高中数学人教B版必修五教案:2.2《等差数列》习题课
高中数学 第二章 数列 2.2 习题课——等差数列习题课练习(含解析)新人教B版必修5-新人教B版高
习题课——等差数列习题课课时过关·能力提升1在等差数列{a n }中,已知a 1=13,a 1+a 6=4,a n =37,则n 等于() A.50B.49C.56D.51d ,因为a 1+a 6=2a 1+5d=4,a 1=13,所以d=23,所以a n =13+(n-1)×23=37,所以n=56.2在数列{a n }中,已知a 1=15,3a n+1=3a n -2,则该数列中相邻两项的乘积为负值的项是() A.a 21和a 22 B.a 22和a 23 C.a 23和a 24D.a 24和a 25a n+1=a n -23,所以数列{a n }是公差为-23的等差数列.所以a n =15+(n-1)×(-23).因为a 23=13,a 24=-13,所以a 23a 24<0.3已知在等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使数列{a n }的前n 项和S n 取得最大值的自然数n 是()A .4或5B .5或6C .6或7D .不存在d<0,∴a 9<a 3,∵|a 3|=|a 9|,∴a 3=-a 9,∴a 3+a 9=0. 又a 3+a 9=2a 6=0,∴a 5>0.即前5项或前6项的和最大.4若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大正整数n 是() A.4 005B.4 006C.4 007D.4 008a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,且数列{a n }为等差数列,所以数列{a n }是首项为正数,公差为负数的递减的等差数列,且a 2003是绝对值最小的正数,a 2004是绝对值最小的负数(第一个负数),且|a 2003|>|a 2004|.因为在等差数列{a n }中,a 2003+a 2004=a 1+a 4006>0,所以S 4006=4006(a 1+a 4006)2>0.所以使S n >0成立的最大正整数n 是4006.5已知数列{a n }的通项a n =11-2n ,则|a 1|+|a 2|+|a 3|+…+|a 10|=() A.25 B.50 C.52 D.1006已知f (n+1)=f (n )-14(n ∈N +),且f (2)=2,则f (101)=.a n =f (n ),则a n+1-a n =-14,∴数列{a n }为等差数列,且a 2=2.∴a n =a 2-14(n-2)=10-a 4.∴f (101)=a 101=-914. -9147设f (x )+f (1-x )=6,则f (-5)+f (-4)+…+f (0)+f (1)+…+f (6)=.S=f (-5)+f (-4)+…+f (0)+f (1)+…+f (6),①即S=f (6)+f (5)+…+f (1)+f (0)+…+f (-5).②则①+②得2S=[f (-5)+f (6)]+[f (-4)+f (5)]+…+[f (0)+f (1)]+[f (1)+f (0)]+…+[f (6)+f (-5)]=12×6=72.故S=36.8“等和数列”的定义:在一个数列中,如果每一项与它的后一项的和都等于同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18的值为.,可得a n +a n+1=5,所以a n+1+a n+2=5.所以a n+2-a n =0.因为a 1=2,所以a 2=5-a 1=3.所以当n 为偶数时,a n =3;当n 为奇数时,a n =2.所以a 18=3.9在等差数列{a n }中,其前n 项和为100,其后的2n 项和为500,则紧随其后的3n 项和为.,知S n =100,S 3n -S n =500,又S n ,S 2n -S n ,S 3n -S 2n ,…成等差数列,且公差为100.故S 6n -S 3n =(S 6n -S 5n )+(S 5n -S 4n )+(S 4n -S 3n )=600+500+400=1500.10在等差数列{a n }中,a 16+a 17+a 18=a 9=-18,其前n 项和为S n , (1)求S n 的最小值,并求出S n 取最小值时n 的值; (2)求T n =|a 1|+|a 2|+…+|a n |.因为a 16+a 17+a 18=a 9=-18,所以a 17=-6.又a 9=-18, 所以d=a 17-a 917-9=32.首项a 1=a 9-8d=-30.所以a n =32n-632. 若前n 项和S n 最小,则{a a ≤0,a a +1≥0,即{3a2-632≤0,32(a +1)-632≥0,所以n=20或n=21.故当n=20或n=21时,S n 取最小值. 最小值为S 20=S 21=-315. (2)由a n =32n-632≤0,得n ≤21.所以当n ≤21时,T n =-S n =34(41n-n 2), 当n>21时,T n =-a 1-a 2-…-a 21+a 22+…+a n=S n -2S 21=34(n 2-41n )+630.★11设数列{a n}的前n项和为S n,a1=1,a n=a aa+2(n-1)(n∈N+).(1)求数列{a n}的通项公式a n;(2)是否存在正整数n,使得a11+a22+…+a aa-(n-1)2=2 015?若存在,求出n的值;若不存在,说明理由.S n=na n-2(n-1)n.n≥2时,a n=S n-S n-1=na n-2(n-1)n-(n-1)·a n-1+2(n-2)(n-1).∴a n-a n-1=4.∴数列{a n}为a1=1,d=4的等差数列.∴a n=1+(n-1)4=4n-3.(2)由(1),得S n=n(4n-3)-2(n-1)n=(2n-1)n.∴a aa=2n-1.故a11+a22+…+a aa=n2,∴n2-(n-1)2=2015,解得n=1008.故存在n=1008满足题意.★12设数列{a n}的前n项和为S n,点(a,a aa)(n∈N+)均在函数y=3x-2的图象上, (1)求证:数列{a n}为等差数列;(2)T n是数列{3a a a a+1}的前n项和,求证:37≤T n<12.由题意得,a aa=3n-2,即S n=3n2-2n,当n≥2时,a n=S n-S n-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=1.所以a n=6n-5(n∈N+).又a n-a n-1=6n-5-[6(n-1)-5]=6,故{a n}是等差数列.(2)由(1)知,设b n=3a a a a+1,则b n=3a a a a+1=3(6a-5)[6(a+1)-5]=1 2(16a-5-16a+1),故T n =12[(1-17)+(17-113)+…+(16a -5-16a +1)]=12(1-16a +1),又n ∈N +,所以0<16a +1≤17,故37≤T n <12.。
人教B版高中数学必修5-2.2参考教案2-等差数列
学法 分析
数学课堂不仅是知识的传授,应该是良好学习习惯的养育、有效学习 方法和策略的积淀.因此教学过程应该渗透学习方法的引领、良好习惯的养 育、数学思想方法的体悟.
重 点 难 点 教学 方法
等差数列概念的理解及通项公式的推导.
等差数列概念的理解、通项公式的推导及其几何意义.
引Hale Waihona Puke 学生推导公式并采用讲练结合.1 , 0. 10
3,0,-3,…,-3n+6,…;
1 2 3 n , , ,…, ,…; 10 10 10 10
2,2,2,…,2…
性,由特殊发现 规律; 培养观察、 分析、归纳、猜 想的数学能力, 为求等差数列的 通项公式奠定基 础.
二、新课 1.等差数列: 【投影】一般地,如果一个数列从第二项起,每一项与它前一项的差 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数 列的公差(常用字母“d”表示). 加深对数列概念 【问】这个定义强调什么,就这个定义你有何发现? 【学生讨论回答后板书】 (1) .公差 d(常数) ,而不能用前项减后项来求(定义要求每一项与 的理解, 同时培养 严谨的科学态度.
(1) n . 2 n 1
2、请观察下面数列: 4, 5, 6, 7, 8, 9, 10; 1 ○ 2 ○ 3 ○ 4 ○ 展示由感性到理 具有什么共同的特点? 【学生讨论】学生互相交流补充归纳. 可以看到: 1 ,从第 2 项起,每一项与前一项的差都等于 对于数列○ 2 ,从第 2 项起,每一项与前一项的差都等于 对于数列○ 3 ,从第 2 项起,每一项与前一项的差都等于 对于数列○ 4 ,从第 2 项起,每一项与前一项的差都等于 对于数列○ 这些数列具有共同特点: 从第 2 项起,每一项与他的前一项的差都是等于同一个常数 d. 可以看出上式分别为:1,-3,,
人教B版数学必修五:2.2《等差数列》学案(含答案解析)
§2.2 等差数列1.等差数列的判定(1)a n -a n -1=d (n ≥2,d 为常数)⇔{a n }是公差为d 的等差数列; (2)2a n =a n -1+a n +1 (n ≥2)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数)⇔{a n }是公差为k 的等差数列(n ≥1);(4)S n =An 2+Bn (A ,B 为常数)⇔{a n }是公差为2A 的等差数列(n ≥1).例如:已知等差数列{a n }的前n 项和S n =(n -1)2+λ,则λ的值是________. 解析 S n =(n -1)2+λ=n 2-2n +(1+λ), ∵{a n }是等差数列,∴1+λ=0,λ=-1. 答案 -12.等差数列的通项公式将a n =a 1+(n -1)d 可整理为a n =dn +(a 1-d ),它是关于n 的一次函数(d ≠0)或常函数(d =0),它的图象是一条射线上的一群横坐标为正整数的孤立的点,公差d 是该射线所在直线的斜率.例如:等差数列{a n }中,若a n =m ,a m =n (m ≠n ),则a m +n =______. 解析 由点(n ,a n ),(m ,a m ),(m +n ,a m +n )三点共线, ∴a m +n -a n (m +n )-n =a m -a n m -n .即a m +n -m m =n -m m -n=-1,易得a m +n =0. 答案 03.等差数列的前n 项和公式(1)将公式S n =na 1+n (n -1)2d 变形可得S n =d2n 2+⎝⎛⎭⎫a 1-d 2n .故当d ≠0时,等差数列前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上横坐标为正整数的一群孤立点.(2)S n n =d2n +⎝⎛⎭⎫a 1-d 2是关于n 的一次函数(d ≠0)或常函数(d =0). 当涉及等差数列前n 项和S n 的计算问题时,有时设S n =An 2+Bn 的形式更简便快捷. 例如:等差数列{a n }中,若S p =q ,S q =p (p ≠q ),则S p +q =__________. 解析 设S n =An 2+Bn ,则⎩⎪⎨⎪⎧S p =Ap 2+Bp =q (1)S q =Aq 2+Bq =p (2) 由(1)-(2)得Ap 2+Bp -Aq 2-Bq =q -p , ∴A (p 2-q 2)+B (p -q )=q -p , ∵p ≠q ,∴A (p +q )+B =-1. ∵S p +q =A (p +q )2+B (p +q ) =[A (p +q )+B ]·(p +q ) =-(p +q ). 答案 -(p +q ) 4.等差数列的性质(1)若数列{a n }和{b n }均是等差数列,则{ma n +kb n }仍为等差数列,其中m 、k 均为常数. (2)若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q .(3)等差数列中依次k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d (d 是原数列公差).(4)若{a n }与{b n }均为等差数列,且前n 项和分别为S n 与S ′n ,则a m b m =S 2m -1S ′2m -1.(5)等差数列{a n }中,奇数项的和记作S 奇,偶数项的和记作S 偶,则S n =S 奇+S 偶.当n 为偶数时:S 偶-S 奇=n2d ;当n 为奇数时:S 奇-S 偶=a 中,S 奇=n +12a 中,S 偶=n -12a 中,S 奇S 偶=n +1n -1.(其中a 中是等差数列的中间一项)例如:已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是________.解析 S 偶-S 奇=n2d =5d ,∴5d =30-15=15,∴d =3.答案 35.等差数列前n 项和的最值求等差数列前n 项和的最值的常用方法: (1)通项法当a 1>0,d <0时,数列{a n }只有前面有限项为非负数,从某项开始所有项均为负数,因此,S n 有最大值,当n 满足不等式组⎩⎪⎨⎪⎧ a n ≥0a n +1<0时,S n 取到这个最大值;当a 1<0,d >0时,数列{a n }只有前面有限项为非正数,从某项开始所有项均为正数,因此,S n 有最小值,当n 满足不等式组⎩⎪⎨⎪⎧a n ≤0a n +1>0时,S n 取到这一最小值.(2)二次函数法由于S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,n ∈N *是关于n 的二次函数式,故可转化为求二次函数的最值问题,但要注意数列的特殊性n ∈N *.例如:{a n }是等差数列,a 1>0,a 2 009+a 2 010>0,a 2 009·a 2 010<0,则使前n 项和S n 最大时,n 的值是________;使前n 项和S n >0成立时,n 的最大值是________.答案 2 009 4 018一、等差数列的判断方法方法链接:判定等差数列的常用方法: (1)定义法:a n +1-a n =d (常数)(n ∈N *);(2)通项公式法:a n =kn +b (k ,b 为常数) (n ∈N *); (3)中项公式法:2a n +1=a n +a n +2 (n ∈N *);(4)前n 项和法:S n =An 2+Bn (A 、B 为常数),n ∈N *.例1 数列{a n }的前n 项和S n 满足:S n =n (a 1+a n )2,判断{a n }是否为等差数列?并证明你的结论.解 {a n }是等差数列,证明如下:因为a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2(n ≥2),所以a n +1=(n +1)(a 1+a n +1)2-n (a 1+a n )2,所以a n +1-a n =12[(n +1)(a 1+a n +1)-2n (a 1+a n )+(n -1)(a 1+a n -1)]=12[(n +1)a n +1-2na n +(n -1)a n -1] (n ≥2), 即(n -1)(a n +1-2a n +a n -1)=0,所以a n +1+a n -1=2a n (n ≥2), 所以数列{a n }为等差数列.二、等差数列中基本量的运算方法链接:在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个基本量,利用通项公式与前n 项和公式,求出a 1和d ,等差数列就确定了.例2 在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8;(2)已知前3项和为12,前3项积为48,且d >0,求a 1; (3)已知前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 解 (1)∵a 6=10,S 5=5, ∴⎩⎪⎨⎪⎧a 1+5d =105a 1+10d =5. 解方程组得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16,S 8=8×(a 1+a 8)2=44.(2)设数列的前三项分别为a -d ,a ,a +d ,依题意有: ⎩⎪⎨⎪⎧(a -d )+a +(a +d )=12(a -d )·a ·(a +d )=48, ∴⎩⎪⎨⎪⎧a =4a (a 2-d 2)=48, ∴⎩⎪⎨⎪⎧a =4d =±2. ∵d >0,∴d =2,a -d =2.∴a 1=2. (3)设公差为d ,则由题意得⎩⎪⎨⎪⎧a +3a =8,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2,d =2,k =50或k =-51(舍去).因此,a =2,k =50.三、等差数列的性质及运用方法链接:等差数列有一些重要的性质,例如: (1)若m +n =p +q ,则a m +a n =a p +a q ; (2)若m +n =2p ,则a m +a n =2a p ;(3)若{a n }是等差数列,则S k ,S 2k -S k ,S 3k -S 2k 也成等差数列.(其S k 为前k 项和)(4)若等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a n b n =S 2n -1T 2n -1.熟练运用这些性质,可以提高解题速度,获得事半功倍的功效.例3 (1)设等差数列{a n }的前n 项和为S n ,若S 9=72,求a 2+a 4+a 9的值; (2)已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,求证:①a n b n =S 2n -1T 2n -1;②a n b m =2m -12n -1·S 2n -1T 2m -1.(1)解 由S 9=9(a 1+a 9)2=72,∴a 1+a 9=16,∴a 1+a 9=2a 5=16,∴a 5=8,∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.(2)证明 ①a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=(a 1+a 2n -1)2n -12(b 1+b 2n -1)2n -12=S 2n -1T 2n -1.②a n b m =2a n 2b m =a 1+a 2n -1b 1+b 2m -1=(a 1+a 2n -1)2n -12·2m -12(b 1+b 2m -1)2m -12·2n -12=2m -12n -1·S 2n -1T 2m -1.四、等差数列前n 项和的最值 方法链接:等差数列前n 项和最值问题除了用二次函数求解外,还可用下面的方法讨论:若d >0,a 1<0,S n 有最小值,需⎩⎪⎨⎪⎧a n ≤0,a n +1≥0;若a 1>0,d <0,S n 有最大值,需⎩⎪⎨⎪⎧a n ≥0,a n +1≤0.n 取正整数.例4 (1)首项为正数的等差数列,前n 项和为S n ,且S 3=S 11,问n 为何值时,S n 最大?(2)等差数列{a n }中,a 1=-60,a 17=-12,求{|a n |}的前30项和及前n 项和.解 (1)设首项为a 1,公差为d ,则由题意知,d <0,点P (n ,S n )在抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上,其对称轴方程为x =7(由S 11=S 3知),故(7,S 7)是抛物线的顶点,∴n =7时,S n 最大.(2)设公差为d ,则由a 1+16d =a 17,得d =3>0,因此a n =3n -63.点Q (n ,a n )在增函数y =3x -63的图象上.令y =0则得x =21,故当n ≥22时,a n >0;当1≤n ≤21且n ∈N *时,a n ≤0, 于是|a 1|+|a 2|+…+|a 30|=-a 1-a 2-…-a 21+a 22+a 23+…+a 30 =a 1+a 2+…+a 30-2(a 1+a 2+…+a 21) =765.记T n =|a 1|+|a 2|+…+|a n |, 则由上面的求解过程知: 当1≤n ≤21,n ∈N *时, T n =|a 1|+|a 2|+…+|a n | =-a 1-a 2-…-a n =(123-3n )n 2=-32n 2+1232n .当n >21,n ∈N *时,T n =|a 1|+|a 2|+…+|a 20|+|a 21|+…+|a n | =-(a 1+a 2+…+a 21)+a 22+a 23+…+a n =(a 1+a 2+…+a n )-2(a 1+a 2+…+a 21) =32n 2-1232n +1 260. ∴数列{|a n |}的前n 项和T n=⎩⎨⎧-32n 2+1232n (1≤n ≤21,n ∈N *),32n 2-1232n +1 260 (n >21,n ∈N *).五、关于等差数列的探索性问题方法链接:对于与等差数列有关的探索性问题,先由前三项成等差数列确定参数后,再利用定义验证或证明所得结论.例5 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1 (n ≥2且n ∈N *). (1)求a 2,a 3的值;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列.则a 1+λ2,a 2+λ22,a 3+λ23成等差数列,∴2×a 2+λ22=a 1+λ2+a 3+λ23,∴13+λ2=5+λ2+33+λ8.解得λ=-1.当λ=-1时,⎝ ⎛⎭⎪⎫a n +1-12n +1-⎝⎛⎭⎫a n -12n=12n +1[(a n +1-1)-2(a n -1)] =12n +1(a n +1-2a n +1) =12n +1[(2a n +2n +1-1)-2a n +1] =12n +1×2n +1=1. 综上可知,存在实数λ=-1,使得数列⎩⎨⎧⎭⎬⎫a n +λ2为等差数列,且首项是2,公差是1.六、关于等差数列的创新型问题方法链接:关于等差数列的创新型试题,常以图表、数阵、新定义等形式出现.解决此类问题时通过对图表的观察、分析、提炼,挖掘出题目蕴含的有用信息,利用所学等差数列的有关知识加以解决.ij(1)写出a 45的值;(2)写出a ij 的计算公式.解 (1)通过观察“等差数阵”发现:第一行的首项为4,公差为3;第二行首项为7,公差为5.归纳总结出:第一列(每行的首项)是以4为首项,3为公差的等差数列,即3i +1,各行的公差是以3为首项,2为公差的等差数列,即2i +1.所以a 45在第4行,首项应为13,公差为9,进而得出a 45=49.(2)该“等差数阵”的第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1); 第二行是首项为7,公差为5的等差数列: a 2j =7+5(j -1); ……第i 行是首项为4+3(i -1),公差为2i +1的等差数列, 因此,a ij =4+3(i -1)+(2i +1)(j -1)=2ij +i +j =i (2j +1)+j .1.审题不细心,忽略细节而致错例1 首项为-24的等差数列,从第10项起开始为正数,求公差d 的取值范围.[错解] a 10=a 1+9d =-24+9d >0,∴d >83.[点拨] 忽略了“开始”一词的含义,题目强调了第10项是该等差数列中的第一个正项,应有a 9≤0.[正解] 设a n =-24+(n -1)d , 由⎩⎪⎨⎪⎧a 9=-24+(9-1)d ≤0a 10=-24+(10-1)d >0, 解不等式得:83<d ≤3.温馨点评 审题时要细心,包括问题的细节,有时细节决定解题的成败.2.忽略公式的基本特征而致错例2 已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且对一切正整数n 都有S n T n =5n +32n +7,试求a 9b 9的值. [错解] 设S n =(5n +3)k ,T n =(2n +7)k ,k ≠0, 则a 9=S 9-S 8=(5×9+3)k -(5×8+3)k =5k , b 9=T 9-T 8=(2×9+7)k -(2×8+7)k =2k ,所以a 9b 9=52.[点拨] 此解答错在根据条件S n T n =5n +32n +7,设S n =(5n +3)k ,T n =(2n +7)k ,这是把等差数列前n 项和误认为是关于n 的一次函数,没有准确把握前n 项和公式的特点.[正解] 因为{a n }和{b n }是公差不为0的等差数列, 故设S n =n (5n +3)k ,T n =n (2n +7)k ,k ≠0,则 a 9=S 9-S 8=9×(5×9+3)k -8×(5×8+3)k =88k ,b 9=T 9-T 8=9×(2×9+7)k -8×(2×8+7)k=41k ,所以a 9b 9=8841.温馨点评 等差数列的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,当d ≠0时,是关于n 的二次函数式,且常数项为零,当d =0时,S n =na 1,但是本题不属于这种情况(否则S n T n =na 1nb 1=a 1b 1与S nT n=5n +32n +7矛盾). 3.对数列的特点考虑不周全而致错例3 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.[错解] 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142d ,得120d =-200,即d =-53,∴a n =20-(n -1)·53,当a n >0时,20-(n -1)·53>0,∴n <13.∴n =12时,S n 最大,S 12=12×20+12×112×⎝⎛⎭⎫-53=130.∴当n =12时,S n 有最大值S 12=130.[点拨] 解中仅解不等式a n >0是不正确的,事实上应解a n ≥0,a n +1≤0.[正解] 由a 1=20,S 10=S 15,解得公差d =-53.∵S 10=S 15,∴S 15-S 10=a 11+a 12+a 13+a 14+a 15=0, ∵a 11+a 15=a 12+a 14=2a 13=0,∴a 13=0. ∵公差d <0,a 1>0,∴a 1,a 2,…,a 11,a 12均为正数, 而a 14及以后各项均为负数.∴当n =12或13时,S n 有最大值为S 12=S 13=130.4.忽略题目中的隐含条件而致错例4 一个凸n 边形的各内角度数成等差数列,其最小角为120°,公差为5°,求凸n 边形的边数.[错解] 一方面凸n 边形的内角和为S n ,S n =120°n +n (n -1)2×5°.另一方面,凸n 边形内角和为(n -2)×180°.所以120n +n (n -1)2×5=(n -2)×180.化简整理得:n 2-25n +144=0. 所以n =9或n =16.即凸n 边形的边数为9或16.[点拨] 凸n 边形的每个内角都小于180°.当n =16时,最大内角为120°+15°×5°=195°>180°应该舍掉.[正解] 凸n 边形内角和为(n -2)×180°,所以120n +n (n -1)2×5=(n -2)×180解得:n =9或n =16.当n =9时,最大内角为120°+8°×5°=160°<180°; 当n =16时,最大内角为120°+15×5°=195°>180°舍去. 所以凸n 边形的边数为9.例 一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 分析 本题可从基本方法入手,先求a 1,d ,再求前110项之和,为了简化计算,也可利用等差数列前n 项和的性质.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110. 故此数列的前110项之和为-110. 方法二 设S n =an 2+bn . ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.方法三 设等差数列的首项为a 1,公差为d ,则⎩⎨⎧S p =pa 1+p (p -1)2d =q , ①(p ≠q )S q=qa 1+q (q -1)2d =p . ②①-②得(p -q )a 1+(p -q )(p +q -1)2d=-(p -q ). 又p ≠q ,∴a 1+p +q -12d =-1,∴S p +q =(p +q )a 1+(p +q )(p +q -1)2d=(p +q )(-1), ∴S 110=-110.方法四 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D =100+10×(-22)=-120. ∴S 110=-120+S 100=-110.方法五 ∵S 100-S 10=a 11+a 12+…+a 100 =90(a 11+a 100)2=90(a 1+a 110)2.又S 100-S 10=10-100=-90,∴a 1+a 110=-2.∴S 110=110(a 1+a 110)2=-110.1.已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则 ⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d , 解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).2.设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.解 (1)由题意,设等差数列{a n }的通项公式为 a n =a 1+(n -1)d ,d ≠0.由a 22+a 23=a 24+a 25得a 22-a 25=a 24-a 23,由性质得-3d (a 4+a 3)=d (a 4+a 3),因为d ≠0 所以a 4+a 3=0,即2a 1+5d =0.① 又因为S 7=7,所以a 1+3d =1.② 由①②可得a 1=-5,d =2.所以数列{a n }的通项公式a n =2n -7,S n =na 1+n (n -1)2d =n 2-6n .(2)因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数. 又由(1)知a m +2为奇数,所以a m+2=2m-3=±1,即m=1,2.经检验,符合题意的正整数只有m=2.赏析试题考查了等差数列的有关知识,起点较低,落点较高,难度控制得恰到好处.第(2)问要求考生有一定的分析问题解决问题的能力.。
数学人教B版必修5教学设计:2.2.1等差数列 含答案 精品
教学设计2.2.1 等差数列整体设计教学分析本节课将探究一类特殊的数列——等差数列.本节课安排2课时,第1课时是在生活中具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.第2课时主要是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图象认识等差数列的性质.让学生明白一个数列的通项公式是关于正整数n的一次型函数,使学生学会用图象与通项公式的关系解决某些问题.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在问题探索过程中,先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.其中例1是巩固定义,例2到例5是等差数列通项公式的灵活运用.在教学过程中,应遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.数列在整个中学数学内容中处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列与函数的极限等内容作了铺垫.教材采取将代数、几何打通的混编体系的主要目的是强化数学知识的内在联系,而数列正是在将各知识沟通方面发挥了重要作用.因此本节内容是培养学生观察问题、启发学生思考问题的好素材.三维目标1.通过实例理解等差数列的概念,通过生活中的实例抽象出等差数列模型,让学生认识到这一类数列是现实世界中大量存在的数列模型.同时经历由发现几个具体数列的等差关系,归纳出等差数列的定义的过程.2.探索并掌握等差数列的通项公式,由等差数列的概念,通过归纳或迭加或迭代的方式探索等差数列的通项公式.通过与一次函数的图象类比,探索等差数列的通项公式的图象特征与一次函数之间的联系.3.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.重点难点教学重点:等差数列的概念,等差数列的通项公式,等差中项及性质,会用公式解决一些简单的问题.教学难点:概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式,并会解决一些相关的问题.课时安排2课时教学过程第1课时导入新课思路1.(直接导入)教师引导学生先复习上节课学过的数列的概念以及通项公式,可有意识地在黑板上(或课件中)出示几个数列,如:数列1,2,3,…,数列0,0,0,…,数列0,2,4,6,…等,然后直接引导学生阅读教材中的实例,不知不觉中就已经进入了新课.思路2.(类比导入)教师首先引导学生复习上节课所学的数列的概念及通项公式,使学生明了我们现在要研究的就是一列数.由此我们联想:在初中我们学习了实数,研究了它的一些运算与性质,那么我们能不能也像研究实数一样,来研究它的项与项之间的关系、运算和性质呢?由此导入新课.推进新课新知探究提出问题(1)回忆数列的概念,数列都有哪几种表示方法?(2)阅读教科书本节内容中的①②③3个背景实例,熟悉生活中常见现象,写出由3个实例所得到的数列.(3)观察数列①②③,它们有什么共同特点?(4)根据数列①②③的特征,每人能再举出2个与其特征相同的数列吗?(5)什么是等差数列?怎样理解等差数列?其中的关键字词是什么?(6)数列①②③存在通项公式吗?如果存在,分别是什么?(7)等差数列的通项公式是什么?怎样推导?活动:教师引导学生回忆上节课所学的数列及其简单表示法——列表法、通项公式、递推公式、图象法,这些方法从不同角度反映了数列的特点.然后引导学生阅读教材中的实例模型,指导学生写出这3个模型的数列:①22,22.5,23,23.5,24,24.5,…;②2,9,16,23,30;③89,83,77,71,65,59,53,47.这是由日常生活中经常遇到的实际问题中得到的数列.观察这3个数列发现,每个数列中相邻的后项减前项都等于同一个常数.当然这里我们是拿后项减前项,其实前项减后项也是一个常数,为了后面内容的学习方便,这个顺序不能颠倒.至此学生会认识到,具备这个特征的数列模型在生活中有很多,如上节提到的堆放钢管的数列为100,99,98,97,…,某体育场一角的看台的座位排列:第一排15个座位,向后依次为17,19,21,23,…,等等.以上这些数列的共同特征是:从第2项起,每一项与它前面一项的差等于同一个常数(即等差).这就是我们这节课要研究的主要内容.教师先让学生试着用自己的语言描述其特征,然后给出等差数列的定义.等差数列的定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.教师引导学生理解这个定义:这里公差d一定是由后项减前项所得,若前项减后项则为-d,这就是为什么前面3个模型的分析中总是说后项减前项而不说前项减后项的原因.显然3个模型数列都是等差数列,公差依次为0.5,7,-6.教师进一步引导学生分析等差数列定义中的关键字是什么?(学生在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确、深入地理解和掌握概念的重要条件,这是学好数学及其他学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力)这里“从第二项起”和“同一个常数”是等差数列定义中的核心部分.用递推公式可以这样描述等差数列的定义:对于数列{a n},若a n-a n-1=d(d是与n无关的常数或字母),n≥2,n∈N*,则此数列是等差数列.这是证明一个数列是等差数列的常用方法.点拨学生注意这里的“n≥2”,若n包括1,则数列是从第1项向前减,显然无从减起.若n从3开始,则会漏掉a2-a1的差,这也不符合定义,如数列1,3,4,5,6,显然不是等差数列,因此要从意义上深刻理解等差数列的定义.教师进一步引导学生探究数列①②③的通项公式,学生根据已经学过的数列通项公式的定义,观察每一数列的项与序号之间的关系会很快写出:①a n=21.5+0.5n,②a n=7n-5,③a n=-6n+95.以上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性.教师点拨学生探求,对任意等差数列a1,a2,a3,…,a n,…,根据等差数列的定义都有:a2-a1=d,a3-a2=d,a4-a3=d,……所以a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d.学生很容易猜想出等差数列的通项公式a n=a1+(n-1)d后,教师适时点明:我们归纳出的公式只是一个猜想,严格的证明需要用到后面的其他知识.教师可就此进一步点拨学生:数学猜想在数学领域中是很重要的思考方法,后面还要专门探究它.数学中有很多著名的猜想,如哥德巴赫猜想常被称为数学皇冠上的明珠,对于它的证明中国已处于世界领先地位.很多著名的数学结论都是从猜想开始的.但要注意,数学猜想仅是一种数学想象,在未得到严格的证明前不能当作正确的结论来用.这里我们归纳猜想的等差数列的通项公式a n=a1+(n-1)d是经过严格证明了的,只是现在我们知识受限,无法证明,所以说我们先承认它.鼓励学生只要创新探究,独立思考,也会有自己的新奇发现.教师根据教学实际情况,也可引导学生得出等差数列通项公式的其他推导方法.例如:方法一(叠加法):∵{a n}是等差数列,∴a n-a n-1=d,a n-1-a n-2=d,a n-2-a n-3=d,……a2-a1=d.两边分别相加得a n-a1=(n-1)d,所以a n =a 1+(n -1)d ,方法二(迭代法):{a n }是等差数列,则有a n =a n -1+d ,=a n -2+d +d=a n -2+2d=a n -3+d +2d=a n -3+3d……=a 1+(n -1)d.所以a n =a 1+(n -1)d.讨论结果:(1)~(4)略.(5)如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.其中关键词为“从第2项起”、“等于同一个常数”.(6)三个数列都有通项公式,它们分别是:a n =21.5+0.5n ,a n =7n -5,a n =-6n +95.(7)可用叠加法和迭代法推导等差数列的通项公式:a n =a 1+(n -1)d.应用示例例1(教材本节例2)活动:本例的目的是让学生熟悉公式,使学生从中体会公式与方程之间的联系.教学时要使学生认识到等差数列的通项公式其实就是一个关于a n 、a 1、d 、n(独立的量有3个)的方程,以便于学生能把方程思想和通项公式相结合,解决等差数列问题.本例中的(2)是判断一个数是否是某等差数列的项.这个问题可以看作(1)的逆问题.需要向学生说明的是,求出的项数为正整数,所给数就是已知数列中的项,否则,就不是已知数列中的项.本例可由学生自己独立解决,也可做板演之用,教师只是对有困难的学生给予恰当点拨.点评:在数列中,要让学生明确解方程的思路.变式训练(1)100是不是等差数列2,9,16,…的项,如果是,是第几项?如果不是,请说明理由;(2)-20是不是等差数列0,-312,-7,…的项,如果是,是第几项?如果不是,请说明理由.解:(1)由题意,知a 1=2,d =9-2=7.因而通项公式为a n =2+(n -1)×7=7n -5. 令7n -5=100,解得n =15,所以100是这个数列的第15项.(2)由题意可知a 1=0,d =-312,因而此数列的通项公式为a n =-72n +72. 令-72n +72=-20,解得n =477.因为-72n +72=-20没有正整数解,所以-20不是这个数列的项.例2一个等差数列首项为125,公差d >0,从第10项起每一项都比1大,求公差d 的范围.活动:教师引导学生观察题意,思考条件“从第10项起每一项都比1大”的含义,应转化为什么数学条件?是否仅是a 10>1呢?d >0的条件又说明什么?教师可让学生合作探究,放手让学生讨论,不要怕学生出错.解:∵d >0,设等差数列为{a n },则有a 1<a 2<a 3<…<a 9<a 10<a 11<…,由题意,得⎩⎪⎨⎪⎧1<a 10<a 11<…,a 1<a 2<…<a 9≤1, 即⎩⎪⎨⎪⎧ a 10>1a 9≤1⎩⎨⎧ 125+(10-1)d >1,125+(9-1)d ≤1,解得875<d ≤325. 点评:本例学生很容易解得不完整,解完此题后让学生反思解题过程.本题主要训练学生灵活运用等差数列的通项公式以及对公差的深刻理解.变式训练在数列{a n }中,已知a 1=1,1a n +1=1a n +13(n ∈N *),求a 50. 解:已知条件可化为1a n +1-1a n =13(n ∈N *), 由等差数列的定义,知{1a n }是首项为1a 1=1,公差为d =13的等差数列,∴1a50=1+(50-1)×13=523.∴a50=352.例3已知数列{a n}的通项公式a n=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?活动:要判定{a n}是不是等差数列,可以利用等差数列的定义,根据a n-a n-1(n>1)是不是一个与n无关的常数.这实际上给出了判断一个数列是否是等差数列的一个方法:如果一个数列的通项公式是关于正整数的一次型函数,那么这个数列必定是等差数列.因而把等差数列通项公式与一次函数联系了起来.本例设置的“旁注”,目的是为了揭示等差数列通项公式的结构特征:对于通项公式形如a n=pn+q的数列,一定是等差数列,一次项系数p就是这个等差数列的公差,首项是p+q.因此可以深化学生对等差数列的理解,同时还可以从多个角度去看待等差数列的通项公式,有利于以后更好地把握等差数列的性质.在教学时教师要根据学生解答的情况,点明这点.解:当n≥2时,〔取数列{a n}中的任意相邻两项a n-1与a n(n≥2)〕a n-a n-1=(pn+q)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,所以{a n}是等差数列,首项a1=p+q,公差为p.点评:(1)若p=0,则{a n}是公差为0的等差数列,即为常数列q,q,q,….(2)若p≠0,则a n是关于n的一次式,从图象上看,表示数列的各点(n,a n)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列{a n}为等差数列的充要条件是其通项a n=pn+q(p、q是常数),称其为第3通项公式.变式训练已知数列的通项公式a n=6n-1.问这个数列是等差数列吗?若是等差数列,其首项与公差分别是多少?解:∵a n+1-a n=[6(n+1)-1]-(6n-1)=6(常数),∴{a n}是等差数列,其首项为a1=6×1-1=5,公差为6.点评:该训练题的目的是进一步熟悉例3的内容.需要向学生强调,若用a n-a n-1=d,则必须强调n≥2这一前提条件,若用a n+1-a n=d,则可不对n进行限制.知能训练1.(1)求等差数列8,5,2,…的第20项;(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?2.求等差数列3,7,11,…的第4项与第10项.答案:1.解:(1)由a1=8,d=5-8=-3,n=20,得a20=8+(20-1)×(-3)=-49.(2)由a1=-5,d=-9-(-5)=-4,得这个数列的通项公式为a n=-5-4(n-1)=-4n-1.由题意知,本题是要回答是否存在正整数n,使得-401=-4n-1成立.解这个关于n 的方程,得n=100,即-401是这个数列的第100项.2.解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为a n=3+(n-1)×4,即a n=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a10=4×10-1=39.课堂小结1.先由学生自己总结回顾这节课都学习了哪些知识?要注意的是什么?都用到了哪些数学思想方法?你在这节课里最大的收获是什么?2.教师进一步集中强调,本节学习的重点内容是等差数列的定义及通项公式,等差数列的基本性质是“等差”.这是我们研究有关等差数列的主要出发点,是判断、证明一个数列是否为等差数列和解决其他问题的一种基本方法,要注意这里的“等差”是对任意相邻两项来说的.作业习题2—2 A组1、2.设计感想本教案设计突出了重点概念的教学,突出了等差数列的定义和对通项公式的认识与应用.等差数列是特殊的数列,定义恰恰是其特殊性也是本质属性的准确反映和高度概括,准确地把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具.因为等差数列的通项公式的结构与一次函数的解析式密切相关,因此通过函数图象研究数列性质成为可能.本教案设计突出了教法学法与新课程理念的接轨,引导综合运用观察、归纳、猜想、证明等方法研究数学,这是一种非常重要的学习方法;在问题探索求解中,常常是先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.本教案设计突出了发散思维的训练.通过一题多解,多题一解的训练,比较优劣,换个角度观察问题,这是数学发散思维的基本素质.只有在学习过程中有意识地将知识迁移、组合、融合,激发好奇心,体验多样性,学懂学透,融会贯通,创新思维才能与日俱增.(设计者:周长峰)第2课时导入新课思路1.(复习导入)上一节课我们研究了数列中的一个重要概念——等差数列的定义,让学生回忆这个定义,并举出几个等差数列的例子.接着教师引导学生探究自己所举等差数列例子中项与项之间有什么新的发现?比如,在同一个等差数列中,与某一项“距离”相等的两项的和会是什么呢?由此展开新课.思路2.(直接导入)教师先引导学生回顾上一节所学的内容:等差数列的定义以及等差数列的通项,之后直接提出等差中项的概念让学生探究,由此而展开新课.推进新课新知探究提出问题(1)请学生回忆上节课学习的等差数列的定义,如何证明一个数列是等差数列?(2)等差数列的通项公式是怎样得出来的?它与一次函数有什么关系?(3)什么是等差中项?怎样求等差中项?(4)根据等差中项的概念,你能探究出哪些重要结论呢?活动:借助课件,教师引导学生先回忆等差数列的定义,一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,即a n-a n-1=d(n≥2,n∈N*),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(通常用字母“d”表示).再一起回顾通项公式,等差数列{a n}有两种通项公式:a n=a m+(n-m)d或a n=pn+q(p、q是常数).由上面的两个公式我们还可以得到下面几种计算公差d 的方法:①d =a n -a n -1;②d =a n -a 1n -1;③d =a n -a m n -m. 对于通项公式的探究,我们用归纳、猜想得出了通项公式,后又用叠加法及迭代法推导了通项公式.教师指导学生阅读课本等差中项的概念,引导学生探究:如果我们在数a 与数b 中间插入一个数A ,使三个数a ,A ,b 成等差数列,那么数A 应满足什么样的条件呢?由定义可得A -a =b -A ,即A =a +b 2. 反之,若A =a +b 2,则A -a =b -A , 由此可以得A =a +b 2,A ,b 成等差数列.由此我们得出等差中项的概念:如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项.如果A 是x 和y 的等差中项,则A =x +y 2. 根据我们前面的探究不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项.如数列:1,3,5,7,9,11,13…中5是3与7的等差中项,也是1和9的等差中项.9是7和11的等差中项,也是5和13的等差中项.等差中项及其应用问题的解法关键在于抓住a ,A ,b 成等差数列=a +b ,以促成将等差数列转化为目标量间的等量关系或直接由a ,A ,b 间的关系证得a ,A ,b 成等差数列.根据等差中项的概念我们来探究这样一个问题:如上面的数列1,3,5,7,9,11,13,…中,我们知道2a 5=a 3+a 7=a 1+a 9=a 2+a 8,那么你能发现什么规律呢?再验证一下,结果有a 2+a 10=a 3+a 9=a 4+a 8=a 5+a 7=2a 6.由此我们猜想这个规律可推广到一般,即在等差数列{a n }中,若m 、n 、p 、q ∈N *且m +n =p +q ,那么a m +a n =a p +a q ,这个猜想与上节的等差数列的通项公式的猜想方法是一样的,是我们归纳出来的,没有严格证明,不能说它就一定是正确的.让学生进一步探究怎样证明它的正确性呢?只要运用通项公式加以转化即可.设首项为a 1,则a m +a n =a 1+(m -1)d +a 1+(n -1)d =2a 1+(m +n -2)d ,a p +a q =a 1+(p -1)d +a 1+(q -1)d =2a 1+(p +q -2)d.因为我们有m +n =p +q ,所以上面两式的右边相等,所以a m +a n =a p +a q .由此我们的一个重要结论得到了证明:在等差数列{a n }的各项中,与首末两项等距离的两项的和等于首末两项的和.另外,在等差数列中,若m +n =p +q ,则上面两式的右边相等,所以a m +a n =a p +a q .同样地,我们还有:若m +n =2p ,则a m +a n =2a p .这也是等差中项的内容.我们自然会想到由a m +a n =a p +a q 能不能推出m +n =p +q 呢?举个反例,这里举个常数列就可以说明结论不成立.这说明在等差数列中,a m +a n =a p +a q 是m +n =p +q 成立的必要不充分条件.由此我们还进一步推出a n +1-a n =d =a n +2-a n +1,即2a n +1=a n +a n +2,这也是证明等差数列的常用方法.同时我们通过这个探究过程明白:若要说明一个猜想正确,必须经过严格的证明,若要说明一个猜想不正确,仅举一个反例即可.讨论结果:(1)(2)略.(3)如果三个数x ,A ,y 成等差数列,那么A 叫做x 和y 的等差中项,且A =x +y2.(4)得到两个重要结论:①在数列{a n }中,若2a n +1=a n +a n +2(n ∈N *),则{a n }是等差数列. ②在等差数列中,若m +n =p +q(m 、n 、p 、q ∈N *),则a m +a n =a p +a q .应用示例例1在等差数列{a n }中,若a 1+a 6=9,a 4=7,求a 3,a 9.活动:本例是一道基本量运算题,运用方程思想可由已知条件求出a 1,d ,进而求出通项公式a n ,则a 3,a 9不难求出.应要求学生掌握这种解题方法,理解数列与方程的关系.解:由已知,得⎩⎪⎨⎪⎧ a 1+a 1+5d =9,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=-8,d =5.∴通项公式为a n =a 1+(n -1)d =-8+5(n -1)=5n -13. ∴a 3=2,a 9=32.点评:本例解法是数列问题的基本运算,应要求学生熟练掌握,当然对学有余力的同学来说,教师可引导探究一些其他解法,如a 1+a 6=a 4+a 3=9.∴a 3=9-a 4=9-7=2. 由此可得d =a 4-a 3=7-2=5. ∴a 9=a 4+5d =32.点评:这种解法巧妙,技巧性大,需对等差数列的定义及重要结论有深刻的理解.变式训练已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( ) A .-165 B .-33 C .-30 D .-21 答案:C解析:依题意知,a 2=a 1+a 1=2a 1,a 1=12a 2=-3,a n +1=a n +a 1=a n -3,可知数列{a n }是等差数列,a 10=a 1+9d =-3-9×3=-30.例2(教材本节例5)活动:本例是等差数列通项公式的灵活运用.正如边注所说,相当于已知直线过点(1,17),斜率为-0.6,求直线在x 轴下方的点的横坐标的取值范围.可放手让学生完成本例.变式训练等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是… ( ) A .a n =2n -2(n ∈N *) B .a n =2n +4(n ∈N *) C .a n =-2n +12(n ∈N *) D .a n =-2n +10(n ∈N *) 答案:D解析:由题意知⎩⎪⎨⎪⎧a 2·a 4=12a 2+a 4=8d <0⎩⎪⎨⎪⎧a 2=6a 4=2⎩⎪⎨⎪⎧a 1=8,d =-2, 所以由a n =a 1+(n -1)d ,得a n =8+(n -1)(-2)=-2n +10.例3 已知a 、b 、c 成等差数列,那么a 2(b +c),b 2(c +a),c 2(a +b)是否成等差数列? 活动:教师引导学生思考a 、b 、c 成等差数列可转化为什么形式的等式?本题的关键是考察在a +c =2b 的条件下,是否有以下结果:a 2(b +c)+c 2(a +b)=2b 2(a +c).教师可让学生自己探究完成,必要时给予恰当的点拨.解:∵a 、b 、c 成等差数列, ∴a +c =2b.又∵a 2(b +c)+c 2(a +b)-2b 2(c +a) =a 2b +a 2c +ac 2+bc 2-2b 2c -2ab 2=(a 2b -2ab 2)+(bc 2-2b 2c)+(a 2c +ac 2) =ab(a -2b)+bc(c -2b)+ac(a +c) =-abc -abc +2abc =0,∴a 2(b +c)+c 2(a +b)=2b 2(a +c).∴a 2(b +c),b 2(c +a),c 2(a +b)成等差数列.点评:如果a 、b 、c 成等差数列,常转化为a +c =2b 的形式,反之,如果求证a 、b 、c 成等差数列,常改证a +c =2b.有时还需运用一些等价变形技巧,才能获得成功.例4在-1与7之间顺次插入三个数a 、b 、c ,使这五个数成等差数列,求此数列. 活动:教师引导学生从不同角度加以考虑:一是利用等差数列的定义与通项;一是利用等差中项加以处理.让学生自己去探究,教师一般不要给予提示,对个别探究有困难的学生可适时地给以点拨、提示.解:(方法一)设这些数组成的等差数列为{a n },由已知,a 1=-1,a 5=7, ∴7=-1+(5-1)d ,即d =2. ∴所求的数列为-1,1,3,5,7.(方法二)∵-1,a ,b ,c,7成等差数列,∴b 是-1,7的等差中项,a 是-1,b 的等差中项,c 是b,7的等差中项,即b =-1+72=3,a =-1+b 2=1,c =b +72=5.∴所求数列为-1,1,3,5,7.点评:通过此题可以看出,应多角度思考,多角度观察,正像前面所提出的那样,尽量换个角度看问题,以开阔视野,培养自己求异发散的思维能力.变式训练数列{a n }中,a 3=2,a 7=1,且数列{1a n +1}是等差数列,则a 11等于( )A .-25 B.12 C.23 D .5答案:B解析:设b n =1a n +1,则b 3=13,b 7=12,因为{1a n +1}是等差数列,可求得公差d =124,所以b 11=b 7+(11-7)d =23,即a 11=1b 11-1=12.例5某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4千米(不含4千米)计费10元.如果某人乘坐该市的出租车前往14 km 处的目的地,且一路畅通,等候时间为0,需要支付多少元的车费?活动:教师引导学生从实际问题中建立数学模型.在这里也就是建立等差数列的数学模型.引导学生找出首项和公差,利用等差数列通项公式的知识解决实际问题.解:根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km ,乘客需要支付1.2元.所以,我们可以建立一个等差数列{a n }来计算车费.令a 1=11.2表示4 km 处的车费,公差d =1.2,那么,当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).答:需要支付车费23.2元.点评:本例中令a 1=11.2,这点要引起学生注意,这样一来,前往14 km 处的目的地就相当于n =11,这点极容易弄错.知能训练1.已知等差数列{a n }中,a 1+a 3+a 5+a 7=4,则a 2+a 4+a 6等于( ) A .3 B .4 C .5 D .6 2.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A .40 B .42 C .43 D .45 答案:1.解析:由a 1+a 3+a 5+a 7=4,知4a 4=4,即a 4=1. ∴a 2+a 4+a 6=3a 4=3. 答案:A2.解析:∵a 2+a 3=13, ∴2a 1+3d =13. ∵a 1=2,∴d =3.而a4+a5+a6=3a5=3(a1+4d)=42.答案:B课堂小结1.先由学生自己总结回顾这节课都学习了哪些知识?要注意的是什么?都用到了哪些数学思想方法?你是如何通过旧知识来获取新知识的?你在这节课里最大的收获是什么?2.教师进一步画龙点睛,本节课我们在上节课的基础上又推出了两个很重要的结论,一个是等差数列的证明方法,一个是等差数列的性质,要注意这些重要结论的灵活运用.作业课本习题2—2 A组5、6、7.设计感想本教案是根据课程标准、学生的认知特点而设计的,设计的活动主要都是学生自己完成的.特别是上节课通项公式的归纳、猜想给学生留下了很深的记忆;本节课只是继续对等差数列进行这方面的探究.本教案除了安排教材上的两个例题外,还针对性地选择了既具有典型性又具有启发性的几道例题及变式训练.为了学生的课外进一步探究,在备课资料中摘选了部分备用例题及备用习题,目的是让学生对等差数列的有关知识作进一步拓展探究,以开阔学生的视野.本教案的设计意图还在于,加强数列与函数的联系.这不仅有利于知识的融会贯通,加深对数列的理解,运用函数的观点和方法解决有关数列的问题,而且反过来可使学生对函数的认识深化一步,让学生体会到数学是有趣的,探究是愉悦的,归纳猜想是令人振奋的,借此激发学生的数学学习兴趣.备课资料一、备用例题【例1】梯子最高一级宽33 cm,最低一级宽为110 cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.解:设{a n}表示梯子自上而下各级宽度所成的等差数列,由已知条件,可知a1=33,a12=110,n=12,所以a12=a1+(12-1)d,即得110=33+11d,解之,得d=7.因此a2=33+7=40,a3=40+7=47,a4=54,a5=61,a6=68,a7=75,a8=82,a9=89,a10=96,a11=103.答:梯子中间各级的宽度从上到下依次是40 cm,47 cm,54 cm,61 cm,68 cm,75 cm,82 cm,89 cm,96 cm,103 cm.。
高中数学备课精选 2.2《等差数列》学案 新人教B版必修5
高中数学备课精选 2.2《等差数列》学案 新人教B 版必修5一、等差数列定义:二、通项公式:推导方法:推论:d n m a a n m )(-+=例1、知三求一1、若31,31-==d a ,则n a =_______2、若27,1261==a a ,则d=_______3、若17,573==a a ,则n a =_______4、若2,21,31===d a a n ,则n=_______5、若,19,1074==a a 则=1a ______,d=______6、98,8341==a a ,则数列有多少项在300到500之间?例2、判断某数是不是数列中的项已知数列 ,10,7,4,1,2----,①判断49,21--是否是数列中的项;②求数列的第10项,15项,1+n 项;③判断55-,n 38-是数列的第几项?三、通项性质(1)等差数列}{n a 中,d n m a a n m )(-+=(2)等差数列}{n a 中,如果q p n m +=+,则q p n m a a a a +=+推广一、推广二、(等距性)例3、利用数列性质求数列中的项1、若572=+a a ,则=+81a a ____,=+63a a _______。
2、(05福建)若1,16497==+a a a ,则=12a _____。
3、若1282=+a a ,则5a =_______。
4、若45076543=++++a a a a a ,则=+82a a _____。
5、若10113=+a a ,则1542a a a ++=_______。
6、(05全国)如果数列}{n a 是等差数列,则( )A 、5481a a a a +<+B 、5481a a a a +=+C 、5481a a a a +>+D 、5481a a a a =练习2.(1)若3a +11a =10,则2a +4a +15a = (2)若15S =90,则8a =(3)45076543=++++a a a a a ,则=+82a a (4)21512841=+---a a a a a ,则15S =四、等差中项:五、判定和证明证明方法:(1)定义(2)中项性质判定:例4、判断下列数列是否是等差数列?① ,8,6,4,2,1 ② ,7,7,7,7,7③n m n m n m m +++2,2,, ④d a a d a +-,,⑤n a n 23-= ⑥1+=n n a n ⑦122+=n a n例5、等差数列首项是1a ,公差是d ,判断下列是否是等差数列?如果是,求首项和公差;如果不是,说明理由。
高中数学2.2等差数列教案新人教版必修5
等差数列〔一〕教课目标:1.明确等差数列的定,掌握等差数列的通公式;2.会解决知道a n,a1,d,n中的三个,求此外一个的教课要点:等差数列的观点,等差数列的通公式教课点:等差数列的性安排:2内容剖析:本是等差数列一局部,在等差数列的观点,突出了它与一次函数的系,就便于利用所学的一次函数的知来等差数列的性:从象上看,什么表示等差数列的各点都平均地散布在一条直上,什么两能够决定一个等差数列(从几何上看两点能够决定一条直)教课程:一、复引入:上两我学了数列的定及出数列和表示的数列的几种方法——列法、通公式、推公式、象法和前n和公式..些方法从不一样的角度反应数列的特色下边我看一些例子1.王尊得自己英成很差,当前他的量只yes,no,you,me,he5个他决定从今日起每日背10个,那么从今日开始,他的量每日增添,挨次:5,15,25,35,⋯〔:多少天后他的量抵达3000?〕2.于欣宜得自己英成很棒,她当前的量多达3000她打算从今日起不再背了,果不知不地每日忘记5个,那么从今日开始,她的量每日减,挨次:3000,2995,2990,2985,⋯〔:多少天后她那3000个所有忘光?〕从上边两例中,我分获得两个数列①5,15,25,35,⋯和②3000,2995,2990,2980,⋯同学仔察一下,看看以上两个数列有什么共同特色?答:从第二起,每一与它前面一的差等于同一个常数〔即等差〕;〔:每相两的差相等——指明作差的序是后减前〕,我拥有种特色的数列一个名字——等差数列二、解新:1.等差数列:一般地,假如一个数列从第二起,每一与它前一的差等于同一个常数,个数列就叫做等差数列,个常数就叫做等差数列的公差〔常用字母“d〞表示〕⑴.公差d必定是由后减前所得,而不可以用前减以后求;⑵.于数列{a n},假定a n -a n1=d(与n没关的数或字母),n≥2,n∈N,此数列是等差数列,d公差,也是判断是不是等差数列的一种方法。
高中数学人教B版必修5学案2.2等差数列习题课__等差数列习题课学案
等差数列习题课——等差数列习题课.进一步了解等差数列的定义,通项公式以及前项和公式..理解等差数列的性质,等差数列前项和公式的性质的应用..掌握等差数列前项和之比的问题,及其实际应用.题型一已知求【例】已知数列{}的前项和=-+,求数列{}的通项公式.分析:→→→反思:数列{}的前项和与通项的关系已知数列{}的通项就可以求数列{}的前项和;反过来,若已知前项和也可以求数列{}的通项公式.∵=+++…+,∴-=+++…+-(≥).在≥的条件下,把上面两式相减可得:=--(≥),当=时,=,所以与有如下关系:=(\\(,=,--,≥.))注意:=--并非对所有的∈+都成立,而只对≥的正整数成立.由求通项公式时,要分=和≥两种情况,然后验证两种情况可否用统一解析式表示,若不能,则用分段函数的形式表示.题型二数列{}的求和问题【例】在等差数列{}中,=-,=-,求数列{}的前项和.分析:先分清哪些项是负的,然后再分段求出前项的绝对值之和.反思:等差数列各项取绝对值后组成的数列{}的前项和,可分为以下情形:()等差数列{}的各项都为非负数,这种情形中数列{}就等于数列{},可以直接求解.()在等差数列{}中,>,<,这种数列只有前边有限项为非负数,从某项开始其余所有项都为负数,可把数列{}分成两段处理.()在等差数列{}中,<,>,这种数列只有前边有限项为负数,其余都为非负数,同样可以把数列{}分成两段处理.总之,解决此类问题的关键是找到数列{}的正负分界点.题型三等差数列前项和的比值问题【例】等差数列{},{}的前项和分别为,,若=,求.分析:本题可把“项比”转化成“和比”,也可把“和比”转化为“项比”.反思:本题的关键是建立通项和前项和的内在联系,解法一侧重于待定系数法,而解法二应用整体代换思想.已知在等差数列{}中,+=,=,则的值是( ).....等差数列{}的前项和为,若=,=,则等于( ).....若一个等差数列前项的和为,最后项的和为,且所有项的和为,则这个数列有( )..项.项.项.项设===,且,,成等差数列,则的值为.设等差数列{}满足=,=-.()求{}的通项公式;()求{}的前项和及使得最大的序号的值.答案:典型例题·领悟【例】解:==-×+×=.当≥时,=--=(-+)-[-(-)+(-)]=-+.∵=也适合上式,∴数列{}的通项公式为=-+(∈+).【例】解:数列{}的公差===,∴=+(-)=-+(-)×=-.由<,得-<,即<.∴数列{}的前项是负数,从第项开始都为非负数.设,′分别表示数列{}和{}的前项和,当≤时,′=++…+=---…-=-=-[-+×]=-+;当>时,′=-+(-)=-=-+×-×(-×+×)=-+ .∴数列{}的前项和′=错误!【例】解:解法一:设=+,=+,,,,为常数则==,所以+(+)+=+,从而(\\(=,+=,=,))即(\\(=,=,=.))所以=,=+.当=时,==;当≥时,==.当=时,=也适合上式,所以=.解法二:======.随堂练习·巩固.∵+=+=,=,∴=..由题意知=,-=.∵{}是等差数列,∴-,-,成等差数列.∴-=.∴=...∵,,成等差数列,∴+=,∴+=.∵+=·=×==()=,∴=.∴=±.又∵=>,∴=..解:()由=+(-),及=,=-,得(\\(+=,+=-,))解得(\\(=,=-,))所以数列{}的通项公式为=-.()由()知=+=-.因为=-(-)+,所以当=时,取得最大值.。
高中数学人教B版必修五教案:2.2《等差数列》新授课
分钟
2.
承
接
结果
1、等差数列的定义式
2、推导等差数列通项公式
1、评价学生的展示结果
2、巡视学生的完成情况
3、对学生的展示和评价要给予及时的反馈。
1、展示等差数列的定义式
2、小组讨论等差数列公式的推导
解决学生自主学习中遇到的困惑,加深学生对知识的印象
8
分钟
3.
做
议
讲
评
探究一:等差数列的定义
例1《优化》34页例2
3
分钟
5.
目标
检测
1、巡视学生作答情况。
2、公布答案。
3、评价学生作答结果
1、小考卷上作答。
2、组间互批。
3、独立订正答案。
检查学生对本课所学知识的掌握情况
6
分钟
6.布置下节课
自主
学习
任务
1、整理数学笔记,归纳:
(1)基础知识
(2)典型例题
2、完成《优化》第36-37页:
2、5、7、8、9、10、11、12、13、16题
2、小组讨论并展示自己组所写的结果。
3、其他组给予评价(主要是找错,纠错)
在具体问题中,探索、挖掘内在规律、发现数学的本质。
加深对对数函数的理解。
19分钟
4.
总
结
提升
1、知识
2、方法
3、能力
引导学生归纳总结本节课解题方法及注意事项
1、讨论思考
2、抽签小组展示讨论的结果。
3、提出的问题。
强化学生知识储备及养成良好的学习习惯,加强数学思维的培养
总结:等差数列的证明方法
巩固练习:针对练习
探究二:等差数列的通项公式及应用
高中数学新人教版B版精品教案《人教版B高中数学必修5 2.2 等差数列》
自主
学习
例题1已知等差数列 中, ,
求 的前 项和
例题2已知等差数列 的前 项和为 ,且
,求数列 的通项
例题3已知 是一个等差数列,且
(1)求 的通项 ;
思考题:在等差数列 中,已知 ,前 项和为 ห้องสมุดไป่ตู้且
,求当 取何值时, 取得最大值,并求出它的最大值
巩固本节知识
以小组为单位讨论研究,培养学生的推理及综合运用能力
小
结
1方程思想:等差数列的通项公式和前 项和公式中五个量要能做 到 “ 知三求二”,体会方程思想在解题中的应用 2函数思想:等差数列的通项公式和前 项和公式都是关于 的函数,因此数列问题可借助函数知识来解决
(2)求 的前 项和 的最大值
例题1与例题2让学生明确五个量
“知三求二”,体会方程思想在解题中的应用通过学生板演强化解答问题的规范性
例题3让学生认识到利用二次函数或通项公式来解决等差数列的前 项和的最值问题,体会函数思想
巩固
训练
1、2021福建理等差数列 中, , ,则
数列 的公差为()A 1
2、(2021辽宁理)在等差数列 中,已知 ,则该数列前11项和为 等于()A 58B 88 C 143D 176
对知识进行概括总结,加深印象,以便以后灵活应用
布置
作业
限时作业28 10
巩固本节课知识
达标
测试
当堂检测学生对知识的掌握情况
二、自主练习:
1、在数列 中, , ,则 的
值为()A 49
人教版高中数学必修5第二章2.2《等差数列》教学设计
关于《等差数列》通项公式探究应用核心片段教学教案[教学目标]1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式,能用等差数列的通项公式解决相应的一些问题。
2.过程与方法目标:通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3.情感态度与价值观目标:培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]1.教学重点:探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列和一次函数之间的联系。
2.教学难点:等差数列通项公式的推导;创设情境(片段1)在现实生活中,我们会遇到下面的特殊数列。
情景1:我们经常这样数数,每隔5数一次,可以得到数列0,5,10,15,20, (1)情景2:2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目共设置了7个级别,其中较轻的4个级别体重成数列(单位kg)。
48,53,58,63。
○2情景3:18,15.5,13,10.5,8, 5.5 ○3。
情景4:10072 ,10144 ,10216 ,10288 ,10360 ○4。
观察上面的数列发现有什么共同特点?可以看到对于数列○1,从第二项起,每一项与前一项的差都等于______对于数列○2,从第二项起,每一项与前一项的差都等于______对于数列○3,从第二项起,每一项与前一项的差都等于______对于数列○4,从第二项起,每一项与前一项的差都等于______1、等差数列的定义一般地,如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。
这个常数叫做等差数列的公差,通常用字母d来表示。
1判断下列数列是等差数列吗?如果是,公差是多少?问题(1) 2, 4, 6, 8, 10…问题(2) -1,-3,-5,-7,-9,…问题(3) 5,5,5,5,5,5,…问题(4) 数列{a n },若a n+1-a n =3解释:他们都是等差数列,公差分别是2,-2, 0, 3。
人教B版必修5等差数列教案
an an1 (kn b) [k (n 1) b] kn b (kn k b) k 为常数
∴{ a n }是等差数列,首项 a1 k b ,公差为 k . ·注:①若 k=0,则{ a n }是公差为 0 的等差数列,即为常数列 b,b,b,„ ②若 k≠0,则{ a n }是关于 n 的一次式,从图像上看,表示数列的各点均在一次函 数 y=kx+b 的图像上,一次项的系数是公差,直线在 y 轴上的截距为 b. ③数列{ a n }为等差数列的充要条件是其通项 a n =kn+b (k、b 是常数),称其为第 3 通项公式. ④判断数列是否是等差数列的方法是否满足 3 个通项公式中的一个.
第 1 页 共 4 页
等差数列教案
第 1 课时
(2).等差数列的通项公式是什么? 2.等差数列的通项公式 等差数列的定义是由一个数列相邻两项之间关系而得 若一个等差数列 {an } 的首项
王新敞
奎屯 新疆
是 a1 ,公差是 d,则根据等差数列的定义可得:
a2 a1 d 即: a 2 a1 d
第 2 页 共 4 页
等差数列教案
第 1 课时
得该数列通项公式为: an 4n 1 . 由题意可知,本题是要回答是否存在正整数 n,使得 137 4n 1 成立, 解得 n=34,即-137 是这个数列的第 34 项. 例 2 已知数列{ a n }的通项公式 an kn b ,其中 k 、 b 是常数,那么这个数列是否一定 是等差数列?若是,首项与公差分别是什么? 分析:由等差数列的定义,要判定 a n 是不是等差数列,只要看 a n a n 1 (n 2)是 不是一个与 n 无关的常数. 解:当 n 2 时, (取数列{ a n }中的任意相邻两项 a n 1 与 a n (n 2) )
高中数学人教B版必修五教案:2.2《等差数列的性质二》1
)
A . 32
B.- 32
C. 35 答案 C
D.- 35
解析 由 a8- a4= (8- 4)d=4d,得 d= 3,所以 a15=a8+ (15- 8)d=14+ 7×3= 35.
3.在等差数列 { an} 中, a4+ a5= 15, a7= 12,则 a2 等于 ( )
A.3
B.- 3
C.3 2
公差为 d 的等差数列 (c 为任一常数 ) 公差为 cd 的等差数列 (c 为任一常数 ) 公差为 2d 的等差数列 (k 为常数, k∈ N+) 公差为 pd+ qd′的等差数列 (p, q 为常数 )
(3){ an} 的公差为 d,则 d>0 ? { an} 为递增数列; d<0? { an} 为递减数列; d= 0? { an} 为常数列 .
14 km 处的目的地,且
一路畅通,等候时间为 0,需要支付多少车费?
2018—2019 学年度第一学期
渤海高中高二数学教案
主备人:
使用人:
时间: 2018 年 9 月 10 日
课题 等差数列的性质
课时 2
课型 新授课
教学 等差数列性质的应用
依据:数学课程标准
重点
教学 等差数列性质的理解
依据:教材、教参
难点
一、知识目标
理由:
1、学生归纳等差数列的一些常见性质。
依据本
学习
(2)设数列 {bn}满足 b n=
2log2 (an+1- n),求 {bn}的通
项公式.
强化学 生
4.
知识储 备
总
1、知识点
教师提问,教 学生发言,相 及 养 成 良 5
结
高中数学新人教B版必修5课件:第二章数列2.2习题课——等差数列习题课
得 Sn-Sn-1+2SnSn-1=0.即
1
1
1
-1
−
1
+2=0,
∴ − =2.
∴数列
-1
1
是公差为 2 的等差数列.
1
1
2
1
又 S1=a1= ,∴ =2.
1
1
∴ =2+(n-1)×2=2n,Sn=2 ,
1
1
-1
∴当 n≥2 时,an=Sn-Sn-1=2 − 2(-1) = 2(-1).
+
当 p+q 为偶数时,n=
,Sn 最大;
2
+-1
++1
2
2
当 p+q 为奇数时,n=
或 n=
,Sn 最大.
②若a1<0,且Sp=Sq(p≠q),则
+
当 p+q 为偶数时,n=
,Sn 最小;
当 p+q 为奇数时,n=
或 n=
2
+-1
++1
2
2
,Sn 最小.
目标导航
题型一
4
(+2)
1
2
1
d=3n+
2
1
(-1)
1
1 1
2
1 1
-
2 4
1
1
-
4(+1)(+2)
.
+2
2
,
+…+
2 +1 +2
2+3
2(+1)(+2)
高中数学 第二章 数列 2.2 等差数列的性质习题课教案 新人教B版必修5-新人教B版高二必修5数学
8.
课
后
反 思
记牢公式
学生对等差数列的性质有了进一步认识,应用得比第一节课熟练了
随堂测试小卷
等差数列的性质
课题
等差数列的性质
课时
2
课型
习题课
教学
重点
等差数列性质的应用
依据:数学课程标准
教学
难点
等差数列性质的理解
依据:教材、教参
学习
目标
一、知识目标
1、牢记等差数列的一些常见性质。
2、熟练应用等差数列的性质解决一些等差数列的问题。
二、能力目标
培养学生观察、归纳能力,在学习过程中体会类比思想,数形结合思想,特殊到一般的思想并加深认识。
教师适当补充
按完成先后顺序分层加分
1、学生小组讨论完成并展示答案
2、总结出所蕴含的方法
自己讨论出结果有助于学生强化记忆,
总结方法培养学生举一反三能力
5
分钟
4.
总
结
提 升
1、知识点
2、方法
教师提问,教师点评或引导
学生发言,相互补充
强化学生知识储备及养成良好的学习习惯,加强数学思维的培养
5
分钟
5.
目 标
检 测
随堂测试小卷
1、巡视学生作答情况。
2、公布答案。
3、评价学生作答结果
1、小考卷上作答。
2、组间互批。
3、独立订正答案。
检查学生对本课所学知识的掌握情况
10
分钟
6.布置下节课
自主
学习
任务
阅读教材39页,“等差数列的前n项和〞尝试小组合作推导出等差数列的前n项和公式。
3
分钟
7.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20XX—20XX学年度第一学期
高二数学教案
主备人:使用人:
2、解读学习目标
1、等差数列的定义式
2、等差数列通项公式
3、校对作业答案,小组
统计出组内有问题的习
注意:开始小于1
9
易错点:
12
小结:
1、知识点
2、方法
阅读《优化学案》34页,
完成例3和针3,并归纳总结等差数列性质的用法(课前3分钟考,课上选小组展示总结的内容)
精美句子
1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。
一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。
一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。