1或x -2≤-1,x >1,x ≠2,所以x ≥3,即定义域为[3,+∞). 2.函数y =1-⎝ ⎛⎭⎪⎫12x的值域为() A .[0,+∞) B .(0,1) C .[0,1)D .[0,1]解析:选C.要使函数有意义需满足1-⎝ ⎛⎭⎪⎫12x ≥0,所以⎝ ⎛⎭⎪⎫12x≤1,所以x ≥0.由x ≥0可知0<⎝ ⎛⎭⎪⎫12x≤1,故0≤1-⎝ ⎛⎭⎪⎫12x<1,故y =1-⎝ ⎛⎭⎪⎫12x的值域为[0,1). 3.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是()A .f (x )=x 2+aB .f (x )=ax 2+1C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C.当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R .4.函数y =2--x 2+4x 的值域是() A .[-2,2] B .[1,2] C .[0,2] D .[-2,2]解析:选C.因为-x 2+4x =-(x -2)2+4≤4,所以0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0,0≤2--x 2+4x ≤2,所以0≤y ≤2.5.规定a ⊗b =ab +2a +b ,a ,b >0,若1⊗k =4,则函数f (x )=k ⊗x 的值域为() A .(2,+∞) B .(1,+∞) C.⎣⎢⎡⎭⎪⎫78,+∞ D.⎣⎢⎡⎭⎪⎫74,+∞ 解析:选A.由1⊗k =k +2+k =4,解得k =1,所以f (x )=k ⊗x =1⊗x =x +x +2=⎝ ⎛⎭⎪⎫x +122+74.因为x >0,所以f (x )>2.故选A. 6.若函数y =f (x )的定义域是[0,2016],则函数g (x )=f (x +1)x -1的定义域是()A .[-1,2015]B .[-1,1)∪(1,2015]C .[0,2016]D .[-1,1)∪(1,2016] 解析:选B.令t =x +1,则由已知函数y =f (x )的定义域为[0,2016]可知f (t )中0≤t ≤2016,故要使函数f (x +1)有意义,则0≤x +1≤2016,解得-1≤x ≤2015,故函数f (x +1)的定义域为[-1,2015].所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 015,x -1≠0解得-1≤x <1或1<x ≤2015.故函数g (x )的定义域为[-1,1)∪(1,2015]. 7.下表表示y解析:函数值只有四个数2,3,4,5,故值域为{2,3,4,5}. 答案:{2,3,4,5}8.若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤13,1,则a +b =________. 解析:由题意知x -1>0,又x ∈[a ,b ],所以a >1.又f (x )=1x -1在[a ,b ]上为减函数,所以f (a )=1a -1=1且f (b )=1b -1=13,所以a =2,b =4,a +b =6. 答案:69.已知函数f (x )的定义域为[0,1],值域为[1,2],则函数f (x +2)的定义域为________,值域为________.解析:由已知可得x +2∈[0,1],故x ∈[-2,-1],所以函数f (x +2)的定义域为[-2,-1].函数f (x )的图像向左平移2个单位得到函数f (x +2)的图像,所以值域不发生变化,所以函数f (x +2)的值域仍为[1,2]. 答案:[-2,-1][1,2]10.已知函数f (x )=mx 2+(m -3)x +1的值域是[0,+∞),则实数m 的取值范围是____________.解析:设g (x )=mx 2+(m -3)x +1,当m =0时,g (x )=-3x +1,显然满足值域为[0,+∞), 所以m =0适合;当m ≠0时,须⎩⎪⎨⎪⎧m >0,Δ=(m -3)2-4m ≥0, 解得0<m ≤1或m ≥9.综上所述,0≤m ≤1或m ≥9. 答案:[0,1]∪[9,+∞)11.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.解:因为f (x )=12(x -1)2+a -12,所以其对称轴为x =1.即函数f (x )在[1,b ]上单调递增.所以f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b .②又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3.所以a ,b 的值分别为32,3.12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:由题意知ax +1≥0,a <0,所以x ≤-1a,即函数的定义域为⎝ ⎛⎦⎥⎤-∞,-1a .因为函数在(-∞,1]上有意义, 所以(-∞,1]⊆⎝ ⎛⎦⎥⎤-∞,-1a ,所以-1a≥1,又a <0,所以-1≤a <0,即a 的取值范围是[-1,0).1.已知A ,B 是非空数集,定义A ⊕B ={x |x ∈A ∪B ,且x ∉A ∩B }.若A ={x |y =x 2-3x },B ={y |y =3x },则A ⊕B =() A .[0,3) B .(-∞,3) C .(-∞,0)∪(3,+∞) D .[0,3]解析:选B.分析得到A =(-∞,0]∪[3,+∞),B =(0,+∞),A ∪B =R ,A ∩B =[3,+∞),所以A ⊕B =(-∞,3).2.若一次函数f (x )满足f (f (x ))=x +1,则g (x )=[f (x )]2x(x >0)的值域为____________.解析:设f (x )=kx +b (k ≠0),所以f (f (x ))=k (kx +b )+b =k 2x +kb +b =k 2x +(k +1)b ,① 依题意f (f (x ))=x +1,②比较①和②的系数可得:⎩⎪⎨⎪⎧k 2=1,(k +1)b =1,解得⎩⎪⎨⎪⎧k =1,b =12,k =-1(舍去), 所以f (x )=x +12,则g (x )=⎝ ⎛⎭⎪⎫x +122x =x +14x +1≥2x ·14x+1=2.当且仅当x =12时取等号,所以g (x )=[f (x )]2x(x >0)的值域为[2,+∞).答案:[2,+∞)3.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 解:(1)因为函数的值域为[0,+∞),所以Δ=16a 2-4(2a +6)=0,即2a 2-a -3=0,解得a =-1或a =32.(2)因为对一切x ∈R 函数值均为非负,所以Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.所以a +3>0.所以g (a )=2-a |a +3|=-a 2-3a +2=-⎝ ⎛⎭⎪⎫a +322+174⎝ ⎛⎭⎪⎫a ∈⎣⎢⎡⎦⎥⎤-1,32.因为二次函数g (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减, 所以g ⎝ ⎛⎭⎪⎫32≤g (a )≤g (-1), 即-194≤g (a )≤4.所以g (a )的值域为⎣⎢⎡⎦⎥⎤-194,4. 4.设计一个水渠,其横截面为等腰梯形(如图),要求满足条件AB +BC +CD =a (常数),∠ABC =120°,写出横截面的面积y 关于腰长x 的函数,并求它的定义域和值域.解:如图,因为AB +BC +CD =a ,所以BC =EF =a -2x >0, 即0<x <a2,因为∠ABC =120°,所以∠A =60°,所以AE =DF =x 2,BE =32x ,y =12(BC +AD )·BE =3x 4⎣⎢⎡⎦⎥⎤2(a -2x )+x 2+x 2 =34(2a -3x )x =-34(3x 2-2ax ) =-334⎝ ⎛⎭⎪⎫x -a 32+312a 2, 故当x =a 3时,y 有最大值312a 2,它的定义域为⎝ ⎛⎭⎪⎫0,a 2,值域为⎝ ⎛⎦⎥⎤0,312a 2.。

高考数学大一轮总复习 第二章 函数、导数及其应用 2.3 函数的奇偶性与周期性名师课件 文 北师大版

高考数学大一轮总复习 第二章 函数、导数及其应用 2.3 函数的奇偶性与周期性名师课件 文 北师大版

4.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是_(_-__1_,0_)_∪__(_1_,__+__∞__)____。
解 析 画 草 图 , 由 f(x) 为 奇 函 数 知 : f(x)>0 的 x 的 取 值 范 围 为 ( - 1,0)∪(1,+∞)。
③由 x+ x2+1>x+|x|≥0 知 f(x)=ln(x+ x2+1)的定义域为 R,
又 f(-x)=ln(-x+ -x2+1)
=ln x+ 1x2+1=-ln(x+ x2+1)=-f(x),
则 f(x)=ln(x+ x2+1)为奇函数;
④由11- +xx>0,得-1<x<1,即 f(x)=ln 11- +xx的定义域为(-1,1),
得,定义域为(-1,1],关于原点不对称,故
f(x)为非奇非偶函数。
②f(x)=|lxg-1- 2|-x22 ; 【解】 由1|x--x22|>≠0,2 得,定义域为(-1,0)∪(0,1),关于原点对称。 ∴x-2<0。∴|x-2|-2=-x。∴f(x)=lg1--xx2。 又∵f(-x)=lg [1-x-x2]=-lg1--xx2=-f(x), ∴函数 f(x)为奇函数。
22xx+ -1a,即 1-a·2x=-2x+a,化简得 a·(1+2x)=1+2x,所以 a=1,f(x)
=22xx+ -11。由 f(x)>3 得 0<x<1。故选 C。
【答案】 C
(4)已知f(x)是R上的奇函数,且当x>0时,f(x)=x2-x-1,则f(x)的解
x2-x-1 x>0,
变式训练2 (1)(2016·九江模拟)已知f(x)是奇函数,g(x)是偶函数,且

【高考领航】高考数学总复习 22 函数的定义域和值域课件 北师大

【高考领航】高考数学总复习 22 函数的定义域和值域课件 北师大

)
A.f(x)=ln x
B.f(x)=1x
C.f(x)=|x|
D.f(x)=ex
解析:y= 1x的定义域为{x|x>0},而 f(x)=ln x 的定义域为{x|x
>0},它们的定义域相同.
答案:A
2.(2012 年广东卷)函数 y= xx+1的定义域为________. 解析:y= xx+1定义域x+1≥ x≠0 ∴x≥-1 且 x≠0. 答案:[-1,0)∪(0,+∞)
3.已知分段函数 f(x)=1x1--1x1, ,x0≥<x1<1
,其中 a,b∈R.
(1)当 0<a<b,且满足方程:f(a)=f(b)时,求1a+1b的值;
(2)若存在 b>a≥1 使得函数的定义域为[a,b],值域为[ma,mb],
求 m 的范围.

பைடு நூலகம்
2022/1/172022/1/17








课 堂 探 究 考 点 突 破
课 后 演 练 知 能 检 测
考点二 求函数的值域
求下列函数的值域,并指出函数有无最值.
(1)y= -x2-6x-5;
(2)y=3xx-+21;
(3)y=x+4 1-x;
(4)y=x+ 1-x2;
(5)y=21--csions
考点三 函数定义域和值域的综合应用
已知定义域、值域求参数 → 转化为恒成立问题 已知解析式求值域 → 在定义域内求值域 已知解析式含参数 → 分类讨论求值域 函数解析式图像易画 → 借助图像求值域或最值
已知函数 f(x)=x2+2xx+a,x∈[1,+∞), (1)当 a=12时,求函数 f(x)的最小值; (2)若对任意 x∈[1,+∞),f(x)>0 恒成立,试求实数 a 的取值 范围. 【思路点拨】 遇到不等式 f(x)>a 在区间 D 上恒成立问题,可 以构造函数 y=f(x),求出 y=f(x)在 D 上的值域,然后考虑 a 与值域 的关系即可.

2024年高考数学总复习第二章《函数与基本初等函数》2

2024年高考数学总复习第二章《函数与基本初等函数》2

2024年高考数学总复习第二章《函数与基本初等函数》§2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)所有的单调函数都有最值.(×)题组二教材改编2.函数f (x )=x 2-2x 的单调递增区间是____________.答案[1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三易错自纠5.函数y =12log (x 2-4)的单调递减区间为________.答案(2,+∞)6.若函数f (x )=|x -a |+1的增区间是[2,+∞),则a =________.答案2解析∵f (x )=|x -a |+1的单调递增区间是[a ,+∞),∴a =2.7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案[-1,1)解析-2≤a+1≤2,-2≤2a≤2,a+1>2a,解得-1≤a<1.8.函数f(x)1x,x≥1,-x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.题型一确定函数的单调性命题点1求函数的单调区间例1(1)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析函数y=x2-2x-8=(x-1)2-9图象的对称轴为直线x=1,由x2-2x-8>0,解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)函数y=-x2+2|x|+3的单调递减区间是__________________.答案[-1,0],[1,+∞)解析由题意知,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4,二次函数的图象如图.由图象可知,函数y=-x2+2|x|+3的单调递减区间为[-1,0],[1,+∞).命题点2讨论函数的单调性例2判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解函数f (x )=ax 2+1x(1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.引申探究如何用导数法求解本例?解f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上是增函数.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练1(1)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x -xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是______________.答案(-∞,2]解析因为f (x )在R 上单调递增,所以a -1>0,即a >1,因此g (x )的单调递减区间就是y =|x -2|的单调递减区间(-∞,2].(3)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )图象,由图知f (x )的单调递减区间是[1,2].题型二函数的最值1.函数y =x 2-1x 2+1的值域为____________.答案[-1,1)解析由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为________.答案2解析由1-x 2≥0,可得-1≤x ≤1.可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin θ∈[0,π],所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为________.答案[3,+∞)解析函数y 2x +1,x ≤-1,,-1<x <2,x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞).4.函数y =3x +1x -2的值域为________________.答案{y |y ∈R 且y ≠3}解析y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.5.函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在[-1,1]上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案B 解析方法一设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.方法二由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:形如求y=cx+dax+b(ac≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三函数单调性的应用命题点1比较函数值的大小例3已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f -12,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>b B.c>b>aC.a>c>b D.b>a>c答案D解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,因为a=f -12f522<52<3,所以b>a>c.命题点2解函数不等式例4(2018·四川成都五校联考)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案B解析∵f(x)是奇函数,f(-3)=0,∴f(-3)=-f(3)=0,解得f(3)=0.∵函数f(x)在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0;当x>3时,f(x)>0.∵函数f(x)是奇函数,∴当-3<x<0时,f(x)>0;当x<-3时,f(x)<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}.命题点3求参数的取值范围例5(1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是()A.π4B.π2C.3π4D .π答案C解析∵f (x )=cos x -sin x =-2sin∴当x -π4∈-π2,π2,即x ∈-π4,3π4时,y =sinf (x )=-2sin ∴-π4,3π4是f (x )在原点附近的单调减区间,结合条件得[0,a ]⊆-π4,3π4,∴a ≤3π4,即a max =3π4.(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)(2018·安徽滁州中学月考)已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是______________.答案(-4,4]解析设g (x )=x 2-ax +3a ,根据对数函数及复合函数的单调性知,g (x )在[2,+∞)上是增函数,且g (2)>0,2,a >0,∴-4<a ≤4,∴实数a 的取值范围是(-4,4].思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)如果函数f (x )2-a )x +1,x <1,x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案32,解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.-a >0,>1,2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,(2)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是______________.答案12,解析因为函数f (x )是定义在区间[0,+∞)上的增函数,且满足f (2x -1)<所以0≤2x -1<13,解得12≤x <23.1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)答案B解析设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).3.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为f(x)是偶函数,所以f(-3)=f(3),f(-2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).4.已知函数f(x)-2a)x,x≤1,a x+13,x>1,当x1≠x2时,f(x1)-f(x2)x1-x2<0,则a的取值范围是(),13 B.13,12,12 D.14,13答案A解析当x1≠x2时,f(x1)-f(x2)x1-x2<0,∴f(x)是R上的减函数.∵f(x)-2a)x,x≤1,a x+13,x>1,-2a<1,a<1,-2a≥13,∴0<a≤13.5.设f (x )x -a )2,x ≤0,+1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为()A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案D 解析∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知函数f (x )2x ,x ≥1,+c ,x <1,则“c =-1”是“函数f (x )在R 上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若函数f (x )在R 上单调递增,则需log 21≥c +1,即c ≤-1.由于c =-1,即c ≤-1,但c ≤-1不能得出c =-1,所以“c =-1”是“函数f (x )在R 上单调递增”的充分不必要条件.7.已知奇函数f (x )在R 上是增函数.若a =-b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为________________.答案a >b >c 解析∵f (x )在R 上是奇函数,∴a =-log f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-140.9.记min{a ,b },a ≤b ,,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案6解析由题意知,f (x )+2,0≤x ≤4,-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.11.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明当a =-2时,f (x )=x x +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)解设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )x ),x >0,f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )x +1)2,x >0,(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1,由g (x )在[-2,2]上是单调函数,知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案D 解析∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案(-∞,-2)解析二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2020x +ln(x 2+1+x )-2020-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1.(1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解(1)2-1>0,x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2).(2)∵函数f (x )在(0,3]上是增函数,∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,a ∈[-1,1],∴(-1)≥0,(1)≥0,m +m 2≥0,2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。

高考数学大一轮总复习 第二章 函数、导数及其应用 2.1 函数及其表示课件 文 北师大版

高考数学大一轮总复习 第二章 函数、导数及其应用 2.1 函数及其表示课件 文 北师大版

3.函数的三要素
4.分段函数 若函数在其定义域的不同子集上,因__对__应__关__系__不同而分别用几个不 同的式子来表示,这种函数称为分段函数。
基础自测
[判一判] (1)函数是建立在其定义域到值域的映射。( √ ) 解析 正确。函数是特殊的映射。 (2)函数f(x)=x2-2x与函数f(t)=t2-2t是同一个函数。( √ ) 解析 正确。定义域和对应关系都相同。 (3)函数y=1与函数y=x0是相同函数。( × ) 解析 错误。函数y=1的定义域为R,而函数y=x0的定义域为(- ∞,0)∪(0,+∞)。
第二章 函数、导数及其应用
第一节 函数及其表示
基础知识 自主学习
热点命题 深度剖析
思想方法 感悟提升
最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值 域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方 法(如图像法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简 单地应用。
R 热点命题 深度剖析
考点一 函数的定义域
【例 1】 (1)(2015·湖北卷)函数 f(x)= 4-|x|+lg x2-x-5x3+6的定义域
为( )
A.(2,3)
B.(2,4]
C.(2,3)∪(3,4]
D.(-1,3)∪(3,6]
4-|x|≥0, 【解析】 要使函数有意义,需x2-x-5x3+6>0,
解析 由函数的定义可知选项D正确。 答案 D
2.下列四组函数中,表示同一函数的是( )
A.y=x-1 与 y= x-12
B.y=
x-1与
y=
x-1 x-1
C.y=4lg x 与 y=2lg x2
D.y=lg x-2

高考数学一轮复习第2章函数导数及其应用第2节函数的单调性与最值课件文北师大版

高考数学一轮复习第2章函数导数及其应用第2节函数的单调性与最值课件文北师大版
所以函数的定义域为(-∞,-1]∪[3,+∞). 因为函数 t=x2-2x-3 的图像的对称轴为 x=1, 所以函数 t 在(-∞,-1]上递减,在[3,+∞)上递增. 所以函数 f(x)的递增区间为[3,+∞).
(2)令 t=2x2-3x+1,则 t=2x-342-18. 又函数 y=13t是减函数,因此函数 y=132x2-3x+1的递增区间为 -∞,34.故选 B.]
(2)试讨论函数 f(x)=x+kx(k>0)的单调性. 法二:f′(x)=1-xk2. 令 f′(x)>0 得 x2>k,即 x∈(-∞,- k)或 x∈( k,+∞),
故函数的增区间为(-∞,- k)和( k,+∞). 令 f′(x)<0 得 x2<k,即 x∈(- k,0)或 x∈(0, k),故函数
第2章 函数、导数极其应用
第二节 函数的单调性与最值
[考纲传真] 1.理解函数的单调性、最大(小)值及其几何意义.2. 会运用基本初等函数的图像分析函数的性质.
01
栏 目
02
导 03 航
课前知识全通关 课堂题型全突破 真题自主验效果
课前 知识 全通 关
1.函数的单调性
(1)增、减函数
增函数
减函数
单调性相反;
(3)函数 y=f(x)(f(x)>0)在公共定义域内与 y=-f(x),y=f1x的 单调性相反;
(4)函数 y=f(x)(f(x)≥0)在公共定义域内与 y= fx的单调性相 同.
(1)已知函数 f(x)= x2-2x-3,则该函数的递增区
间为( )
A.(-∞,1]
B.[3,+∞)
(2)试讨论函数 f(x)=x+kx(k>0)的单调性. [解] 法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+

2019届一轮复习北师大版 第2章函数、导数及其应用 第2讲 课件

2019届一轮复习北师大版    第2章函数、导数及其应用 第2讲  课件

4ac-b2 {y|y≥ 4a } 2 (2)y=ax +bx+c(a≠0)的值域是:当 a>0 时,值域为_______________;当
4ac-b2 {y|y≤ 4a } a<0 时,值域为_______________.
k {y|y≠0} (3)y= (k≠0)的值域是__________. x
• [分析] 求抽象函数定义域的关键,f后面括号内部分取值 范围相同. [解析] 由函数 f(x)的定义域为(-1,0),则使函数 f(2x+1)有意义,需满足-
1 1 1<2x+1<0,解得-1<x<- ,即所求函数的定义域为(-1,- ). 2 2
• [引申](1)若将本例中f(x)与f(2x+1)互换,结果如何? • (2)若将本例条件中f(x)改为f(2x),结果如何?
ln5-2x>0 (2)由 x e -1≥0 5-2x>1, ,得 x e ≥1.
解得 0≤x<2.
1 ∴函数 f(x)= + ex-1的定义域为:[0,2).故选 D. ln5-2x
• [引申]若将此例函数中“ln(5-2x)”改为“log0.5(5-2x)” 结果又如何呢? log0.55-2x>0 0<5-2x<1 5
10+9x-x2≥0, 则 x 需满足x-1>0, lgx-1≠0,
x+1x-10≤0, 即x>1, x≠2,
解得 1<x<2 或 2<x≤10,所以函数 f(x)的定义域为(1,2)∪(2,10].
4.f(x)=x2+x+1 在[-1,1]上的值域为 ( A.[1,3] 3 C.[ ,3] 4
[-3,1] (2)(2017· 山东菏泽期中)函数 f(x)=

高考数学大一轮复习 第二章 函数概念与基本初等函数I 2.4 二次函数与幂函数教师用书 文 北师大版

高考数学大一轮复习 第二章 函数概念与基本初等函数I 2.4 二次函数与幂函数教师用书 文 北师大版

数与幂函数教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.4 二次函数与幂函数教师用书文北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.4 二次函数与幂函数教师用书文北师大版的全部内容。

次函数与幂函数教师用书文北师大版1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx +c(a≠0).②顶点式:f(x)=a(x+h)2+k(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图像和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a〈0)图像定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在x∈错误!上是减少的;在x∈错误!上是增加的在x∈错误!上是增加的;在x∈错误!上是减少的对称性函数的图像关于x=-错误!对称2.幂函数(1)定义:形如函数y=xα(α∈R)叫作幂函数,其中x是自变量,α是常量.(2)幂函数的图像比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②幂函数的图像过定点(1,1);③当α〉0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;④当α〈0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减.【知识拓展】1.若f(x)=ax2+bx+c(a≠0),则当错误!时恒有f(x)〉0,当错误!时,恒有f(x)<0。

2.幂函数的图像和性质(1)幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图像过定点(1,1),如果幂函数的图像与坐标轴相交,则交点一定是原点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!.( ×)(2)二次函数y=ax2+bx+c,x∈R不可能是偶函数.( ×)(3)在y=ax2+bx+c(a≠0)中,a决定了图像的开口方向和在同一直角坐标系中的开口大小.( √)(4)函数y=122x是幂函数.(×)(5)如果幂函数的图像与坐标轴相交,则交点一定是原点.( √)(6)当n〈0时,幂函数y=x n是定义域上的减函数.( ×)1.(教材改编)已知函数f(x)=x2+4ax在区间(-∞,6)内单调递减,则a的取值范围是( ) A.a≥3 B.a≤3C.a<-3 D.a≤-3答案D解析函数f(x)=x2+4ax的图像是开口向上的抛物线,其对称轴是x=-2a,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x=-2a的左侧,∴-2a≥6,解得a≤-3,故选D。

一轮复习北师大版第2章第2节 函数的单调性与最值课件(59张)

一轮复习北师大版第2章第2节 函数的单调性与最值课件(59张)

考点二 函数单调性的判断与证明 1.定义法证明函数单调性的步骤
2.判断函数单调性的四种方法 (1)图像法;(2)性质法;(3)导数法;(4)定义法. 3.证明函数单调性的两种方法 (1)定义法;(2)导数法.
[典例 2] 试讨论函数 f (x)=x-ax1(a≠0)在(-1,1)上的单调性. 【四字解题】
3.若函数 y=(2k+1)x+b 在 R 上是减函数,则 k 的取值范围是 ________.
-∞,-12 [因为函数 y=(2k+1)x+b 在 R 上是减函数,所以 2k+1<0,即 k<-12.]
4.已知函数 f (x)=x-2 1,x∈[2,6],则 f (x)的最大值为________, 最小值为________.
前提 设函数 y=f (x)的定义域为 D,如果存在实数 M 满 足
①对于任意的 x∈D,都 ①对于任意的 x∈D,都
条件 结论
有__f _(x_)_≤_M____;
②存在 x0∈D,使得 _f_(_x_0_)=__M___
M 为 y=f (x)的最大值
有_f_(_x_)≥__M____;
②存在 x0∈D,使得 __f _(x_0_)_=__M__
A [函数 y=e-x 定义域为 R 且为减函数.y=x3 定义域为 R 且为 增函数.函数 y=ln x 定义域为(0,+∞).函数 y=|x|定义域为 R, 但在(-∞,0]上是减函数,在[0,+∞)上是增函数,故选 A.]
2.函数 f (x)=x2-2x 的单调递增区间是________. [1,+∞) [f (x)=x2-2x=(x-1)2-1,因此函数 f (x)的单调递 增区间为[1,+∞).]
2.函数 f (x)=x-x 1的单调递减区间为________. (-∞,1)和(1,+∞) [由 x-1≠0 得 x≠1, 即函数 f (x)的定义域为(-∞,1)∪(1,+∞), 又 f (x)=x-x 1=x-x-11+1=1+x-1 1,其图像 如图所示,由图像知,函数 f (x)的单调递减区间为(-∞,1)和(1,+ ∞).]

高考数学大一轮复习 第二章 函数概念与基本初等函数I 2.2 函数的单调性与最值教师用书 文 北师大

高考数学大一轮复习 第二章 函数概念与基本初等函数I 2.2 函数的单调性与最值教师用书 文 北师大

单调性与最值教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.2 函数的单调性与最值教师用书文北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.2 函数的单调性与最值教师用书文北师大版的全部内容。

数的单调性与最值教师用书文北师大版1.函数的单调性(1)单调函数的定义增函数减函数定义在函数f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1〈x2时,都有f(x1)<f(x2),那么,就称函数f(x)在区间A上是增加的当x1〈x2时,都有f(x1)>f(x2),那么,就称函数f(x)在区间A上是减少的图像描述自左向右看图像是上升的自左向右看图像是下降的(2)单调区间的定义如果函数y=f(x)在区间A上是增加的或是减少的,那么就称A为单调区间.2.函数的最值前提函数y=f(x)的定义域为D条件(1)存在x0∈D,使得f(x0)=M;(2)对于任意x∈D,都有f(x)≤M。

(3)存在x0∈D,使得f(x0)=M;(4)对于任意x∈D,都有f(x)≥M.结论M为最大值M为最小值【知识拓展】函数单调性的常用结论(1)对任意x1,x2∈D(x1≠x2),错误!>0⇔f(x)在D上是增加的,错误!〈0⇔f(x)在D上是减少的.(2)对勾函数y=x+错误!(a〉0)的增区间为(-∞,-错误!]和[错误!,+∞),减区间为[-错误!,0)和(0,a].(3)在区间D上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减".【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R上的函数f(x),有f(-1)<f(3),则函数f(x)在R上为增函数.(×)(2)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ×)(3)函数y=错误!的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)所有的单调函数都有最值.( ×)(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(6)闭区间上的单调函数,其最值一定在区间端点取到.( √)1.下列函数中,定义域是R且为增函数的是( )A.y=e-x B.y=x3C.y=ln x D.y=|x|答案B解析由所给选项知只有y=x3的定义域是R且为增函数,故选B。

高考数学大一轮总复习 第二章 函数、导数及其应用 2.2 函数的单调性与最值课件 理 北师大版

高考数学大一轮总复习 第二章 函数、导数及其应用 2.2 函数的单调性与最值课件 理 北师大版

2.若函数 f(x)满足“对任意 x1,x2∈R,当 x1<x2 时,都有 f(x1)>f(x2)”,
则满足 f1x<f(1)的实数 x 的取值范围是(
)
A.(-1,1)
B.(0,1)
C.(-1,0)∪(0,1)
D.(-∞,-1)∪(1,+∞)
解析 由题意知,函数 f(x)为 R 上的减函数, 且 f1x<f(1), ∴1x>1,即|x|<1 且|x|≠0。 ∴x∈(-1,0)∪(0,1)。故选 C。 答案 C
M是f(x)的___最__小____值,记作ymin =f(x0)
基础自测
[判一判] (1)函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞)。( × ) 解析 错误。单调区间不能用并集符号连接。 (2)函数 y=1x在定义域上为减函数。( × ) 解析 错误。函数 y=1x有两个单调递减区间,但在定义域上不是单调 的。
A.y= x+1
B.y=(x-1)2
C.y=2-x
D.y=log0.5(x+1)
解析 A 项,y= x+1为(-1,+∞)上的增函数,故在(0,+∞)
上递增;
B 项,y=(x-1)2 在(-∞,1)上递减,在(1,+∞)上递增;
C 项,y=2-x=12x 为 R 上的减函数; D 项,y=log0.5(x+1)为(-1,+∞)上的减函数。故选 A。 答案 A
解析 易知函数 f(x)=x-2 1在 x∈[2,6]上为减函数,故 f(x)max=f(2)=2, f(x)min=f(6)=25。
5.已知函数 f(x)= x2-2x-3,则该函数的单调增区间为_[3_,__+__∞__)_。
解析 设 t=x2-2x-3,由 t≥0,即 x2-2x-3≥0,解得 x≤-1 或 x≥3, 所以函数的定义域为(-∞,-1]∪[3,+∞)。 因为函数 t=x2-2x-3 的图像的对称轴为 x=1,所以函数在(-∞,- 1]上单调递减,在[3,+∞)上单调递增。又因为 y= t在[0,+∞)上单调 递增, 所以函数 f(x)的增区间为[3,+∞)。

高考一轮复习第2章函数导数及其应用第2讲函数的定义域值域

高考一轮复习第2章函数导数及其应用第2讲函数的定义域值域

第二讲 函数的定义域、值域知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点一 函数的定义域 函数y =f(x)的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R. (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f(x)=x 0的定义域为{x|x≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域:1.y =kx +b(k≠0)的值域是R .2.y =ax 2+bx +c(a≠0)的值域是:当a>0时,值域为⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≥4ac -b 24a ;当a<0时,值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≤4ac -b 24a . 3.y =kx (k≠0)的值域是{y|y≠0}.4.y =a x(a>0且a≠1)的值域是(0,+∞). 5.y =log a x(a>0且a≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集. 3.函数f(x)与f(x +a)(a 为常数a≠0)的值域相同.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (2)函数y =xx -1定义域为x>1.( × ) (3)函数y =f(x)定义域为[-1,2],则y =f(x)+f(-x)定义域为[-1,1].( √ ) (4)函数y =log 2(x 2+x +a)的值域为R ,则a 的取值范围为⎝ ⎛⎦⎥⎤-∞,14.( √ ) (5)求函数y =x 2+3x 2+2的值域时有以下四种解法.判断哪种解法是正确的.[解法一](不等式法):y =x 2+3x 2+2=x 2+2+1x 2+2≥2,∴值域为[2,+∞).( × ) [解法二](判别式法):设x 2+2=t(t≥2),则y =t +1t ,即t 2-ty +1=0,∵t∈R,∴Δ=y 2-4≥0,∴y≥2或y ≤-2(舍去).( × )[解法三](配方法):令x 2+2=t(t≥2),则y =t +1t =⎝ ⎛⎭⎪⎫t -1t 2+2≥2.( × )[解法四](单调性法):易证y =t +1t 在t≥2时是增函数,所以t =2时,y min =322,故y∈⎣⎢⎡⎭⎪⎫322,+∞.( √ ) [解析] (4)y =log 2(x 2+x +a)值域为R 应满足Δ≥0,即1-4a≥0,∴a≤14.题组二 走进教材2.(必修1P 17例1改编)函数f(x)=2x-1+1x -2的定义域为( C )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x-1≥0x -2≠0,解得x≥0且x≠2,故选C .3.(必修1P 32T5改编)函数f(x)的图象如图,则其最大值、最小值分别为( B )A .f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫-32B .f(0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32,f(0) D .f(0),f(3)4.(必修1P 39BT1改编)已知函数f(x)=x +9x ,x∈[2,4]的值域为⎣⎢⎡⎦⎥⎤6,132.[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为⎣⎢⎡⎦⎥⎤6,132.题组三 走向高考5.(2020·北京,11,5分)函数f(x)=1x +1+ln x 的定义域是(0,+∞).[解析] 要使函数f(x)有意义,则⎩⎪⎨⎪⎧x +1≠0,x>0,故x>0,因此函数f(x)的定义域为(0,+∞).6.(2016·北京,5分)函数f(x)=xx -1(x≥2)的最大值为2.[解析] 解法一:(分离常数法)f(x)=x x -1=x -1+1x -1=1+1x -1,∴x≥2,∴x-1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f(x)=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy-y =x ,∴x=y y -1.∵x ≥2,∴y y -1≥2,∴y y -1-2=2-yy -1≥0,解得1<y≤2,故函数f(x)的最大值为2.解法三:(导数法)∵f(x)=x x -1,∴f′(x)=x -1-x (x -1)2=-1(x -1)2<0,∴函数f(x)在[2,+∞)上单调递减,故当x =2时,函数f(x)=xx -1取得最大值2.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一 求函数的定义域——多维探究 角度1 求具体函数的定义域例1 (1)(2021·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( D )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)(2021·宣城八校联考期末)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3][解析] (1)由题意得⎩⎪⎨⎪⎧1-x>0,x +1>0,x≠0,解得-1<x<0或0<x<1.所以原函数的定义域为(-1,0)∪(0,1).(2)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x<0或0<x≤3,所以函数的定义域为(-1,0)∪(0,3]. 角度2 求抽象函数的定义域例2 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( B ) A .(-1,1) B .⎝⎛⎭⎪⎫-1,-12C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1[解析] 由函数f(x)的定义域为(-1,0),则使函数f(2x +1)有意义,需满足-1<2x +1<0,解得-1<x<-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12. [引申1]若将本例中f(x)与f(2x +1)互换,结果如何? [解析] f(2x +1)的定义域为(-1,0),即-1<x<0, ∴-1<2x +1<1,∴f(x)的定义域为(-1,1).[引申2]若将本例中f(x)改为f(2x -1)定义域改为[0,1],求y =f(2x +1)的定义域,又该怎么办? [解析] ∵y=f(2x -1)定义域为[0,1].∴-1≤2x-1≤1,要使y =f(2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x≤0, 因此y =f(2x +1)定义域为[-1,0]. 名师点拨 MING SHI DIAN BO函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f(x)的定义域为[a ,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 求出; ②若已知函数f[g(x)]的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域. 〔变式训练1〕(1)(角度1)函数f(x)=1ln (x +1)+4-x 2的定义域为( B )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)(角度1)(2021·安徽芜湖检测)如果函数f(x)=ln(-2x +a)的定义域为(-∞,1),那么实数a 的值为( D )A .-2B .-1C .1D .2(3)(角度2)已知函数y =f(x 2-1)的定义域为[-3,3],则函数y =f(x)的定义域为[-1,2]. [解析] (1)由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x≤2,且x≠0.故选B .(2)因为-2x +a>0,所以x<a 2,所以a2=1,得a =2.故选D .(3)因为y =f(x 2-1)的定义域为[-3,3],所以x∈[-3,3],x 2-1∈[-1,2],所以y =f(x)的定义域为[-1,2].考点二,求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x|1+|x|;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2;(6)y =|x +1|+|x -2|.[解析] (1)解法一:分离常数法: y =1-|x|1+|x|=-1+21+|x|, ∵|x|≥0,∴|x|+1≥1,∴0<2|x|+1≤2.∴-1<-1+21+|x|≤1.即函数值域为(-1,1].解法二:反解法:由y =1-|x|1+|x|,得|x|=1-y 1+y.∵|x|≥0,∴1-y 1+y ≥0,∴-1<y≤1,即函数值域(-1,1].(2)解法一:配方法:y =-2⎝ ⎛⎭⎪⎫x -142+258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.解法二:复合函数法: y =t ,t =-2x 2+x +3, 由t =-2x 2+x +3,解得t≤258,又∵y=t 有意义,∴0≤t≤258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.(3)y =x 2+x +1x =x +1x +1解法一:基本不等式法由y =x +1x +1(x≠0),得y -1=x +1x.∵⎪⎪⎪⎪⎪⎪x +1x =|x|+⎪⎪⎪⎪⎪⎪1x ≥2|x|·⎪⎪⎪⎪⎪⎪1x =2,∴|y -1|≥2,即y≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞)解法二:判别式法由y =x 2+x +1x ,得x 2+(1-y)x +1=0.∵方程有实根,∴Δ=(1-y)2-4≥0.即(y -1)2≥4,∴y-1≤-2或y -1≥2.得y≤-1或y≥3.即函数的值域为(-∞,-1]∪[3,+∞). 解法三:导数法(单调性法)令y′=1-1x 2=(x +1)(x -1)x 2<0, 得-1<x<0或0<x<1.∴函数在(0,1)上递减,在(1,+∞)上递增,此时y≥3; 函数在(-1,0)上递减,在(-∞,-1)上递增,此时y≤-1. ∴y ≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞). (4)解法一:换元法设1-2x =t(t≥0),得x =1-t22,∴y =1-t 22-t =-12(t +1)2+1≤12(t≥0),∴y ∈⎝ ⎛⎦⎥⎤-∞,12.即函数的值域为⎝ ⎛⎦⎥⎤-∞,12.解法二:单调性法∵1-2x≥0,∴x≤12,∴定义域为⎝ ⎛⎦⎥⎤-∞,12.又∵函数y =x ,y =-1-2x 在⎝ ⎛⎭⎪⎫-∞,12上均单调递增,∴y≤12-1-2×12=12,∴y∈⎝⎛⎦⎥⎤-∞,12. (5)三角换元法:设x =sin θ,θ∈⎣⎢⎡⎦⎥⎤-π2,π2,y =sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4, ∵θ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴θ+π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,∴sin ⎝ ⎛⎭⎪⎫θ+π4∈⎣⎢⎡⎦⎥⎤-22,1,∴y∈[-1,2].(6)解法一:绝对值不等式法:由于|x +1|+|x -2|≥|(x+1)-(x -2)|=3, 所以函数值域为[3,+∞).解法二:数形结合法: y =⎩⎪⎨⎪⎧-2x +1(x<-1),3(-1≤x≤2),2x -1(x>2).画出此分段函数的图象如图,可知值域为[3,+∞). 名师点拨 MING SHI DIAN BO求函数值域的一般方法(1)分离常数法:形如y =cx +d ax +b(a≠0)的函数;如例3(1).(2)反解法:形如y =cf (x )+daf (x )+b (a≠0,f(x)值域易求)的函数;如例3(1).(3)配方法:形如y =af 2(x)+bf(x)+c(a≠0)的函数;如例3(2). (4)不等式法;如例3(3).(5)单调性法:通过研究函数单调性,求出最值,进而确定值域.(6)换元法:形如y =ax +b±cx +d (c≠0)的函数;如例3(4);形如y =ax +b±c 2-x 2(c≠0)的函数采用三角换元,如例3(5).(7)数形结合法:借助函数图象确定函数的值域,如例3(6). (8)导数法. 〔变式训练2〕 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x +41-x ;(3)y =2x 2-x +12x -1⎝ ⎛⎭⎪⎫x>12.[解析] (1)解法一:y =1-x 21+x 2=-1+21+x 2,因为x 2≥0,所以x 2+1≥1,所以0<21+x 2≤2.所以-1<-1+21+x 2≤1.即函数的值域为(-1,1].解法二:由y =1-x 21+x 2,得x 2=1-y 1+y . 因为x 2≥0,所以1-y 1+y≥0.所以-1<y≤1,即函数的值域为(-1,1]. (2)设t =1-x ,t≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t≥0), 所以y≤5,所以原函数的值域为(-∞,5]. (3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12, 因为x>12,所以x -12>0,所以x -12+12x -12≥2⎝ ⎛⎭⎪⎫x -12·12⎝ ⎛⎭⎪⎫x -12=2, 当且仅当x -12=12x -12,即x =1+22时取等号.所以y≥2+12,即原函数的值域为⎣⎢⎡⎭⎪⎫2+12,+∞. 导数法:y′=4x 2-4x +1(2x -1)2,∴y 在⎝ ⎛⎦⎥⎤12,1+22递减,在⎝ ⎛⎭⎪⎫1+22,+∞递增,∴y ≥2+12.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG 已知函数的定义域或值域求参数的取值范围例4 已知函数f(x)=lg [(a 2-1)x 2+(a +1)x +1].(1)若f(x)的定义域为R ,求实数a 的取值范围; (2)若f(x)的值域为R ,求实数a 的取值范围.[分析] (1)由f(x)的定义域为R 知(a 2-1)x 2+(a +1)·x +1>0的解集为R ,即(a 2-1)x 2+(a +1)x +1>0恒成立;(2)由f(x)的值域为R 知(a 2-1)x 2+(a +1)x +1能取所有正数,即y =(a 2-1)x 2+(a +1)x +1图象的开口向上且与x 轴必有交点.[解析] (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a>1或a<-1,a>53或a<-1. ∴a<-1或a>53.又a =-1时,f(x)=1>0,满足题意.∴a ≤-1或a>53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f(x)的值域为R ,故有a 2-1>0,Δ≥0,解得-1≤a≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴-1<a≤53.名师点拨 MING SHI DIAN BO已知函数的定义域,等于是知道了x 的范围,(1)当定义域不是R 时,往往转化为解集问题,进而转化为与之对应的方程解的问题,此时常利用代入法或待定系数法求解;(2)当定义域为R 时,往往转化为恒成立的问题,常常结合图形或利用最值求解.〔变式训练3〕(1)已知函数y =mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为[0,1].(2)(2021·甘肃天水三中阶段测试)若函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则实数m 的取值范围是( C )A .(0,4]B .⎣⎢⎡⎦⎥⎤32,4C .⎣⎢⎡⎦⎥⎤32,3D .⎣⎢⎡⎭⎪⎫32,+∞ [解析] (1)①当m =0时,y =8,其定义域为R. ②当m≠0时,由定义域为R 可知, mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m>0,Δ=(-6m )2-4m (m +8)≤0, 解得0<m≤1,∴m 的取值范围是[0,1].(2)由x 2-3x -4=-254得x =32;由x 2-3x -4=-4,得x =0或x =3,又函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,∴32≤m≤3. 另:由y =x 2-3x -4=⎝ ⎛⎭⎪⎫x -322-254,∴32≤m ≤3.。

高考数学一轮复习 第二章 基本初等函数、导数的应用 第2讲 函数的定义域与值域课件 文

高考数学一轮复习 第二章 基本初等函数、导数的应用 第2讲 函数的定义域与值域课件 文
[解析] 要使函数的定义域为 R,则 mx2+4mx+3≠0 恒成立. (1)当 m=0 时,得到不等式 3≠0 恒成立; (2)当 m≠0 时,要使不等式恒成立,
须mΔ>=0,(4m)2-4×m×3<0,
12/13/2021
第三十三页,共四十一页。
或mΔ<=0,(4m)2-4×m×3<0,
即m>0,
12/13/2021
第三十一页,共四十一页。
已知函数的值域求参数的值或取值范围问题,通常按求函数 值域的方法求出其值域,然后依据已知信息确定其中参数的 值或取值范围.
12/13/2021
第三十二页,共四十一页。
若函数 y=mx2m+x4-m1x+3的定义域为 R,则
实数 m 的取值范围是___0_,__34__.
【解析】 (1)要使函数 y= 3-2x-x2有意义, 则 3-2x-x2≥0, 解得-3≤x≤1, 则函数 y= 3-2x-x2的定义域是[-3,1]. (2)要使函数 g(x)=(f(x-2x1))0有意义,则必须有1x≤-21x≠≤02,,
所以12≤x<1,故函数 g(x)的定义域为12,1.
0≤x+12≤2, 0≤x-12≤2,
解得12≤x≤32,
所以函数 g(x)的定义域是12,32.
12/13/2021
第二十二页,共四十一页。
求函数的值域(高频考点) 求下列函数的值域. (1)y=x2+2x(x∈[0,3]); (2)y=11-+xx22; (3)y=x+4x(x<0); (4)f(x)=x- 1-2x.
或m<0,
解得
m(4m-3)<0 m(4m-3)<0.
所以 1≤f(x)≤10.

高考数学大一轮复习 第二章 函数概念与基本初等函数I 2.1 函数及其表示教师用书 文 北师大版(2

高考数学大一轮复习 第二章 函数概念与基本初等函数I 2.1 函数及其表示教师用书 文 北师大版(2

其表示教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.1 函数及其表示教师用书文北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.1 函数及其表示教师用书文北师大版的全部内容。

数及其表示教师用书文北师大版1.函数与映射函数映射两集合A、B设A,B是两个非空数集设A,B是两个非空集合对应关系f:A→B 如果按照某个对应关系f,对集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有唯一的一个元素y与它对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B是一个映射2。

函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫作自变量,集合A叫作函数的定义域;与x的值相对应的y 值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图像法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】求函数定义域常见结论:(1)分式的分母不为零;(2)偶次根式的被开方数不小于零;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数大于零且不等于1;(5)正切函数y=tan x,x≠kπ+错误!(k∈Z);(6)零次幂的底数不能为零;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)对于函数f:A→B,其值域是集合B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 函数的定义域和值域
1.(2016·宣城一模)函数f(x)=|x -2|-1lg (x -1)
的定义域是( ) A .[3,+∞) B.⎝ ⎛⎭
⎪⎫-13,1 C.⎝ ⎛⎭⎪⎫-13,3 D .(-∞,-3)
解析:选A.由⎩⎨⎧|x -2|-1≥0,x -1>0,x -1≠1得⎩⎨⎧x -2≥1或x -2≤-1,
x>1,x ≠2,
所以x ≥3,即定义域为[3,+∞).
2.(2016·南昌诊断)函数y =
1-⎝ ⎛⎭⎪⎫12x 的值域为( ) A .[0,+∞)
B .(0,1)
C .[0,1)
D .[0,1]
解析:选C.要使函数有意义需满足1-⎝ ⎛⎭⎪⎫12x ≥0,所以⎝ ⎛⎭
⎪⎫12x
≤1,所以x ≥0.由x ≥0可知0<⎝ ⎛⎭⎪⎫12x ≤1,故0≤1-⎝ ⎛⎭⎪⎫12x
<1,故y =1-⎝ ⎛⎭
⎪⎫12x 的值域为[0,1). 3.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( )
A .f(x)=x 2+a
B .f(x)=ax 2+1
C .f(x)=ax 2+x +1
D .f(x)=x 2+ax +1
解析:选C.当a =0时,f(x)=ax 2+x +1=x +1为一次函数,其定义域和值域都是R.
4.函数y =2--x 2+4x 的值域是( )
A .[-2,2]
B .[1,2]
C .[0,2]
D .[-2,2]
解析:选C.因为-x 2+4x =-(x -2)2+4≤4,
所以0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0,
0≤2--x 2+4x ≤2,所以0≤y ≤2.
5.(2016·安徽省巢湖一中质检)规定a ⊗b =ab +2a +b ,a ,b>0,若1⊗k =4,则函数f(x)=k ⊗x 的值域为( )
A .(2,+∞)
B .(1,+∞) C.⎣⎢⎡⎭⎪⎫78,+∞ D.⎣⎢⎡⎭
⎪⎫74,+∞ 解析:选A.由1⊗k =k +2+k =4,解得k =1,所以f(x)=k ⊗x =1⊗x =x +x
+2=⎝
⎛⎭⎪⎫x +122+74.因为x>0,所以f(x)>2.故选A. 6.若函数y =f(x)的定义域是[0,2 016],则函数g(x)=
f (x +1)x -1
的定义域是( )
A .[-1,2 015]
B .[-1,1)∪(1,2 015]
C .[0,2 016]
D .[-1,1)∪(1,2 016] 解析:选B.令t =x +1,则由已知函数y =f(x)的定义域为[0,2 016]可知f(t)中0≤t ≤2 016,故要使函数f(x +1)有意义,则0≤x +1≤2 016,解得-1≤x ≤2 015,故函数f(x +1)的定义域为[-1,2 015].所以函数g(x)有意义的条件是⎩⎨⎧-1≤x ≤2 015,x -1≠0
解得-1≤x<1或1<x ≤2 015.故函数g(x)的定义域为[-1,1)∪(1,2 015].
7.下表表示y 是x 的函数,则函数的值域是________.
答案:{2,3,4,5}
8.(2016·西安质检)若函数f(x)=
1x -1在区间[a ,b]上的值域为⎣⎢⎡⎦
⎥⎤13,1,则a +b =________.
解析:由题意知x -1>0,又x ∈[a ,b],
所以a >1.又f(x)=1x -1在[a ,b]上为减函数,
所以f(a)=1a -1=1且f(b)=1b -1=13
, 所以a =2,b =4,a +b =6.
答案:6
9.已知函数f(x)的定义域为[0,1],值域为[1,2],则函数f(x +2)的定义域为________,值域为________.
解析:由已知可得x +2∈[0,1],故x ∈[-2,-1],所以函数f(x +2)的定义域为[-2,-1].函数f(x)的图像向左平移2个单位得到函数f(x +2)的图像,所以值域不发生变化,所以函数f(x +2)的值域仍为[1,2].
答案:[-2,-1] [1,2]
10.已知函数f(x)=mx 2+(m -3)x +1的值域是[0,+∞),则实数m 的取值范围是____________.
解析:设g(x)=mx 2+(m -3)x +1,当m =0时,g(x)=-3x +1,显然满足值域
为[0,+∞),所以m =0适合;当m ≠0时,须⎩
⎨⎧m>0,Δ=(m -3)2-4m ≥0, 解得0<m ≤1或m ≥9.
综上所述,0≤m ≤1或m ≥9.
答案: [0,1]∪[9,+∞)
11.若函数f(x)=12
x 2-x +a 的定义域和值域均为[1,b](b >1),求a ,b 的值. 解:因为f(x)=12 (x -1)2+a -12
, 所以其对称轴为x =1.
即函数f(x)在[1,b]上单调递增.
所以f(x)min =f(1)=a -12
=1,① f(x)max =f(b)=12
b 2-b +a =b.② 又b>1,由①②解得⎩⎨⎧a =32,b =3.。

相关文档
最新文档