CriteriaChoiceProcurementMethods199601
谈资赋优学生低成就之诊断
談資賦優異學生低成就之診斷李謹妏彰化師範大學資賦優異研究所摘要正確鑑別資優低成就學生是早期介入教學、輔導處方的必要條件,執此之故,本文旨在探討資優低成就學生之鑑定方式,內容包括國外實證研究對差距標準(絕對分割法、單純差異分數法、迴歸法)與觀察提名法的討論,並據此分析國內實證研究中用以界定資優低成就學生的標準。
分析結論是:1. 絕對分割法(absolute split method)比單純差異分數法(simple difference score method)或迴歸法(regression method)適合用來鑑別資優低成就者,而後兩者則可適用於不同能力程度的低成就者。
2. 提名法雖然具有篩選功能,但有忽略「隱性低成就者」之疑慮。
3. 國內13篇資優低成就學生之研究中,有10篇採用絕對分割法當作鑑別條件,另2篇採用迴歸法,1篇採用單純差異分數法,其中4篇還加入教師或同儕提名法以提升鑑別的效度。
關鍵字:資賦優異、低成就壹、前言美國前總統甘迺迪在推動民權運動的演講中提到:「不是每個孩子都有相同的才能、能力或動機,但是他們都享有權利去發展其才能、能力和動機。
」(Not every child has an equal talent or an equal ability or equal motivation, but children have the equal right to develop their talent, their ability, and their motivation.)筆者認為這段話用在「資優低成就學生」是非常適宜的,由於社會大眾都認為資優學生具有優秀的才能與能力,可惜的是,有優秀的才能或能力不一定保證有優秀的成就,因為導致資優學生低成就的最主要因素之ㄧ就是缺乏動機(Peters, Grager-Loidl & Supplee, 2000)。
Gowan把資優低成就者視為「人類文明中一種最大的社會浪費」(Emerick, 1992)。
关于假设检验如何选择备择假设和原假设
原则。
同理,如果这个制造商的信誉很差并且合作的历史上经常发生质量低劣的记录, 于是作为销售商我们可以从先验信息中认为,这批灯泡的质量应该不在1000小 时以上。于是选取备择假设的方向为“>”(寿命大于1000小时),建立的原假设与 备择假设应为
H0: μ≤1000 H1: μ> 1000
这样选择认为就算μ确实是大于1000的,但如果幅度较小,假设检验会认为这个 大于1000是不显著的,接受原假设。其意义表明即使你这次的灯泡没有问题,但 鉴于以往你的极差的纪录,我可以认为这种小幅度的质量上升仅仅是一次的偶 然造成的,我还是要拒绝这批货。只是如果质量上升幅度太大,H1 成立,我才考虑接受这批货。这就有一个依靠先验纪录确定了一个“严进宽拒”的 原则。
带来疑问。例3:某灯泡制造商声称,该企业所生产的灯泡的平均使用寿命在100 0小时以上。如果准备进一批货,怎样进行检验。
根据上面的理论,一种认为是:检验权在销售商一方。作为销售商,总是想收集证 据证明生产商的说法(寿命在1000小时以上)是不是正确的。于是选取备择假设 的方向为“<”(寿命不足1000小时),建立的原假设与备择假设应为
2. 信息原则
我认为单侧检验方向的选择可以依据信息原则。所谓信息的原则,就是将一个不 以本次检验为改变的一个先验的信息作为选择方向的基础。一般而言,我们都认 为先验信息是正确的,普遍成立的,因此将其所代表的情况放入原假设。这就是 说,我们认为先验信息一般是成立的,只有样本表现出足够的说服力来推翻先验 信息时(即P值小于显著性水平时),我们才认为原假设被拒绝,新的结论成立。
由于我们所使用的拒绝域的计算规则认为是在原假设的另一侧,即:
所以我认为样本的均值实际上传达了这样一个信息:样本一定支持μ> 40000,样本一定反对μ≤40000。样本绝对不会落在拒绝域中,所以备择假设 是绝对不会成立的,这个检验过程没有就进行的必要。
数据的整编和分析
常用统计分析方法——SPSS应用General Method of Statistical AnalysisSPSS Application杜志渊编著前言《统计学》是一门计算科学,是自然科学在社会经济各领域中的应用学科,是许多学科的高校在校本科生的必修课程。
在统计学原理的学习和统计方法的实际应用中,经常需要进行大量的计算。
因此,统计分析软件问世使强大的计算机功能得到充分发挥,不仅能够减轻计算工作量,计算结果非常准确,而且还节省了统计分析时间。
因此,应用统计分析软件进行数据处理已经成为社会学家和科学工作者必不可少的工作内容。
为了使高校的学生能够更好的适应社会的发展和需求,学习和使用统计软件已经成为当前管理学、社会学、自然科学、生物医学、工程学、农业科学、运筹学等学科的本科生或研究生所面临的普遍问题。
为了使大学生和专业人员在掌握统计学原理的基础上能够正确地运用计算机做各种统计分析,掌握统计分析软件的操作是非常有必要的。
现将常用的SPSS统计分析软件处理数据和分析数据的基本方法编辑成册,供高校学生及对统计分析软件有兴趣的人员学习和参考,希望能够对学习者有所帮助。
本书以统计学原理为理论基础,以高等学校本科生学习的常用的统计方法为主要内容,重点介绍这些统计分析方法的SPSS 软件的应用。
为了便于理解,每一种方法结合一个例题解释SPSS软件的操作步骤和方法,并且对统计分析的输出结果进行相应的解释和分析。
同时也结合工业、农业、商业、医疗卫生、文化教育等实际问题,力求使学生对统计分析方法的应用有更深刻的认识和理解,以提高学生学习的兴趣和主动性。
另外,为了方便学习者的查询,将常用统计量的数学表达式作为附录1,SPSS 中所用的主要函数释义作为附录2,希望对学习者能够的所帮助。
编者目录第一章数据文件的建立及基本统计描述 (1)§1.1 SPSS的启动及数据库的建立 (1)§1.1.2 SPSS简介 (1)§1.1.2 启动SPSS软件包 (3)§1.1.3 数据文件的建立 (5)§1.2 数据的编辑与整理 (8)§1.2.1 数据窗口菜单栏功能操作 (8)§1.2.2 Date数据功能 (9)§1.2.3 Transform 变换及转换功能 (10)§1.2.4 数据的编辑 (12)§1.2.5 SPSS对变量的编辑 (20)§1.3 基本统计描述 (26)§1.3.1 描述统计分析过程 (26)§1.3.2 频数分析 (28)§1.4 交叉列联表分析 (44)§1.4.1 交叉列联表的形成 (44)§1.4.2 两变量关联性检验(Chi-square Test卡方检验) (47)第二章均值比较检验与方差分析 (54)§2.1 单个总体的t 检验(One-Sample T Test)分析 (55)§2.2 两个总体的t 检验 (58)§2.2.1 两个独立样本的t检验(Independent-sample T Test) (58)§2.2.2 两个有联系总体间的均值比较(Paired-Sample T Test) (61)§2.3 单因素方差分析 (64)§2.4 双因素方差(Univariate)分析过程 (69)第三章相关分析与回归模型的建立与分析 (80)§3.1 相关分析 (80)§3.1.1 简单相关分析 (81)§3.1.1.1 散点图 (81)§3.1.1.2 简单相关分析操作 (83)§3.1.2 偏相关分析 (85)§3.2 线性回归分析 (89)§3.3 曲线估计 (100)第四章时间序列分析 (111)§4.1 实验准备工作 (111)§4.1.1 根据时间数据定义时间序列 (111)§4.1.2 绘制时间序列线图和自相关图 (112)§4.2 季节变动分析 (118)§4.2.1 季节分析方法 (118)§4.2.2 进行季节调整 (121)第五章非参数检验 (125)§5.1 Chi-Square Test 卡方检验 (127)§5.2 一个样本的K-S检验 (131)§5.3 两个独立样本的检验(Test for Two Independent Sample) (135)§5.4 两个有联系样本检验(Test for Two related samples) (138)§5.6 多个样本的非参数检验(K Samples Test) (141)§5.6 游程检验(Runs Test) (148)附录1 部分常用统计量公式 (154)§6.1 数据的基本统计特征描述 (154)§6.2 总体均值检验统计量 (156)§6.3 方差分析中的统计量 (158)§6.4 回归分析模型 (161)§6.5 非参数检验 (168)附录2 SPSS函数 (175)第一章数据文件的建立及基本统计描述在社会各项经济活动和科学研究过程中,经常获得许多数据,而这些数据中包含着大量有用的信息。
独立的审计机构必须符合“黄皮书”的指标【外文翻译】
本科毕业论文(设计)外文翻译外文题目Independent Review Organizations Must Meet GAOYellow Book Standards外文出处Journal of Health Care Compliance,2010(2):27-32外文作者Herrmann Thomas E原文:Independent Review Organizations Must Meet GAO “Yellow Book”StandardsBACKGROUNDOn July 30, 2001, the OIG, in conjunction with the Health Care Compliance Association (HCCA), cosponsored a Government Industry Roundtable to discuss “issues surrounding the implementation and maintenance of effective compliance programs.” Specifically addressed in the discussion was the OIG’s requirement, in the context of health care fraud and abuse settlements, that an IRO be retained by a health care entity to perform annual billing, systems, and/or other compliance reviews. Participants recognized that:The OIG requires IROs because the OIG does not have the resources to conduct the level of review necessary to determine if a provider is meeting the requirements of the CIA as well as other Federal health care program requirements. Additionally, a review by an independent entity provides the OIG with assurances that a provider’s compliance program and billing systems are objectively reviewed.Roundtable participants referenced a number of advantages associated with using an IRO. “IROs provide a broad industry perspective and expertise, are independent, help identify system weaknesses, make helpful recommendations, and their reviews serve as a useful benchmark for future reviews conducted by the provider.”OIG REQUIREMENTS FOR IRO INDEPENDENCEThe obligations for an audit/review organization, such as an IRO, to meet “independence”standards are referenced in GAGAS as set forth by the GAO in its “Yellow Book.” These standards are applicable to financial audits, typically performed by certified public accountants (CPAs), attestation engagements, and performance audits, which may be undertaken by professionals such as consultants and lawyers. The great majority of CIAs does not mandate financial audits but are rather focused on performance audits, i.e., those involving claims, systems, or arrangements with referral sources that may implicate the anti-kickback statute and Stark law.From the perspective of the OIG, it is essential that an IRO conduct its reviews with both independence and objectivity. A standard requirement in an OIG CIA is that “[t]he IRO must perform [its] review in a professionally independent and objective fashion, as appropriate to the nature of the engagement, taking into account any other business relationships or engagements…” Typically, the IRO is obligated to provide a certification regarding its professional independence and objectivity. Further, the usual CIA specifi es that “i n the event OIG has reason to believe that the IRO…is not independent and objective…, the OIG may, at its sole discretion, require” the engagement of a new IRO.The OIG has stated that an IRO should follow “the standards for auditor independence set forth in the General Accounting Office (GAO), Government Auditing Standards (2003 Revision).” The OIG has indicated that, under these standards, “CIA reviews would be considered performance audits and IROs would be subject to the independence standards set forth in the Yellow Book that relate to performance audits.” In referencing the GAO Yellow Book’s applicability to IRO independence, the OIG has further noted:When assessing independence, the two overarching principles that must be considered are that: audit organizations should not perform management functions or make management decisions; and audit organizations should not audit their own work or provide non-audit services in situations where the non-audit services are signify- cant/material to the subject matter of the audits.THE GAO YELLOW BOOK STANDARDSThe GAO Yellow Book, first issued by the Comptroller General of the United States in 1972, is intended to:Address the unique requirements of governmental entities;Establish general standards for both governmental and nongovernmental auditors performing audits in accordance with GAGAS;Supplement field work and reporting standards of the American Institute of certified Public Accountants (AICPA) Auditing Standards Board;Establish field work and reporting standards for performance audits.In July 2007, the GAO issued its fourth revision of the Yellow Book standards.With respect to performance audits, such as those performed by IROs, the new standards are applicable to those undertaken on or after January 1, 2008.The latest edition of the Yellow Book reinforces the principles of transparency, accountability, and quality in government auditing. There is an increased emphasis placed on governing ethical principles, clarification of the impact of performing nonaudit services on auditor independence, and enhancement of performance audit standards. In issuing the 2007 edition, Comptroller General David M. Walker noted that the revision sets forth “changes from the 2003 revision that reinforce the principles of transparency and accountability and provide the framework for high-quality government audits that add value.” A summary of the key Yellow Book principles that are applicable to performance audits undertaken by IROs, pursuant to CIAs, follows.e and Application of GAGASChapter one of the revised Yellow Book highlights GAGAS requirements and states that they “provi de a framework for conducting high quality government audits and attestation engagements with competence, integrity, objectivity, and independence.”It notes further that “GAGAS contain re quirements and guidance dealing with eth ics, independence, auditors’ professional compe tence and judgment, quality control, the performance of field work, and reporting.” It explains: Performance audits are defined as engagements that provide assurance orconclusions based on an evaluation of sufficient appropriate evidence against stated criteria, such as specific requirements, measures, or defined business practices. Performance audits provide objective analysis so that management and those charged with governance and oversight can use the information to improve program performance and operations, reduce costs, facilitate decision making by parties with responsibility to oversee or initiate corrective action, and contribute to public accountability.For performance audits, such as those undertaken by IROs, the revised Yellow Book indicates that certain other standards also may be utilized by reviewers in conjunction with GAGAS:International Standards for the Professional Practice of Internal Auditing;Guiding Principles for Evaluators;The Program Evaluations Standards; andStandards for Educational and Psychological Testing.2. Ethical PrinciplesChapter two of the revised Yellow Book sets forth ethical principles to provide a foundation, discipline, and structure for an audit/review entity in applying GAGAS. It notes that “e thical principles apply in preserving auditor independence, taking on only work that the auditor is competent to perform, performing high-quality work, and following the applicable standards cited in the audit report.” Further, “i ntegrity and objectivity are maintained when auditors perform their work and make decisions that are consistent with the broader interest of those relying on the auditors’ report, including the public.”The following ethical principles are specified as guiding the work of reviewers and auditors and need to be both considered and addressed by an organization serving as an IRO:The public interest;Integrity;Objectivity;Proper use of government information, Resources, and position; andProfessional behavior.3. General StandardsChapter three of the revised Yellow Book specifies general standards applicable to performing audits and reviews consistent with GAGAS. These standards focus on: Independence of the audit organization and individual auditors;The exercise of professional judgment in the performance of work;The competence of auditors/reviewers; andQuality control and assurance, as well as external peer review.While all of these factors are critical to activities of an IRO, of fundamental import ance is the concept of “independence.” “The audit organization and individual a uditor…must be free from person al, external, and organizational impairments to independence, and must avoid the appearance of such impairments to independence.” The importance of “independence” is further highlighted:Auditors and audit organizations must maintain independence so that their opinions, findings, conclusions, judgments, and recommendations will be impartial and viewed as impartial by objective third parties with knowledge of the relevant information. Auditors should avoid situations that could lead objective third parties with knowledge of the relevant information to conclude that the auditors are not able to maintain independence and thus are not capable of exercising objective and impartial judgment on all issues associated with conducting the audit and reporting on the work.Key challenges to auditor independence are personal impairments, external impairments, and organizational independence. Critical to assessing “organizational independence” is determining whether the au dit organization also performs other professional, or nonaudit, services for the audited entity. The Yellow Book advises that:External audit organizations can be presumed to be free from organizational impairments to independence when the audit function is organizationally placed outside the reporting line of the entity under audit and the auditor is not responsible for entity operations.The revised Yellow Book sets forth two basic principles for determining auditor independence when assessing the impact of performing a nonaudit service for an audited entity:The audit organization must not provide nonaudit services that involve performing management functions or making management decisions; and The audit organization must not audit its own work or provide nonaudit services in situations in which the nonaudit services are significant or material to the subject matter of the audit.In the context of these “overarching principles,” the OIG has identified certain situa tions in which an IRO’s independence might be compro mised because of its prior relationship and work for an audited provider:If the provider were to outsource its internal compliance audit function to the IRO, either before or after the execution of the provider’s CIA, the IRO’s independence likely would be impaired for purposes of conducting the provider’s CIA reviews. This is the case because internal audit is a management function and the outsourcing of the internal compliance audit function likely would result in the IRO auditing its own work as part of the CIA reviews.The OIG has stated that the most important consideration in assessing IRO indepen dence “is whe ther the IRO is involved in performing a management function or making management decisions for the provider.” It notes that “if the IRO participates in any form of decision-making…the IRO likely would be precluded from performing the CIA reviews because the IRO is in the position of making managemen t decisions for the provider.”4. Field Work Standards for Performance AuditsChapter seven of the revised Yellow Book sets forth field work standards and provides guidance for performance audits conducted. These standards include planning the audit, supervising staff, obtaining sufficient and appropriate evidence, and preparing audit documentation. Critical to establishing and following these standards are the following concepts:Reasonable assurance;S ignificance; andAudit risk.A performance audit, such as an IRO re view, must “provide reasonable assurance that evidence is sufficient and appropriate to support the auditors’ findings and conclusions.”“Significance is defined as the relative importance of a matter with the context in which it is being considered, including quantitative and qualitative factors.”Audit risk is “the possibility that the auditors’ findings, conclusions, recommendations, or assurance may be improper or inco mplete.”Thus, the IRO, in planning and conducting its review, must be cognizant of these factors and ensure that the review process and findings are in accord with these principles.5. Reporting Standards for Performance AuditsChapter eight of the revised Yellow Book sets forth the form of the report, the report contents, report issuance, and distribution. Critical to issuance of an IRO report is the presentation of “sufficient, appropriate evidence to support the findings and conclusions in relation to the audit objectives.”The OIG has expressly adopted the GAO Yellow Book standards as governing IROs. Accordingly, the current Yellow Book provisions need to be carefully reviewed and followed by a health care entity in selecting an organization to serve as an IRO. Moreover, the Yellow Book standards need to be recognized and followed by an IRO in conducting its activities.Critical to successful compliance with the terms of a CIA with the OIG is ensuring that mandated IRO reviews are conducted in an independent, objective, and comprehensive manner. This is necessary to provide assurances to the government that a health care entity is qualified, capable, and competent to continue participating in federal health care programs. Both the OIG and the subject health care entity are reliant up on an IRO’s commitment and capa bility to conduct its reviews in accordance with GAGAS. Therefore, the Yellow Book standards must be recognized and adhered to by the IRO retained by a health care entity subject to an OIG CIA. In light of this, any health care entity that is subject to a CIA should address the following questions when selecting an IRO:Does a review organization have knowledge of and past experience in applying the GAGAS requirements to its audits and reviews?Are there any constraints on an organi zation’s independence and objectivity in conducting OIG-mandated reviews as set forth in a CIA, either in terms of past or current engagements with the health care organization or other industry activities?Does the audit/review organization have the capability, capacity, and competence to perform the OIG-required performance audits, e.g., claims, systems, or arrangements review?Does the organization have quality control and assurance procedures to ensure the reliability and integrity of its audits/reviews?Can the audit/review organization certify and attest that it has conducted its review in accordance with GAGAS, as set forth in the revised Yellow Book?Source:Herrmann Thomas E.Independent Review Organizations Must Meet GAO Yellow Book Standards[J].Journal of Health Care Compliance,2010(2):27-32.译文:独立的审计机构必须符合“黄皮书”的指标背景2001年7月30日,监察会同HCCA进行了一次商洽,共同探讨怎样实现和维护有效的合规计划。
循证医学名词术语中英文对照
循证医学名词术语中英文对照循证医学名词术语中英文对照安全性Safety半随机对照试验quasi- randomized control trial,qRCT背景问题background questions比值比odds ratio,OR标准化均数差standardized mean difference, SMD病例报告case report病例分析case analysis病人价值观patient value病人预期事件发生率patient’s expected event rate, PEER补充替代医学complementary and alternative medicine, CAM 不良事件adverse event不确定性uncertaintyCochrane图书馆Cochrane Library, CLCochrane系统评价Cochrane systematic review, CSR Cochrane协作网Cochrane Collaboration, CCCox比例风险模型Cox’ proportional hazard model参考试验偏倚References test bias肠激惹综合征irritable bowel syndrome,IRB测量变异measurement variation成本-效果cost-effectiveness成本-效果分析cost-effectiveness analysis成本-效益分析cost-benefit analysis成本-效用分析cost-utility analysis成本最小化分析(最小成本分析)cost-minimization analysis重复发表偏倚Multiple publication bias传统医学Traditional Medicine,TMD—L法DerSimonian & Laird methodthe number needed to harm one more patients from the therapy,NNH 对抗疗法allopathic medicine,AM对照组中某事件的发生率control event rate,CER多重发表偏倚multiple publication bias二次研究secondary studies二次研究证据secondary research evidence发表偏倚publication biasnumber needed to treat,NNT非随机同期对照试验non-randomized concurrent control trial 分层随机化stratified randomization分类变量categorical variable风险(危险度)risk干扰co-intervention工作偏倚Workup bias固定效应模型fixed effect model国际临床流行病学网International Clinical Epidemiology Network, INCLEN灰色文献grey literature后效评价reevaluation获益benefit机会结chance node疾病谱偏倚Spectrum bias技术特性Technical properties加权均数差weighted mean difference, WMD 假阳性率(误诊率)false positive rate假阴性率(漏诊率)false negative rate简单随机化simple randomization检索策略search strategy交叉对照研究(交叉设计)crossover design 经济学分析economic analysis经济学特性Economic attributes or impacts经验医学empirical medicine精确性precision决策结decision node决策树分析decision tree analysis绝对获益增加率absolute benefit increase, ABI 绝对危险度降低率absolute risk reduction, ARR 绝对危险度增加率absolute risk increase, ARI 可重复性repeatability,reproducibility可靠性(信度)reliability可信区间confidence interval ,CI可信限confidence limit ,CLLogistic回归模型Logistic regression model历史性对照研究historical control trial利弊比likelihood of being helped vs harmed, LHH连续性变量continuous variable临床对照试验controlled clinical trial, CCT临床结局clinical outcome临床经济学clinical economics临床决策分析clinical decision analysis临床流行病学clinical epidemiology, CE临床实践指南clinical practice guidelines, CPG临床试验clinical trial临床研究证据clinical research evidence临床证据clinical evidence临床证据手册handbook of clinical evidence零点Zero time灵活性flexibility临界点Cut off points漏斗图funnel plots率差(或危险差)rate difference,risk difference,RDMeta-分析Meta-analysis敏感度sensitivity敏感性分析sensitivity analysis墨克手册Merck manual脑卒中病房Stroke Unit内在真实性internal validity偏倚bias起始队列inception cohort前-后对照研究before-after study前景问题foreground questions区组随机化block randomization散点图scatter plots森林图forest plots伤残调整寿命年disability adjusted life year,DALY 生存曲线survival curves生存时间survival time生存质量(生活质量)quality of life世界卫生组织World Health Organization, WHO失安全数fail-Safe Number试验组某事件发生率experimental event rate,EER 似然比likelihood Ratio, LR适用性applicability受试者工作特征曲线(ROC曲线)receiver operator characteristic curve 随机对照临床试验randomized clinical trials, RCT随机对照试验randomized control trial, RCT随机化隐藏randomization concealment随机效应模型random effect model特异度specificity同行评价colleague evaluation统计效能(把握度)power同质性检验tests for homogeneity外在真实性external validity完成治疗分析per protocol,PP腕管综合征carpal tunnel syndrome, CTS卫生技术health technology卫生技术评估health technology assessment, HTA系统评价systematic review, SR相对获益增加率relative benefit increase, RBI相对危险度relative risk,RR相对危险度降低率relative risk reduction, RRR相对危险度增加率relative risk increase, RRI效果effectiveness效力efficacy效应尺度effect magnitude效应量effect size序贯试验sequential trial选择性偏倚selection bias循证儿科学evidence-based pediatrics循证妇产科学evidence-based gynecology & obstetrics 循证购买evidence-based purchasing循证护理evidence-based nursing循证决策evidence-based decision-making循证内科学evidence-based internal medicine循证筛选evidence-based selection循证外科学evidence-based surgery循证卫生保健evidence-based health care循证诊断evidence-based diagnosis循证医学evidence-based medicine, EBM亚组分析subgroup analysis严格评价critical appraisal验后比post-test odds验后概率post-test probability验前比pre-test odds验前概率pre-test probability阳性预测值positive predictive value原始研究primary studies异质性检验tests for heterogeneity意向治疗分析intention-to-treat, ITT阴性预测值negative predictive value引用偏倚citation bias尤登指数Youden’s index语言偏倚language bias预后prognosis预后因素prognostic factor预后指数prognostic index原始研究证据primary research evidence原始研究证据来源primary resources沾染contamination真实性(效度)validity诊断参照标准reference standard of diagnosis。
国际收支调节的弹性分析法
国际收支调节的弹性分析法弹性论(Elasticity Approach )[编辑]国际收支调节的弹性分析法(弹性论)概述弹性论(Elasticity Approach )又称弹性分析法,主要是由英国剑桥大学经济学家琼·罗宾逊(Joan.Robinson )在马歇尔微观经济学和局部均衡分析方法的基础上发展起来的。
它着重考虑货币贬值取得成功的条件及其对贸易收支和贸易条件的影响。
价格变动会影响需求和供给数量的变动。
需求量变动的百分比与价格变动的百分比之比,称为需求对价格的弹性,简称需求弹性。
供给量变动的百分比与价格变动的百分比之比,称为供给对价格的弹性,简称供给弹性。
在进出口方面,就有四个弹性,它们分别是:(1)进口商品的需求弹性(E m ),其公式为E m = 进口商品需求量的变动率 进口商品价格的变动率(2)出口商品的需求弹性(E x ),其公式为E x = 出口商品需求量的变动率 出口商品价格的变动率(3)进口商品的供给弹性(S m ),其公式为S m = 进口商品供给量的变动率 进口商品价格的变动率(4)出口商品的供给弹性(Sx ),其公式为S x = 出口商品供给量的变动率 出口商品价格的变动率从上述四个公式可见,所谓弹性,实质上就是一种比例关系。
当这种比例关系的值越高,就称弹性越高;反之,比例关系的值越低,就称弹性越低。
[编辑]国际收支调节的弹性分析法的前提假设1、其他条件不变,只考虑汇率变化对进出口商品的影响。
2、贸易商品的供给完全有弹性,即贸易收支的变化完全取决于贸易商品的需求变化。
3、不存在劳务进出口和资本流动,国际收支就等于贸易收支。
4、收入水平不变从而进出口商品的需求就是这些商品及其替代品的价格水平的函数。
[编辑]国际收支调节的弹性分析法核心观点[1]货币贬值具有促进出口,抑制进口的作用。
贬值能否扬“出”抑“进”,取决于供求弹性。
为了使贬值有助于减少国际收支逆差,必须满足马歇尔──勒纳条件。
统计计量丨政策效应评估的四种主流方法(Policyevaluation)
统计计量丨政策效应评估的四种主流方法(Policyevaluation)计量经济学#01“标准的计量经济学提供了一种处理内生性问题的方法———IV 法。
”Ehrlich(1975,1977)运用时间序列数据和截面数据就美国执行死刑对降低谋杀率的影响进行的研究具有典型性。
Ehrlich 认识到谋杀率与死刑执行率之间的双向因果关系,并试图应用 IV 来解决其内生解释变量和遗漏解释变量的问题。
他选择了此项政策支出的滞后量、总的政府支出、人口、非白人比例等变量作为IV,但并没有解释为什么这些变量是好的 IV,所选出的这些 IV 与内生的解释变量之间又具有怎样的关联。
直至 Ehrlich(1987,1996)的研究出版,其选择 IV 的考虑及相关的因果识别问题才得到详细的阐述。
Angrist (1990)和 Angrist 等(1991)分别用 IV 研究了参加越战对老兵收入的影响和教育背景对收入的影响,从而充分显现了运用 IV 进行因果推断的价值。
Card 等(1992a,1992b)将学生的出生州与出生队列作为 IV,研究了教育投入对教育质量的影响,从而使得教育产出、教育质量领域的研究出现了重大转折。
Bound 等(1995)指出了 Angrist 等(1991)研究中存在的弱工具变量的问题,从而将IV 的效率问题以及IV 的选取准则引入研究。
此后,有关 IV 研究的理论问题都主要集中在如何寻找最优的工具变量上。
工具变量法是一个相对简单的估计方法,但是有两个重要的缺陷:(1) 工具变量的选择问题。
在政策评估问题中,要找出满足条件的工具变量并不容易。
在实践中,尤其是当纵向数据和政策实施前的数据可以获得时,研究者多使用因变量的滞后变量作为工具变量。
但是,这同样会引发相关性,并不能从根本上解决问题。
(2) 如果个体对于政策的反应不同,只有当个体对政策反应的异质性并不影响参与决策时,工具变量才能识别ATT、ATE。
疗效判断标准 criteria -回复
疗效判断标准criteria -回复【疗效判断标准criteria】是指在医学领域中判断治疗效果的一组指标或标准。
这些标准通常是根据临床经验和科学研究所得出的,可以帮助医务人员评估患者的病情发展和治疗效果。
在本文中,我们将从多个角度逐步回答有关疗效判断标准的问题。
第一部分:什么是疗效判断标准?疗效判断标准是评估治疗效果的可量化和定性指标。
它可以帮助医务人员判断患者的病情是否得到改善,是否需要调整治疗方案,或者是否需要改用其他治疗方法。
第二部分:常见的疗效判断标准1. 主观评价指标:这些指标是基于患者或护理人员的主观感受,如症状的减轻程度、生活质量的改善等。
例如,患者常常被要求根据自身的感受,用某种数值等级比如0-10来评估疼痛的程度。
2. 客观评价指标:这些指标是通过测量患者的身体指标、实验室结果、影像学检查等客观数据来评估治疗效果。
例如,在癌症治疗中,可以通过肿瘤大小的变化、血液中肿瘤标志物的浓度等来评估治疗效果。
3. 存活率或复发率:这些指标通常用于评估治疗对生存时间或复发率的影响。
例如,在手术切除癌症后,评估患者的生存率和复发率可以帮助判断手术治疗的效果。
4. 随访观察:医务人员通过定期随访患者和观察其病情变化来评估治疗效果。
这种方法常用于慢性疾病的治疗判断。
第三部分:如何确定疗效判断标准确定疗效判断标准通常需要以下步骤:1. 搜集证据:医务人员需要收集大量的病例数据、临床试验结果和相关研究,了解不同治疗方法对患者疗效的影响。
2. 专家共识:医学专家通过讨论和共识会议等方式,结合自身经验和已有证据,达成一致意见并形成疗效判断标准。
3. 临床试验:临床试验是确定治疗效果的重要手段之一。
通过严格的随机对照试验,可以比较不同治疗方法的疗效,并验证疗效判断标准的有效性。
4. 更新和修订:疗效判断标准需要随着医学进展的不断更新和修订。
医务人员应密切关注最新的研究成果和专家建议,并依据实际情况及时调整疗效判断标准。
酒店运营管理知到章节答案智慧树2023年上海商学院
酒店运营管理知到章节测试答案智慧树2023年最新上海商学院第一章测试1.行业结构不合理造成酒店业过度竞争的现象不存在。
参考答案:错2.对于单体酒店来说,立根的基础是当地的人文和区域特色。
参考答案:错3.完善服务体系,实现“线上+线下”完美的双模式在明确酒店定位后,重要的是提升酒店的软实力,即是酒店的服务水准和附加价值参考答案:对4.互联网思维非常注重人的价值,尤其是对酒店行业来说,抓住接触、沟通和服务客户的各种方式,就是“以人为本”宗旨的最重要体现。
参考答案:对5.未来中高端酒店产品需要考虑的是特色和品质,而不是规模。
参考答案:对6.跨界合作可以为酒店投资人创造更多共赢的市场机会。
参考答案:对7.酒店与互联网的冲突就在于关联性,即是酒店的宣传印象和真实体验的完整度和期望度是否维持在理想的落差之中。
参考答案:错8.互联网+计划的目的在于充分发挥互联网的优势,将互联网与传统产业深入融合,以产业升级提升(),最后实现社会财富的增加。
参考答案:经济生产力9.当前,以( )为标志的民宿民俗风酒店盛行。
参考答案:风景旅游名胜;异国风情;鲜明地域特色10.对于单体酒店来说,立根的基础更多的是(),很少能扩大范围跨越地域传播。
参考答案:当地的人文和区域特色第二章测试1.酒店投资成本不可逆性是指由于投资失败导致投资成本部分或全部变成沉没成本,使得无法收回成本。
参考答案:对2.酒店投资的不确定性是指投资者可以相对清楚的知道未来投资收益状况。
参考答案:错3.酒店投资类型可以多样化,如可以进行酒店的产权投资,也可以非产权投资(租赁)。
参考答案:对4.酒店业主可以通过酒店折旧为酒店收入提供税收庇护。
参考答案:对5.一个酒店项目的开发除了开发商,还需要酒店管理公司负责对项目的论证、建筑及内装设计等工作。
参考答案:错6.为使酒店开发更为科学合理,下列哪个公司应尽早参入酒店项目的规划及建设( )参考答案:酒店咨询及管理公司7.请将下列酒店开发的基本步骤按顺序排列()参考答案:项目运营阶段;项目报批阶段;概念化设计阶段;可行性分析阶段;设计建造阶段8.酒店投资的非系统风险不包括()参考答案:经济风险;市场风险9.酒店投资是一种实物投资,下列哪项描述是正确的的()参考答案:最大投资在其建设期;投资周期长;期望收益高10.下列哪个地方属于酒店的创利面积()参考答案:酒店大堂;酒店餐厅;酒店客房第三章测试1.针对负需求而言,当某地区顾客不需要某种餐饮产品时,餐饮管理人员采取措施,扭转这种趋势称为参考答案:扭转式营销2.菜肴销售分析是通过()和()指数进行参考答案:顾客满意和销售额3.影响餐饮产品的价格因素不包括参考答案:地域4.顾客满意程度高,营业收入水平高的菜品属于参考答案:明星5.以下应该删除的菜品是参考答案:销售额小于 1,顾客满意指数小于 16.以下业务能力属于餐饮部门高层管理能力的范围的是参考答案:市场营销策划;菜单设计与定价;目标预算制定7.企业地理位置、交通条件和就餐环境均属于餐饮部门的可控因素参考答案:错8.餐饮部门是五星级酒店中带来收益最高的部门。
国家药品计划抽验质量分析指导原则
英文回答:The National Drug Plan Quality Analysis Guidance Principles have been developed with the objective of establishing precise guidelines for the quality assessment of pharmaceutical products falling under the purview of the national drug plan. These principles are meticulously formulated to guarantee that the medications accessible to the populace adhere to stringent quality benchmarks and are deemed safe for consumption. The guidance principles epass a wide array of domains, including but not limited to, sampling methodologies, testing protocols, and criteria for quality assessment.制定了《国家药品计划质量分析指导原则》,目的是制定国家药品计划范围内药品质量评估的准确准则。
这些原则是精心制定的,以保证人民能够获得的药品符合严格的质量标准,并被认为可以安全消费。
指导原则涉及广泛的领域,包括但不限于取样方法、测试规程和质量评估标准。
It's super important for everyone involved in the national drug plan to stick to these guidance principles. This helps keep the program honest and effective. Following these principles means we can analyze pharmaceutical products in a consistent andthorough way, which leads to more accurate and reliable results. Basically, it helps keep the public safe by making sure they're getting high-quality drugs.凡是参与国家药品计划的,都要坚持这些指导性原则,这是极其重要的。
王建英_美国仿制药ANDA申报的法规和政策变化
$220,152 $235,152
$247,717 $262,717
DMF费 ANDA 申报费 PAS 补充申报费 ANDA 积压处理
$21,340 $51,520 $25,760 $17,434
$31,460 $63,860 $31,930
$26,720 $58,730 $29,370
*2015 年度的收费标准自2014年10月1日起生效 (即:2014年10月1日- 2015年9月30日)
*原因应不仅所列类
2010
7 25 10 8 13 2 23 10 3 3 5 4 2
2011
63 40 27 23 15 15 19 7 5 5 3 2 -
2012* 13 40 36
6 4
1 ?
8
4
2014- FDA 新政策/指南
新
2014-9:ANDA的拒收问题 1) ANDA Submissions ― Refuse-to-Receive Standards (2015-5 再次更新) 2) ANDA Submissions — Refuse to Receive for Lack of Proper Justification of Impurity Limits
Guidance for Industry
初审要求 更严格苛刻
11
拒收(RTR)基本类型
直接 拒收
1) 重大缺陷
● 356h 表 / 境外申请者缺失美国代理人 ● DMF未在被Reference 状态(CA, GDUFA Fee, 起始原料等) ● DMF:无菌API 缺失无菌数据 ● 稳定性数据:批数、批量、溶液制剂的Container Orientation、中间条件 ● 批记录(空白/申报批记录及打印片,任何部分翻译不全) ● 分析方法验证(化学、无菌、粒径)不完全:USP/DMF方法确认,自家方法
临床研究项目绩效评价指标构建
临床研究项目绩效评价指标构建1.研究目的的明确性对项目绩效评价至关重要。
The clarity of the research purpose is crucial for the performance evaluation of the project.2.参与者招募的效率是一个重要的评价指标。
The efficiency of participant recruitment is an important evaluation indicator.3.研究方法的科学性和合理性是绩效评价的关键因素。
The scientific and rationality of research methods are key factors in performance evaluation.4.数据采集的及时性和准确性对绩效评价具有重要意义。
The timeliness and accuracy of data collection are of great significance for performance evaluation.5.研究经费的有效使用是一个重要的评价指标。
The effective use of research funding is an important evaluation indicator.6.研究团队的合作精神和专业水平是绩效评价的重要考量因素。
The team spirit and professional level of the research team are important considerations for performance evaluation.7.研究过程中的风险管理能力是一个关键的评价指标。
The ability to manage risks in the research process is a key evaluation indicator.8.研究成果的产出对绩效评价至关重要。
CFA一级笔记-第二部分数量分析方法
CFA一级考试知识点第二部分数量分析方法名义利率等于实际利率加上预期通货膨胀率,而不是当期的实际通货膨胀率。
Holding period return,HPR持有期收益率Bank discount yield,BDY银行贴现利率,本金为F,价格为P,公式:F-PF * 360T Money market yield,MMY货币市场收益率F-PP * 360TEffective yield,EAY有效年利率(1+HPY)^365/t-1Money-weighted rate of return,MWR货币加权收益率(内部收益率)Time-weighted rate of return,TWR时间加权收益率(几个收益期间的几何平均)Bond equivalent yield,BEY债券等价收益率(irr的年化)货币加权受现金流入流出影响,因此时间加权更加广泛四种度量衡:名义尺度nominal scale(分类不排序)、排序尺度ordinal scale(排序进行比较,不能够加减,有优先次级,不成比例)、区间尺度interval scale(温度、评分,零不具备数学意义)、比例尺度ratio scale(常用最高级、身高、收入、资产收益率)算术平均arithmetic mean:相加后除以数据几何平均geometric mean:可以排除算术平均的极端值,相乘后开次方nX1*X2*X3。
计算多期平均价收益率n1+r11+r2….n-1调和平均harmonic mean:用于计算定投平均成本N/(i=1N1/X),3期1元定投价格X1、X2、X3,总共3元买入了i=131/X份股票,调和平均成本即为3/i=131/X调和平均≤几何平均≤算术平均,等号成立只有X1=X2=X3时加权平均weighted mean:加入资产比重计算分位数L =(N+1)Y/100,N是样本数、Y是分位数位置数:四分位、五分位。
样本自选择问题的经济学解释_解释说明
样本自选择问题的经济学解释解释说明1. 引言1.1 概述:本文探讨的是样本自选择问题的经济学解释。
在进行经济学研究时,我们常常面临一个挑战,即如何确保我们所采集和分析的数据具有代表性,并能准确反映出所研究的总体群体特征。
然而,在实际情况中,我们往往无法完全掌握所有变量和因素,导致采样时可能存在自我选择偏差(sample selection bias),也称为样本自选择问题。
1.2 文章结构:接下来,本文将依次介绍样本自选择问题的经济学解释、相关理论模型以及实证研究在医疗经济学、教育经济学和劳动经济学领域的应用和影响。
首先,在第2节中,我们将详细阐述什么是样本自选择问题,并通过案例分析展示其中存在的挑战。
其次,在第3节中,我们将介绍几种经济学解释样本自选择问题的理论模型,包括自我选择模型、信息不完全模型和社会偏好模型。
接着,在第4节中,我们将着重讨论实证研究方面。
通过对医疗经济学、教育经济学和劳动经济学领域的样本自选择问题进行分析,我们将探讨其对实际经济领域的应用和影响。
最后,在第5节中,我们将总结主要观点和发现,并提出未来进一步研究的展望和建议。
1.3 目的:本文的目的是通过对样本自选择问题的经济学解释进行深入探讨,帮助读者更好地理解该问题在经济学研究中所引发的挑战,并为未来相关研究提供新的视角和可行性建议。
在这个信息爆炸时代,我们需要更加谨慎地使用样本数据,并充分了解它们可能存在的局限性,以确保我们得出准确、可靠和具有实际意义的研究结果。
2. 样本自选择问题的经济学解释2.1 什么是样本自选择问题:样本自选择问题是指在研究中,样本的构成方式可能导致结果产生偏倚的情况。
具体来说,当个人或组织能够自主选择是否参与研究,以及如何参与时,就可能存在样本自选择问题。
这种自主性可以基于个人利益、信息不对称或其他因素。
2.2 经济学中的样本自选择问题案例分析:在经济学中,存在着多个样本自选择问题的案例。
一个常见的例子是在医疗经济学领域,研究人员可能只能获得参与某种治疗方法的患者数据,而无法获得未接受该治疗方法的患者数据。
单因子标准指数法
单因子标准指数法
单因子标准指数法是一种投资组合评价方法,用于衡量投资组合的绩效和风险。
该方法基于一个单一的因子,通常是市场指数(如股票市场指数或债券市场指数),用来代表整个市场的变化。
通过比较投资组合的回报率与市场指数的回报率,可以评估投资组合在市场中的表现。
单因子标准指数法的计算过程如下:
1. 计算投资组合的超额回报率:超额回报率等于投资组合的回报率减去市场指数的回报率。
2. 计算投资组合的标准差:标准差是用来衡量投资组合的波动性或风险水平。
通过计算投资组合的年化标准差,可以确定组合的风险水平。
3. 计算投资组合的贝塔系数:贝塔系数衡量投资组合相对于市场的敏感性。
如果贝塔系数大于1,表示投资组合比市场更敏感;如果贝塔系数小于1,表示投资组合比市场不太敏感。
通过以上计算,可以得出投资组合在市场中的表现。
如果投资组合的超额回报率为正数,标准差较低,并且贝塔系数接近1,表示该投资组合相对于市场表现良好且风险控制较好。
反之,如果超额回报率为负数,标准差较高,并且贝塔系数远离1,
表示该投资组合表现较差且风险较高。
需要注意的是,单因子标准指数法只考虑了一个因子(市场指
数),可能无法全面评估投资组合的绩效和风险。
因此,投资者在使用该方法时应谨慎,并综合考虑其他因素进行投资决策。
spss常用统计词汇中英对照表
spss常用统计词汇中英对照表统计词汇英汉对照Absolute deviation, 绝对离差Absolute number, 绝对数 Absolute residuals, 绝对残差Acceptable hypothesis, 可接受假设 Accumulation, 累积ccuracy, 准确度 Actual frequency, 实际频数Addition, 相加 Additivity, 可加性Adjusted rate, 调整率 Adjusted value, 校正值Admissible error, 容许误差 Aggregation, 聚集性Alternative hypothesis, 备择假设 Among groups, 组间Amounts, 总量 Analysis of correlation, 相关分析Analysis of covariance, 协方差分析 Analysis of regression, 回归分析Analysis of time series, 时间序列分析 Analysis of variance, 方差分析ANOVA (analysis of variance), 方差分析 ANOVA Models, 方差分析模型Arcing, 弧/弧旋 Arcsine transformation, 反正弦变换Area under the curve, 曲线面积 AREG , 评估从一个时间点到下一个时间点回归相关时的误差Arithmetic mean, 算术平均数rrhenius relation, 艾恩尼斯关系 Assessing fit, 拟合的评估Asymmetric distribution, 非对称分布 Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差 Attributable risk, 归因危险度Attribute data, 属性资料 Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数 Average confidence interval length, 平均置信区间长度 Average growth rate, 平均增长率Bar chart, 条形图 Bar graph, 条形图Base period, 基期 Bayes" theorem , Bayes 定理Bell-shaped curve, 钟形曲线 Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量 Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归 Binomial distribution, 二项分布Bisquare, 双平方 Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体 Biweight M-estimator, 双权 M 估计量 BMDP(Biomedical puter programs), BMDP 统计软件包 Bo_plots, 箱线图/箱尾图Canonical correlation, 典型相关 Caption, 纵标目Case-control study, 病例对照研究 Categorical variable, 分类变量Catenary, 悬链线 Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系 Cell, 单元Censoring, 终检 Center of symmetry, 对称中心Centering and scaling, 中心化和定标 Central tendency, 集中趋势Central value, 中心值 CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差 Chance variable, 随机变量Characteristic equation, 特征方程 Characteristic root, 特征根Characteristic vector, 特征向量 Chebshev criterion of fit, 拟合的切比雪夫准则 Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2 检验 Choleskey deposition, 乔洛斯基分解 Circle chart, 圆图Class interval, 组距Class mid-value, 组中值 Class upper limit, 组上限Classified variable, 分类变量 Cluster analysis, 聚类分析Cluster sling, 整群抽样 Coefficient of contingency,列联系数Coefficient of determination, 决定系数 Coefficient of multiple correlation, 多重相关系数 Coefficient of partial correlation, 偏相关系数 Coefficient of production-moment correlation, 积差相关系数 Coefficient of rank correlation, 等级相关系数 Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数 Coefficient of variation, 变异系数Cohort study, 队列研究 Column, 列Column effect, 列效应 Column factor, 列因素bination pool, 合并 binative table, 组合表mon factor, 共性因子 mon regression coefficient, 公共回归系数 mon value, 共同值mon variance, 公共方差mon variation, 公共变异munality variance, 共性方差 parability, 可比性parison of bathes, 批比较 parison value, 比较值partment model, 分部模型 passion, 伸缩plement of an event, 补事件 plete association, 完全正相关plete dissociation, 完全不相关 plete statistics, 完备统计量pletely randomized design, 完全随机化设计 posite event, 联合事件posite events, 复合事件 Concavity, 凹性Conditional e_pectation, 条件期望 Conditional likelihood, 条件似然Conditional probability, 条件概率 Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限 Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confounding factor, 混杂因素Conjoint, 联合分析 Consistency, 相合性Consistency check, 一致性检验 Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Contour, 边界线Contribution rate, 贡献率 Control, 对照Controlled e_periments, 对照实验 Conventional depth, 常规深度Corrected factor, 校正因子 Corrected mean, 校正均值Correction coefficient, 校正系数 Correctness, 正确性Correlation coefficient, 相关系数Correlation inde_, 相关指数Counting, 计数 Counts, 计数/频数Covariance, 协方差 Co_ Regression, Co_ 回归Criteria for fitting, 拟合准则 Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域 Critical value, 临界值Cumulative distribution function, 分布函数 D test, D 检验Data acquisition, 资料收集 Data bank, 数据库Data capacity, 数据容量 Data deficiencies, 数据缺乏Data handling, 数据处理 Data manipulation, 数据处理Data processing, 数据处理 Data set, 数据集Data sources, 数据来源 Data transformation, 数据变换Data validity, 数据有效性 Data-in, 数据输入Data-out, 数据输出 Degree of freedom, 自由度Degree of reliability, 可靠性程度 Density function, 密度函数Density of data points, 数据点的密度 Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度 Derivative matri_, 导数矩阵Derivative-free methods, 无导数方法 Design, 设计Determinacy, 确定性 Determinant, 行列式Determinant, 决定因素 Deviation, 离差Deviation from average, 离均差Dichotomous variable, 二分变量Differential equation, 微分方程 Direct standardization, 直接标准化法 Discrete variable, 离散型变量 DISCRIMINANT, 判断Discriminant analysis, 判别分析 Discriminant coefficient, 判别系数Discriminant function, 判别值 Dispersion, 散布/分散度Downward rank, 降秩 Effect, 实验效应Eigenvalue, 特征值 Eigenvector, 特征向量Ellipse, 椭圆 Empirical distribution, 经验分布Empirical probability, 经验概率单位 Enumeration data, 计数资料Equally likely, 等可能 Equivariance, 同变性Error, 误差/错误 Error of estimate, 估计误差Error type I, 第一类错误 Error type II, 第二类错误Estimated error mean squares, 估计误差均方 Estimated error sum of squares, 估计误差平方和 Euclidean distance, 欧式距离Event, 事件 Event, 事件E_ceptional data point, 异常数据点 E_pected values, 期望值E_periment, 实验 E_perimental sling, 试验抽样E_perimental unit, 试验单位 E_planatory variable, 说明变量E_ploratory data analysis, 探索性数据分析 E_plore Summarize, 探索-摘要E_ponential curve, 指数曲线 E_ponential growth, 指数式增长E_SMOOTH, 指数平滑方法E_tended fit, 扩充拟合E_tra parameter, 附加参数E_trapolation, 外推法E_treme observation, 末端观测值 E_tremes, 极端值/极值F distribution, F 分布 F test, F 检验Factor, 因素/因子 Factor analysis, 因子分析Factor Analysis, 因子分析 Factor score, 因子得分Family of distributions, 分布族 Field investigation, 现场调查Field survey, 现场调查 Finite population, 有限总体Finite-sle, 有限样本 First derivative, 一阶导数First principal ponent, 第一主成分 First quartile, 第一四分位数Fitted value, 拟合值 Fitting a curve, 曲线拟合Fi_ed base, 定基 Fluctuation, 随机起伏Forecast, 预测 Four fold table, 四格表Fourth, 四分点 Fraction blow, 左侧比率Fractional error, 相对误差 Frequency, 频率Frequency polygon, 频数多边图 Frontier point, 界限点Function relationship, 泛函关系 Gamma distribution, 伽玛分布Gauss increment, 高斯增量 Gaussian distribution, 高斯分布/正态分布General census, 全面普查 GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Grand mean, 总均值Group averages, 分组平均 Grouped data, 分组资料Guessed mean, 假定平均数 Half-life, 半衰期Happenstance, 偶然事件 Harmonic mean, 调和均数Hazard function, 风险均数 Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法HILOGLINEAR, 多维列联表的层次对数线性模型 Hinge, 折叶点Histogram, 直方图 HOMALS, 多重响应分析Homogeneity of variance, 方差齐性 Homogeneity test, 齐性检验Huber M-estimators, 休伯 M 估计量 Hyperbola, 双曲线Hypothesis testing, 假设检验 Hypothetical universe, 假设总体Impossible event, 不可能事件 Independence, 独立性Independent variable, 自变量 Inde_, 指标/指数Indirect standardization, 间接标准化法 Individual, 个体Inference band, 推断带 Infinite population, 无限总体Infinitely great, 无穷大 Infinitely small, 无穷小Influence curve, 影响曲线 Information capacity, 信息容量Initial condition, 初始条件 Initial estimate, 初始估计值Initial level, 最初水平 Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法 Interquartile range, 四分位距Interval estimation, 区间估计 Intervals of equal probability, 等概率区间 Intrinsic curvature, 固有曲率Invariance, 不变性 Inverse matri_, 逆矩阵Inverse probability, 逆概率 Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式 Joint distribution function, 分布函数 Joint probability, 联合概率 Jointprobability distribution, 联合概率分布 K means method, 逐步聚类法Kaplan-Merier chart, Kaplan-Merier 图 Kendall"s rank correlation, Kendall 等级相关 Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验 Kruskal and Wallis test, Kruskal 及 Wallis 检验/多样本的秩和检验/H 检验 Kurtosis, 峰度Lack of fit, 失拟 Ladder of powers, 幂阶梯Large sle, 大样本 Large sle test, 大样本检验Latin square, 拉丁方 Latin square design, 拉丁方设计Least favorable configuration, 最不利构形 Least favorable distribution, 最不利分布 Least significant difference, 最小显著差法 Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合 Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L 估计量 L-estimator of location, 位置 L 估计量L-estimator of scale, 尺度 L 估计量 Level, 水平Life table, 寿命表 Life table method, 生命表法Light-tailed distribution, 轻尾分布 Likelihood function, 似然函数Likelihood ratio, 似然比 line graph, 线图Linear correlation, 直线相关 Linear equation, 线性方程Linear programming, 线性规划 Linear regression, 直线回归Linear Regression, 线性回归 Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性 Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换 Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布 Logit transformation, Logit 转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数 Low correlation, 低度相关Lower limit, 下限 Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应 Marginal density function, 边缘密度函数 Marginal probability, 边缘概率 Marginal probability distribution, 边缘概率分布 Matching of transformation, 变换的匹配Mathematical e_pectation, 数学期望Mathematical model, 数学模型Ma_imum L-estimator, 极大极小 L 估计量 Ma_imum likelihood method, 最大似然法 Mean, 均数 Mean squares between groups, 组间均方 Mean squares within group, 组内均方 Means (pare means), 均值-均值比较 Median, 中位数Median effective dose, 半数效量Median polish, 中位数平滑 Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量 Minimum distance estimation, 最小距离估计 Minimum variance estimator, 最小方差估计量 MINITAB, 统计软件包Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计 Models for outliers, 离群值模型Modifying the model, 模型的修正 Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple parison, 多重比较Multiple correlation , 复相关 Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归 Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应 Multi-stage sling, 多阶段抽样Multivariate T distribution, 多元 T 分布 Mutuale_clusive, 互不相容Mutual independence, 互相独立 Negative correlation, 负相关Negative linear correlation, 负线性相关 Negatively skewed, 负偏Newman-Keuls method, q 检验 NK method, q 检验No statistical significance, 无统计意义 Nominal variable, 名义变量Nonlinear regression, 非线性相关 Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验 Normal deviate, 正态离差Normal distribution, 正态分布 Normal ranges, 正常范围Normal value, 正常值 Nuisance parameter, 多余参数/讨厌参数 Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数 Observation unit, 观察单位Observed value, 观察值 One sided test, 单侧检验One-way analysis of variance, 单因素方差分析 Oneway ANOVA , 单因素方差分析Order statistics, 顺序统计量 Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基 Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件 ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Paired design, 配对设计Paired sle, 配对样本 Parallel tests, 平行试验Parameter, 参数 Parametric statistics, 参数统计Parametric test, 参数检验 Partial correlation, 偏相关Partial regression, 偏回归 Pearson curves, 皮尔逊曲线Percent bar graph, 百分条形图 Percentage, 百分比Percentile, 百分位数 Percentile curves, 百分位曲线Periodicity, 周期性 Permutation, 排列P-estimator, P 估计量 Pie graph, 饼图Pitman estimator, 皮特曼估计量 Point estimation, 点估计Poisson distribution, 泊松分布 Population, 总体Positive correlation, 正相关 Positively skewed, 正偏Posterior distribution, 后验分布 Power of a test, 检验效能Precision, 精密度 Predicted value, 预测值Principal ponent analysis, 主成分分析 Prior distribution, 先验分布Prior probability, 先验概率 Probabilistic model, 概率模型probability, 概率 Probability density, 概率密度Product moment, 乘积矩/协方差 Pro, 截面迹图Proportion, 比/构成比 Proportion allocation in stratified random sling, 按比例分层随机抽样 Proportionate sub-class numbers, 成比例次级组含量Pseudo F test, 近似 F 检验Pseudo model, 近似模型 Pseudosigma, 伪标准差Purposive sling, 有目的抽样 QR deposition, QR 分解Quadratic appro_imation, 二次近似 Qualitative classification, 属性分类Qualitative method, 定性方法 Quantile-quantile plot, 分位数-分位数图/Q-Q 图 Quantitative analysis, 定量分析Quartile, 四分位数 Quick Cluster, 快速聚类Radi_ sort, 基数排序 Random allocation, 随机化分组Random blocks design, 随机区组设计 Random event, 随机事件Randomization, 随机化 Range, 极差/全距Rank correlation, 等级相关 Rank sum test, 秩和检验Rank test, 秩检验 Ranked data, 等级资料Rate, 比率 Ratio, 比例Raw data, 原始资料 Raw residual, 原始残差Reciprocal, 倒数 Reducing dimensions, 降维Region of acceptance, 接受域 Regression coefficient, 回归系数Regression sum of square, 回归平方和 Relative dispersion, 相对离散度Relative number, 相对数 Reliability, 可靠性Reparametrization, 重新设置参数 Replication, 重复Report Summaries, 报告摘要 Residual sum of square, 剩余平方和 Resistance, 耐抗性 R-estimator of location, 位置R 估计量R-estimator of scale, 尺度 R 估计量Retrospective study, 回顾性调查 Rotation, 旋转Row, 行 Row factor, 行因素Sle, 样本Sleregression coefficient, 样本回归系数 Sle size, 样本量Sle standard deviation, 样本标准差 Sling error, 抽样误差SAS(Statistical analysis system ), SAS 统计软件包Scale, 尺度/量表Scatter diagram, 散点图 Schematic plot, 示意图/简图Second derivative, 二阶导数 Second principal ponent, 第二主成分SEM (Structural equation modeling), 结构化方程模型Sequential analysis, 贯序分析Sequential data set, 顺序数据集 Sequential design, 贯序设计Sequential method, 贯序法 Sequential test, 贯序检验法Sigmoid curve, S 形曲线 Sign test, 符号检验Signed rank, 符号秩 Significance test, 显著性检验Significant figure, 有效数字 Simple cluster sling, 简单整群抽样 Simple correlation, 简单相关Simple random sling, 简单随机抽样 Simple regression, 简单回归simple table, 简单表 Single-valued estimate, 单值估计Singular matri_, 奇异矩阵 Skewed distribution, 偏斜分布Skewness, 偏度 Slash distribution, 斜线分布Smirnov test, 斯米尔诺夫检验Spearman rank correlation, 斯皮尔曼等级相关 Specific factor, 特殊因子Specific factor variance, 特殊因子方差 Spherical distribution, 球型正态分布 SPSS(Statistical package for the social science), SPSS 统计软件包 Standard deviation, 标准差Standard error, 标准误 Standard error of difference, 差别的标准误 Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误 Standard normal distribution, 标准正态分布 Standardization, 标准化Starting value, 起始值 Statistic, 统计量Statistical control, 统计控制 Statistical graph, 统计图Statistical inference, 统计推断 Statistical table, 统计表Steepest descent, 最速下降法 Stem and leaf display, 茎叶图Step factor, 步长因子 Stepwise regression, 逐步回归Storage, 存 Strata, 层(复数)Stratified sling, 分层抽样 Stratified sling, 分层抽样Studentized residual, 学生化残差/t 化残差 Sufficient statistic, 充分统计量Sum of products, 积和 Sum of squares, 离差平方和Sum of squares about regression, 回归平方和 Sum of squares between groups, 组间平方和 Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查 Survival, 生存分析Survival rate, 生存率 Symmetry, 对称Systematic error, 系统误差 Systematic sling, 系统抽样Tags, 标签 Tail area, 尾部面积Tail length, 尾长 Tail weight, 尾重Target distribution, 目标分布 Taylor series, 泰勒级数Tendency of dispersion, 离散趋势 Testing of hypotheses, 假设检验Theoretical frequency, 理论频数 Time series, 时间序列Tolerance interval, 容忍区间 Total sum of square, 总平方和Total variation, 总变异 Transformation, 转换Treatment, 处理 Trend, 趋势Trend of percentage, 百分比趋势 Trial, 试验Trial and error method, 试错法 Two sided test, 双向检验Two-stage least squares, 二阶最小平方 Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析 Type I error, 一类错误/α错误Type II error, 二类错误/β错误 UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计 Unconstrained nonlinear regression , 无约束非线性回归 Unequal subclass number, 不等次级组含量 Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计 Upper limit, 上限Upward rank, 升秩 Validity, 有效性VARP (Variance ponent estimation), 方差元素估计Variability, 变异性Variable, 变量 Variance, 方差Variation, 变异 Varima_ orthogonal rotation, 方差最大正交旋转 W test, W 检验Weibull distribution, 威布尔分布 Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran 检验Weighted linear regression method, 加权直线回归 Weighted mean, 加权平均数Weighted mean square, 加权平均方差 Weighted sum of square, 加权平方和 Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W 估计量W-estimation of location, 位置 W 估计量 Width, 宽度Wilco_on paired test, 威斯康星配对法/配对符号秩和检验 Z test, Z 检验Zero correlation, 零相关 Z-transformation, Z 变换。
探索性因素分析之具体步骤探讨
探索性因素分析之具体步骤探讨文/哈工程大学应用心理学系曹国兴这主要针对的是预试问卷而言,也就是说在初试问卷经过了语义分析,专家讨论论证之后最终得出的问卷。
以下的经验是根据我编制职业承诺问卷的基础上总结而来,错误之处希望同行指教。
首先要说的是关于样本数量的问题。
按照统计学标准而言,一般样本数应为题目数的5-10倍。
由于我的题目为50,故样本至少为250个。
前期我计划发放样本数为6倍也就是300份,由于样本流失及废卷的原因,最终回收到有效问卷为256份,有效率为85.33%。
当然这是无法避免的。
下面我主要谈一下进行探索性分析的具体步骤:第一:比较明确的一步就是做一下关于各个项目的鉴别度(区分度)的分析。
在这个条件下会删除一部分不适合的题目。
删除程序为SPSS下的Analyze→Scale→Reliability Analysis。
比较保险的的是从比较小的鉴别度一步一步删除,每次删一些较低的题目就看一下科隆巴赫系数的大小,直到满意为止。
当然也可以直接将低于0.3的题目删除。
注意的是删除的应为那些删除后科隆巴赫系数值提高的题目,如果删除后科隆巴赫系数值降低,这就需要重新考虑了。
结合语义分析取舍。
第二:在这种情况下一般而言,进行问卷设计之前所有的题目究竟是属于哪一个维度或者有几个维度应该有一定的假设,此时应该如下操作:(1)首先是反向题目的更改。
这方面需要注意的就是每次关闭文件的时候注意不要保存或者你将反向题目更改后的文件保存下来,一定要注明,因为如果你忘记了,就会混淆到底反向题目有没有修改过。
(2)也就是重点阶段。
顾名思义探索性因子分析就好比你是一个探险家在探索一块未知的领域,你不知道去哪一个方向才是正确的,也许你走了很长的路却与你所期望的目的地相反。
为避免在进行探索性因子分析的时候做无用功,我采用了如下的方法:在最大变异法和极大相等法两种正交旋转下分别对题目进行讨论。
比如在最大变异下有四种情况:A:最大变异下不控制因素个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CRITERIA OF CHOICE FOR PROCUREMENT METHODSProf. Peter HibberdDr Ramdane DjebarniCentre For Research In The Built EnvironmentUniversity Of Glamorgan, Pontypridd, Mid Glamorgan CF37 1DL, UK1. IntroductionOver the past fifteen years much work has been done on attempting to define procurement paths and Masterman (1992) provides a good background to some of this work. As the traditional procurement route came under closer scrutiny other procurement routes developed and consequently means for selection were considered.In 1985 NEDO set out general requirements for the selection of a procurement path and others including Skitmore and Marsden in 1988, Bennett and Grice in 1990 and ELSIE computer system in 1990 sought to assist in making the selection. More recently Morledge and Sharif (1996, a,b) have discussed procurement strategy, summarised procurement options and outlined a process to assist in the selection of the best procurement strategy. Gillespie (1994) questions the extent that rationality plays in procurement selection and suggest that other factors often influence choice. Some other researchers suggested the use of fuzzy logic to produce computerised systems to help practitioners (Peak et al., 1992; Russell, 1992). Turner (1990) provides an assessment of the risk inherent in procurement routes and it can be inferred that this is an important determinant in the route selected.It is known that procurement methods play a major role in defining and shaping contractual and work relationships between parties involved in the construction process. Therefore, a better understanding of those methods and criteria that practitioners use in their selection is a very important step in enhancing our understanding of the issue. This paper presents the results of a study into criteria of selection for procurement methods used in the construction industry in the UK, and investigates the issue of satisfaction with procurement methods.2.Background2.1Procurement methodsA review of current practices in the UK shows different approaches to the procurement of building projects. A classification of these approaches is extremely complex because there are not clear and universally accepted definitions of what a particular procurement method is. This raises a major issue in that if there is no accepted definition of what comprises a particular procurement route, the possibility of establishing criteria to achieve specific objectives is problematic, if not remote.McCanlis (1967) pointed out the problems with the traditional descriptors of contractual arrangements but notwithstanding the acknowledged problems, ELSIE (1990) computer system and Masterman (1992) have defined the various procurement routes.If the characteristics of a procurement route can be identified and the impact of these characteristics upon performance can be measured, then and only then, can the selection of a specific procurement path serve a purpose.2.2Procurement’ criteria for selectionThe literature review on this issue reveals a wide spectre of reasons put forward for choosing a particular procurement method. Rowlinson & Newcombe (1984), in their research on the impact of procurement methods on performance, produced a table that provides a general overview of the respective characteristics of types of contractual arrangement (see table 1). This taken with Turner’s risk assessment and that set out in Latham (1994) provides a useful, albeit fairly crude tool. This paper describes research which has attempted to refine these issues and to provide a greater understanding of procurement decisions and needs.Types of Price Design TimeArrangemen t Certainty Level(inc. fees)ParallelWorkingChanges BuildabilityBeforeStartTraditional Arrangemen t FairlygoodLow No Easy No SlowDesign and Build Good Medium Yes Difficult Yes Medium-FastMeasureme nt Averageto poorMedium Yes Easy No Medium-FastPrime Cost Poor High Yes Easy No FastSeparate Mgt Function Averageto poorMedium Yes Easy Yes FastTable 1: Indication of Characteristics of Types of Contract Arrangement(Source: Rowlinson & Newcombe, 1984)The variables used for selection in this study are: accountability, design input, dissatisfaction with previous process used, knowledge of the process, predictable cost, punctuality, speed of commencement, speed of completion, transference of risk, and working relationships. Respondents were also given the opportunity to add any further variables that they may see as important in their choice.3.MethodologyA questionnaire was prepared with the objective of obtaining information relating to procurement choice and satisfaction with procurement methods used, among other things.A total of 122 questionnaires were mailed to both clients and consultants of which 64 responses were received, which is a good answer rate (52%). The data was analysed statistically using SPSS for windows.4.Results4.1Procurement Selection CriteriaRespondents were asked to indicate on a scale from one to ten what they believe to be the degree of importance of procurement selection criteria mentioned earlier in this paper. The results depicted graphically in figure 1 shows the distribution of their answers. In order to find out how significant are these results statistically, χ2 test was conducted and its results are presented in table 2.No.Selection Criteria χ2p 1Accountability 52.340.002Design input 06.780.033Dissatisfaction with previous procurement process09.780.014Knowledge of process 15.500.005Predictable cost 55.720.006Punctuality 27.220.007Speed in commencement 10.910.008Speed in completion 29.660.009Transference of risk 05.090.0810Working relationships 10.720.01Table 2: Results of test for procurement criteria of selectionFigure 1: Distribution of responses of criteria for selection of procurement methodsThe table shows that all procurement criteria for choice were significant except for ‘transference of risk’. Indeed, all the results are significant at ∝ = 0.05 except for reason 9 where p= 0.08 is bigger than ∝, which means that there is no real difference between the order-ranking of respondents as can be seen in figure 1, that is to say that respondents in general do not see risk transference as an important criterion in making their choice of procurement method.In order to find out the ranking of these criteria, Friedman two-way Anova by ranks was carried out. The results presented in table 3 demonstrate that ‘predictable cost’ comes first followed by ‘accountability’, while the bottom comes ‘dissatisfaction with working relationships’ and ‘transference of risk’.No.Selection Criteria Mean Rank 1Predictable cost 7.082Accountability6.993Speed in completion 5.824Punctuality 5.795Dissatisfaction with previous proc. method (reversed)5.586Knowledge of process 5.377Speed in commencement 4.988Design input 4.839Working relationships 4.4410Transference of risk 4.12 N = 50 D.F. = 9 χ2r = 47.31p= 0.00Table3: Friedman One way Anova test results 4.2Satisfaction with Procurement Method UsedTwo questions were asked regarding satisfaction. The first question asked respondents to rate their satisfaction level, on a scale from one to five, with the procurement method currently used by them and the second asked them whether their answer would have been the same if they consider the previous five years. The answers to the first question show that more than half of respondents were satisfied with the procurement method currently used, one third were moderately satisfied and less than one tenth were dissatisfied (see figure 2).Figure 2: Satisfaction with procurementThe reply to the second question reveals that the majority of respondents were not satisfied with the procurement methods they had previously used.To this effect, figure 3 shows that the overall majority were not satisfied with previous procurement methods they used.χ2 one-sample test was conducted to ascertain the statistical significance of these results.As shown in table 4 both answers are statistically significant.Variable χ2D.F.p Current satisfaction16.3030.00Previous satisfaction36.2110.00Table 4: χ test for current and previous satisfactionInterestingly, during the same five year period one has witnessed a rise in the use of ‘design and build’ and a reduction in traditional procurement. This raises the clear possibility that ‘design and build’ as a procurement method is providing greater satisfaction.But as many respondents were still using traditional methods it also indicates that the substantial change in satisfaction may also be accounted for by a refinement and greater understanding of procurement methods. Possibly, as procurement methods mature more users have adopted a particular approach, become more attuned to its usage and achieved higher satisfaction as a consequence.Figure 3: Previous satisfaction 4.3Problems with Current Procurement MethodsIn a reply to a question on the most significant problems potentially arising during the procurement process, changing requirements and design team problems, followed by communication were considered as the most significant problems as indicated in table 5.More than half of the respondents see the solution of these problems in a change of the procurement method used.No Variables Percentage1Changing requirements252Design team253Communication184Cost control 6.35Identification of responsibility 4.76Supply of information 4.77Quality 3.18Design faults 3.19Contract time performance 3.110Other factors 1.611Type of contract0.0Table 5: Ranking of problems with current procurement methodsNotwithstanding, the fact that a substantial improvement in satisfaction in the use of procurement methods has been made, problems with those currently used still exist. The top three problems ‘changing requirements’, ‘design team’ and ‘communication’ can all be addressed by the use of design and build and hence we are likely to witness a continuing trend. ‘Design and build’ alleviates changing requirements by restricting the ability to change and hence the nature of the problem shifts from that of ‘disrupting the process’ to one of receiving a less than satisfactory product. Design team problems are also reduced from a client’s perspective but the problems may still exist. The difference being that they become someone else’s problem, i.e. design and build contractor. ‘Communication’ should be improved as much of this occurs within one organisational unit but this is far from an inevitable consequence.5.ConclusionThe results show that substantially more users are now satisfied with the current procurement methods, than they were with those they had used in the previous five years.A reduction from 89% to 6% of those not satisfied in the procurement method was indicated .Dissatisfaction with previously used procurement methods is shown to be a major factor in the selection of a subsequent procurement method. During the same period that satisfaction increased sharply, there has been a noticeable increase in the use of ‘design and build’ and there is the clear suggestion that ‘design and build’ was seen as a way to solve the problems being encountered. Hughes & Djebarni (u.p.) found that practitioners who worked on large projects sought a move away from traditional methods whereas those who worked on small projects were generally satisfied with the way things were.Although it was anticipated that ‘the transference of risk’ would be an important criterion of selection, this is not supported. The criteria for selecting the procurement method were all significant except for ‘transference of risk’. It seems improbable if not implausible that ‘the transference of risk’ is of such a low order and its explanation may lay in the fact that actual risk apportionment under the various procurement methods is not well understood.In respect of the potential problems that arise during the procurement process over one-half see the solution in changing the procurement method. As the problems were identifiable and as optional procurement methods were available, it raises the question as to why they were not used.It is possible, that an alternative was not considered but more likely it implies that the options did not offer a solution. Therefore, these users, may see the solution to these problems in new innovative methods of procurement.The evidence of this survey does suggest that although selection criteria are important there is not an abundance of confidence in the data relied upon to achieve one’s objectives. Furthermore, many decisions are semi-automatic, being based upon general characteristics rather than specific evaluation against pre-defined criteria.ReferencesBennett. J., and Grice, T. (1990). ‘Procurement Systems for Building’ Quantity Surveying Techniques - New Directors, (Ed. Brandon, P.S.). Blackwell Scientific Publications, London. pp 243-262.ELSIE System, (1990). Imaginor System, RICS QS Division.Gillespie, B. (1994). ‘The Choice of Procurement Route is A Key Decision - So why not treat it as one?’ Building, 29 July. p.46.Hughes, W., and Djebarni, R. ‘A Preliminary Survey of Attitudes to UK Construction Procurement Practice’. Unpublished paper. University of Reading & University of Glamorgan.Latham, Michael, (1994). Constructing the Team, Final Report of the Government/Industry Review of Procurement and Contractual Arrangements in the UK Construction Industry, HMSO, London.Masterman, J.W.E. (1992). An Introduction to Building Procurement Systems. E. & F.N. Spon, London.McCanlis, E.W. (1967) Tendering and Contractual Arrangements, Research and Information Group of the Quantity Surveyors’ Committee, RICS, London.Morledge R., and Sharif A. (1996,a). ‘The Procurement Guide’ A Code of Procedure for Builders and their Advisers. RICS, London.Morledge R., and Sharif A. (1996,b). ‘Strategies for Procurement: Implications for Cost Database, Cost Planning and Tender Price Indexing’ COBRA 95-Construction and Building Conference -, RICS, London.NEDO (1985)., ‘Thinking about building - a successful business consumer’s guide to using the construction industry’, Building Economic Development Committee, London.Peak, J.H., Lee, Y.W., and Napier, T.R. (1992). ‘Selection of Design/Build Proposal Using Fuzzy-Logic System’Journal of Construction Engineering and Management, 118, pp 303-317.Rowlinson, S.M., and Newcombe, R. (1984). ‘Comparison of Procurement Forms for Industrial Buildings in the UK’ The 4th International Symposium on Organisation and Management of Construction, University of Ontario, Canada.Russell, J.S. (1992). ‘Decision Models for Analysis and Evaluation of Construction Contractors’ Construction Management and Economics, 10, pp 185-202.Skitmore, R.M., and Marsden, D.E. (1988). ‘Which Procurement System? Towards a Universal Procurement Selection Technique’ Construction and Management Economics, 6, pp71-89.Turner, A. (1990). Building Procurement. Macmillan, London.。