衡水中学2016学年第一学期高一年级期中考数学试卷

合集下载

河北省衡水市故城县高级中学2016-2017学年高一上学期期中考试数学试题 Word版含解析

河北省衡水市故城县高级中学2016-2017学年高一上学期期中考试数学试题 Word版含解析

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知526x =,则x =( )A .5log 26 D .26log 5 【答案】B 【解析】试题分析:因为526x =,且5是奇数, 所以x = B.考点:指数幂的运算.2.已知函数()y f x =的图象如图,其中可以用二分法求解的个数为( )A .1个B .2个C .4个D .3个 【答案】D考点:1、函数的图象;2、二分法的应用. 3.图中阴影部分所表示的集合是( )A .()U BC A C ⎡⎤⎣⎦ B .()()U B C A B CC .()()U A C C B mD .()U C A C B ⎡⎤⎣⎦【答案】B 【解析】试题分析:因为图中阴影部分在集合A 的外部且在B 的内部,所以阴影部分表示U BC A ,再根据并集的性质知,阴影部分也表示()()U A C A B C ⋂⋃⋂,所以阴影部分表示的集合是()()U B C A BC ,故选B.考点:1、图示法表示集合;2、集合的交集、并集及补集. 4.函数()2231f x x x =++的零点是( ) A .1,12-- B .1,12C. 1,12- D .1,12-【答案】A考点:函数零点与方程根的关系.【方法点睛】本题主要考察函数零点与方程根的关系,属于简单题. 求函数()y f x =零点的常用方法:(1)直接法:令()0,f x =则方程的实根就是函数零点;(2)零点存在性定理法:判断函数在区间[],a b 上是连续不断的曲线,且()()0,f a f b <再利用二分法求函数的零点(一般不精确);(3)数形结合法:转化为两个函数的图象的交点横坐标求解.本题是利用方法(1)解答的.5. 已知集合{|P x y ==,集合{|Q y y ==,则P 与Q 的关系是( )A .P Q =B .P Q =∅ C.P Q ⊇D .P Q ⊂【答案】C 【解析】试题分析:因为集合P 表示函数y =的定义域,集合Q 表示函数y =的值域,所以()()2016,,0,,P Q =-+∞=+∞∴P Q ⊇,故选C. 考点:1、集合的表示及子集;2、函数的定义域及值域.6.已知函数:①2xy =;②2log y x =;③1y x -=;④12y x =,则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .①②④③B .②③①④ C. ②①③④ D .④①③② 【答案】A考点:指数函数、对数函数及幂函数的图象与性质. 7.下列语句错误的是( )A .如果不属于B 的元素也不属于A ,则A B ⊆ B .把对数式lg 2x =化成指数式为 102x= C. 对数的底数必为正数D .“二分法”对连续不断的函数的所有零点都有效 【答案】D 【解析】试题分析:根据子集的定义知A 正确;由对数的定义及性质知B ,C 正确,对于D ,当零点左右符号相同时不能用二分法,故D 错,故选D.考点:1、子集的定义及对数的定义与性质;2、二分法的基本含义.8.()f x 是定义域为R 上的奇函数,当0x ≥时,()22(x f x x m m =++为常数),则()2f -=( )A .9B .7 C.9- D .7- 【答案】D 【解析】试题分析:因为()f x 是定义域为R 且()f x 是奇函数,所以()()()0000f f f =-⇒=,所以()0022010f m m =+⨯+=+=,1m =-,()()22222217f f ⎡⎤-=-=-+⨯-=-⎣⎦,故选D.考点:1、函数的奇偶性;2、分段函数的解析式.9.某厂原来月产量为b ,一月份增产0030,二 月份比一月份减产0030,设二月份产量为a ,则 ( )A .0.99a b =B .a b = C.0.91a b = D .a b > 【答案】C考点: 阅读能力及数学建模思想的应用.10.函数()()20log 1616x xf x -=+是( )A .奇函数B .偶函数 C. 既是奇函数又是偶函数 D .非奇非偶函数 【答案】B 【解析】试题分析:因为()()20log 1616x x f x -=+,所以()()()20log 1616x xf x f x --=+=,又因为()f x 定义域是R ,所以函数()()20log 1616x xf x -=+是偶函数.故选B.考点:1、函数的奇偶性;2、对数与指数的应用. 11. 函数()13ax f x x +=+在区间(),5-∞-上单调递增,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭ B .()3,-+∞ C.1,3⎛⎫+∞ ⎪⎝⎭D .()(),13,-∞-+∞【答案】C 【解析】试题分析:因为()()131313,333ax ax a a af x a f x x x x +++--===+∴+++单调区间是(),3-∞-和()3,-+∞,要使()f x 在区间(),5-∞-上单调递增,(),5-∞-⊆(),3-∞-,必有(),3-∞-递增,1130,3a a -<>,即实数a 的取值范围是1,3⎛⎫+∞ ⎪⎝⎭,故选C. 考点:1、“分离常数”在解题中的应用;2、函数的定义域及利用单调性求参数的范围. 【方法点晴】本题主要考查“分离常数”在解题中的应用、函数的定义域及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的;②利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围,本题是利用方法①求解的. 12.已知0x 是函数()123xf x x =--的一个零点,若()()10203,,,x x x x ∈∈+∞,则( ) A .()()12f x f x < B .()()12f x f x > C. ()()120,0f x f x << D .()()120,0f x f x >> 【答案】A考点:1、函数的单调性;2、函数的零点.【方法点晴】本题主要考查函数的零点、函数的单调性,属于中档题.函数单调性的应用比较广泛,是每年高考的重点和热点内容.归纳起来,常见的命题探究角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小;(3)解函数不等式;(4)求参数的取值范围或值.本题先判定函数的单调性后结合()00f x =,比较()()100f x f x <=,()()200f x f x >=后得到结论的.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.幂函数()f x 的图象过点()16,2,则()f x 的解析式是__________. 【答案】()14f x x =【解析】试题分析:因为()f x 是幂函数,所以可设()f x x α=,又因为()y f x =过()16,2,所以()141216,,4f x x αα===,故答案为()14f x x =.考点:1、幂函数图象及其性质;2、幂函数的解析式.14.已知集合{}2|20A x R ax x =∈++=,若A 为单元素集合,则a =__________.【答案】0或18考点:1、集合的表示;2、一元二次方程根与系数的关系.15.若3x ≥-,=_________.【答案】6 【解析】试题分析:当3x ≥-3x x =+=-,所以113232(3)(3)3(3)x x x x ⨯⨯=+--=+--()()336x x =+--=,故答案为6.考点:1、函数的定义域;2、指数幂的运算.【方法点晴】本题主要考查函数的定义域、指数幂的运算,属于中档题. 指数幂运算的四个原则:(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(化简过程中一定要注意等价性,特别注意开偶次方根时函数的定义域).16.若函数()f x 的定义域为[]1,2-,则函数()36f x -的定义域为_________. 【答案】12,63⎡⎤⎢⎥⎣⎦【解析】试题分析:因为()f x 的定义域是[]1,2-,所以要求()36f x -的定义域,只需1362x -≤-≤,解得1263x ≤≤,故答案为12,63⎡⎤⎢⎥⎣⎦. 考点:1、抽象函数的定义域;2、不等式的解法.【方法点晴】本题主要考查抽象函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分) 若1lg lg 4,lg lg 4a b a b +==,求()()lg log log a b ab b a +的值.【答案】248.试题解析:()()()lg lg lg log log lg lg lg lg a b b a ab b a a b a b ⎛⎫+=++ ⎪⎝⎭()()()()()2222142lg lg lg lg 2lg lg 4lg lg lg lg 42481lg lg lg lg 4b a b a a ba b a b a ba b-⨯++-=+=+=⨯=.考点:1、对数的运算法则;2、换底公式的应用. 18.(本小题满分12分) 若使不等式2231xxa a -⎛⎫> ⎪⎝⎭成立的x 的集合(其中0a >,且1a ≠). 【答案】{}|13x x x <->或. 【解析】试题分析:先将原不等式化为 232x x aa -->,然后分1a >和01a <<两种情况,根据指数函数的单调性再进一步化简不等式,从而求得使不等式2231xxa a -⎛⎫> ⎪⎝⎭成立的x 的集合. 试题解析:2231xx aa -⎛⎫> ⎪⎝⎭,∴原不等式化为: 232x x a a -->,当1a >时,函数x y a =是增函数,232x x ∴->-,解得:13x -<<, 当01a <<时,函数x y a =是减函数, 232x x ∴-<-,解得:1x <-或3x >,故当1a >时,x 的集合是{}|13x x -<<;当01a <<时,x 的集合是{}|13x x x <->或.考点:1、指数函数的性质;2、不等式的解法及分类讨论思想. 19.(本小题满分12分)已知函数()212f x x x =-+. (1)当[]1,2x ∈时,求()f x 的值域;(2)若()()()F x f x f x =--,试判断()F x 的奇偶性,并证明你的结论. 【答案】(1)10,2⎡⎤⎢⎥⎣⎦;(2)()F x 为奇函数,证明见解析.(2)化简()F x 2x =,可得()()()()22,F x x x F x F x -=-=-=-∴是奇函数. 试题解析:(1)由已知()()211122f x x =--+,显然函数()f x 在[]1,2上是减函数,1x ∴=时,()max 1,22f x x ==时,()[]min 0,1,2f x x =∴∈时,函数()f x 的值域是10,2⎡⎤⎢⎥⎣⎦. (2)()F x 是奇函数,证明:()()()()()2211222F x f x f x x x x x x ⎛⎫⎡⎤=--=-+---+-= ⎪⎢⎥⎝⎭⎣⎦()()()()22,F x x x F x F x -=-=-=-∴是奇函数.考点:1、函数的值域及单调性;2、函数的解析式及奇偶性.20.(本小题满分12分)已知函数()()()()()log 1,log 1,0,1a a f x x g x x a a =+=->≠. (1)设2a =,函数()g x 的定义域为[]15,1--, 求()g x 的最大值; (2)当01a <<时,求使()()0f x g x ->的x 的取值范围. 【答案】(1)4;(2){}|10x x -<<.(2)()()0f x g x ->,即()(),f x g x >∴当01a <<时,()()log 1log 1a a x x +>-,满足1110,1010x x x x x +<-⎧⎪+>∴-<<⎨⎪->⎩,故当01a <<时解集为:{}|10x x -<<. 考点:1、对数函数的定义域;2、函数的单调性及不等式的解法.21.(本小题满分12分)乒乓球是我国的国球,在2016年巴西奥运会上尽领风骚,包揽该项目全部金牌,现某市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时6元;乙家按月计费,一个月中20小时以内(含20小时)每张球台90元,超过20小时的部分,每张球台每小时2元,某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于12小时,也不超过30小时.(1)设在甲家租一张球台开展活动x 小时的收费为 ()f x 元()1230x ≤≤,在乙家租一张球台开展活动x小时的收费为()g x 元()1230x ≤≤,试求()f x 与()g x 的解析式. (2)选择哪家比较合算?为什么?【答案】(1)()()90,12206,1230;902,2030x f x x x g x x x ≤≤⎧=≤≤=⎨+<≤⎩;(2)当1215x ≤<时,选甲家比较合算,当15x =时,两家一样合算,当1530x <≤时,选乙家比较合算. 【解析】试题分析:(1 )因为甲家每张球台每小时6元,故收费为()f x 与x 成正比例即得:()5f x x =,再利用分段函数的表达式的求法即可求得()g x 的表达式;(2 )小张选择哪家比较合算,关键是看那一家收费低,故只要比较()f x 与()g x 的函数的大小,最后选择费用低的一家即可.②当2030x <≤时,()()f x g x >,∴当1215x ≤<时,选甲家比较合算;当15x =时,两家一样合算;当1530x <≤时,选乙家比较合算.考点:1、阅读能力及建模能力;2、分段函数的解析式.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者).22.(本小题满分12分)若函数()f x 满足()()22221x x a f x a a a -=--(其中0a >,且1a ≠). (1)求()f x 的解析式,并判断单调性;(2)当()()2f x f <时,()40f x -<,求a 的取值范围.【答案】(1)()()()21x x a f x a a x R a -=-∈-,()f x 在R 上是增函数;(2))(21,23⎡⎤+⎣.【解析】试题分析:(1)利用换元法求出()f t 的解析式,进而求得()f x 的解析式,分01a <<,1a >两种情况讨论()f x 的单调性;(2)()f x 在R 上是增函数,()4y f x ∴=-也是R 上的增函数,得()4f x -≤()240f -<,进而得()2224,1a a a a --≤-可解得a 的取值范围.试题解析:(1)令()()()()()()222,,11t t x x a a x t t R f t a a f x a a x R a a --=∈∴=-∴=-∈--, 当1a >时,x y a =为增函数,x y a -=-为增函数,且201a a >-,()f x ∴为增函数 ,当01a <<时,x y a =为减函数,x y a -=-为减函数,且201a a <-, ()f x ∴为增函数,()f x ∴在R 上是增函数 .考点:1、函数的解析式及单调性;2、不等式恒成立问题.【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得a 的取值范围的.。

衡水中学高一下学期期中考试数学试题及详细解答

衡水中学高一下学期期中考试数学试题及详细解答
5
16 , 3
1 16 •R=2, ∴ •2R2•R= 3 3
12. 【答案】 D 【解析】 因为长为 2 的线段 MN 的一个端点 M 在棱 OA 上运动, 另一个端点 N 在△BCO 内运动(含边界) ,有空间想象能力可知 MN 的中点 P 的轨迹为以 O 为球心,以 1 为半径的球体,则 MN 的中点 P 的轨迹与三棱锥的面所围成的几何体可能为该球体的 则V =
VP − ABCD =
A.4 π
16 ,则球 O 的表面积是( 3
B.8 π
) C.12 π D.16 π )
1.已知向量 a = (0,2,1) , b = ( −1,1,−2) ,则 a与b 的夹角为(
A. 0 B. 45 C. 90 D. 180

8. .如果是水平放置的平面图形的斜二测直观图,其原来平面图形面积是(
2 2 2 1 a,且 ka> a,∴ka> a,即 k> . 2 2 2 2
如图, 取 AC 中点为 G, 结合已知可得 GF
2 2 2
AB, 在正四面体中, AB
CD, 又 GE
CD, 所以 GE
GF,所以 EF = GE + GF ,当四面体绕 AB 旋转时,因为 GF
平面 a,GE 与 GF 的垂直性保持不 上的射影 E1 F1
2..如图,正方体 ABCD − A1 B1C1 D1 中,棱长为 1,PB
1 PB′ ,则 P 点坐标为( 3

A.2 2
B.4 2
C.4
D. 8
9. 在长方体 ABCD − A1 B1C1 D1 中,AB=BC=2, AA1 =1,则 BC1 与平面 BB1 D1 D 所成角的正弦值为 ( A. , , ) A.

2016-2017年河北省衡水一中高一上学期数学期中试卷带答案

2016-2017年河北省衡水一中高一上学期数学期中试卷带答案

2016-2017学年河北省衡水一中高一(上)期中数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合U={1,2,3,4,5},A={1,2,3},B={2,4},则图中阴影部分所表示的集合是()A.{4}B.{2,4}C.{4,5}D.{1,3,4}2.(5分)函数的定义域是()A.(1,+∞)B.(1,2]C.(1,2) D.(2,+∞)3.(5分)下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=x+1 B.f(x)=x﹣|x|C.f(x)=|x|D.f(x)=﹣x4.(5分)设M={1,2,3},N={e,g,h},从M到N的四种对应方式如图,其中是从M到N的映射的是()A. B.C.D.5.(5分)f(x)是定义在(﹣2,2)上的减函数,若f(m﹣1)>f(2m﹣1),实数m 的取值范围()A.m>0 B.C.﹣1<m<3 D.6.(5分)函数y=a x﹣a(a>0,a≠1)的图象可能是()A.B. C.D.7.(5分)设函数若f(x)是奇函数,则g(2)的值是()A.B.﹣4 C.D.48.(5分)函数f(x)=x2+2x,x∈[﹣2,1]的值域为()A.[﹣1,3]B.[4,8]C.[1,3]D.[2,3]9.(5分)化简(a b)×(﹣3a b)÷(a b)的结果()A.6a B.﹣a C.﹣9a D.9a210.(5分)已知幂函数f(x)的图象过点(2,),则f()的值为()A.B.C.﹣4 D.411.(5分)函数的递减区间为()A.(1,+∞)B.C.D.12.(5分)设a=20.1,b=lg,c=log3,则a,b,c的大小关系是()A.b>c>a B.a>c>b C.b>a>c D.a>b>c二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知f(x﹣1)=2x+3,f(m)=6,则m=.14.(5分)已知y=f(x)为奇函数,若f(x)=g(x)+x2且g(1)=1,则g(﹣1)=.15.(5分)f(x)=的单调递增区间为.16.(5分)函数f(x)=在R上单调递增,则实数a的取值范围.三、解答题17.(10分)求函数f(x)=()x﹣3×()x+2,x∈[﹣2,2]的值域.18.(12分)已知集合,B={x|m+1≤x≤3m﹣1}.(1)求集合A;(2)若B⊆A,求实数m的取值范围.19.(12分)声强级Y(单位:分贝)由公式给出,其中I为声强(单位:W/m2).(1)平时常人交谈时的声强约为10﹣6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y≤50分贝,已知熄灯后两个学生在宿舍说话的声强为5×10﹣7W/m2,问这两位同学是否会影响其他同学休息?20.(12分)已知函数f(x)=x2﹣bx+c,f(x)的对称轴为x=1且f(0)=﹣1.(1)求b,c的值;(2)当x∈[0,3]时,求f(x)的取值范围.(3)若不等式f(log2k)>f(2)成立,求实数k的取值范围.21.(12分)已知定义域为R的奇函数f(x),当x>0时,f(x)=x2﹣3.(1)当x<0时,求函数f(x)的解析式;(2)求函数f(x)在R上的解析式;(3)解方程f(x)=2x.22.(12分)已知定义域为R的函数是奇函数.(1)求a,b的值;(2)用定义证明f(x)在(﹣∞,+∞)上为减函数;(3)若对于任意t∈R,不等式f(t2﹣2t)<f(﹣2t2+k)恒成立,求k的取值范围.2016-2017学年河北省衡水一中高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合U={1,2,3,4,5},A={1,2,3},B={2,4},则图中阴影部分所表示的集合是()A.{4}B.{2,4}C.{4,5}D.{1,3,4}【解答】解:集合U={1,2,3,4,5},A={1,2,3},B={2,4},则图中阴影部分所表示,为B∩C U A,∵C U A={4,5}∴可得B∩C U A={4},故选:A.2.(5分)函数的定义域是()A.(1,+∞)B.(1,2]C.(1,2) D.(2,+∞)【解答】解:由=,得0<x﹣1≤1,∴1<x≤2.则函数的定义域是(1,2].故选:B.3.(5分)下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=x+1 B.f(x)=x﹣|x|C.f(x)=|x|D.f(x)=﹣x【解答】解:对于A,f(x)=x+1,f(2x)=2x+1≠2f(x)=2x+2,A不正确;对于B,f(x)=x﹣|x|,f(2x)=2x﹣|2x|=2f(x)=2x+2|x|,B正确;对于C,f(x)=|x|,f(2x)=2|x|=2f(x)=2|x|,C正确;对于D,f(x)=﹣x,f(2x)=﹣2x=2f(x)=﹣2x,D正确;故选:A.4.(5分)设M={1,2,3},N={e,g,h},从M到N的四种对应方式如图,其中是从M到N的映射的是()A. B.C.D.【解答】解:对于A中的对应,由于集合M中的元素3在集合N中有2个元素g、h和它对应,故不满足映射的定义.对于B中的对应,由于集合M中的元素2在集合N中有2个元素e、h和它对应,故不满足映射的定义.对于C中的对应,由于集合M中的每一个元素在集合N中有唯一确定的一个元素和它对应,故满足映射的定义.对于D中的对应,由于集合M中的元素3在集合N中有2个元素g、h和它对应,故不满足映射的定义.故选:C.5.(5分)f(x)是定义在(﹣2,2)上的减函数,若f(m﹣1)>f(2m﹣1),实数m 的取值范围()A.m>0 B.C.﹣1<m<3 D.【解答】解:∵f(x)是定义在(﹣2,2)上的减函数,f(m﹣1)>f(2m﹣1),∴∴故选:B.6.(5分)函数y=a x﹣a(a>0,a≠1)的图象可能是()A.B. C.D.【解答】解:由于当x=1时,y=0,即函数y=a x﹣a 的图象过点(1,0),故排除A、B、D.故选:C.7.(5分)设函数若f(x)是奇函数,则g(2)的值是()A.B.﹣4 C.D.4【解答】解:∵f(x)为奇函数,x<0时,f(x)=2x,∴x>0时,f(x)=﹣f(﹣x)=﹣2﹣x=,即,.故选:A.8.(5分)函数f(x)=x2+2x,x∈[﹣2,1]的值域为()A.[﹣1,3]B.[4,8]C.[1,3]D.[2,3]【解答】解:函数f(x)=x2+2x,开口向上,对称轴x=﹣1,∵x∈[﹣2,1],∴[﹣2,﹣1]是单调递增,[﹣1,1]是单调递减.当x=﹣1时,函数f(x)取得最小值为﹣1,当x=1时,函数f(x)取得最大值为3,∴函数f(x)=x2+2x,x∈[﹣2,1]的值域为[﹣1,3].故选:A.9.(5分)化简(a b)×(﹣3a b)÷(a b)的结果()A.6a B.﹣a C.﹣9a D.9a2【解答】解:==﹣9a故选:C.10.(5分)已知幂函数f(x)的图象过点(2,),则f()的值为()A.B.C.﹣4 D.4【解答】解:设幂函数f(x)=xα,∵幂函数f(x)的图象过点(2,),∴,解得α=﹣2.∴f(x)=x﹣2.则f()==4.故选:D.11.(5分)函数的递减区间为()A.(1,+∞)B.C.D.【解答】解:对于函数,令t=2x2﹣3x+1,则y=t,t=2x2﹣3x+1>0,解可得x<或x>1,t>0时,y=t为减函数,要求的递减区间,需求t=2x2﹣3x+1的递增区间,由二次函数的性质知t=2x2﹣3x+1的递增区间为(1,+∞)故选:A.12.(5分)设a=20.1,b=lg,c=log3,则a,b,c的大小关系是()A.b>c>a B.a>c>b C.b>a>c D.a>b>c【解答】解:∵20.1>20=1=lg10>lg>0>log3,∴a>b>c,故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知f(x﹣1)=2x+3,f(m)=6,则m=﹣.【解答】解:令t=x﹣1,∴x=2t+2f(t)=4t+7又∵f(m)=6即4m+7=6∴m=故答案为:14.(5分)已知y=f(x)为奇函数,若f(x)=g(x)+x2且g(1)=1,则g(﹣1)=﹣3.【解答】解:因为f(1)=g(1)+12=2,y=f(x)为奇函数,所以f(﹣1)=f(﹣1)+1=﹣2,∴g(﹣1)=﹣3,故答案为:﹣3.15.(5分)f(x)=的单调递增区间为(﹣∞,1).【解答】解:令t=x2﹣2x﹣3,则f(x)=,故本题即求二次函数t的减区间,再利用二次函数的性质可得二次函数t的减区间为(﹣∞,1),故答案为:(﹣∞,1).16.(5分)函数f(x)=在R上单调递增,则实数a的取值范围[4,8).【解答】解:∵函数f(x)=在R上单调递增,∴,求得4≤a<8,故答案为:[4,8),故答案为:[4,8).三、解答题17.(10分)求函数f(x)=()x﹣3×()x+2,x∈[﹣2,2]的值域.【解答】解:令()x=t,则t∈[,4],∴f(x)=t2﹣3t+2.令g(t)=t2﹣3t+2.则g(t)的对称轴为t=,∴g(t)在[,]上单调递减,在(,4]上单调递增.∴当t=时,g(t)取得最小值g()=﹣,当t=4时,g(t)取得最大值g (4)=6.∴f(x)的值域是[﹣,6].18.(12分)已知集合,B={x|m+1≤x≤3m﹣1}.(1)求集合A;(2)若B⊆A,求实数m的取值范围.【解答】解:(1)∵,∴2﹣3≤2x+1≤24,∴﹣3≤x+1≤4,∴﹣4≤x ≤3,∴A={x|﹣4≤x≤3}.(2)若B=∅,则m+1>3m﹣1,解得m<1,此时满足题意;若B≠∅,∵B⊆A,∴必有,解得.综上所述m的取值范围是.19.(12分)声强级Y(单位:分贝)由公式给出,其中I为声强(单位:W/m2).(1)平时常人交谈时的声强约为10﹣6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y≤50分贝,已知熄灯后两个学生在宿舍说话的声强为5×10﹣7W/m2,问这两位同学是否会影响其他同学休息?【解答】解:(1)当I=10﹣6W/m2时,代入公式,得=60,则其声强级为60分贝;(2)当y=0时,,∴I=10﹣12,则最低声强为10﹣12W/m2,(3)当声强I=5×10﹣7W/m2时,代入公式,得=50+10lg5>50,则两位同学是会影响其他同学休息.20.(12分)已知函数f(x)=x2﹣bx+c,f(x)的对称轴为x=1且f(0)=﹣1.(1)求b,c的值;(2)当x∈[0,3]时,求f(x)的取值范围.(3)若不等式f(log2k)>f(2)成立,求实数k的取值范围.【解答】解:(1)∵f(x)的对称轴为x=1且f(0)=﹣1,∴=1,f(0)=c=﹣1,∴b=2,c=﹣1;(2)由(1)得:f(x)=x2﹣2x﹣1=(x﹣1)2﹣2,∴x∈[0,3]时,最小值为﹣2,最大值为f(3)=2,∴f(x)的取值范围为[﹣2,2];(3)f(log2k)>f(2)=﹣1,∴log2k>2或log2k<0,∴k>4或0<k<1.21.(12分)已知定义域为R的奇函数f(x),当x>0时,f(x)=x2﹣3.(1)当x<0时,求函数f(x)的解析式;(2)求函数f(x)在R上的解析式;(3)解方程f(x)=2x.【解答】解:(1)设x<0,则﹣x>0,则f(﹣x)=(﹣x)2﹣3=x2﹣3,∵函数f(x)为奇函数,∴f(x)=﹣f(﹣x)=﹣x2+3,(2)∵函数f(x)为奇函数,∴f(0)=﹣f(0)=0,∴f(x)=(3)当x=0时,方程f(x)=0=2x,解之得x=0;当x>0时,方程f(x)=x2﹣3=2x,解之得x=3,或x=﹣1(舍去);当x<0时,方程f(x)=﹣x2+3=2x,解之得x=﹣3,或x=1(舍去);综上所述,方程f(x)=2x的解集为{﹣3,0,3}22.(12分)已知定义域为R的函数是奇函数.(1)求a,b的值;(2)用定义证明f(x)在(﹣∞,+∞)上为减函数;(3)若对于任意t∈R,不等式f(t2﹣2t)<f(﹣2t2+k)恒成立,求k的取值范围.【解答】解:(1)因为f(x)为R上的减函数,所以f(0)=0,b=1.又f(﹣1)=﹣f(1),得a=1.经检验a=1,b=1符合题意.(2)任取x1,x2∈R且x1<x2,则f(x1)﹣f(x2)=﹣=,因为x 1<x2,所以.又(2x2+1)(2x1+1)>0,故f(x1)﹣f(x2)>0,所以f(x)为R上的减函数.(3)因为t∈R,不等式f(t2﹣2t)<f(﹣2t2+k)恒成立.由f(x)为减函数,所以t2﹣2t>k﹣2t2,即k<3t2﹣2t恒成立,而y=3t2﹣2t=3﹣≥﹣,所以k<﹣.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

河北省衡水市数学高一上学期理数期中考试试卷

河北省衡水市数学高一上学期理数期中考试试卷

河北省衡水市数学高一上学期理数期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共13题;共26分)1. (2分)设集合,则()A .B .C .D .2. (2分)与函数y=x有相同图象的一个函数是()A . y=B . y=C . y=D . y=3. (2分) (2016高一上·定州期中) 在区间D上,若函数y=f(x)为增函数,而函数为减函数,则称函数y=f(x)为区间D上的“弱增”函数.则下列函数中,在区间[1,2]上不是“弱增”函数的为()A .B .C . g(x)=x2+1D . g(x)=x2+44. (2分)(2020·海南模拟) 如图是二次函数的部分图象,则函数的零点所在的区间是()A .B .C .D .5. (2分) (2015高三上·枣庄期末) 设a=log0.32,b=log32,c=20.3 ,则这三个数的大小关系是()A . b>c>aB . a>c>bC . a>b>cD . c>b>a6. (2分) (2016高一下·芒市期中) 函数f(x)=﹣x2﹣4x+1的最大值和单调增区间分别为()A . 5,(﹣2,+∞)B . ﹣5,(﹣2,+∞)C . 5,(﹣∞,2)D . 5,(﹣∞,﹣2)7. (2分) (2018高一上·台州月考) 若是定义在上的奇函数,当时,(为常数),则()A .B .C .D .8. (2分)已知,设函数的零点为m,的零点为,则的最大值为()A . 8B . 4C . 2D . 19. (2分)函数f(x)= 的单调递减区间是()A . (﹣∞, ]B . [ ,+∞)C . (﹣1, ]D . [ ,4]10. (2分) (2016高一上·湖南期中) 函数f(x)=ln(|x|﹣1)的大致图象是()A .B .C .D .11. (2分)设函数f(x)(x)为奇函数,,则f(5)=()A . 0B . 1C .D . 512. (2分)定义在上的函数是奇函数,且满足.当时,,则的值是()A .B .C .D .13. (2分)设函数仅有一个负零点,则m的取值范围为()A . {m|-3≤m≤0}B . {m|-3<m<0}C . <{m|-3≤m<0}D . {m|m=1或-3≤m≤0}二、填空题 (共4题;共4分)14. (1分)设函数f(x)=|2x﹣1|的定义域和值域都是[a,b],则a+b=________.15. (1分)已知,则不等式的解集为________.16. (1分) (2020高三上·浦东期末) 已知集合,任取,则幂函数为偶函数的概率为________(结果用数值表示)17. (1分)(2017·青州模拟) 对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:⑴f(x)在[m,n]上是单调的;⑵当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“和谐区间”.若函数f(x)=﹣(a>0)存在“和谐区间”,则实数a的取值范围是________.三、解答题 (共6题;共50分)18. (10分) (2019高一上·纳雍期中) 求下列各式的值(1)(2)19. (5分) (2018高一上·吉林期中) 已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求()∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.20. (10分) (2018高二下·辽宁期末) 已知函数(为常数)有两个不同的极值点.(1)求实数的取值范围;(2)记的两个不同的极值点分别为,若不等式恒成立,求实数的取值范围.21. (10分) (2017高一上·扬州期中) 已知二次函数y=f(x)满足f(﹣2)=f(4)=﹣16,且f(x)最大值为2.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)在[t,t+1](t>0)上的最大值.22. (10分) (2017高二下·西华期中) 请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.23. (5分)已知函数f(x)=1﹣在R上是奇函数.(1)求a;(2)对x∈(0,1],不等式s•f(x)≥2x﹣1恒成立,求实数s的取值范围;参考答案一、选择题 (共13题;共26分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、填空题 (共4题;共4分)14-1、15-1、16-1、17-1、三、解答题 (共6题;共50分) 18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、。

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。

3.本卷命题范围:新人教版必修第一册第一章~第四章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。

一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。

高一(上学期)期中考试数学试卷

高一(上学期)期中考试数学试卷

高一(上学期)期中考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知集合{,}A x y =,集合{}22,2B x x =,且A B =,则x =_______ 2.已知函数1()4x f x a -=+的图象恒过定点P ,则点P 坐标是___________3.定义在R 上的奇函数()y f x =满足(1)(0)f f π+=,则(1)f -=___________.4.方程42log 13x +=的解x =___________.5.若关于x 的方程53=+x a 有负实根,则实数a 的取值范围是___________6.若函数2245y x x =-+的图象按向量a 平移后得到函数22y x =的图象,则向量a 的坐标为________. 7.在如今这个5G 时代,6G 研究己方兴末艾,2021年8月30日第九届未来信息通信技术国际研讨会在北京举办,会上传出消息,未来6G 速率有望达到1Tbps ,并启用毫米波、太赫兹、可见光等尖端科技,有望打造出空天地融合的立体网络,预计6G 数据传输速率有望比5G 快100倍,时延达到亚毫秒级水平.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示:在受噪声干扰的信道中,最大信息传递率C 取决于信道宽带W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.若不改变宽带W ,而将信噪比S N从11提升至499,则最大信息传递率C 会提升到原来的_________倍.(结果保留一位小数)8.设a 是实数,若1x =是x a >的一个充分条件,则a 的取值范围是__________.9.设无穷等比数列{}n a 的公比为q ,且211a q =+,则该数列的各项和的最小值为__________. 10.已知0,0a b >>,且12223a b +=+,则2a b +的最小值为___________. 11.已知a 为奇数且0a >,则关于x 的不等式21a x x x ≤-的解集为___________. 12.设,x y ∈R ,若|||4||||1|5x x y y +-++-≤,则23x y xy -+的取值范围为___________.二、单选题13.设a 、b 、c 表示三条互不重合的直线,α、β表示两个不重合的平面,则使得“//a b ”成立的一个充分条件为( )A .a c ⊥,b c ⊥B .//a α,//b αC .//a α,b αβ=,a β⊂D .b α⊥,//c α,a c ⊥ 14.设集合{}02M x x =≤≤,{}02N y y =≤≤,那么下列四个图形中,能表示集合M 到集合N 的函数关系的有( )A .①①①①B .①①①C .①①D .①15.设20202021202120222121,2121a b ++==++,则下列说法中正确的是( ) A .a b > B .11a b > C .222a b +≥ D .2b a a b+= 16.设C ={复数},R ={实数},M ={纯虚数},全集U C =,则下列结论中正确的是( )A .⋃=R M CB .⋂=∅C R M C .C C R M ⋂=D .⋃=C C M R C三、解答题17.设全集为R ,已知301x A x x -⎧⎫=>⎨⎬+⎩⎭,{}223B x a x a =-<<+. (1)若1a =,求A B ⋂;(2)若A B ⋃=R ,求实数a 的取值范围.18.若不等式210mx mx +-<对x ∈R 恒成立,求m 的取值范围.19.研究表明:在一节40分钟的网课中,学生的注意力指数y 与听课时间x (单位:分钟)之间的变化曲线如图所示,当[0,16]x ∈时,曲线是二次函数图像的一部分;当[16,40]x ∈时,曲线是函数0.880log ()y x a =++图像的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数()y f x =的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)20.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x ,使得00(1)()(1)f x f x f +=+成立. (1)函数1()f x x=是否属于集合M ?说明理由; (2)设函数2()lg ,1a f x M x =∈+求a 的取值范围; (3)设函数2x y =图像与函数y x =-的图像有交点且横坐标为a ,证明:函数2()2x f x x M =+∈,并求出对应的0x (结果用a 表示出来).21.设非空集合{}2|(2)10,A x x b x b b R =++++=∈,求集合A 中所有元素的和.参考答案:1.12【分析】根据A =B ,得到两个集合的元素相同,然后根据集合元素的特点建立方程即可.【详解】解:因为集合A :{x ,y },B :{2x ,2x 2},且A =B ,当x =2x 时,x =0,此时A ={0,0},B ={0,0},不成立,舍去.所以x =2x 2,y =2x 解得x 12=或x =0(舍). 当x 12=时,A ={12,1},B ={1,12}满足条件. 所以A ={12,1}. 故答案为:12【点睛】本题主要考查集合相等的应用,集合相等,对应元素完全相同.注意进行检验.2.()1,5【分析】根据指数函数的指数为0,求出函数过定点坐标;【详解】解:因为1()4x f x a -=+,令10x -=,即1x =,所以11(1)45f a -=+=,即函数恒过点()1,5P ; 故答案为:()1,53.π-【分析】利用奇函数的性质有(1)(0)(1)0f f f +=--+,结合已知即可求值.【详解】由题意(0)0f =且()()f x f x -=-,则(1)(0)(1)0f f f π+=--+=,则(1)f π-=-.故答案为:π-.4.4【分析】根据对数的定义可得.【详解】由42log 13x +=得4log 1x =,所以4x =.故答案为:4.5.()3,2--【分析】设方程53=+x a 有负实根为00(0)x x <,根据指数函数的性质,得到0051x <<,进而得到031a <+<,即可求解.【详解】设关于x 的方程53=+x a 有负实根为00(0)x x <,根据指数函数的性质,可得0051x <<,所以031a <+<,可得32a -<<,即实数a 的取值范围是()3,2--.故答案为:()3,2--.6.(1,3)--【分析】把函数式2245y x x =-+配方后,根据图象变换知可得.【详解】2245y x x =-+22(1)3x =-+,因此把它向左平移1个单位,再下平移3个单位可得22y x =的图象.①(1,3)a =--.故答案为:(1,3)--.【点睛】本题考查函数图象平移,考查向量的概念.属于基础题.7.2.5##52【分析】设提升前最大信息传递率为1C ,提升后最大信息传递率为2C , 再根据题意求21CC ,利用指数、对数的运算性质化简即可求解.【详解】设提升前最大信息传递率为1C ,提升后最大信息传递率为2C ,则由题意可知,122log (111)log 12C W W =+=,222log (1499)log 500C W W =+=, 所以()()()()log log log log lo log g C W C W ⨯⨯===⨯⨯223222222122210525500232123 log log log ...log log log ..+++⨯====≈+++23222232222523523232896252232158358倍. 所以最大信息传递率C 会提升到原来的2.5倍.故答案为:2.58.(),1-∞【分析】利用充分条件的定义,将问题转化为{}{}1|x x a ⊆>,由子集的定义求解即可.【详解】解:因为1x =是x a >的一个充分条件,则{}{}1|x x a ⊆>,所以1a <,则a 的取值范围是(),1-∞.故答案为:(),1-∞.9.)21 【分析】先写出无穷等比数列各项和的表达式,然后利用基本不等式求解即可.【详解】{}n a 是公比为q 的无穷等比数列,∴{}n a 数列的各项和为()()22111lim lim =11n n n n q q q S q q →+∞→+∞+-+=--,其中()()1,00,1q ∈-, 又11q -<<且0q ≠,012q ∴<-<且10q -≠,()())2211112122=21111q q q q q q ⎡⎤--++⎣⎦∴==-+-≥---,当且仅当211q q-=-,即1q =∴数列{}n a 的各项和的最小值为)21.故答案为:)21 10.8 【分析】根据0,0a b >>,且12223a b +=+,将2a b +转化为()2224a b a b +=++-()13222422a a b b =+⎛⎫+- ⎪+⎝⎤⎦⎭+⎡⎣,利用基本不等式求解. 【详解】因为0,0a b >>,且12223a b +=+, 所以()2224a b a b +=++-,()13222422a a b b =+⎛⎫+- ⎪+⎝⎤⎦⎭+⎡⎣, ()2324244a b a b +⎛⎫=++- ⎪+⎝⎭,24834⎛ ≥+-= ⎝, 当且仅当()422a b a b+=+,即1,6a b ==时,等号成立, 所以2a b +的最小值为8,故答案为:811.{|1x x ≥或10}2x ≤< 【分析】讨论0x <、102x ≤<、12x >分别求对应解集,最后取并即得结果. 【详解】由题设1(21)02121a a a x x x x x x x ----=≥--,又a 为奇数且0a >,则12,N a k k -=∈, 当0x <时,1210a a x x ---<,210x -<,则021a x x x -<-不满足题设; 当102x ≤<时,021a x x x ≤≤-成立; 当12x >时,不等式等价于1(21)1a x x --≥, 若112x <<时,10,211a x x -<-< ,即1(21)1a x x --<与题设矛盾;若1≥x 时,1,211a x x --≥,满足1(21)1a x x --≥;综上,不等式解集为{|1x x ≥或10}2x ≤<. 故答案为:{|1x x ≥或10}2x ≤< 12.[3,9]-【分析】利用绝对值三角不等式可得|||4||||1|5x x y y +-++-=,即04x ≤≤,01y ≤≤,利用23m x y xy=-+中(,)x y 与{(,)|04,01}x y x y ≤≤≤≤有公共点,讨论3x =或2y =-、3x ≠研究m 的范围即可.【详解】|||4||||4||4|4x x x x x x +-=+-≥+-=,当04x ≤≤时等号成立,|||1||||1||1|1y y y y y y +-=+-≥+-=,当01y ≤≤时等号成立,所以|||4||||1|5x x y y +-++-≥,而|||4||||1|5x x y y +-++-≤,故|||4||||1|5x x y y +-++-=,此时04x ≤≤,01y ≤≤,令23m x y xy =-+中(,)x y ,与{(,)|04,01}x y x y ≤≤≤≤所表示的区域有公共点,当3x =或2y =-时6m =,而3[0,4]x =∈,故6m =满足;当3x ≠时,由62[0,1]3m y x -=-∈-得:6233m x -≤≤-,而04x ≤≤, 若34x <≤时60m ->,此时23(1)x m x ≤≤-,故69<≤m ;若03x ≤<时60m ->,此时233x m x ≥≥-,故36m -≤<;综上,3m -≤≤9.故答案为:[3,9]-【点睛】关键点点睛:利用绝对值三角不等式得|||4||||1|5x x y y +-++-=确定x 、y 的范围,再将问题转化为23m x y xy =-+中(,)x y 与{(,)|04,01}x y x y ≤≤≤≤有公共点求m 的范围即可.13.C【分析】由线线垂直的性质可判断A ,由线面平行的性质可判断B ,由线面平行的性质可判断C ,由线面平行垂直的性质可判断D .【详解】选项A :当a c ⊥,b c ⊥时,则//a b 或a 与b 相交或异面,①A 错误,选项B :当//a α,//b α时,则//a b 或a 与b 相交或异面,①B 错误,选项C :由线面平行的性质定理,当//a α,a β⊂,b αβ=时,则//a b ,①C 正确,选项D :当b α⊥,//c α时,①b c ⊥,①a c ⊥,则//a b 或a 与b 相交或异面,①D 错误故选:C14.C【分析】根据函数的定义,逐项判定,即可求解. 【详解】由题意,函数的定义域为{}02M x x =≤≤,对于①中,函数的定义域不是集合M ,所以不能构成集合M 到集合N 的函数关系;对于①中,函数的定义域为集合M ,值域为集合N ,所以可以构成集合M 到集合N 的函数关系; 对于①中,函数的定义域为集合M ,值域为集合N ,所以可以构成集合M 到集合N 的函数关系;对于①中,根据函数的定义,集合M 中的元素在集合N 中对应两个函数值,不符合函数的定义,所以不正确.故选:C15.A【分析】令()()1111111212112222121212x x x x x f x +++++++===++++,判断函数的单调性,即可判断A ,再根据不等式的性质即可判断BC ,再利用基本不等式即可判断D.【详解】解:令()()1111111212112222121212x x x x x f x +++++++===++++, 因为121x y +=+在R 上递增,且1210x ++>,所以函数()f x 在在R 上递减,所以()()202020210f f >>,即0a b >>,所以11a b<, 故A 正确,B 错误; 因为2020202120212022212101,012121a b ++<=<<=<++, 所以222a b +<,故C 错误;因为2b a a b +≥, 当且仅当b a a b=,即a b =时,取等号,又a b >, 所以2b a a b +>,故D 错误. 故选:A.16.D【分析】注意复数域的构成,对选项逐一分析,可得结果.【详解】因为对于任意复数(,)z a bi a R b R =+∈∈,当0b =时z 为实数,当0b ≠时z 为虚数,当0,0a b =≠时z 为纯虚数,所以复数包括实数和虚数,纯虚数是特殊的虚数,所以对于A 项,并集中还少不是纯虚数的虚数,对于B 项,交集应该为R ,对于C 项,结果应该为虚数集,只有D 项是满足条件的,故选:D.【点睛】该题考查的是有关复数域的问题,涉及到的知识点有复数的分类,集合的运算,数域简单题目. 17.(1){|13}x x <≤;(2)3a >.【分析】(1)解分式不等式可得集合A ,并求出A ,由1a =得集合B ,再利用交集的定义直接计算作答.(2)由A B =R 可得A B ⊆,再借助集合的包含关系列式计算作答.(1) 解不等式:301x x ->+,即(3)(1)0x x -+>,解得:1x <-或3x >,则{|1A x x =<-或3}x >, 因全集为R ,于是得{|13}A x x =-≤≤,当1a =时,{|15}B x x =<<, 所以{|13}A B x x ⋂=<≤.(2)由(1)知,{|13}A x x =-≤≤,因A B =R ,因此有:A B ⊆,于是得21233a a -<-⎧⎨+>⎩,解得3a >, 所以实数a 的取值范围是:3a >.18.(]4,0-【分析】本题需要对0m =和0m ≠两种情况分别讨论. 当0m =时结论恒成立; 当0m ≠时,使用二次函数的性质分析求解; 最后综合两种情况的结论即可.【详解】由已知可得,当0m =时,10-<成立;当0m ≠时,要使不等式210mx mx +-<对x ∈R 恒成立,则二次函数开口向下, 即0m <,且最大值要小于0, 即和x 轴没有交点, 所以240m m ∆=+<, 解得40m -<<; 综上, m 的取值范围为(]4,0m ∈-.19.(1)20.81(12)84,(0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩;(2)14分钟.【解析】(1)根据题意,分别求得(0,16]x ∈和(16,40]x ∈上的解析式,即可求解; (2)当(0,16]x ∈和(16,40]x ∈时,令()68f x <,求得不等式的解集,即可求解.【详解】(1)当(0,16]x ∈时,设函数2()(12)84(0)f x b x b =-+<,因为2(16)(1612)8480f b =-+=,所以14b =-,所以21()(12)844f x x =--+, 当(16,40]x ∈时,0.8()log ()80f x x a =++,由0.8(16)log (16)8080f a =++=,解得15a =-,所以0.8()log (15)80f x x =-+, 综上,函数的解析式为20.81(12)84,(0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩. (2)当(0,16]x ∈时,令21()(12)84684f x x =--+<, 即2(12)64x ->,解得4x <或20x >(舍去),所以[0,4]x ∈,当(16,40]x ∈时,令0.8()log (15)8068f x x =-+<,得12150.829.6x -≥+≈,所以[30,40]x ∈,所以学生处于“欠佳听课状态”的时间长为40403014-+-=分钟. 20.(1)1()f x M x=∉,答案见解析;(2)3a ⎡∈⎣;(3)证明见解析;01x a =+. 【分析】(1)集合M 中元素的性质,即有()()()0011f x f x f +=+成立,代入函数解析式列出方程,进行求解即可;(2)根据()()()0011f x f x f +=+和对数的运算,求出关于a 的方程,再根据方程有解的条件求出a 的取值范围,当二次项的系数含有参数时,考虑是否为零的情况;(3)利用()()()0011f x f x f +=+和()22x f x x M =+∈,整理出关于0x 的式子,利用2x y =图象与函数y x=-的图象有交点,即对应方程有根,与求出的式子进行比较和证明.【详解】(1)若1(),f x M x=∈在定义域内存在0x , 则20000111101x x x x =+⇒++=+方程无解,所以1(),f x M x=∉第 11 页 共 11 页 (2)由题意得2()lg 1a f x M x =∈+ 222lg lg +lg (2)22(1)0(+1)112a a a a x ax a x x ∴=⇒-++-=++ 当2a =时,12x =; 当2a ≠时,由0∆≥,得2640a a -+≤,解的)(32,35a ⎡∈+⎣综上,3a ⎡∈⎣; (3)函数2()2,x f x x M =+∈001220000(1)()(1)2(1)23x x f x f x f x x +∴+--=++---00100=22(1)22(1),x x x x -⎡⎤+-=+-⎣⎦又函数2x y =图像与函数y x =-的图像有交点且横坐标为a则010202(1)0x a a x -+=⇒+-=,其中01x a =+00(1)()(1),f x f x f ∴+=+即2()2x f x x M =+∈.【点睛】此题的集合中的元素是集合,主要利用了元素满足的恒等式进行求解,根据对数和指数的元素性质进行化简,考查了逻辑思维能力和分析、解决问题的能力.21.答案见解析【分析】分一元二次方程有相等实根与两个不相等实根讨论,当有相等实根时,直接求解,当有不相等实根时由根与系数关系求解.【详解】当0b =时,解得121x x ==-,{1}A =-,所以A 中所有元素之和为1-,当0b ≠时,22(2)4(1)0b b b ∆=+-+=>,方程2(2)10x b x b ++++=有两个不等的实根,由根与系数的关系知12(2)x x b +=-+,即A 中所有元素之和为2b --,【点睛】本题主要考查了一元二次方程的根,分类讨论的思想,集合的描述法,属于中档题.。

河北省衡水市高一数学上学期期中试卷(a卷)(含解析)

河北省衡水市高一数学上学期期中试卷(a卷)(含解析)

2016-2017学年河北省衡水市高一(上)期中数学试卷(A卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|x>﹣1},则()A.0⊆A B.{0}⊆A C.{0}∈A D.∅∈A2.不论a,b为何实数,a2+b2﹣2a﹣4b+8的值()A.总是正数 B.总是负数C.可以是零 D.可以是正数也可以是负数3.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}4.下列各图中,可表示函数y=f(x)的图象的只可能是()A.B.C.D.5.设函数f(x)=2x+1的定义域为[1,5],则函数f(2x﹣3)的定义域为()A.[1,5] B.[3,11] C.[3,7] D.[2,4]6.已知函数f(x)=,若∀x∈R,则k的取值范围是()A.0≤k< B.0<k< C.k<0或k> D.0<k≤7.函数f(x)=的最大值是()A.B.C.D.8.已知函数f(x)=,则f(3)的值等于()A.﹣2 B.﹣1 C.1 D.29.已知函数f(x)=是R上的增函数,则a的取值范围是()A.﹣3≤a<0 B.﹣3≤a≤﹣2 C.a≤﹣2 D.a<010.f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是()A. B. C.[3,+∞)D.(0,3]11.已知定义在R上的函数f(x)在(﹣∞,﹣2)上是减函数,若g(x)=f(x﹣2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(﹣∞,﹣2]∪[2,+∞)B.[﹣4,﹣2]∪[0,+∞)C.(﹣∞,﹣4]∪[﹣2,+∞)D.(﹣∞,﹣4]∪[0,+∞)12.已知f(x)=,则f(f(x))≤3的解集为()A.(﹣∞,﹣3] B.[﹣3,+∞)C.(﹣∞,] D.[,+∞)二、填空题:本大题共4小题,每小题5分,共20分.把答案直接答在答题纸上.13.函数y=|x2﹣4x|的增区间是.14.已知一次函数y=x+1与二次函数y=x2﹣x﹣1的图象交于两点A(x1,y1),B(x2,y2),则+= .15.设f(x)=1﹣2x2,g(x)=x2﹣2x,若,则F(x)的最大值为.16.已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=(x>0),则给出以下四个结论:①函数f(x)的值域为[0,1];②函数f(x)的图象是一条曲线;③函数f(x)是(0,+∞)上的减函数;④函数g(x)=f(x)﹣a有且仅有3个零点时.其中正确的序号为.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.设集合A={x|2≤x≤4},B={x|x>3,或x<1},C={x|t+1<x<2t},t∈R.(Ⅰ)求A∪∁U B;(Ⅱ)若A∩C=C,求t的取值范围.18.已知函数f(x)=1+(﹣2<x≤2)(1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域、单调区间.19.函数f(x)=2x﹣的定义域为(0,1](a为实数).(1)当a=1时,求函数y=f(x)的值域;(2)若函数y=f(x)在定义域上是减函数,求a的取值范围.20.若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)﹣f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[﹣1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.21.已知函数f(x)在其定义域(0,+∞),f(2)=1,f(xy)=f(x)+f(y),当x>1时,f(x)>0;(1)求f(8)的值;(2)讨论函数f(x)在其定义域(0,+∞)上的单调性;(3)解不等式f(x)+f(x﹣2)≤3.22.设函数f(x)=x2﹣2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8,求t的取值范围.2016-2017学年河北省衡水市冀州中学高一(上)期中数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|x>﹣1},则()A.0⊆A B.{0}⊆A C.{0}∈A D.∅∈A【考点】12:元素与集合关系的判断.【分析】利用集合与元素的关系应当是属于关系、集合与集合之间的关系应当是包含关系进行判断即可.【解答】解:A.0⊆A错误,应当是0∈A,集合与元素的关系应当是属于关系;B.集合与集合之间的关系应当是包含关系,故B正确;C.集合与集合之间的关系应当是包含关系,故C不正确;D.空集是任何集合的子集,故D不正确.故选:B.2.不论a,b为何实数,a2+b2﹣2a﹣4b+8的值()A.总是正数 B.总是负数C.可以是零 D.可以是正数也可以是负数【考点】71:不等关系与不等式.【分析】利用配方法把代数式a2+b2﹣2a﹣4b+8变形为几个完全平方的形式后即可判断.【解答】解:∵a2+b2﹣2a﹣4b+8=(a2﹣2a+1)+(b2﹣4b+4)+3=(a﹣1)2+(b﹣2)2+3≥3,故不论a、b取何值代数式a2+b2+4b﹣2a+6恒为正数.故选A.3.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}【考点】18:集合的包含关系判断及应用.【分析】根据B⊆A,利用分类讨论思想求解即可.【解答】解:当a=0时,B=∅,B⊆A;当a≠0时,B={}⊆A, =1或=﹣1⇒a=﹣2或2,综上实数a的所有可能取值的集合为{﹣2,0,2}.故选D.4.下列各图中,可表示函数y=f(x)的图象的只可能是()A.B.C.D.【考点】3O:函数的图象;31:函数的概念及其构成要素.【分析】根据函数的概念得:因变量(函数),随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应,结合图象特征进行判断即可.【解答】解:根据函数的定义知:自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应.∴从图象上看,任意一条与x轴垂直的直线与函数图象的交点最多只能有一个交点.从而排除A,B,C,故选D.5.设函数f(x)=2x+1的定义域为[1,5],则函数f(2x﹣3)的定义域为()A.[1,5] B.[3,11] C.[3,7] D.[2,4]【考点】33:函数的定义域及其求法.【分析】由题意知1≤2x﹣3≤5,求出x的范围并用区间表示,是所求函数的定义域.【解答】解:∵函数f(x)的定义域为[1,5],∴1≤2x﹣3≤5,解得2≤x≤4,∴所求函数f(2x﹣3)的定义域是[2,4].故选D.6.已知函数f(x)=,若∀x∈R,则k的取值范围是()A.0≤k< B.0<k< C.k<0或k> D.0<k≤【考点】3R:函数恒成立问题.【分析】本选择题利用特殊值法解决,观察几个选项知,当k=0时,看是否能保证∀x∈R,如能,则即可得出正确选项.【解答】解:考虑k的特殊值:k=0,当k=0时,f(x)=,此时:∀x∈R,对照选项排除B,C,D.故选A.7.函数f(x)=的最大值是()A.B.C.D.【考点】7F:基本不等式;3H:函数的最值及其几何意义.【分析】把分母整理成=(x﹣)2+进而根据二次函数的性质求得其最小值,则函数f(x)的最大值可求.【解答】解:∵1﹣x(1﹣x)=1﹣x+x2=(x﹣)2+≥,∴f(x)=≤,f(x)max=.故选D8.已知函数f(x)=,则f(3)的值等于()A.﹣2 B.﹣1 C.1 D.2【考点】3T:函数的值.【分析】根据分段函数的表达式直接代入即可.【解答】解:由分段函数可知,f(3)=f(2)﹣f(1),而f(2)=f(1)﹣f(0),∴f(3)=f(2)﹣f(1)=f(1)﹣f(0)﹣f(1)=﹣f(0)=﹣1,故选:B.9.已知函数f(x)=是R上的增函数,则a的取值范围是()A.﹣3≤a<0 B.﹣3≤a≤﹣2 C.a≤﹣2 D.a<0【考点】3F:函数单调性的性质;3W:二次函数的性质.【分析】由函数f(x)上R上的增函数可得函数,设g(x)=﹣x2﹣ax﹣5,h(x)=,则可知函数g(x)在x≤1时单调递增,函数h(x)在(1,+∞)单调递增,且g(1)≤h(1),从而可求【解答】解:∵函数是R上的增函数设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)∴∴解可得,﹣3≤a≤﹣2故选B10.f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是()A. B. C.[3,+∞)D.(0,3]【考点】34:函数的值域;18:集合的包含关系判断及应用.【分析】先求出两个函数在[﹣1,2]上的值域分别为A、B,再根据对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),集合B是集合A的子集,并列出不等式,解此不等式组即可求得实数a的取值范围,注意条件a>0.【解答】解:设f(x)=x2﹣2x,g(x)=ax+2(a>0),在[﹣1,2]上的值域分别为A、B,由题意可知:A=[﹣1,3],B=[﹣a+2,2a+2]∴∴a≤又∵a>0,∴0<a≤故选:A11.已知定义在R上的函数f(x)在(﹣∞,﹣2)上是减函数,若g(x)=f(x﹣2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(﹣∞,﹣2]∪[2,+∞)B.[﹣4,﹣2]∪[0,+∞)C.(﹣∞,﹣4]∪[﹣2,+∞)D.(﹣∞,﹣4]∪[0,+∞)【考点】3N:奇偶性与单调性的综合.【分析】由g(x)=f(x﹣2)是奇函数,可得f(x)的图象关于(﹣2,0)中心对称,再由已知可得函数f(x)的三个零点为﹣4,﹣2,0,画出f(x)的大致形状,数形结合得答案.【解答】解:由g(x)=f(x﹣2)是把函数f(x)向右平移2个单位得到的,且g(2)=g (0)=0,f(﹣4)=g(﹣2)=﹣g(2)=0,f(﹣2)=g(0)=0,结合函数的图象可知,当x≤﹣4或x≥﹣2时,xf(x)≤0.故选:C.12.已知f(x)=,则f(f(x))≤3的解集为()A.(﹣∞,﹣3] B.[﹣3,+∞)C.(﹣∞,] D.[,+∞)【考点】7E:其他不等式的解法;5B:分段函数的应用.【分析】由已知条件根据分段函数的表达式进行求解即可求出f(f(x))≤3的解集.【解答】解:设t=f(x),则不等式f(f(x))≤3等价为f(t)≤3,作出f(x)=的图象,如右图,由图象知t≥﹣3时,f(t)≤3,即f(x)≥﹣3时,f(f(x))≤3.若x≥0,由f(x)=﹣x2≥﹣3得x2≤3,解得0≤x≤,若x<0,由f(x)=2x+x2≥﹣3,得x2+2x+3≥0,解得x<0,综上x≤,即不等式的解集为(﹣∞,],故选:C.二、填空题:本大题共4小题,每小题5分,共20分.把答案直接答在答题纸上.13.函数y=|x2﹣4x|的增区间是[0,2]和[4,+∞).【考点】5B:分段函数的应用.【分析】画出函数y=|x2﹣4x|的图象,数形结合可得答案.【解答】解:函数y=|x2﹣4x|=的图象如下图所示:由图可得:函数y=|x2﹣4x|的增区间是[0,2]和[4,+∞),(区间端点可以为开),故答案为:[0,2]和[4,+∞)14.已知一次函数y=x+1与二次函数y=x2﹣x﹣1的图象交于两点A(x1,y1),B(x2,y2),则+= ﹣1 .【考点】3O:函数的图象.【分析】联立方程组得,化简得到x2﹣2x﹣2=0,根据韦达定理得到x1+x2=2,x1•x2=﹣2,即可求出答案.【解答】解:联立方程组得,∴x2﹣x﹣1=x+1,∴x2﹣2x﹣2=0,∴x1+x2=2,x1•x2=﹣2,∴+===﹣1,故答案为:﹣1.15.设f(x)=1﹣2x2,g(x)=x2﹣2x,若,则F(x)的最大值为.【考点】3H:函数的最值及其几何意义.【分析】求出F(x)的解析式,在每一段上分别求最大值,综合得结论.【解答】解:有已知得F(x)==,上的最大值是,在x≥1上的最大值是﹣1,y=x2﹣2x在上无最大值.故则F(x)的最大值为故答案为:.16.已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=(x>0),则给出以下四个结论:①函数f(x)的值域为[0,1];②函数f(x)的图象是一条曲线;③函数f(x)是(0,+∞)上的减函数;④函数g(x)=f(x)﹣a有且仅有3个零点时.其中正确的序号为④.【考点】54:根的存在性及根的个数判断;3E:函数单调性的判断与证明.【分析】通过举特例,可得①、②、③错误;数形结合可得④正确,从而得出结论.【解答】解:由于符号[x]表示不超过x的最大整数,函数f(x)=(x>0),取x=﹣1.1,则[x]=﹣2,∴f(x)=>1,故①不正确.由于当0<x<1,[x]=0,此时f(x)=0;当1≤x<2,[x]=1,此时f(x)=;当2≤x<3,[x]=2,此时f(x)=,此时<f(x)≤1,当3≤x<4,[x]=3,此时f(x)=,此时<g(x)≤1,当4≤x<5,[x]=4,此时f(x)=,此时<g(x)≤1,故f(x)的图象不会是一条曲线,且 f(x)不会是(0,+∞)上的减函数,故排除②、③.函数g(x)=f(x)﹣a有且仅有3个零点时,函数f(x)的图象和直线y=a有且仅有3个交点,此时,,故④正确,故答案为:④.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.设集合A={x|2≤x≤4},B={x|x>3,或x<1},C={x|t+1<x<2t},t∈R.(Ⅰ)求A∪∁U B;(Ⅱ)若A∩C=C,求t的取值范围.【考点】1E:交集及其运算;1H:交、并、补集的混合运算.【分析】(Ⅰ)由B与全集U,求出B的补集,找出A与B补集的并集即可;(Ⅱ)由A与C的交集为C,得到C为A的子集,确定出t的范围即可.【解答】解:(Ⅰ)∵B={x|x>3,或x<1},∴∁U B={x|1≤x≤3},∵A={x|2≤x≤4},∴A∪∁U B={x|1≤x≤4};(Ⅱ)∵A∩C=C,∴C⊆A,当C=∅时,则有2t≤t+1,即t≤1;当C≠∅时,则,即1<t≤2,综上所述,t的范围是t≤2.18.已知函数f(x)=1+(﹣2<x≤2)(1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域、单调区间.【考点】3O:函数的图象;3B:分段函数的解析式求法及其图象的作法;3D:函数的单调性及单调区间.【分析】(1)根据x的符号分﹣2<x≤0和0<x≤2两种情况,去掉绝对值求出函数的解析式;(2)根据(1)的函数解析式,画出函数的图象;(3)根据函数的图象求出函数的值域和函数单调区间.【解答】解(1)由题意知,f(x)=1+(﹣2<x≤2),当﹣2<x≤0时,f(x)=1﹣x,当0<x≤2时,f(x)=1,则f(x)=(2)函数图象如图:(3)由(2)的图象得,函数的值域为[1,3),函数的单调减区间为(﹣2,0].19.函数f(x)=2x﹣的定义域为(0,1](a为实数).(1)当a=1时,求函数y=f(x)的值域;(2)若函数y=f(x)在定义域上是减函数,求a的取值范围.【考点】3N:奇偶性与单调性的综合;34:函数的值域.【分析】(1)当a=1时,f(x)=2x﹣,根据函数单调性“增“+“增“=“增“,可得f (x)=2x﹣在(0,1]上单调递增,当x=1时取得最大值f(1)=1,无最小值,进而得到函数y=f(x)的值域;(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即恒成立,进而可得a的取值范围.【解答】解:(1)当a=1时,f(x)=2x﹣,当x∈(0,1]时,y1=2x和y2=﹣均单调递增,所以f(x)=2x﹣在(0,1]上单调递增.当x=1时取得最大值f(1)=1,无最小值,故值域为(﹣∞,1].(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即恒成立,也就是(x1﹣x2)•>0,只需2x1x2+a<0,即a<﹣2x1x2成立.由x1,x2∈(0,1],故﹣2x1x2∈(﹣2,0),所以a≤﹣2.故a的取值范围是(﹣∞,﹣2].20.若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)﹣f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[﹣1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.【考点】3R:函数恒成立问题;36:函数解析式的求解及常用方法.【分析】(1)由二次函数可设f(x)=ax2+bx+c(a≠0),由f(0)=1求得c的值,由f(x+1)﹣f(x)=2x可得a,b的值,即可得f(x)的解析式;(2)欲使在区间[﹣1,1]上不等式f(x)>2x+m恒成立,只须x2﹣3x+1﹣m>0在区间[﹣1,1]上恒成立,也就是要x2﹣3x+1﹣m的最小值大于0,即可得m的取值范围.【解答】解:(1)由题意可知,f(0)=1,解得,c=1,由f(x+1)﹣f(x)=2x.可知,[a(x+1)2+b(x+1)+1]﹣(ax2+bx+1)=2x,化简得,2ax+a+b=2x,∴,∴a=1,b=﹣1.∴f(x)=x2﹣x+1;(2)不等式f(x)>2x+m,可化简为x2﹣x+1>2x+m,即x2﹣3x+1﹣m>0在区间[﹣1,1]上恒成立,设g(x)=x2﹣3x+1﹣m,则其对称轴为,∴g(x)在[﹣1,1]上是单调递减函数.因此只需g(x)的最小值大于零即可,g(x)min=g(1),∴g(1)>0,即1﹣3+1﹣m>0,解得,m<﹣1,∴实数m的取值范围是m<﹣1.21.已知函数f(x)在其定义域(0,+∞),f(2)=1,f(xy)=f(x)+f(y),当x>1时,f(x)>0;(1)求f(8)的值;(2)讨论函数f(x)在其定义域(0,+∞)上的单调性;(3)解不等式f(x)+f(x﹣2)≤3.【考点】3P:抽象函数及其应用.【分析】(1)题意知f(2×2)=f(2)+f(2)=2,f(2×4)=f(2)+f(4)=3,f[x(x ﹣2)]<f(8),(2)利用函数单调性的定义即可证明f(x)在定义域上是增函数;(3)由f(x)的定义域为(0,+∞),且在其上为增函数,将不等式进行转化即可解得答案.【解答】解:(1)∵f(xy)=f(x)+f(y),f(2)=1,∴f(2×2)=f(2)+f(2)=2,∴f(8)=f(2×4)=f(2)+f(4)=3,(2)当x=y=1时,f(1)=f(1)+f(1),则f(1)=0,f(x)在(0,+∞)上是增函数设x1<x2,则∵f(x1)<f(x2),∴f(x1)﹣f(x2)<0,任取x1,x2∈(0,+∞),且x1<x2,则>1,则f()>0,又f(x•y)=f(x)+f(y),∴f(x1)+f()=f(x2),则f(x2)﹣f(x1)=f()>0,∴f(x2)>f(x1),∴f(x)在定义域内是增函数.(3)由f(x)+f(x﹣2)≤3,∴f(x(x﹣2))≤f(8)∵函数f(x)在其定义域(0,+∞)上是增函数,∴解得,2<x≤4.所以不等式f(x)+f(x﹣2)≤3的解集为{x|2<x≤4}.22.设函数f(x)=x2﹣2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8,求t的取值范围.【考点】3X:二次函数在闭区间上的最值;3W:二次函数的性质.【分析】(1)若t=1,则f(x)=(x﹣1)2+1,根据二次函数在[0,4]上的单调性可求函数的值域(2)由题意可得函数在区间[a,a+2]上,[f(x)]max≤5,分别讨论对称轴x=t与区间[a,a+2]的位置关系,进而判断函数在该区间上的单调性,可求最大值,进而可求a的范围(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8等价于M﹣m≤8,结合二次函数的性质可求【解答】解:因为f(x)=x2﹣2tx+2=(x﹣t)2+2﹣t2,所以f(x)在区间(﹣∞,t]上单调减,在区间[t,+∞)上单调增,且对任意的x∈R,都有f(t+x)=f(t﹣x),(1)若t=1,则f(x)=(x﹣1)2+1.①当x∈[0,1]时.f(x)单调减,从而最大值f(0)=2,最小值f(1)=1.所以f(x)的取值范围为[1,2];②当x∈[1,4]时.f(x)单调增,从而最大值f(4)=10,最小值f(1)=1.所以f(x)的取值范围为[1,10];所以f(x)在区间[0,4]上的取值范围为[1,10].…(2)“对任意的x∈[a,a+2],都有f(x)≤5”等价于“在区间[a,a+2]上,[f(x)]max ≤5”.①若t=1,则f(x)=(x﹣1)2+1,所以f(x)在区间(﹣∞,1]上单调减,在区间[1,+∞)上单调增.②当1≤a+1,即a≥0时,由[f(x)]max=f(a+2)=(a+1)2+1≤5,得﹣3≤a≤1,从而 0≤a≤1.③当1>a+1,即a<0时,由[f(x)]max=f(a)=(a﹣1)2+1≤5,得﹣1≤a≤3,从而﹣1≤a<0.综上,a的取值范围为区间[﹣1,1].…(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,所以“对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8”等价于“M﹣m≤8”.①当t≤0时,M=f(4)=18﹣8t,m=f(0)=2.由M﹣m=18﹣8t﹣2=16﹣8t≤8,得t≥1.从而 t∈∅.②当0<t≤2时,M=f(4)=18﹣8t,m=f(t)=2﹣t2.由M﹣m=18﹣8t﹣(2﹣t2)=t2﹣8t+16=(t﹣4)2≤8,得4﹣2≤t≤4+2.从而 4﹣2≤t≤2.③当2<t≤4时,M=f(0)=2,m=f(t)=2﹣t2.由M﹣m=2﹣(2﹣t2)=t2≤8,得﹣2≤t≤2.从而 2<t≤2.④当t>4时,M=f(0)=2,m=f(4)=18﹣8t.由M﹣m=2﹣(18﹣8t)=8t﹣16≤8,得t≤3.从而 t∈∅.综上,t的取值范围为区间[4﹣2,2].…。

衡水中学高一上学期数学期中

衡水中学高一上学期数学期中

①当 a < −1 时, 因为 a +1 < 0 ,所以 M= {x | a +1 < x < 0} .
因为 M ⊆ N ,所以 −1 ≤ a +1 < 0 ,解得 −2 ≤ a < −1;
……………5 分
②若 a = −1 时, M = ∅ ,显然有 M ⊆ N ,所以 a = −1 成立;
……………7 分
2 f (x+T ) = [ f (x+T ) + g(x+T )] + [ f (x+T ) + h(x+T )] − [g(x+T ) + h(x+T )] ,又 f (x) + g(x) 、
2
f (x) + h(x) 、 g(x) + h(x) 均是以T 为周期的函数,所以
f (x+T ) = [ f (x) + g(x)] + [ f (x) + h(x)] − [g(x) + h(x)] =f (x) ,所以 f (x) 是周期为T 的函数,同理可得 2
18.某服装厂生产一种服装,每件服装的成本为 40 元,出厂单价定为 60 元,该厂为鼓励销售商订购, 决定当一次订购量超过 100 件时,每多订购一件,订购的全部服装的出厂单价就降低 0.02 元. 根据市 场调查,销售商一次订购量不会超过 500 件。
(1)设一次订购量为 x 件,服装的实际出厂单价为 y 元,写出函数 y = f (x) 的表达式;
19.已知函数 f (x) = ax2 + bx +1( a, b 为实数, a ≠ 0 , x ∈ R ).

高一数学上学期期中考试试卷含答案(共5套)

高一数学上学期期中考试试卷含答案(共5套)

高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。

考试用时120分钟。

第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

2015-2016学年河北省衡水中学高一(上)期末数学试卷(理科)

2015-2016学年河北省衡水中学高一(上)期末数学试卷(理科)

2015-2016学年河北省衡水中学高一(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1. 若角α与角β终边相同,则一定有()A.α+β=0∘B.α+β=180∘C.α+β=k⋅360∘,k∈ZD.α−β=k⋅360∘,k∈Z2. 已知集合M={x|1x≤1},N={x|y=lg(1−x)},则下列关系中正确的是()A.M∪N=RB.(∁R M)∩N=⌀C.(∁R M)∪N=RD.M⊇N3. 设α是第二象限角,且cosα2=−√1−cos2(π−α2),则α2是()A.第二象限角B.第一象限角C.第四象限角D.第三象限角4. 下列四个函数中,既是(0, π2)上的增函数,又是以π为周期的偶函数的是()A.y=|sin x|B.y=tan xC.y=cos xD.y=|cos x|5. 已知tanα=−34,且tan(α+β)=1,则tanβ的值为()A.7B.−7C.−34D.346. 将函数y=sin2x的图象向左π6平移个单位,向上平移1个单位,得到的函数解析式为()A.y=sin(2x−π3)+1 B.y=sin(2x+π3)+1C.y=sin(2x−π6)+1 D.y=sin(2x+π6)+17. 函数y=A sin(ωx+φ)(ω>0, |φ|<π2, x∈R)的部分图象如图所示,则函数表达式()A.y=4sin(π8x−π4) B.y=−4sin(π8x−π4)C.y=4sin(π8x+π4) D.y=−4sin(π8x+π4)8. 在△ABC中,已知lgsin A−lgcos B−lgsin C=lg2,则三角形一定是()A.等边三角形B.等腰三角形C.钝角三角形D.直角三角形9. 已知函数f(x)=log a(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a x+b的大致图象是()A. B.C. D.10. 若定义在区间D上的函数f(x)对于D上任意n个值x1,x2,…x n总满足1n[f(x1)+f(x2)+...+f(x n)]≤f(x1+x2+⋯+x nn),则称f(x)为D的凸函数,现已知f(x)=sin x在(0, π)上是凸函数,则三角形ABC中,sin A+sin B+sin C的最大值为()A.3√2B.√32C.3√32D.311. 已知O 为△ABC 内任意的一点,若对任意k ∈R 有|BA →−kBC →|≥|CA →|,则△ABC 一定是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.不能确定12. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a:b:c =√13:4:3,设m →=AB →cos A ,n →=AC →sin A ,又△ABC 的面积为S ,则m →⋅n →=( ) A.32SB.√132SC.12SD.S二、填空题(本大题共4小题,每小题5分,共20分)设a,b ∈R,a ≠2,(−b,b)f(x)=lg 1+ax 1+2x是奇函数,则a +b 的取值范围是________.函数y =3sin (x +10∘)+5sin (x +70∘)的最大值为________.已知奇函f(x)数满足f(x +1)=−f(x),当x ∈(0, 1)时,f(x)=−2x ,则f(log 210)等于________.给出下列命题:①存在实数x ,使得sin x +cos x =32;②函数y =2sin (2x +π3)的图象关于点(π12, 0)对称;③若函数f(x)=k sin x +cos x 的图象关于点(π4, 0)对称,则k =−1;④在平行四边形ABCD 中,若|BC →+BA →|=|BC →+AB →|,则四边形ABCD 的形状一定是矩形. 则其中正确的序号是________(将正确的判断的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)已知cos (α−π4)=35,sin (π4+β)=1213,且β∈(0, π4),α∈(34, 3π4),求sin (α+β)的值.设幂函数f(x)=(a −1)x k (a ∈R, k ∈Q)的图象过点(√2,2). (1)求k ,a 的值;(2)若函数ℎ(x)=−f(x)+2b √f(x)+1−b 在[0, 2]上的最大值为3,求实数b 的值.锐角三角形ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量m →=(c −a,b −a),n →=(a +b,c)且m → // n →(1)求角B 的大小;(2)若b =1,求a +c 的取值范围.已知函数f(x)=2−2cos 2(π4+x)−√3cos 2x(1)求函数f(x)在x ∈[0, π]时的增区间;(2)求函数f(x)的对称轴;(3)若方程f(x)−k =0在x ∈[π4, π2]上有解,求实数k 的取值范围.如图,△ABC 中,sin∠ABC 2=√33,AB =2,点D 在线段AC 上,且AD =2DC ,BD =4√33.(Ⅰ)求:BC 的长;(Ⅱ)求△DBC 的面积.已知m →=(sin ωx, cos ωx),n →=(cos ωx, cos ωx)其中ω>0,若函数f(x)=m →⋅n →−12的图象上相邻两对称轴间得距离为2π (1)求方程f(x)−√64=0在区间[0, 17]内的解;(2)若m →⋅n →=12+√24,求sin x ;(3)在△ABC中,a,b,c分别是角A,B,C的对边,且满足(2a−c)cos B=b cos C,求函数f(A)的值域.参考答案与试题解析2015-2016学年河北省衡水中学高一(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.【答案】此题暂无答案【考点】终边常同占角【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】交常并陆和集工混合运算【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】同角正角测数解的当本关系三角函来值的阿号运用诱导于式化虫求值【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】函数水因期性函较绕肠由的判断与证明【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】两角和与表型正切公式【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】函数y射Asi过(ω复非φ)的图象变换【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】由y=于si械(ωx+美)的部分角象六定其解断式【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】三角形水来状判断【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】对数函数表础象与性质【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】函使的以值【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】三角形水来状判断【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】余于视理平面向量三量积州运算【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共4小题,每小题5分,共20分)【答案】此题暂无答案【考点】偶函数奇函数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角函表的综简求值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函使的以值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】命题的真三判断州应用【解析】此题暂无解析【解答】此题暂无解答三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)【答案】此题暂无答案【考点】求两角因与差顿正弦【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次明数织性质幂函来的单脂性、食就性及其应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】余弦常理么应用平面水因共线(平行)的坐似表阻正因归理【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角根隐色树恒等变换应用正弦射可的图象【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】解都还形【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平面向量三量积州运算三角根隐色树恒等变换应用余于视理【解析】此题暂无解析【解答】此题暂无解答。

【全国百强校】河北省衡水中学2015-2016学年高一上学期第一次调研考试数学试题解析(解析版)

【全国百强校】河北省衡水中学2015-2016学年高一上学期第一次调研考试数学试题解析(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}{}0)2)(1(,2,1,0,1,2<+-=--=x x x B A ,则=B A ( ) A. {}0,1- B. {}1,0 C. {}1,0,1- D. {}2,1,0 【答案】A考点:集合运算2.下列关系中,正确的个数为 ( ) ①R ∈22②*0N ∈ ③{}Z ⊆-5 ④{}∅⊆∅ A. 1 B. 2 C.3 D.4 【答案】C 【解析】R ②*0N ∉ ③{}Z ⊆-5 ④{}∅⊆∅,所以选C. 考点:元素与集合关系 3.已知5-=ab ,则bab a b a -+-的值是 ( ) A. 52 B. 0 C. 52- D. 52± 【答案】B 【解析】试题分析:0(0)ab +=+===<选B.考点:代数式化简4.下列对应是集合A 到集合B 的映射的是 ( ) A. +=N A .+=N B .3:-→x x fB. {}平面内的圆=A .{}平面内的三角形=B .作圆的内接三角形:f C. {}20≤≤=x x A .{}60≤≤=y y B .x y x f 21:=→ D. {}1,0=A .{}1,0,1-=B .中的数开平方A f : 【答案】C考点:映射对应5.下列四个函数中,在),0(+∞上为增函数的是 ( ) A. x x f -=3)( B. x x x f 3)(2-= C. 11)(+-=x x f D. x x f -=)( 【答案】C 【解析】试题分析:x x f -=3)(在(,)-∞+∞上单调递减;2()3f x x x =-在3(,)2-∞上单调递减;在3(,)2+∞上单调递增;11)(+-=x x f 在(1,)-+∞上单调递增,即在(0,)+∞上单调递增;x x f -=)(在(0,)+∞上单调递减;因此选C. 考点:函数单调性【名师点睛】函数单调性的判断(1)常用的方法有:定义法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)复合函数的单调性:如果y =f(u)和u =g(x)的单调性相同,那么y =f[g(x)]是增函数;如果y =f(u)和u =g(x)的单调性相反,那么y =f[g(x)]是减函数.在应用这一结论时,必须注意:函数u =g(x)的值域必须是y =f(u)的单调区间的子集.(4)在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的函数的单调性,因此掌握一次函数、二次函数等的单调性,将大大缩短我们的判断过程.6.关于x 的一元二次方程0122=-+-m mx x 的两个实数根分别是21,x x ,且72221=+x x ,则m 的值是( )A. 5B. -1C. -5D. -5或1 【答案】B考点:韦达定理7.已知54)1(2-+=-x x x f ,则)(x f 的表达式是 ( ) A. x x x f 6)(2+= B. 78)(2++=x x x f C. 32)(2-+=x x x f D. 106)(2-+=x x x f 【答案】A 【解析】试题分析:222(1)45()(1)6(1),()6f x x x f x x x f x x x -=+-⇒=-+-=+∴,选A. 考点:函数解析式【名师点睛】求函数解析式的主要方法待定系数法、换元法、方程(组)法等.如果已知函数解析式的类型,可用待定系数法;若已知复合函数f[g(x)]的表达式时,可用换元法;若已知抽象函数的表达式时,则常用解方程(组)法. 8.已知函数2)(2-+=x x x f ,则函数)(x f 在区间[-1,1)上 ( )A. 最大值为0,最小值为49-B. 最大值为0,最小值为-2C. 最大值为0,无最小值D. 无最大值,最小值为49-【答案】D考点:二次函数最值9.已知函数25,1()11,1x ax x f x x x⎧-+<⎪=⎨+≥⎪⎩在R 上单调,则实数a 的取值范围为 ( )A. ]2,(-∞B. ),2[+∞C. ),4[+∞D. ]4,2[ 【答案】D 【解析】试题分析:由题意得:函数()f x 在R 上单调减,因此12a≥且 1511a -+≥+,解得:42≤≤a ,选D. 考点:分段函数单调性【名师点睛】为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是 ( )A. 消耗1升汽油,乙车最多行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗的汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车省油 【答案】D考点:函数解析式表示法:图像法11.设函数⎪⎩⎪⎨⎧=≠-+=1,11,12)(x x x x x f 则)101201()1013()1012()1011(f f f f ++++ 的值为( )A. 199B. 200C. 201D. 202 【答案】C 【解析】 试题分析:22222()(2)2,(1)1211x x x f x f x x x x x +-+-+-=+==≠---- 所以12320112012[()()()()][()()]101101101101101101f f f f f f ++++=++22003199[()()][()()]101101101101f f f f +++2011[(1)(1)][()+()]101101f f f f +++++=2012⨯,因此123201()()()()201101101101101f f f f ++++=,选C. 考点:倒序相加法求和12.已知函数x x g x a ax x f =+--=)(,1)3()(2,若对于任意实数)(,x f x 与)(x g 至少有一个为正数,则实数a 的取值范围是 ( ) A. 30≤≤a B. 90<≤a C. 91<<a D. 3<a 【答案】B 【解析】试题分析:由题意得:当0≤x 时,()0f x >,而(0)1f =,因此只需:当0x <时,()0f x >,从而20,(3)40a a a >--<或30,02aa a->≥或0=a ,解得:90<≤a ,选B. 考点:二次函数性质第Ⅱ卷(共90分)二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知{}x x ,1,02∈,则实数x 的值是 .【答案】-1 【解析】试题分析:220,111(1)x x x x x x ≠≠⇒≠⇒=⇒=-舍去 考点:元素互异性【名师点睛】对于集合中含有参数的问题,要注意将得到的参数的值代回集合中,对解出的元素进行检验,判断是否满足集合中元素的互异性. 14.已知31)(--=x x f ,则函数的单调递增区间是 . 【答案】),3(+∞考点:分段函数单调性【名师点睛】求函数的单调区间和判断函数的单调性方法一致.通常有以下几种方法:(1)复合函数法:f(g(x))的单调性遵循“同增异减”的原则;(2)定义法:先求定义域,再利用单调性定义求解;(3)图象法:可由函数图象的直观性写出它的单调区间.特别注意:单调区间必为定义域的子集. 15.设奇函数)(x f 在),0(+∞上为增函数,且0)1(=f ,则不等式0)()(<--xx f x f 的解集为 .【答案】)1,0()0,1( - 【解析】 试题分析:()0()0()()2()0000f x f x f x f x f x x x x x ><⎧⎧--<⇒<⇒⎨⎨<>⎩⎩或1001100100x x x x x x -<<<<⎧⎧⇒⇒-<<<<⎨⎨<>⎩⎩或或,解集为)1,0()0,1( -考点:利用函数性质解不等式【名师点睛】含“f”号不等式的解法首先根据函数的性质把不等式转化为f(g(x))>f(h(x))的形式,然后根据函数的单调性去掉“f”号,转化为具体的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内.16.设A 是整数集的一个非空子集,对于A k ∈,如果1,1k A k A -∉+∉,那么k 是A 的一个“孤立元”,给定{}5,4,3,2,1=A ,则A 的所有子集中,只有一个“孤立元”的集合共有 个. 【答案】13考点:新定义【名师点睛】以集合为背景的创新性问题是命题的一个热点,这类题目常以问题为核心,考查考生探究,发现的能力,常见的命题形式有:新定义、新运算与性质等.(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质. (2)按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决. (3)对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知{}{}12,122+==-+-==x y x B x x y y A ,分别求B A C B A B A R )(,,.1,02A B ⎡⎤=-⎢⎥⎣⎦,R B A = ,),0()(+∞=B A C R【答案】1,02A B ⎡⎤=-⎢⎥⎣⎦,R B A = ,),0()(+∞=B A C R【解析】试题分析:先分别解出集合A,B :集合A 求二次函数值域,集合B 求函数定义域,再结合数轴求集合交、并、补。

《解析》河北省衡水市饶阳县2016-2017学年高一上学期期中考试数学试卷Word版含解析

《解析》河北省衡水市饶阳县2016-2017学年高一上学期期中考试数学试卷Word版含解析

2016-2017学年河北省衡水市饶阳县高一(上)期中数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x>﹣2},则下列选项正确的是()A.{0}∈M B.Φ∈M C.{0}⊆M D.0⊆M2.设集合M={x|0≤x≤2},N={y|0≤y≤2},给出如下四个图形,其中能表示从集合M到集合N的函数关系的是()A. B. C. D.A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)4.二次函数f(x)=x2﹣4x(x∈[0,5])的值域为()A.[﹣4,+∞)B.[0,5]C.[﹣4,5] D.[﹣4,0]5.=()A.14 B.0 C.1 D.66.已知幂函数f(x)满足f()=9,则f(x)的图象所分布的象限是()A.只在第一象限 B.第一、三象限 C.第一、四象限 D.第一、二象限7.已知a=,b=,c=,则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b8.函数f(x)=log a(6﹣ax)(a>0且a≠1)在[0,2]上为减函数,则实数a的取值范围是()A.(1,3)B.(0,1)C.(1,3]D.[3,+∞)9.函数y=a x与y=﹣log a x(a>0,且a≠1)在同一坐标系中的图象只可能是()A. B. C. D.10.若log a2<log b2<0,则()A.0<a<b<1 B.0<b<a<1 C.a>b>1 D.b>a>111.函数f(x)=x2﹣4x+5在区间[0,m]上的最大值为5,最小值为1,则实数m的取值范围是()A.[2,+∞)B.[2,4]C.[0,4]D.(2,4]12.衣柜里的樟脑丸会随着时间的挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:V=a•e﹣kt.若新丸经过50天后,体积变为a,则一个新丸体积变为a需经过的时间为()A.125天B.100天C.50天D.75天二、填空题:(本大题共4小题,每小题5分,共20分)13.函数,则f[f(﹣3)]的值为.14.已知函数y=f(x+1)定义域是[﹣2,3],则y=f(2x﹣1)的定义域是.15.已知f(x)=是(﹣∞,+∞)上的减函数,那么a的取值范围是.16.给出下列四个命题:①函数y=|x|与函数y=()2表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;④y=2|x|的最小值为1⑤对于函数f(x),若f(﹣1)•f(3)<0,则方程f(x)=0在区间[﹣1,3]上有一实根;其中正确命题的序号是.(填上所有正确命题的序号)三、解答题:(本大题共6小题,共70分,其中17题满分70分,18----22题每题12分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(1)求A∩B、(∁U A)∪(∁U B);(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.18.(12分)已知函数.(1)判断函数f(x)的奇偶性,并证明;(2)利用函数单调性的定义证明:f(x)是其定义域上的增函数.19.(12分)已知函数f(x)=2x﹣.(Ⅰ)若f(x)=2,求x的值;(Ⅱ)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.20.(12分)函数f(x)=log a(3﹣ax)(a>0,a≠1)(1)当a=2时,求函数f(x)的定义域;(2)是否存在实数a,使函数f(x)在[1,2]递减,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.21.(12分)某上市股票在30天内每股交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在图中的两条线段上,该股票在30填内的日交易量Q(万股)与时间tP(元)与时间t(天)所满足的函数关系式;(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;(3)用y表示该股票日交易额(万元),写出y关于t的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少?22.(12分)设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(9x﹣2•3x)+f(2•9x﹣k)>0对任意x∈[0,+∞)恒成立,求实数k的取值范围.2016-2017学年河北省衡水市饶阳县高一(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016秋•饶阳县期中)设集合M={x|x>﹣2},则下列选项正确的是()A.{0}∈M B.Φ∈M C.{0}⊆M D.0⊆M【考点】元素与集合关系的判断.【专题】定义法;集合.【分析】根据元素与集合的关系进行判断【解答】解:集合M={x|x>﹣2},表示大于﹣2的水构成的集合.对于A和C:{0}∈M,是集合与集合的关系,应该是{0}⊆M,∴A错,C对.对于B,空集任何集合的子集,Φ⊆M,∴B错,对于D:元素与集合的关系,0⊆M,∴D错,故选C.【点评】本题主要考查元素与集合的关系,集合与集合的关系,属于基础题2.(2016秋•饶阳县期中)设集合M={x|0≤x≤2},N={y|0≤y≤2},给出如下四个图形,其中能表示从集合M到集合N的函数关系的是()A. B. C. D.【考点】函数的概念及其构成要素.【专题】计算题.【分析】有函数的定义,集合M={x|0≤x≤2}中的每一个x值,在N={y|0≤y≤2}中都有唯一确定的一个y值与之对应,结合图象得出结论.【解答】解:从集合M到集合能构成函数关系时,对于集合M={x|0≤x≤2}中的每一个x 值,在N={y|0≤y≤2}中都有唯一确定的一个y值与之对应.图象A不满足条件,因为当1<x≤2时,N中没有y值与之对应.图象B不满足条件,因为当x=2时,N中没有y值与之对应.图象C不满足条件,因为对于集合M={x|0<x≤2}中的每一个x值,在集合N中有2个y 值与之对应,不满足函数的定义.只有D中的图象满足对于集合M={x|0≤x≤2}中的每一个x值,在N={y|0≤y≤2}中都有唯一确定的一个y值与之对应.故选D.【点评】本题主要考查函数的定义,函数的图象特征,属于基础题.3.(2016秋•饶阳县期中)已知定义在R上的函数f(x)的图象是连续不断的,且有如下对A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)【考点】函数零点的判定定理.【专题】计算题.【分析】根据f(1)=0.1>0,f(2)=﹣0.9<0,结合函数零点的判定定理得出结论.【解答】解:由所给的表格可得f(1)=0.1>0,f(2)=﹣0.9<0,故函数f(x)一定存在零点的区间是(1,2),故选B.【点评】本题考查函数零点的判定定理的应用,属于基础题.4.(2016秋•饶阳县期中)二次函数f(x)=x2﹣4x(x∈[0,5])的值域为()A.[﹣4,+∞)B.[0,5]C.[﹣4,5] D.[﹣4,0]【考点】二次函数的性质.【专题】计算题.【分析】由二次函数得性质可得,当x=2时,f(x)有最小值为﹣4,当x=5时,f(x)有最大值为f(5),由此求得二次函数f(x)的值域.【解答】解:二次函数f(x)=x2﹣4x=(x﹣2)2﹣4,x∈[0,5],故当x=2时,f(x)有最小值为﹣4,当x=5时,f(x)有最大值为f(5)=5,故二次函数f(x)的值域为[﹣4,5],故选C.【点评】本题主要考查二次函数的性质应用,属于基础题.5.(2016秋•饶阳县期中)=()A.14 B.0 C.1 D.6【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题.【分析】根据指数幂和对数的运算法则计算即可.【解答】解:=4﹣﹣lg10﹣2+3lne=4﹣9+2+3=0,故选:B.【点评】本题主要考查指数幂和对数的计算,根据指数幂和对数的运算公式直接计算即可,比较基础.6.(2016秋•饶阳县期中)已知幂函数f(x)满足f()=9,则f(x)的图象所分布的象限是()A.只在第一象限 B.第一、三象限 C.第一、四象限 D.第一、二象限【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;转化法;函数的性质及应用.【分析】设幂函数f(x)=x a,由f()=9,解得a=﹣2.所以f(x)=x﹣2,由此知函数f(x)的图象分布在第一、二象限.【解答】解:设幂函数f(x)=x a,∵f()=9,∴()a=9,解得a=﹣2.∴f(x)=x﹣2,∴函数f(x)的图象分布在第一、二象限.故选:D.【点评】本题考查幂函数的概念,是基础题.解题时要认真审题,仔细解答.7.(2015秋•高安市校级期末)已知a=,b=,c=,则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【考点】对数的运算性质.【专题】函数的性质及应用.【分析】利用指数与对数函数的运算性质即可得出.【解答】解:∵c==>5,2>a=>1,b=<1,∴c>a>b.故选:D.【点评】本题考查了指数函数与对数函数的单调性、对数的运算法则,考查了推理能力与计算能力,属于中档题.8.(2016秋•饶阳县期中)函数f(x)=log a(6﹣ax)(a>0且a≠1)在[0,2]上为减函数,则实数a的取值范围是()A.(1,3)B.(0,1)C.(1,3]D.[3,+∞)【考点】对数函数的图象与性质.【专题】综合题;综合法;函数的性质及应用.【分析】由题意可得a>0,故有t=6﹣ax在[0,2]上是减函数,根据函数f(x)=log a(6﹣ax)在[0,2]上是减函数,故有a>1.再根据,求得a的范围.【解答】解:由题意可得a>0,故有t=6﹣ax在[0,2]上是减函数,再根据函数f(x)=log a(6﹣ax)在[0,2]上是减函数,故有a>1.再根据,求得1<a<3,故选:A.【点评】本题主要考查复合函数的单调性,对数函数的性质,体现了转化的数学思想,属于中档题9.(2015秋•吉林校级期末)函数y=a x与y=﹣log a x(a>0,且a≠1)在同一坐标系中的图象只可能是()A. B. C. D.【考点】指数函数的图象与性质;对数函数的图象与性质.【专题】数形结合.【分析】本题是选择题,采用逐一排除法进行判定,再根据指对数函数图象的特征进行判定.【解答】解:根据y=﹣log a x的定义域为(0,+∞)可排除选项B,选项C,根据y=a x的图象可知0<a<1,y=﹣log a x的图象应该为单调增函数,故不正确选项D,根据y=a x的图象可知a>1,y=﹣log a x的图象应该为单调减函数,故不正确故选A【点评】本题主要考查了指数函数的图象,以及对数函数的图象,属于基础题.10.(2013•曲阜市校级模拟)若log a2<log b2<0,则()A.0<a<b<1 B.0<b<a<1 C.a>b>1 D.b>a>1【考点】对数函数的单调性与特殊点;不等关系与不等式.【专题】函数的性质及应用.【分析】利用对数的换底公式,将题中条件:“log a2<log b2<0,”转化成同底数对数进行比较即可.【解答】解:∵log a2<log b2<0,由对数换底公式得:∴<<0∴0>log2a>log2b∴根据对数的性质得:∴0<b<a<1.故选B.【点评】本题主要考查对数函数的性质,对数函数是许多知识的交汇点,是历年高考的必考内容,在高考中主要考查:定义域、值域、图象、对数方程、对数不等式、对数函数的主要性质(单调性等)及这些知识的综合运用.11.(2016秋•饶阳县期中)函数f(x)=x2﹣4x+5在区间[0,m]上的最大值为5,最小值为1,则实数m的取值范围是()A.[2,+∞)B.[2,4]C.[0,4]D.(2,4]【考点】二次函数的性质.【专题】计算题;函数思想;转化法;函数的性质及应用.【分析】由函数的解析式可得函数f(x)=x2﹣4x+5=(x﹣2)2+1的对称轴为x=2,此时,函数取得最小值为1,当x=0或x=4时,函数值等于5,结合题意求得m的范围.【解答】解:∵函数f(x)=x2﹣4x+5=(x﹣2)2+1的对称轴为x=2,此时,函数取得最小值为1,当x=0或x=4时,函数值等于5.且f(x)=x2﹣4x+5在区间[0,m]上的最大值为5,最小值为1,∴实数m的取值范围是[2,4],故选:B.【点评】本题主要考查二次函数的性质应用,属于中档题.12.(2016秋•饶阳县期中)衣柜里的樟脑丸会随着时间的挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:V=a•e﹣kt.若新丸经过50天后,体积变为a,则一个新丸体积变为a需经过的时间为()A.125天B.100天C.50天D.75天【考点】函数的值.【专题】计算题;方程思想;综合法;函数的性质及应用.【分析】由题意得V=a•e﹣50k=a,可令t天后体积变为a,即有V=a•e﹣kt=a,由此能求出结果.【解答】解:由题意得V=a•e﹣50k=a,①可令t天后体积变为a,即有V=a•e﹣kt=a,②由①可得e﹣50k=,③又②÷①得e﹣(t﹣50)k=,两边平方得e﹣(2t﹣100)k=,与③比较可得2t﹣100=50,解得t=75,即经过75天后,体积变为a.故选:D.【点评】本题考查函数有生产生活中的应用,是中档题,解题时要认真审题,注意挖掘题设中的隐含条件,合理建立方程.二、填空题:(本大题共4小题,每小题5分,共20分)13.(2016秋•饶阳县期中)函数,则f[f(﹣3)]的值为.【考点】有理数指数幂的化简求值;函数的值.【专题】计算题.【分析】由题意先求出f(﹣3)的值,即可得到f[f(﹣3)]的值.【解答】解:∵函数,∴f(﹣3)=﹣2x﹣3=6﹣3=3,∴f[f(﹣3)]=f(3)=2﹣3=,故答案为.【点评】本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,分类讨论是解题的关键,属于基础题.14.(2015秋•凉山州期末)已知函数y=f(x+1)定义域是[﹣2,3],则y=f(2x﹣1)的定义域是.【考点】函数的定义域及其求法.【专题】计算题.【分析】利用函数的定义域是自变量的取值范围,同一法则f对括号的范围要求一致;先求出f(x)的定义域;再求出f(2x﹣1)的定义域.【解答】解:∵y=f(x+1)定义域是[﹣2,3],∴﹣1≤x+1≤4,∴f(x)的定义域是[﹣1,4],令﹣1≤2x﹣1≤4,解得0≤x≤,故答案为:.【点评】本题考查知f(ax+b)的定义域求f(x)的定义域只要求ax+b的值域即可、知f(x)的定义域为[c,d]求.f(ax+b)的定义域只要解不等式c≤ax+b≤d的解集即可.15.(2014•上海模拟)已知f(x)=是(﹣∞,+∞)上的减函数,那么a的取值范围是≤a<.【考点】分段函数的解析式求法及其图象的作法;函数单调性的性质;对数函数的单调性与特殊点.【专题】计算题;压轴题.【分析】由分段函数的性质,若f(x)=是(﹣∞,+∞)上的减函数,则分段函数在每一段上的图象都是下降的,且在分界点即x=1时,第一段函数的函数值应大于等于第二段函数的函数值.由此不难判断a的取值范围.【解答】解:∵当x≥1时,y=log a x单调递减,∴0<a<1;而当x<1时,f(x)=(3a﹣1)x+4a单调递减,∴a<;又函数在其定义域内单调递减,故当x=1时,(3a﹣1)x+4a≥log a x,得a≥,综上可知,≤a<.故答案为:≤a<【点评】分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.16.(2016秋•饶阳县期中)给出下列四个命题:①函数y=|x|与函数y=()2表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;④y=2|x|的最小值为1⑤对于函数f(x),若f(﹣1)•f(3)<0,则方程f(x)=0在区间[﹣1,3]上有一实根;其中正确命题的序号是③④.(填上所有正确命题的序号)【考点】命题的真假判断与应用.【专题】函数思想;分析法;函数的性质及应用.【分析】对于①,考查函数y=|x|与函数y=()2的定义域,可判断①的正误;对于②,举例说明,函数y=为奇函数,函数的图象不通过直角坐标系的原点,可判断②的正误;对于③,将函数y=3x2的图象向右平移1个单位得到函数y=3(x﹣1)2的图象,可判断③的正误;对于④,由y=2|x|≥20=1,可判断④的正误;对于⑤,举例说明,函数f(x)=,满足f(﹣1)•f(3)<0,但方程f(x)=0在区间[﹣1,3]上有一实根,可判断⑤的正误;【解答】解:对于①,函数y=|x|的定义域为R,与函数y=()2的定义域为[0,+∞),故函数y=|x|与函数y=()2不表示同一个函数,故①错误;对于②,函数y=为奇函数,但它的图象不通过直角坐标系的原点,故②错误;对于③,将函数y=3x2的图象向右平移1个单位得到函数y=3(x﹣1)2的图象,故③正确;对于④,由于|x|≥0,故y=2|x|≥20=1,因此y=2|x|的最小值为1,故④正确;对于⑤,函数f(x)=,满足f(﹣1)•f(3)<0,但方程f(x)=0在区间[﹣1,3]上没有实根,故⑤错误;综上所述,其中正确命题的序号是③④.故答案为:③④.【点评】本题考查命题的真假判断与应用,着重考查函数的奇偶性、单调性与最值,考查函数的平移变换、函数的零点存在定理,特值排除法是常用的技巧,属于中档题.三、解答题:(本大题共6小题,共70分,其中17题满分70分,18----22题每题12分,解答应写出文字说明、证明过程或演算步骤)17.(10分)(2016秋•饶阳县期中)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(1)求A∩B、(∁U A)∪(∁U B);(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.【考点】交、并、补集的混合运算;集合关系中的参数取值问题.【专题】计算题.【分析】(1)求出集合B,然后直接求A∩B,通过(C U A)∪(C U B)C U(A∩B)求解即可;(2)通过M=∅与M≠∅,利用集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,直接求实数k 的取值范围.【解答】解:(1)因为全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}={x|﹣2≤x≤3},所以A∩B={x|1<x≤3};(C U A)∪(C U B)=C U(A∩B)={x|x≤1,或x>3};(2)①当M=∅时,2k﹣1>2k+1,不存在这样的实数k.②当M≠∅时,则2k+1<﹣4或2k﹣1>1,解得k或k>1.【点评】本题考查集合的基本运算,转化思想与分类讨论思想的应用,考查计算能力.18.(12分)(2016秋•饶阳县期中)已知函数.(1)判断函数f(x)的奇偶性,并证明;(2)利用函数单调性的定义证明:f(x)是其定义域上的增函数.【考点】奇偶性与单调性的综合;函数的单调性及单调区间.【专题】综合题;函数的性质及应用.【分析】(1)根据函数奇偶性的定义可作出判断、证明;(2),任取x1、x2∈R,设x1<x2,通过作差证明f(x1)<f(x2)即可;【解答】解:(1)f(x)为奇函数.证明如下:∵2x+1≠0,∴f(x)的定义域为R,又∵,∴f(x)为奇函数.(2),任取x1、x2∈R,设x1<x2,∵==,∵,∴,又,∴f(x1)﹣f(x2)<0,∴f(x1)<f(x2).∴f(x)在其定义域R上是增函数.【点评】本题考查函数的奇偶性、单调性的判断,属基础题,定义是解决该类题目的基本方法,要熟练掌握.19.(12分)(2013•上海模拟)已知函数f(x)=2x﹣.(Ⅰ)若f(x)=2,求x的值;(Ⅱ)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.【考点】指数函数综合题.【专题】综合题.【分析】(I)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;(II)由t∈[1,2]时,2t f(2t)+mf(t)≥0恒成立得到,得到f(t)=,代入得到m的范围即可.【解答】解:(Ⅰ)当x≤0时f(x)=0,当x>0时,,有条件可得,,即22x﹣2×2x﹣1=0,解得,∵2x>0,∴,∴.(Ⅱ)当t∈[1,2]时,,即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],故m的取值范围是[﹣5,+∞).【点评】本题主要考查了函数恒成立问题.属于基础题.恒成立问题多需要转化,因为只有通过转化才能使恒成立问题等到简化;转化过程中往往包含着多种数学思想的综合运用,同时转化过程更提出了等价的意识和要求.20.(12分)(2016秋•饶阳县期中)函数f(x)=log a(3﹣ax)(a>0,a≠1)(1)当a=2时,求函数f(x)的定义域;(2)是否存在实数a,使函数f(x)在[1,2]递减,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.【考点】对数函数图象与性质的综合应用.【专题】计算题.【分析】(1)由题意可得,3﹣2x>0,解不等式可求函数f(x)的定义域(2)假设存在满足条件的a,由a>0且a≠1可知函数t=3﹣ax为单调递减的函数,则由复合函数的单调性可知,y=log a t在定义域上单调递增,且t=3﹣ax>0在[1,2]上恒成立,f (1)=1,从而可求a的范围【解答】解:(1)当a=2时,f(x)=log2(3﹣2x)∴3﹣2x>0解得即函数f(x)的定义域(﹣)(2)假设存在满足条件的a,∵a>0且a≠1,令t=3﹣ax,则t=3﹣ax为单调递减的函数由复合函数的单调性可知,y=log a t在定义域上单调递增,且t=3﹣ax>0在[1,2]上恒成立∴a>1且由题可得f(1)=1,3﹣2a>0,∴log a(3﹣a)=1,2a<3∴3﹣a=a,且a故a的值不存在【点评】本题主要考查了对数函数定义域的求解,对数函数与一次函数复合而成的复合函数的单调性的应用,解题中要注意,不要漏掉真数t=3﹣ax>0的要求21.(12分)(2015秋•武进区期末)某上市股票在30天内每股交易价格P(元)与时间t (天)组成有序数对(t,P),点(t,P)落在图中的两条线段上,该股票在30填内的日交P(元)与时间t(天)所满足的函数关系式;(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;(3)用y表示该股票日交易额(万元),写出y关于t的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少?【考点】根据实际问题选择函数类型.【专题】作图题;函数的性质及应用.【分析】(1)根据图象可知此函数为分段函数,在(0,20]和(20,30]两个区间利用待定系数法分别求出一次函数关系式联立可得P的解析式;(2)因为Q与t成一次函数关系,根据表格中的数据,取出两组即可确定出Q的解析式;(3)根据股票日交易额=交易量×每股较易价格可知y=PQ,可得y的解析式,分别在各段上利用二次函数求最值的方法求出即可.【解答】解:(1)P=(2)设Q=at+b(a,b为常数),将(4,36)与(10,30)的坐标代入,得.日交易量Q(万股)与时间t(天)的一次函数关系式为Q=40﹣t,0<t≤30,t∈N*.(3)由(1)(2)可得y=PQ即y=当0<t<20时,当t=15时,y max=125;当20≤t≤30时,当t=20时,y max=120;所以,第15日交易额最大,最大值为125万元.【点评】考查学生根据实际问题选择函数类型的能力,理解分段函数的能力.22.(12分)(2015春•淄博期末)设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(9x﹣2•3x)+f(2•9x﹣k)>0对任意x∈[0,+∞)恒成立,求实数k的取值范围.【考点】奇偶性与单调性的综合;函数恒成立问题.【专题】函数的性质及应用.【分析】(1)由a>b,得,所以f(a)+f(﹣b)>0,由f(x)是定义在R上的奇函数,能得到f(a)>f(b).(2)由f(x)在R上是单调递增函数,利用奇偶性、单调性可把f(9x﹣2•3x)+f(2•9x﹣k)>0中的符号“f”去掉,分离出参数k后转化为函数最值即可解决.【解答】解:(1)∵对任意a,b,当a+b≠0,都有.∴,∵a>b,∴a﹣b>0,∴f(a)+f(﹣b)>0,∵f(x)是定义在R上的奇函数,∴f(﹣b)=﹣f(b),∴f(a)﹣f(b)>0,∴f(a)>f(b);(2)由(1)知f(x)在R上是单调递增函数,又f(9x﹣2•3x)+f(2•9x﹣k)>0,得f(9x﹣2•3x)>﹣f(2•9x﹣k)=f(k﹣2•9x),故9x﹣2•3x>k﹣2•9x,即k<3•9x﹣2•3x,令t=3x,则t≥1,所以k<3t2﹣2t,而3t2﹣2t=3﹣在[1,+∞)上递增,所以3t2﹣2t≥3﹣2=1,所以k<1,即所求实数k的范围为k<1.【点评】本题考查解函数恒成立问题的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点,易出错.解题时要认真审题,注意转化思想的灵活运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衡水中学2016学年第一学期高一年级期中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{}0,1,2M =,{}2|320N x x x =-+≤,则M N ⋂=( ) (A ){}1 (B ){}2 (C ){}0,1 (D ){}1,22、已知2log 0.3a =,0.12b =, 1.30.2c =,则a 、b 、c 的大小关系为( ) (A )a<b<c (B )c<a<b (C )a<c<b (D )b<c<a3、已知函数x x x f 2log 1)(-=,在下列区间中,函数()f x 有零点的是( )(A )()0,1 (B )()1,2 (C )()2,4 (D )()4,+∞ 4、函数212()log (4)f x x =-的单调递增区间为( )(A )()0,+∞ (B )(),0-∞ (C )()2,+∞ (D )(),2-∞- 5、已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2x x f x g x a a -+=-+ (a>0,且a ≠ 1),若(2)g a = ,则()2f 等于( ) (A )2 (B )154 (C )174(D )2a 6、若函数2,4,()(3),4,x x f x f x x ⎧≥=⎨+<⎩则2(log 3)f 等于( )(A )3 (B )4 (C )16 (D )247、已知两个函数()f x 和()g x 的定义域和值域都是集合{}1,2,3 ,其定义如下表:则方程(())g f x x =的解集是( )(A ){}3 (B ){}2 (C ){}1 (D )∅8、函数()1ln f x x x ⎛⎫=- ⎪⎝⎭的图像是()9、函数()()||1f x x x =-在[],m n 上的最小值为41-,最大值为2,则n m -的最大值为( )(A )52 (B )52 (C )32 (D )210、对于函数()f x ,若对于任意的123,,x x x R ∈,()()()123,,f x f x f x 为某一三角形的三边长,则称()f x 为“可构成三角形的函数”.已知函数()1x x e tf x e +=+是“可构成三角形的函数”,则实数t 的取值范围是( )(A )1,22⎡⎤⎢⎥⎣⎦(B )[]0,1 (C )[]1,2 (D )()0,+∞二、填空题:本大题共6小题,每小题4分,共24分。

11、计算421log 5320.0182-++=12、函数=y 的定义域为________ 13、若函数()f x 是幂函数,且满足(4)3(2)f f = ,则1()2f 的值为________14、已知定义在R 上的函数()f x 满足(1)(1)f x f x -=+ ,且()f x 在[)1,+∞ 为递增函数,若不等式(1)()f m f m -< 成立,则m 的取值范围是________ 15、设()f x 为定义在R 上的奇函数,1(1)2f =,(2)()(2)f x f x f +=+,则(5)f =________16、已知函数2|lg |,0()2,0x x f x x x x >⎧=⎨--≤⎩,若函数1)(3)]([22++=x mf x f y 有6个不同的零点,则实数m 的取值范围是三、解答题:本大题共4小题,共46分,解答应写出文字说明、证明过程或演算步骤。

17、(本题满分8分)设全集是实数集R ,{}2|2730A x x x =-+≤ ,{}2|0B x x a =+<(1)当1a =- 时,求A B ⋂ 和A B ⋃ ; (2)若()R C A B B ⋂=,求实数a 的取值范围。

18、(本题满分12分)已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数(1)求a 、b 的值;(2)判断并证明()f x 的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t K -+-<恒成立,求K 的取值范围。

19、(本题满分12分)设a 为实数,函数()()()21f x x a x a a a =-+---. (1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性;(3)当2a >时,讨论()f x x +在R 上的零点个数.20、(本题满分14分)已知函数()4af x x x=+-,()3g x kx =+. (1)当1ak ==时,求函数()()y f x g x =+的单调递增与单调递减区间;(2)当[3,4]a ∈时,函数()f x 在区间[1,]m 上的最大值为()f m ,试求实数m 的取值范围; (3)当[1,2]a ∈时,若不等式1212|()||()|()()f x f x g x g x -<-对任意12,[2,4]x x ∈(12x x <)恒成立,求实数k 的取值范围.杭州二中2015学年第一学期高一年级期中考数学答案一、 选择题:本大题共10小题,每小题3分,共30分。

在每小题 给出的四个选项中,只有一项是符合题目要求的。

二、填空题:本大题共6小题,每小题4分,共24分。

11.14+12.[-2,8] 13.1314.(2-∞) 15.5216.(,1)-∞-三、解答题:本大题共4小题,共46分,解答应写出文字说明、证明过程或演算步骤。

17、(本题满分10分)(1)1|12A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭{}|13A B x x ⋃=-<≤ (2)14a ≥-18、(本题满分10分) (1) 2a = ,1b =(2) ()f x 在R 上为减函数(证略)(3) 13k <-19、(本题满分12分)(1)1,2⎛⎤-∞ ⎥⎝⎦;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减; (3)当2a >时,()f x x +有两个零点.试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a ,当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a . 综上所述,a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x ax x a x x f ,2)12(,12)(22对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增;对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减.综上所述,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==.当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而y x =-在(,0)x ∈-∞上单调递增,y x =-在(0,)x ∈+∞ 单调递减,下面比较2)(a a a f -=与a -的大小因为22()20a a a a a ---=-<所以2()f a a a a =-<-结合图象不难得当2>a 时,)(x f y =与y x =-有两个交点. 综上所述,当2>a 时,()f x x +有两个零点.20、(本题满分14分)试题解析:(1)单调递增区间为,⎛-∞ ⎝和⎫+∞⎪⎪⎭,单调递减区间为⎛⎫ ⎪ ⎪⎝⎭和⎛ ⎝ (2)∵34a ≤≤,∴()y f x =在上递减,在)+∞上递增, 又∵()f x 在区间[1,]m 上的最大值为()f m ,∴()(1)f m f ≥,得(1)()0m m a --≥,∴max m a ≥,即 4m ≥; 6分(3)∵1212|()||()|()()f x f x g x g x -<- ∴1122|()|()|()|()f x g x f x g x -<-恒成立 令()|()|()F x f x g x =-,∴()F x 在[2,4]上递增。

对于(1)1()(1)7a k x xF x a k x x ⎧---+⎪⎪=⎨⎪-+-⎪⎩,[2,2(2x x ∈+∈+,(1)当[2,2x ∈+时,()(1)1aF x k x x=---+ ①当1k =-时,()1aF x x=-+在[2,2+上递增,所以1k =-符合; ②当1k <-时,()(1)1aF x k x x=---+在[2,2+上递增,所以1k <-符合;③当1k >-时,设1222x x <<<+ ,12121212(1)()()()a k x x F x F x x x x x -+-=-⋅欲12()()0F x F x -< 恒成立,只需12(1)0a k x x -+> 即可,即121ax x k>+ 当1x 、2x都趋向于2+时, 12x x 最大∴2(21ak≥+2≥+max 2≥+=+∴16k -<≤-6k ≤-(2)当(2x ∈+时,()(1)7aF x k x x=-+-①当1k =时,()7aF x x=-在(2+上递减,所以1k =不合;②当1k >时,()(1)7aF x k x x=-+-在(2+上递减,所以1k >不合;③当1k <时,同样由单调性定义可得,2≤+min 1≤+=+∴2k ≤-又()F x 为连续函数,(62)0--<综上可知,6k ≤-.。

相关文档
最新文档