知识讲解_定积分的简单应用(提高)125
定积分的简单应用 课件
1.利用定积分求平面图形的面积的步骤 (1)画出草图,在直角坐标系中画出曲线或直线的大致图 象. (2)将平面图形分割成曲边梯形,并分清在 x 轴上方与下方 的部分. (3)借助图形确定出被积函数. (4)求出交点坐标,确定积分的上、下限. (5)求出各部分的定积分,并将面积表达为定积分的代数 和,求出面积.
bF(x)dx
=a移动到x=b.则变力F(x)作的功W=
a
.
不分割型平面图形的面积的求解 如图,求曲线y=x2与直线y=2x所围图形的面积S.
[分析] 从图形上可以看出,所求图形的面积可以转化为 一个三角形与一个曲边三角形面积的差,进而可以用定积分 求出面积.为了确定出积分的上、下限,我们需要求出直线 和抛物线的交点的横坐标.
2.变速直线运动的路程
作变速直线运动的物体所经过的路程 s,等于其速度函数 v
bv(t)dt
=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即 s=
a
.
3.变力做功 一物体在恒力F(单位:N)的作用下做直线运动,如果物体
沿着与F相同的方向移动了sm,则力F所作的功为W=Fs.
如果物体在变力F(x)的作用下沿着与F(x)相同的方向从x
[解析] 解方程组yy= =x2x2,, 得x1=0,x2=2. 故所求图形的面积为
S=22xdx-2x2dx=x202
-13x3 20
=43.
0
0
分割型平面图形面积的求解
求由曲线y=
x
,y=2-x,y=-
1 3
x所围成图形
的面积.
[分析] 画出三条曲(直)线,求出交点坐标,将平面图形按
交点分割成可求积分的几部分再求解.
例谈定积分的应用
例谈定积分的应用
定积分是利用积分技术来搭建企业系统的一种服务方式,通过定积分,企业可以解决营销,客户追踪,价格管理,订单跟踪等问题,让企业
既有资源利用效率,又能惠及消费者。
一、定积分的应用
1、促销活动:利用定积分可以创建各种丰富多彩的促销活动,满减、
团购、买赠、金币锁定等,激励消费者购买和积累积分。
2、客户管理:定积分能够建立细致复杂的客户档案,包括客户经理内容,购买次数,消费金额,积分余额等,更好地进行客户管理。
3、价格管理:通过定积分,可以根据不同客户的特征,设置特定的价格,比如会员价,大客户价等,更好地提高定价精确度和竞争力。
4、订单追踪:定积分的订单追踪系统可以记录客户的订单信息,有利
于企业更好地追溯客户信息以及及时为客户提供优质服务。
二、定积分的优势
1、可靠性:定积分系统可以提供可靠性能,降低前端和后端系统出现
的异常和故障,防止客户和企业受到损害。
2、安全性:定积分的安全性也得到有效保障,内部数据交换完全采用
加密技术,保证信息不受外部干涉。
3、兼容性:定积分具有可行性和兼容性,它可以按照各种不同环境定
制与企业系统相协调的服务,能够提供企业最适合的解决方案。
4、易用性:定积分使用界面简洁明了,业务流程简单可靠,容易上手,操作简单易懂,为客户提供更贴心的服务。
三、总结
定积分的引入为企业的经营活动带来了更多的便利,有效提高了企业
的经营效率,也让消费者能够从消费上受到更多的好处。
由此可见,
定积分不仅是企业的一种低成本的服务方式,也是一个更加有效的、
更加充分的消费积分服务体系,为企业和消费者都更好地搭建企业系统。
高考数学复习: 定积分的概念与微积分基本定理、定积分的简单应用
的图形的面积S,正确的是 ( )
A.S= 10 (x-x2)dx C.S= 10 (y2-y)dy
B.S= 10 (x2-x)dx D.S= 10 (y- y )dy
【解析】选A.根据题意,如图所示,阴影部分为曲线 y=x2与y=x所围成的图形,其面积S= 10 (x-x2)dx.
2.(选修2-2P67T7改编)直线y=3x与曲线y=x2围成图形
b a
f(x)dx=_F_(_b_)_-_F_(_a_)_,这个结论叫做微积
分基本定理,又叫做牛顿-莱布尼茨公式.其中F(x)叫做
f(x)的一个原函数.为了方便,常把F(b)-F(a)记成
F(x)|ab ,即
b a
f(x)dx=F(x)
|ab
=F(b)-F(a).
【常用结论】 1.定积分应用的两条常用结论 (1)当曲边梯形位于x轴上方时,定积分的值为正;当曲 边梯形位于x轴下方时,定积分的值为负;当位于x轴上 方的曲边梯形与位于x轴下方的曲边梯形面积相等时, 定积分的值为零.
(1)设函数y=f(x)在区间[a,b]上连续,则
b a
f(x)dx
= ab f(t)dt.
(
)
(2)若函数y=f(x)在区间[a,b]上连续且恒正,
则 ab f(x)dx>0. ( )
(3)若
b a
f(x)dx<0,那么由y=f(x),x=a,x=b以及x轴
所围成的图形一定在x轴下方. ( )
(4)微积分基本定理中的F(x)是唯一的. ( )
第五节 定积分的概念与微积分基本定理、
【知识梳理】 1.定积分的概念与几何意义 (1)定积分的定义 如果函数f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi-1<xi<…<xn=b将区间[a,b]等分成n个
定积分在几何和物理中的应用
定积分在几何和物理中的应用定积分是高等数学中非常重要的一个概念,它可以用于计算曲线、曲面的面积或体积,还可以应用到物理学、工程学中。
在本文中,我们将着重探讨定积分在几何和物理中的应用。
一、计算面积我们首先来看一个简单的例子,如果我们想要计算一个曲线所围成的面积,我们需要怎么做呢?假设曲线为y=f(x),我们可以将这条曲线分成若干个无限小的小矩形,每个小矩形的宽度为Δx,高度为函数值f(x),则该小矩形的面积为f(x)Δx。
我们将所有小矩形的面积相加,得到所求的曲线面积S:S=∫a^b f(x) dx其中a和b分别是曲线的起点和终点。
这里的∫符号代表积分符号,具体的计算方法不在本文中详细说明。
二、计算体积在物理学中,我们经常需要计算物体的体积,定积分也可以帮助我们实现这一目的。
比如我们需要计算一个旋转曲线所围成的立体体积,我们可以依然使用之前的方法将其分解成无限小的小圆柱体积,每个小圆柱的体积可以表示为:V=π[f(x)]^2dx我们将所有小圆柱的体积相加,得到所求的立体体积V:V=∫a^b π[f(x)]^2dx三、计算重心和质心在物理学中,重心和质心是非常重要的概念。
对于一个平面图形或者一个立体体形,它的重心和质心分别表示为:重心:(∫xdS)/(∫dS)质心:(∫xdm)/(∫dm)这里的dS和dm分别表示面元和质量元,x则表示距离中心的距离。
我们可以通过对图形进行分割并使用定积分来计算重心和质心。
四、积分在物理学中的应用定积分在物理学中的应用非常广泛,比如我们可以使用它来计算弹性势能、动能、功、功率等物理量。
举一个简单的例子,假设质量为m的物体从高度为h处自由落下,当它下落到高度为y 时,它的速度为v,我们可以使用动能和势能的转化关系求出v,设重力加速度为g,则它下落过程中失去的重力势能为mgh-mgy,同时增加的动能为(1/2)mv^2,因此:mgh-mgy=(1/2)mv^2v=sqrt(2g(h-y))我们可以使用定积分来求解物体在过程中的运动状态,以及计算其他物理量的值。
高中数学选修课件第四章§定积分的简单应用
当n→∞时,积分和的极限存在,则称函数f(x)在[a,b]上 可积,该极限值称为f(x)在[a,b]上的定积分。
积分和
将积分区间[a,b]分成n个小区间,每个小区间的长度为Δx = (b-a)/n,取每个小区间的任意一点ξi,对应的函数值 为f(ξi),则f(x)在[a,b]上的积分和为Σf(ξi)Δx。
拓展延伸及未来发展趋势
定积分在物理学中的应用
定积分在物理学中有着广泛的应用,如计算变力做功、液体静压力等,需要进一步学习和 掌握。
定积分在经济学中的应用
定积分也可以应用于经济学领域,如计算收益、成本等经济量,为决策提供科学依据。
定积分与计算机技术的结合
随着计算机技术的发展,定积分与计算机技术的结合将越来越紧密,如利用计算机进行定 积分的数值计算、绘制定积分的图形等。这将为定积分的应用提供更广阔的空间和更高效 的手段。
A
一阶导数法
通过求解一阶导数等于零的点来找到函数的极 值点,从而确定最优解。
二阶导数法
通过判断二阶导数的符号来确定函数的凹 凸性,从而确定最优解。
B
C
约束优化方法
在存在约束条件的情况下,通过构造拉格朗 日函数等方法来求解最优解。
数值计算方法
对于难以求解的复杂函数,可以采用数值计 算方法(如牛顿法、梯度下降法等)来逼近 最优解。
几何应用
通过具体案例介绍如何利用定积 分求解平面图形的面积,如求解 由直线和曲线围成的图形面积等
。
物理应用
介绍定积分在物理中的应用,如求 解变力做功、液体静压力等问题中 涉及的面积计算。
经济应用
通过实际案例介绍定积分在经济领 域的应用,如求解由需求曲线和价 格曲线围成的面积所表示的消费者 剩余或生产者剩余等。
定积分的应用
定积分的应用定积分是微积分中的重要概念,它在数学和实际问题的解决中扮演着关键的角色。
本文将探讨定积分的应用,并结合实例详细说明其在解决各类问题中的重要作用。
一、定积分的概念定积分是微积分中的一种运算符号,表示在一定区间上的函数曲线与坐标轴所围成的面积。
通常用符号∫ 表示,即∫f(x)dx,其中f(x)为被积函数,dx表示积分变量。
定积分的结果是一个数值。
二、定积分的几何意义定积分的几何意义是曲线与坐标轴所围成的面积。
例如,我们可以通过计算函数曲线与x轴之间的面积来求取定积分。
这种面积计算方法可以应用于各种形状的曲线,包括折线、曲线、圆弧等。
三、定积分的物理应用定积分在物理学中有广泛的应用。
例如,当我们需要计算物体的质量、体积、位移、功等物理量时,可以通过定积分来进行计算。
定积分可以将一个连续变化的物理量表示为无限个微小变化的和,从而得到准确的结果。
四、定积分的经济学应用定积分在经济学领域也被广泛应用。
例如,当我们需要计算市场供求曲线下的固定区间所代表的消费者剩余或生产者剩余时,可以通过定积分来计算。
定积分可以将变化的价格和数量转化为面积,以方便计算。
五、定积分的工程应用在工程学中,定积分也具有重要的应用价值。
例如,在力学领域,当需要计算曲线所代表的力的作用效果时,可以通过定积分来计算。
定积分可以将一个连续变化的力量表示为无限个微小作用力的和,从而得到准确的结果。
六、定积分的统计学应用再一个例子的统计学领域中,定积分同样发挥着重要作用。
例如,在概率密度函数下计算所得的面积可以表示某一事件发生的概率。
定积分可以将一个连续变化的概率密度函数表示为无限个微小概率的和,从而得到准确的概率结果。
七、定积分的计算方法定积分的计算方法有多种,例如,常用的有牛顿-莱布尼茨公式、变量替换法、分部积分法等。
根据不同的问题和函数形式,选择合适的计算方法对于准确求解定积分非常关键。
八、结语定积分作为微积分中的重要概念,在各个领域中均得到了广泛的应用。
要点讲解:定积分的简单应用
定积分的简单应用自主探究学习 1平面图形的面积在区间],[b a 上,一条连续曲线)(x f y =)0(≥与直线b x a x ==,,x轴所围成的曲边梯形面积A 就是定积分⎰badx x f )(.这里,被积表达式dx x f )(就是面积元素dA .两条曲线)(x f 与)(x g 之间所夹图形的面积S ,在区间],[b a 上,当)()(0x f x g ≤≤,则有⎰⎰-=b abadxx g dx x f S )()(或dx x g x f S ba)]()([-=⎰.2旋转体的体积 由连续曲线)(x f y =,直线b x a x ==,与x 轴所围成的曲边梯形绕x 轴旋转一周所成旋转体的体积dx y dx x f V baba22)]([ππ⎰⎰==.类似地,由连续曲线)(y x ϕ=,直线d y c y ==,与y 轴所围成的曲边梯形绕y 轴旋转一周所围成旋转体的体积为dy x dy y V dcdc 22)]([πϕπ⎰⎰==.3平行截面面积为已知的立体的体积:⎰=badx x A V )(.4功在变力)(x F 作用下物体沿x 轴由点a 到点b 过程中,力F 所作的功为⎰=ba dx x F W )(.名师要点解析 要点导学1在定积分应用问题中,先求出微元素dA ,再求出定积分dA ba⎰,即所求A .这种方法称为元素法,也称微元法.2平面图形的面积求法: 对积分:[()()]ba S f x g x dx =-⎰上边界-下边界再积分;对y积分:[()()]baS f y g y dy =-⎰右边界-左边界再积分.3旋转体的体积:以轴为一直角边的曲边梯形绕轴旋转:dx y dx x f V baba22)]([ππ⎰⎰==;以y 轴为一直角边的曲边梯形绕y 轴旋转:22[()]bbaaV f y dy x dy ππ==⎰⎰.4平行截面面积为已知的立体的体积:⎰=ba dx x A V )(.5物理应用:微元法. 【经典例题】【例1】求两条抛物线22,x y x y ==所围成图形的面积. 【分析】做出图形,求出两抛物线交点,写出面积元素,利用定积分求所围成图形的面积【解】作两条抛物线的图形,如图所示.解方程组⎪⎩⎪⎨⎧==.,22x y x y 得两组解⎩⎨⎧==0,0y x 及⎩⎨⎧==.1,1y x .即两抛物线交点为)1,1(),0,0(.下面求面积元素:取x 为积分变量.区间]1,0[上的任一小区间],[dx x x +的窄条,其面积近似于高为2x x -,底为dx 的窄矩形面积.这样就得到面积元素dx x x dA )(2-=.于是,所求图形面积为定积分31332)(10323210=⎥⎦⎤⎢⎣⎡-=-=⎰x x dx x x A .【点拨】两条曲线)(x f 与)(x g 之间所夹图形的面积S ,在区间],[b a 上,当)()(0x f x g ≤≤,则有⎰⎰-=b aba dx x g dx x f S )()(或dx x g x f S b a)]()([-=⎰.因此本题也可按公式[()()]b aS f x g x dx =-⎰直接求解.【例2】求由椭圆12222=+by a x 绕x 轴旋转一周而成的旋转体称旋转椭球体的体积.【分析】由连续曲线)(x f y =,直线b x a x ==,与x 轴所围成的曲边梯形绕x 轴旋转一周所成旋转体的体积dx y dx x f V baba22)]([ππ⎰⎰==,可先求积分区间及积分变量,再求积分【解】旋转椭球体可看作是由上半个椭圆221ax b y -=及x 轴围成的图形绕x 轴旋转而成的旋转体. 取x 为积分变量,积分区间为],[a a -,则体积元素为dx a x b dV ⎪⎪⎭⎫⎝⎛-=2221π.于是,旋转椭球体的体积dx a x b V a a⎪⎪⎭⎫ ⎝⎛-=⎰-2221π⎰-⎪⎪⎭⎫ ⎝⎛-=a a dx a x b 2221πaa a x xb -⎥⎦⎤⎢⎣⎡-=2323π234ab π=.【点拨】本题中的椭圆12222=+by a x 如果改为圆222x y a +=,求出的体积就是半径为a 的球体的体积公式334a V π=.。
教你学会定积分:定积分知识点总结及简单应用
定积分知识点总结及简单应用知识点1.定积分的几何意义:如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么函数f (x )在区间[a ,b ]上的定积分的几何意义是直线________________________所围成的曲边梯形的________.2.定积分的性质(1)ʃb a kf (x )d x =__________________ (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =_____________________________________; (3)ʃb a f (x )d x =_______________________________________. 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做__________________,为了方便,我们常把F (b )-F (a )记成__________________,即ʃb a f (x )d x =F (x )|ba =F (b )-F (a ).4.定积分在几何中的应用(1)当x ∈[a ,b ]且f (x )>0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________________.(2)当x ∈[a ,b ]且f (x )<0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________________.(3)当x ∈[a ,b ]且f (x )>g (x )>0时,由直线x =a ,x =b (a ≠b )和曲线y =f (x ),y =g (x )围成的平面图形的面积S =______________________.(4)若f (x )是偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x ;若f (x )是奇函数,则ʃa-a f (x )d x =0.5.定积分在物理中的应用 (1)匀变速运动的路程公式做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )[v (t )≥0]在时间区间[a ,b ]上的定积分,即________________________.(2)变力做功公式一物体在变力F (x )(单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向从x =a 移动到x =b (a <b )(单位:m),则力F 所做的功W =__________________________.自我检测1.计算定积分ʃ503x d x 的值为 ( ) A.752 B .75 C.252D .252.定积分ʃ10[1-(x -1)2-x ]d x 等于 ( )A.π-24B.π2-1C.π-14D.π-123.如右图所示,阴影部分的面积是 ( )A .2 3B .2- 3 C.323D.3534.ʃ421x d x 等于 ( ) A .-2ln 2 B .2ln 2 C .-ln 2D .ln 25.若由曲线y =x 2+k 2与直线y =2kx 及y 轴所围成的平面图形的面积S =9,则k =________.探究点一 求定积分的值 例1 计算下列定积分: (1)2111()ex dx x x++⎰; (2)2sin 2cos )x x dx π-⎰(;(3)ʃπ0(2sin x -3e x +2)d x ; (4)ʃ20|x 2-1|d x .变式迁移1 计算下列定积分:(1)ʃ2π0|sin x |d x ;(2)ʃπ0sin 2x d x .探究点二 求曲线围成的面积例2 计算由抛物线y =12x 2和y =3-(x -1)2所围成的平面图形的面积S .变式迁移2 计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.探究点三 定积分在物理中的应用例3 一辆汽车的速度-时间曲线如图所示,求此汽车在这1 min 内所行驶的路程.变式迁移3 A 、B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段速度为1.2t m/s ,到C 点时速度达24 m/s ,从C 点到B 点前的D 点以匀速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求:(1)A 、C 间的距离; (2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间.例 (12分)在区间[0,1]上给定曲线y =x 2.试在此区间内确定点t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值.解 S 1面积等于边长为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-ʃt 0x 2d x =23t 3.[2分]S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形面积,矩形边长分别为t 2,1-t ,即S 2=ʃ1t x 2d x -t 2(1-t )=23t 3-t 2+13.[4分] 所以阴影部分面积S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).[6分]令S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -12=0时,得t =0或t =12.[8分] t =0时,S =13;t =12时,S =14;t =1时,S =23.[10分]所以当t =12时,S 最小,且最小值为14.[12分]本题既不是直接求曲边梯形面积问题,也不是直接求函数的最小值问题,而是先利用定积分求出面积的和,然后利用导数的知识求面积和的最小值,难点在于把用导数求函数最小值的问题置于先求定积分的题境中,突出考查学生知识的迁移能力和导数的应用意识.总结;1.定积分ʃb a f (x )d x 的几何意义就是表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积;反过来,如果知道一个这样的曲边梯形的面积也就知道了相应定积分的值,如ʃ204-x 2d x =π (半径为2的14个圆的面积),ʃ2-24-x 2d x =2π.2.运用定积分的性质可以化简定积分计算,也可以把一个函数的定积分化成几个简单函数定积分的和或差.3.计算一些简单的定积分问题,解题步骤是:第一步,把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数积的和或差;第二步,把定积分用定积分性质变形为求被积函数为上述函数的定积分;第三步,分别用求导公式找到一个相应的使F ′(x )=f (x )的F (x );第四步,再分别用牛顿—莱布尼茨公式求各个定积分的值后计算原定积分的值.检测题 一、选择题1.下列值等于1的积分是 ( )A .ʃ10x d xB .ʃ10(x +1)d xC .ʃ1012d xD .ʃ101d x2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x ≤1,3-x ,1<x ≤2,则ʃ20f (x )d x 等于 ( )A.13 B.176 C .6D .173.已知f (x )为偶函数且ʃ60f (x )d x =8,则ʃ6-6f (x )d x 等于 ( ) A .0B .4C .8D .164.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .ʃπ20(sin x -cos x )d xB .2ʃπ40(sin x -cos x )d xC .ʃπ20(cos x -sin x )d xD .2ʃπ40(cos x -sin x )d x5.函数f (x )=ʃx 0t (t -4)d t 在[-1,5]上 ( ) A .有最大值0,无最小值 B .有最大值0,最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值 二、填空题6.若1 N 的力使弹簧伸长2 cm ,则使弹簧伸长12 cm 时克服弹力做的功为__________J.7.ʃ10(2x k+1)d x =2,则k =________.8.若f (x )在R 上可导,f (x )=x 2+2f ′(2)x +3,则ʃ30f (x )d x =________.三、解答题9.计算以下定积分: (1)ʃ21⎝⎛⎭⎫2x 2-1x d x ; (2)ʃ32⎝⎛⎭⎫x +1x 2d x ;(3)ʃπ30(sin x -sin 2x )d x ; (4)ʃ21|3-2x |d x .10.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x -2. (1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.11.求曲线y =e x -1与直线x =-ln 2,y =e -1所围成的平面图形的面积. 答案1.x =a ,x =b (a ≠b ),y =0和曲线y =f (x ) 面积2.(1)k ʃb a f (x )d x (2)ʃb a f 1(x )d x ±ʃb a f 2(x )d x (3)ʃc a f (x )d x +ʃbc f (x )d x (其中a <c <b )3.微积分基本定理 F (x )|b a4.(1)ʃb a f (x )d x (2)-ʃb a f (x )d x (3)ʃba [f (x )-g (x )]d x 5.(1)s =ʃb a v (t )d t (2)ʃb a F (x )d x自我检测1.A 2.A 3.C 4.D 5.±3解析 由⎩⎪⎨⎪⎧y =x 2+k 2,y =2kx .得(x -k )2=0, 即x =k ,所以直线与曲线相切,如图所示,当k >0时,S =ʃk 0(x 2+k 2-2kx )d x=ʃk 0(x -k )2d x =13(x -k )3|k 0=0-13(-k )3=k 33,由题意知k 33=9,∴k =3.由图象的对称性可知k =-3也满足题意,故k =±3. 课堂活动区例1 分析 (1)与绝对值有关的函数均可化为分段函数. ①分段函数在区间[a ,b ]上的积分可分成几段积分的和的形式.②分段的标准是使每一段上的函数表达式确定,按照原函数分段的情况分即可,无需分得过细.(2)f (x )是偶函数,且在关于原点对称的区间[-a ,a ]上连续,则ʃa -a f (x )d x =2ʃa 0f (x )d x .解 (1)ʃe 1⎝⎛⎭⎫x +1x +1x 2d x =ʃe 1x d x +ʃe 11x d x +ʃe 11x2d x =12x 2|e 1+ln x |e 1-1x |e 1=12(e 2-1)+(ln e -ln 1)-⎝⎛⎭⎫1e -11 =12e 2-1e +32.(2)ʃπ20(sin x -2cos x )d x=ʃπ20sin x d x -2ʃπ20cos x d x =(-cos x )|π20-2sin x |π2=-cos π2-(-cos 0)-2⎝⎛⎭⎫sin π2-sin 0 =-1.(3)ʃπ0(2sin x -3e x+2)d x =2ʃπ0sin x d x -3ʃπ0e x d x +ʃπ02d x =2(-cos x )|π0-3e x |π0+2x |π0=2[(-cos π)-(-cos 0)]-3(e π-e 0)+2(π-0) =7-3e π+2π. (4)∵0≤x ≤2,于是|x 2-1|=⎩⎪⎨⎪⎧x 2-1,1<x ≤2,1-x 2,0≤x ≤1,∴ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x=⎝⎛⎭⎫x -13x 3|10+⎝⎛⎭⎫13x 3-x |21=2.变式迁移1 解 (1)∵(-cos x )′=sin x ,∴ʃ2π0|sin x |d x =ʃπ0|sin x |d x +ʃ2ππ|sin x |d x =ʃπ0sin x d x -ʃ2ππsin x d x =-cos x |π0+cos x |2ππ=-(cos π-cos 0)+(cos 2π-cos π)=4. (2)ʃπ0sin 2x d x =ʃπ0⎝⎛⎭⎫12-12cos 2x d x =ʃπ012d x -12ʃπ0cos 2x d x=12x |π0-12⎝⎛⎭⎫12sin 2x |π0 =⎝⎛⎭⎫π2-0-12⎝⎛⎭⎫12sin 2π-12sin 0=π2. 例2 分析: 求曲线围成的面积的一般步骤为:(1)作出曲线的图象,确定所要求的面积;(2)联立方程解出交点坐标;(3)用定积分表示所求的面积;(4)求出定积分的值.解 作出函数y =12x 2和y =3-(x -1)2的图象(如图所示),则所求平面图形的面积S 为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y =12x 2,y =3-(x -1)2,得⎩⎨⎧x =-23,y =29或⎩⎪⎨⎪⎧x =2,y =2.所以两曲线交点为A ⎝⎛⎭⎫-23,29,B (2,2). 所以S =ʃ2-23[3-(x -1)2]d x -ʃ2-2312x 2d x=ʃ2-23(-x 2+2x +2)d x -ʃ2-2312x 2d x=⎪⎪⎝⎛⎭⎫-13x 3+x 2+2x 2-23-⎪⎪16x 32-23 =⎝⎛⎭⎫-83+4+4-⎝⎛⎭⎫881+49-43-16×⎝⎛⎭⎫8+827 =42027. 变式迁移2 解如图, 设f (x )=x +3, g (x )=x 2-2x +3,两函数图象的交点为A ,B ,由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3.得⎩⎪⎨⎪⎧ x =0,y =3或⎩⎪⎨⎪⎧x =3,y =6.∴曲线y =x 2-2x +3与直线y =x +3所围图形的面积 S =ʃ30[f (x )-g (x )]d x=ʃ30[(x +3)-(x 2-2x +3)d x ] =ʃ30(-x 2+3x )d x=⎝⎛⎭⎫-13x 3+32x 2|30=92. 故曲线与直线所围图形的面积为92.例3 分析: 用定积分解决变速运动的位置与路程问题时,将物理问题转化为数学问题是关键.变速直线运动的速度函数往往是分段函数,故求积分时要利用积分的性质将其分成几段积分,然后求出积分的和,即可得到答案.s (t )求导后得到速度,对速度积分则得到路程.解 方法一 由速度—时间曲线易知. v (t )=⎩⎪⎨⎪⎧3t ,t ∈[0,10),30,t ∈[10,40),-1.5t +90,t ∈[40,60],由变速直线运动的路程公式可得s =ʃ1003t d t +ʃ401030d t +ʃ6040(-1.5t +90)d t=32t 2|100+30t |4010+⎝⎛⎭⎫-34t 2+90t |6040=1 350 (m). 答 此汽车在这1 min 内所行驶的路程是1 350 m.方法二 由定积分的物理意义知,汽车1 min 内所行驶的路程就是速度函数在[0,60]上的积分,也就是其速度曲线与x 轴围成梯形的面积,∴s =12(AB +OC )×30=12×(30+60)×30=1 350 (m).答 此汽车在这1 min 内所行驶的路程是1 350 m.变式迁移3 解 (1)设v (t )=1.2t ,令v (t )=24,∴t =20.∴A 、C 间距离|AC |=ʃ2001.2t d t=(0.6t 2)|200=0.6×202=240 (m).(2)由D 到B 时段的速度公式为v (t )=(24-1.2t ) m/s ,可知|BD |=|AC |=240 (m).(3)∵|AC |=|BD |=240 (m),∴|CD |=7 200-240×2=6 720 (m).∴C 、D 段用时6 72024=280 (s).又A 、C 段与B 、D 段用时均为20 s ,∴共用时280+20+20=320 (s).课后练习1.D 2.B 3.D 4.D 5.B6.0.36解析 设力F 与弹簧伸长的长度x 的关系式为F =kx ,则1=k ×0.02,∴k =50,∴F =50x ,伸长12 cm 时克服弹力做的功W =ʃ0.12050x d x =502x 2|0.120=502×0.122=0.36(J).7.1解析 ∵ʃ10(2x k +1)d x = ⎪⎪⎝⎛⎭⎫2k +1x k +1+x 10=2k +1+1=2,∴k =1.8.-18解析 ∵f ′(x )=2x +2f ′(2),∴f ′(2)=4+2f ′(2),即f ′(2)=-4,∴f (x )=x 2-8x +3,∴ʃ30f (x )d x =13×33-4×32+3×3=-18. 9.解 (1)函数y =2x 2-1x 的一个原函数是y =23x 3-ln x ,所以ʃ21⎝⎛⎭⎫2x 2-1x d x = ⎪⎪⎝⎛⎭⎫23x 3-ln x 21=163-ln 2-23=143-ln 2(2) ʃ32⎝⎛⎭⎫x +1x 2d x =ʃ32⎝⎛⎭⎫x +1x +2d x = ⎪⎪⎝⎛⎭⎫12x 2+ln x +2x 32=⎝⎛⎭⎫92+ln 3+6-(2+ln 2+4)=ln 32+92.(3)函数y =sin x -sin 2x 的一个原函数为y =-cos x +12cos 2x ,所以ʃπ30(sin x -sin 2x )d x= ⎪⎪⎝⎛⎭⎫-cos x +12cos 2x π30=⎝⎛⎭⎫-12-14-⎝⎛⎭⎫-1+12=-14.322(4)3232322311232(32)(23)2312x dx x dx x dxx dx x dx=-=-+-=-+-⎰⎰⎰⎰⎰=(3x -x 2)|321+(x 2-3x )|232=12.10.解 (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又f ′(x )=2x -2,所以a =1,b =-2,即f (x )=x 2-2x +c .又方程f (x )=0有两个相等实根,所以Δ=4-4c =0,即c =1.故f (x )=x 2-2x +1.(2)依题意,所求面积S =ʃ10(x 2-2x +1)d x=⎝⎛⎭⎫13x 3-x 2+x |10=13.11.解 画出直线x =-ln 2,y =e -1及曲线y =e x -1如图所示,则所求面积为图中阴影部分的面积.由⎩⎪⎨⎪⎧ y =e -1,y =e x -1,解得B (1,e -1). 由⎩⎪⎨⎪⎧ x =-ln 2,y =e x -1,解得A ⎝⎛⎭⎫-ln 2,-12.此时,C (-ln 2,e -1),D (-ln 2,0).所以S =S 曲边梯形BCDO +S 曲边三角形OAD=ʃ1-ln 2(e -1)d x -ʃ10(e x -1)d x +||0-ln 2(e x -1)d x=(e -1)x |1-ln 2-(e x -x )|10+|(e x -x )|0-ln 2|=(e -1)(1+ln 2)-(e -1-e 0)+|e 0-(e -ln 2+ln 2)|=(e -1)(1+ln 2)-(e -2)+ln 2-12=eln 2+12。
定积分在几何,物理学中的简单应用
定积分在几何,物理学中的简单应用
定积分是一种常见的数学工具,用来解决许多几何和物理问题。
它可以在几何学、物理学中解决积分、面积和容积计算题中应用。
首先,定积分在几何学中的简单应用。
比如,如果我们要计算一个几何图形的面积,则可以通过定积分来计算。
它可以计算任意形状的几何图形的面积,比如三角形、椭圆、圆形等。
它的应用范围非常广泛,比如可以用它来计算面积、周长、体积等。
其次,定积分也可以用在物理学中。
比如,如果我们要计算一个物体在多次不同力作用之下移动的路程,可以用定积分来计算。
它可以帮助我们精确地计算物体受力作用前后的距离,也可以帮助我们精确计算弹性作用力等。
最后,定积分也可以应用于物理学的温度问题中。
比如,我们可以通过定积分求出一个物体在单位温差下的热量传递,也可以求出一个物体的总热量。
还可以用它求解温度场、热传导率、热导率等问题。
以上是定积分在几何、物理学中的简单应用。
定积分是一种通用而有效的数学工具,在几何、物理学中都有着广泛的应用,不仅可以用来解决相关的面积、容积计算题,而且还可以用来解决物理热力学、温度等问题。
只要我们掌握它的基本使用方法以及它的一些特性和用途,就可以在几何、物理学中更好地应用它来解决其它问题。
- 1 -。
高中数学选修2-2-定积分的概念及其简单应用
定积分的概念及其简单应用知识集结知识元定积分的应用知识讲解1.定积分的应用【应用概述】正如前面定积分的概念哪里所说,定积分表示的是一个面积,是一个大于零的数.那么它在实际当中的应用也就和求面积相关.例1:定积分|sin x|dx的值是.解:|sin x|dx==﹣cos x+cos x=1+1+0﹣(﹣1)=3.这个题如果这样子出,|sin x|在区间(0,)上与x轴所围成的面积,那么就成了一个应用题.如何解这类应用题呢?其实就是构建一个定积分,找到区间和要积分的函数即可.【定积分在求面积中的应用】1、直角坐标系下平面图形的面积2、极坐标系下平面图形的面积由连续曲线r=r(θ)及射线θ=α,θ=β所围成的平面图形的面积(图6)为3、用定积分求平面图形的面积的步骤a)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;b)解方程组求出每两条曲线的交点,以确定积分的上、下限;c)具体计算定积分,求出图形的面积.例题精讲定积分的应用例1.直线x=1,x=e与曲线y=围成的面积是()A.B.C.D.例2.由曲线,直线y=x所围成的封闭图形的面积是()A.B.C.D.1例3.抛物线y=x2-1与直线y=x+1所围成的平面图形的面积是()A.B.C.5D.用定积分研究简单几何体的体积知识讲解1.用定积分求简单几何体的体积【知识点的知识】1、已知平行截面面积的立体的体积2、旋转体的体积例题精讲用定积分研究简单几何体的体积例1.祖暅原理也称祖氏原理,是我国数学家祖暅提出的一个设计集合求积的著名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两个同高的立体,如在等高处截面积相等,则体积相等.由曲线x2=4y,x2=-4y,x=4,x=-4围成图形绕y轴旋转一周所得为旋转体的体积为V1:满足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转一周所得旋转体的体积为V2,则()A.V1=V2B.V1=V2C.V1=V2D.V1=2V2例2.曲线y=e x,直线x=0,x=与x轴围成的平面图形绕x轴旋转一周得到旋转体的体积是()A.B.C.D.例3.曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.B.C.D.。
定积分的几个简单应用
定积分的几个简单应用(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--定积分的几个简单应用一、定积分在经济生活中的应用在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决.例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余.解 由p 50=,q p 15.065-=,得10000=q ,于是dq q )5015.065(100000--⎰10000023)1.015(q q -=50000=,所求消费者剩余为50000元.例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量.解 所求的总产量为⎰⎰+='=105105)1240()(dt t dt t Q Q 1052)640(t t +=650=(件).二、用定积分求极限例1 求极限 ∑=∞→n k n n k 123lim .解 nn n n n n n n k n k 12111123+++=∑= )21(1n n n n n +++=.上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有∑=∞→n k n n k 123lim ⎥⎦⎤⎢⎣⎡+++=∞→)21(1lim n n n n n n 3210==⎰dx x . 例2 求极限 2213lim k n n k n k n -∑=∞→. 解 212213)(11n k nk n k n n k n k n k -⋅=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有2213lim k n n k n k n -∑=∞→31)1(31110232102=⎥⎦⎤⎢⎣⎡--=-=⎰x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明.例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证:⎰⎰+≥b a b a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x xa x a ⎰⎰+-=)(2)()(ϕ, 显然0)(=a ϕ,且)(2)(21)()(x f x a dt t f x xf x x a ⎰+--='ϕ )(2))((21)(2x f a a x f x f x ---=ξ [])()(2ξf x f a x --=,其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ϕ,从而)(x ϕ在闭区间[]b a ,上单调增加,所以0)()(=≥a x ϕϕ,取b x =得⎰⎰+≥b a ba dx x fb a dx x xf )(2)(. 定积分在许多领域中有着重要应用,它是解决一些几何学问题、物理学问题和经济学问题的重要工具.这一章主要介绍了定积分在不同学科中的应用问题.。
定积分计算中的若干技巧
定积分计算中的若干技巧一、引言定积分是微积分学中的重要概念,它涉及到函数的积分、面积、体积、长度等众多物理量的计算。
在实际应用中,我们需要掌握一些有效的计算技巧,以便更高效地解决问题。
本文将介绍一些在定积分计算中常用的技巧,并通过实例进行详细解释。
二、基本积分公式首先,熟练掌握基本积分公式是解决定积分问题的关键。
常见的基本积分公式包括幂函数、三角函数、指数函数、对数函数等。
通过熟练掌握这些公式,我们可以快速求解一些简单的定积分问题。
三、变量替换法变量替换法是解决定积分问题的一种有效方法。
通过合适的变量替换,我们可以将复杂的定积分问题转化为简单的形式。
在选择替换变量时,需要注意替换后的积分区间和原积分区间的一致性,以及替换后积分的可解性。
四、分部积分法分部积分法是解决定积分问题的另一种常用方法。
它适用于被积函数是两个函数的乘积的情况。
通过将被积函数拆分为两个函数的乘积,并应用分部积分公式,我们可以将复杂的定积分问题转化为简单的形式。
需要注意的是,在选择u和dv时,需要遵循“反对幂指三”的原则,以便更有效地解决问题。
五、利用对称性简化计算在解决定积分问题时,我们可以利用函数的对称性来简化计算。
如果被积函数在某个区间上关于原点对称,那么我们可以只计算该区间上的一半,并将结果乘以2。
同样地,如果被积函数在某个区间上关于某点对称,那么我们可以利用该点的对称性来简化计算。
六、数值积分法对于一些无法用解析方法求解的定积分问题,我们可以采用数值积分法进行近似计算。
常见的数值积分法包括梯形法、辛普森法等。
这些方法的基本思想是将积分区间划分为若干个小区间,然后在每个小区间上应用相应的公式进行近似计算。
需要注意的是,数值积分法的精度取决于小区间的划分方式和数量。
七、结论本文介绍了一些在定积分计算中常用的技巧,包括基本积分公式、变量替换法、分部积分法、利用对称性简化计算和数值积分法等。
这些技巧可以帮助我们更有效地解决定积分问题,提高计算效率。
定积分的概念定积分应用
THANKS
谢谢
总结词
定积分在弹性力学中用于计算物体在受力作用下的应力和应变。
详细描述
在弹性力学中,物体在受力作用下的应力和应变可以通过将弹性力学方程与定积分相结合来计算。通过确定物体 的受力分布和边界条件,可以计算出物体的应力和应变。
热传导中的温度分布
总结词
定积分在热传导中用于计算物体内部的温度分布。
详细描述
在热传导问题中,物体内部的温度分布可以通过将热传导方程与定积分相结合来计算。通过确定物体 的热源、边界条件和初始温度分布,可以计算出物体在不同时刻的温度分布。
积分区间
由积分下限和积分上限 确定的闭区间,表示为 $[a, b]$。
定积分的几何意义
定积分表示曲线与直线$y = x$ 及$x$轴所夹的面积,即曲线下
方间的距离。
当定积分的积分区间为$[a, b]$ 时,定积分的值等于曲线与直线 $y = x$及$x$轴所夹的面积在 $x=a$和$x=b$处的面积差。
恒力做功的计算
在物理学中,恒力做功可以直接用力 和位移的乘积来计算。然而,当作用 力是变力时,不能简单地用力和位移 的乘积来计算。
定积分的引入
为了计算变力做功,我们需要引入定 积分的概念。通过将变力函数在位移 区间上进行积分,可以得到变力做功 的值。
04
CHAPTER
定积分在经济学中的应用
边际和弹性
消费者剩余和生产者剩余
消费者剩余
生产者剩余
定积分可用于计算消费者剩余,即消费者愿 意支付的价格与实际支付的价格之间的差额。 通过积分可以求出整个需求曲线下方的面积, 即总消费者剩余。
定积分也可用于计算生产者剩余,即生产者 愿意接受的价格与实际接受的价格之间的差 额。通过积分可以求出整个供给曲线上方的 面积,即总生产者剩余。
定积分的概念及简单应用
x 2 , x [0,1], e (2)设 f(x)= 1 (其中 e 为自然对数的底数),则 f(x)dx 等于( 0 , x 1,e x 4 5 6 7 (A) (B) (C) (D) 3 4 5 6
解析:(1)
2
2
(2+sin x)dx=(-cos x+2x)
(3) (A)
π 2 π 6
cos2
x dx 等于( 2
)
3 π 3 2
3π - 3 4
3 π 6 8
2x x
(B)
π 1 + 6 4
(C)
(D) .
(4)f(x)=
(t-1)dt,则 f′(x)等于
π 2 π 6
π 2 π 6
2
解析:(3)
1 = sin x 2
π π π x 1 cos x 1 1 cos dx= π2 dx= π2 cos xdx+ π2 dx 2 2 2 6 6 6 2
1
1
1 x dx+
2
2
1
(x2-1)dx,令 y= 1 x 2 ,
得 x2+y2=1(y≥0),知:曲线 y= 1 x 2 是以坐标原点为圆心,1 为半径的圆 在 x 轴上方部分的半圆,由定积分的几何意义知
1 1 π×12= π, 2 2
2 1
1
1
1 x2 dx=
2
又
1
1 (x2-1)dx=( x3-x) 3
.
解析:画出草图如图所示.根据对称性,只计算出 y 轴右侧的阴影部分的面积,
x2 y x , y , 再乘以 2 即可.解方程组 和 4 y 1 y 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的简单应用【学习目标】1.会用定积分求平面图形的面积。
2.会用定积分求变速直线运动的路程3.会用定积分求变力作功问题。
【要点梳理】要点一、应用定积分求曲边梯形的面积1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积:()[()()]b baaS f x dx f x g x dx ==-⎰⎰2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(0)(≤x f )围成的曲边梯形的面积:()()[()()]bb baaaS f x dx f x dx g x f x dx ==-=-⎰⎰⎰3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积:()caS f x dx =+⎰()bcf x dx ⎰=()c af x dx -⎰+()bcf x dx ⎰.4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围成图形的面积:1212[()()]()()b b baaaS f x f x dx f x dx f x dx =-=-⎰⎰⎰要点诠释:研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积;② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值);要点二、求由两条曲线围成的平面图形的面积的解题步骤(1)画出图形;(2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理计算定积分,求出平面图形的面积。
要点三、定积分在物理中的应用① 变速直线运动的路程作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间[,]a b 上的定积分,即()baS v t dt =⎰.②变力作功物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W =()baF x dx ⎰.要点诠释:1. 利用定积分解决运动路程问题,分清运动过程中的变化情况是解决问题的关键。
应注意的是加速度的定积分是速度,速度的定积分是路程。
2. 求变力作功问题,要注意找准积分变量与积分区间。
【典型例题】类型一、求平面图形的面积【高清课堂:定积分的简单应用 385155 例1】例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积.【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。
【解析】201y x x y x⎧=⎪==⎨=⎪⎩及,所以两曲线的交点为(0,0)、(1,1), 面积S=120x dx =-⎰⎰,所以1312320021211d 33333S x x x x x ⎛⎫=-=-=-= ⎪⎝⎭⎰⎰【总结升华】1. 两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。
2. 在直角坐标系下求平面图形的面积的四个步骤: ⑴.作图象;⑵.求交点,定积分上、下限; ⑶.用定积分表示所求的面积; ⑷.微积分基本定理求定积分。
举一反三:【变式1】(2015 德州二模改编)如图阴影部分是由曲线2y x =和圆222x y +=及x 轴围成的封闭图形,则封闭图形的面积为( )A.146π- B. 146π+ C. 4π D.16 【答案】如下图,因为曲线2y x =和圆222x y +=在第一象限的交点为(1,1) 所以阴影部分的面积为1223100111()()|442346x x dx x x πππ--=--=-⎰。
【变式2】求曲线x y 2log =与曲线)(log x y -=42以及x 轴所围成的图形面积。
【答案】所求图形的面积为dy dy y f y g S y⎰⎰⨯-=-11224)()()(【=e e y y 210224224log |)log -=⨯-=(例2.求抛物线2y x =与直线230x y --=所围成的图形的面积. 【思路点拨】画出简图,结合图形确定积分区间。
【解析】解法一:解方程组2,230,y x x y ⎧=⎨--=⎩得11x y =⎧⎨=-⎩或93x y =⎧⎨=⎩即交点(1,1),(9,3)A B -.由于阴影的面积不易直接由某个函数的定积分来求得,我们把它合理的划分一下,便于进行积分计算。
过A 点作虚线,把阴影部分分成了两部分,分别求出两部分的面积,再求和.1912011((3)]2S S S dx x dx =+=+-⎰⎰=9911113222xdx dx +-+⎰⎰⎰⎰=33219992201114233342x x x x ⎛⎫⎛⎫⎛⎫+-+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=323. 【总结升华】 从图形可以看出,所求图形的面积可以转化为一个梯形与两个曲线三角形面积的差,进而可以用定积分求出面积。
为了确定出被积函数和积分的上、下限,我们需要求出直线与曲线的交点的横坐标。
解法二:若选y 为积分变量,则上限、下限分别为-1和3,所以要求的面积为:321[(23)]S y y dy -=+-⎰=2233311132333y yy---+-=.【总结升华】需要指出的是,积分变量不一定是x ,有时根据平面图形的特点,也可选y 作为积分变量,以简化计算。
但要注意积分上限、下限的确定. 举一反三:【高清课堂:定积分的简单应用 385155 例2】 【变式1】计算由直线4y x =-,曲线y =x 轴所围图形的面积S.作出直线4y x =-,曲线y =【答案】的草图,所求面积为上图阴影部分的面积.程组4y y x ⎧=⎪⎨=-⎪⎩解方得直线4y x =-与曲线y =8,4) .直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S2844[(4)]x dx =+--⎰⎰⎰33482822044140||(4)|3323x x x =+-=. 【变式2】求抛物线22y x =与直线4y x =-围成的平面图形的面积. 【答案】由方程组⎩⎨⎧-==xy xy 422解出抛物线和直线的交点为(2, 2)及(8, -4)解法一:选x 作为积分变量,由图可看出S=A 1+A 2 在A 1部分:由于抛物线的上半支方程为y =y =11222(A S dx x dx ==⎰31632222023=⋅=x 282[4(A S x dx =--⎰ 328)322214(82232=+-=x x x于是:16381833S =+=. 解法二: 选y 作积分变量,将曲线方程写为22y x =及y x -=4dy y y S ]2)4[(224--=⎰-2432)624(---=y y y 301218=-=.【变式3】(2015春河南校级期中)函数22,(20)()||,(02)x f x x x x -≤<=-≤≤⎪⎩ 的图象与x轴以及2x =±所围成的封闭图形的面积为( ) A.1π+ B.5π- C.3π- D. 1π- 【答案】函数22,(20)()||,(02)x f x x x x -≤<=-≤≤⎪⎩ 的图象与x 轴以及2x =±所围成的封闭图形如图,面积为)1222212()()d dx x x dx x x x -+-+-⎰⎰⎰=23132201111144()|()|42332x x x x π-⨯+-+- =181425636ππ-++-+=-故选:B 。
类型二、求变速直线运动的路程 例3.汽车以每小时36公里的速度行驶,到某处需要减速停车,设汽车以匀减速度2a =米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?【思路点拨】因为距离=速度⨯时间,所以找到该汽车从刹车开始到停车所用的时间与速度变化函数式成为该题的关键. 【解析】因为距离=速度⨯时间,所以找到该汽车从刹车开始到停车所用的时间与速度变化函数式成为该题的关键.首先要求出从刹车开始到停车经过了多少时间,当0t =时,汽车速度036v =公里/小时=3610003600⨯米/秒=10米/秒.刹车后汽车减速行驶,其速度为0()102V t V at t =-=-. 当汽车停车时,速度()0V t =, 故从()10V t =到()0V t =用的时间10052t -==秒. 于是在这段时间内,汽车所走过的距离是55()(102)S V t dt t dt ==-⎰⎰=2501(102)|252t t -⨯=(米) 即在刹车后,汽车需走过25.【总结升华】解决实际应用问题,解题的关键是弄清事物变化发展的规律,再根据规律变化找到相应的函数式. 举一反三:【变式】 一点在直线上从时刻t=0(s )开始以速度v=t 2―4t+3(m /s )运动,求:(1)在t=4 s 时的位置; (2)在t=4 s 时运动的路程。
【答案】(1)在时刻t=4时该点的位置为:4423214(43)d 2333t t t t t t ⎛⎫-+=-+= ⎪⎝⎭⎰(m )。
即在t=4s 时该点距出发点43m 。
(2)因为v (t)=t 2―4t+3=(t ―1)(t ―3),所以区间[0,1]及[3,4]上的v (t )≥0,在区间[1,3]上,v (t )≤0,所以在t=4 s 时的路程为:134222013(43)d (43)d (43)d s t t t t t t t t t =-++-++-+⎰⎰⎰134222013(43)d (43)d (43)d 4(m)t t t t t t t t t =-+--++-+=⎰⎰⎰。
即在t=4 s 运动的路程为4 m 。
类型三、求变力做功例4.直径为20cm ,高为80cn 的圆柱体内充满压强为10N/cm 2的蒸气,设温度保持不变,要使蒸气的体积缩小为原来的一斗,求需要做多少功?【解析】设上端为活塞,且如图所示取定x 轴.另设底面面积为S ,活塞压缩至x 位置时气体的体积为()V x ,压强为()P x ,由于PV k =(其中k 为常数),则 ()()()k k P x V x S h x ==-,()kF P x S h x ==-, 其中(0)(0)80000()800()k P V N cm J ππ==⋅= 故所求的功为2201800ln 2().h h W Fdx k dx J h xπ===-⎰⎰【总结升华】求变力作功问题,一般利用定积分加以解决,但要注意寻找积分变量与积分区间。