[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版60
八年级数学上册全册教案(北师大)
八年级数学上册全册授课设计(北师大)第八章数据的代表回顾与思虑一、学生起点剖析学生的知识技术基础:经过本章的学习,学生已掌握了必定的数据办理的方法,会用笔或计算器求一组数据的平均数、中位数和众数,能利用它们解决一些实诘责题,并能初步选择适合的数据代表对数据作出自己的评判。
学生活动经验基础:学生在本章的学习活动中,解决了一些相关的实诘责题,获得了从事统计活动所必定的数学方法,形成了着手实践、自主研究、合作交流的学习方式,积累了一些数学研究活动的经验。
二、学习任务剖析本节课的学习任务是:整理归纳本章所学的知识,形成知识网络结构;会用计算器正确地求出一组数据的平均数、中位数和众数,能选择适合的数据代表对数据作出评判;培养综合运用统计知识解决实诘责题的能力,完成相关的感神态度目标。
为此,本节课的授课目的是:知识与技术:会用计算器正确地求出一组数据的平均数、中位数和众数。
认识平均数、中位数和众数的差别,能选择适合的数据代表对数据作出评判,并解决实诘责题。
过程与方法:初步经历检查、统计、剖析、商议等活动过程,在活动发展学生综合运用统计知识解决实诘责题的能力。
感情与态度:经过本章内容的回顾与思虑,培养学生整理归纳知识的方法,渐渐养成勤于思虑、善于总结的好习惯。
三、授课过程设计本节课设计了五个授课环节:环节:归纳知识结构;第二环节:回顾重点内容;第三环节:综合运用提高;第四环节:课堂小结;第五环节:部署作业。
环节:归纳知识结构内容:本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?留出时间让学生思虑、交流、梳理知识,今后师生共同归纳总结出以下知识网络结构图:目的:引导学生将所学的知识整理归纳,总结出网络结构图,形成知识系统。
帮助学生掌握正确的学习方法,养成优秀的学习习惯。
注意事项:以上知识的归纳总结要以学生为主体来完成,教师不要包办代替。
第二环节:回顾重点内容内容:引导学生依照网络结构图,把重点知识内容再回顾一下:平均数、中位数、众数的看法及例一般地,于n 个数 x1,x2,⋯, xn,我把,叫做n个数的算平均数,称平均数。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版15
2.3 立方根一、学生起点分析学生已经学习了平方根的概念,掌握了求一个非负数的平方根和算术平方根的方法,明确了平方运算与开平方的互逆关系.学生在平方根学习活动中体会了类比的思想方法,为立方根的学习提供了一定的经验基础和学习方法.立方根的计算有着非常广泛的应用,有关空间形体的计算经常涉及开立方,因此本节知识是后续学习内容的基础.二、教学任务分析《立方根》是义务教育教科书北师大版八年级(上)第二章《实数》第三节.本节内容1个学时完成.主要是通过对立方根与平方根的类比,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能以外,关注学生的学习方法培养,渗透数学思想方法也是教师教学过程中的关注点.为此本节课的三维教学目标是:①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;三、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为334R =v ,R 为球的半径)提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(. 目的:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a 的取值分别选为正数、负数、0,这样设计,在此过程中渗透分类讨论的思想方法.2议一议:(1)正数有几个立方根?(2)0有几个立方根(3)负数呢?意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.3在上面的基础上明晰下列内容,对知识进行梳理(1)每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.例如x 3=7时,x 是7的立方根,即37=x ;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.(3)求一个数a 的立方根的运算叫做开立方(extrction of cubic root) , 其中a 叫做被开方数.开立方与立方互为逆运算.效果:学生通过类比学习,初步掌握立方根的概念,能用符号语言表示一个数的立方根.第四环节:尝试反馈,巩固练习内容:例1求下列各数的立方根:(1)27-; (2)1258 ; (3)833 ; (4)216.0 ; (5)5-. 解:(1)因为2733=-)(-,所以27-的立方根是3-,即3273=--; (2)因为1258523=⎪⎭⎫ ⎝⎛,所以1258的立方根是52,即5212583=; (3)因为833827233==)(,所以833的立方根是23,即238333=; (4)因为216.06.03=)(,所以216.0的立方根是6.0,即6.0216.03=;(5)5-的立方根是35-.例2 求下列各式的值:(1);83- (2);064.03 (3)31258-; (4)()339. 解:(1)38-=()2233-=-; (2)3064.0=()4.04.033=;(3)31258-=525233-=⎪⎭⎫ ⎝⎛-; (4)()339=9. 反馈练习 1.求下列各数的立方根: ().1656464125.03333333 ;;-;;- 2.通过上面的计算结果,你发现了什么规律?目的:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:().8283273228333333333=)=(;==;=--= -引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论.第五环节:深入探究想一想: (1)3a 表示a 的立方根,那么()33a 等于什么?33a 呢? (2)3a -与3a -有何关系?目的:明晰()33a =a ,33a =a说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果3x =a ,那么x 就是a 的立方根,即x =3a ,所以3x =()33a =a , 同样,根据定义,3a 是的a 三次方,所以3a 的立方根就是a , 即a a =33,3a -=3a -.第六环节 课时小结内容1:提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容:1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号3a 中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:(3a )3=a , a a =33,3a -=3a -; (5)立方与开立方也互为逆运算.我们可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性.内容2:回顾引例某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?如有时间,学生能力许可,还可以安排学生探究下列问题:1.回顾上节课的内容:已知01822=-x ,求x 的值. 2.求下列各式中的x . ()()--=+=-=x x x x 3435(1)8+27=0; (2)10.3430; (3)81116;(4)3210.目的:回顾引例,使得教学环节更完整,同时体现了数学的实用价值.安排有层次的探究问题,可更好地调动不同学生的学习热情,让学生通过练习解决有关问题,培养学生综合解决问题的能力.效果:学生通过引例的解决,体会到了立方根及开立方运算的实用性,并类比应用方法解决(3)(4),培养并形成能力.第七环节 作业布置1、 习题2.52、再次体会总结立方根与平方根的区别与联系四、教学设计说明(一)关注类比思想的渗透,关注学习方法的指导类比是在两类不同的事物之间进行的对比,在找出若干相同或相似点之后,推测在这两类事物的其他方面也可能存在相同或相似之处的一种思维方式.当然,类比的结果是猜测的,不一定可靠,但它作为一种思考问题的方法,可以发现数学结论,可以沟通数学知识,可以解决生活中的一些实际问题,具有发现的功能,有助于发展学生的创新精神.因此,学习中要注意渗透这样的思维方式,实际上,类比学习法让学生省时省力,在学习新知的同时巩固已学的知识,通过新旧对比更好地掌握知识.为此,本节课让学生应用类比法顺理成章的学习立方根的概念、性质、运算.同样在学生以后的数学学习中,可以通过三角形类比四面体、通过圆类比球……(二)关注学生个体差异,关注学生探究过程根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对“议一议”、“想一想”、“比一比”的探究情况和学生反馈练习的完成情况,教师要关注学生是否理解立方和开立方是互为逆运算的,是否会用根号正确的表示一个数的立方根。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版81
7.2 定义与命题第2课时定理与证明第一环节:回顾引入活动内容:①什么叫做定义?举例说明.②什么叫命题?举例说明.活动目的:回顾上节知识,为本节课的展开打好基础.教学效果:学生举手发言,提问个别学生.第二环节:探索命题的结构活动内容:①探讨命题的结构特征观察下列命题,发现它们的结构有什么共同特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(4)如果一个四边的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.②总结命题的结构特征(1)上述命题都是“如果……,那么……”的形式.(2)“如果……”是已知的事项,“那么……”是由已知事项推断出的结论.(3)一般地命题都可以写成“如果……,那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的结论,每个命题都有条件和结论.活动目的:对命题的结构进行分析,让学生会判断一个命题的条件和结论.教学效果:分小组交流讨论,教师引导进行归纳.应告诫学生当一个命题改写成“如果……那么……”的形式时,要注意改写时不要机械地添上“如果”和“那么”,应适当地补充一些修饰语句,使改写后的语句通顺,完整。
第三环节:思考探讨活动内容:①找出下述命题中的条件和结论,指出它们哪些是正确的命题?哪些是不正确的命题?你又是如何知道的呢?(1)如果两个角相等,那么它们是对顶角;(2)如果a>b,b>c,那么a=c;(3)两角和其中一角的对边对应相等的两个三角形全等;(4)菱形的四条边都相等;(5)全等三角形的面积相等.②探究真假命题的验证说明一个命题是假命题,通常举出一个反例就可以了,使之具备命题的条件,而不具有命题的结论,这种例子称为反例,但是要说明一个命题是正确的无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性呢?结论:正确的命题称为真命题,不正确的命题称为假命题.活动目的:使学生了解命题有真假之分,并且知道怎样去判断真假命题。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版51
第五章 二元一次方程组5.1 认识二元一次方程组第一环节:情境引入内容:(一) 情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数,从而得出二元一次方程.这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x 个包裹,小马驮y 个包裹,老牛的包裹数比小马多2个,由此得方程2x y -=,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:()121x y +=-.(二)情境2实物投影,并呈现问题:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?仍请每个学习小组讨论(讨论2分钟,然后发言),老师注意引导学生分析其中有几个未知量,如果分别设未知数,将得到什么样的关系式?这个问题由于涉及到有几个成年人和几个儿童两个未知数,我们设他们中有x 个成年人,有y 个儿童,在题目的条件中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可以得到方程8x y +=和5334x y +=.在这个问题中,可能会有学生认为用一元一次方程也可以解答,我们要肯定学生的做法,并将学生的答案保留下来,放到第二节二元一次方程组解法的学习中去,让学生更有学习的好奇心与积极性.同时告诉学生在某些有两个等量关系的实际问题中,列二元一次方程组比列一元一次方程更快捷、清楚.目的:通过现实情景再现,让学生体会到方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.设计效果:学生通过前面的情景引入,在老师的引导下,列出关注两个未知数的方程,为后续关于二元一次方程的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.第二环节:新课讲解,练习提高内容:(一) 二元一次方程概念的概括提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程.教师对概念进行解析,要求学生注意:这个定义有两个要求:①含有两个未知数;②所含未知数的项的最高次数是一次.再呈现一些关于二元一次方程概念的辨析题,进行巩固练习:1.下列方程有哪些是二元一次方程:(1)093=-+y x ,(2)012232=+-y x ,(3)743=-b a ,(4)113=-y x ,(5)()523=-y x x ,(6)152=-n m . 2.如果方程13221=-+-n m m y x 是二元一次方程,那么m = ,n = .(二)二元一次方程组概念的概括师提请学生思考:上面的方程2121()x y x y -=+=-, 中的x 含义相同吗?y 呢?(两个方程中x 的表示老牛驮的包裹数,y 表示小马的包裹数,x 、y 的含义分别相同.)由于x 、y 的含义分别相同,因而必同时满足2x y -=和()121x y +=-,我们把这两个方程用大括号联立起来,写成()⎩⎨⎧-=+=-.121,2y x y x ,从而得出二元一次方程组的概念:像这样共含有两个未知数的两个一次方程所组成的一组方程.如:⎩⎨⎧=-=+;03,332y x y x ⎩⎨⎧=+=+.8,835y x y x注意:在方程组中的各方程中的同一个字母必须表示同一个对象.再呈现一些辨析题,让学生进行巩固练习:判断下列方程组是否是二元一次方程组:(1)⎩⎨⎧=+=-;1253,12y x y x (2)⎩⎨⎧=-=+;53,12y x y x (3)⎩⎨⎧=+=-;153,37z y y x(4)⎩⎨⎧==;2,1y x (5)⎪⎩⎪⎨⎧=+=-;1283,52y x y x (6)⎩⎨⎧=+=-.325,132b ab b a (三)因承上面的情境,得出有关方程的解的概念1.6,2x y ==适合方程8x y +=吗?5,3x y ==呢?4,4x y ==呢?你还能找到其他x ,y 值适合8x y +=方程吗?2. 5,3x y ==适合方程5334x y +=吗?2,8x y ==呢?3.你能找到一组值x ,y 同时适合方程8x y +=和5334x y +=吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.如x =6, y =2是方程x + y =8的一个解,记作⎩⎨⎧==2,6y x ;同样,⎩⎨⎧==3,5y x 也是方程8x y +=的一个解,同时⎩⎨⎧==3,5y x 又是方程5334x y +=的一个解. 二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.例如,⎩⎨⎧==3,5y x 就是二元一次方程组⎩⎨⎧=+=+3435,8y x y x 的解. 然后,同样呈现一些辨析性练习:(投影)1.下列四组数值中,哪些是二元一次方程13=-y x 的解?(A )⎩⎨⎧==;3,2y x (B )⎩⎨⎧==;1,4y x (C )⎩⎨⎧==;3,10y x (D )⎩⎨⎧-=-=.2,5y x 2.二元一次方程2832=+y x 的解有:⎩⎨⎧==._____,5y x ⎩⎨⎧-==.2_____,y x ⎩⎨⎧=-=._______,5.2y x ⎪⎩⎪⎨⎧==.37_____,y x ……3.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( )(A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 4.以⎩⎨⎧==2,1y x 为解的二元一次方程组是( )(A )⎩⎨⎧=-=-;13,3y x y x (B )⎩⎨⎧-=+-=-;53,1y x y x (C )⎩⎨⎧-=+-=-;553,32y x y x (D )⎩⎨⎧=+-=-.53,1y x y x 5.二元一次方程6=+y x 的正整数解为 .6.如果⎩⎨⎧==2,1y x 是⎩⎨⎧=-=+n y x m y x 3,2的解,那么m = ,n = . 7.写出一个以⎩⎨⎧-==3,2y x 为解的二元一次方程组为 . (答案不唯一)目的:通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识. 设计效果:通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理一些新问题.第三环节:课堂小结内容:1.含有两未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解是一个互相关联的两个数值,它有无数个解.3.含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值.目的:引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.设计效果:本环节虽然用时不多,却是必不可少的教学环节,对学生回顾与整理本节课的知识效果明显.第四环节:布置作业习题5.1教学设计反思1.本节课充分体现了从问题情景中抽象数学问题、使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能的有意义的这一变化学习过程.在教学中力求体现“问题情景——建立数学模型——解释、应用与拓展”的模式,使学生在自主探索和合作交流的过程中建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较全面的体验和理解.2.通过情境引入,让同学们体会到了生活中的数学无处不在,激发了学生强烈的求知欲望,学生的反应非常积极踊跃,丰富了学生们的情感与态度.充分利用小组合作交流,让同学们自己找出方程中的等量关系,启发同学们自己说出各个定义的理解.在同学们合作做题的时候,老师进一步强调小组合作交流、合理分配时间会取得更好的效果.教学过程各环节紧紧相扣,整个教学过程逻辑思维清晰,问题与问题之间衔接紧密,每一步都为下一步做了很好的铺垫.3.这个案例主要针对中等生而设计,教师可根据学生学习能力再进行设计上的侧重.比如,学生学习能力较强,可在实际问题中抽象二元一次方程组的模型环节、课后的拓展环节增加适当的深层次的内容,以满足学生的学习需要.。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版20
2.6 实 数1.了解实数的概念,能按要求进行分类;(重点) 2.能利用化简对实数进行简单的四则运算.(难点) 一、情境导入毕达哥拉斯学派认为宇宙间的一切现象都能归结为整数或整数之比,即都可用有理数来描述,但后来这个学派的一位年轻成员希伯索斯(Hippasus)发现边长为1的正方形的对角线的长度不能用整数或整数的比来表示,这就引起了毕达哥拉斯学派信徒们的恐慌,为此希伯索斯招来了杀身之祸,后来被投入大海.他这一死,使得这一伟大发现的发展推迟了500多年,给数学的发展造成了不可弥补的损失.这是怎样的一个发现呢?学习了本节知识之后,你就会知道了. 二、合作探究探究点一:实数的相关概念及分类把下列各数填入相应的集合内:-12,-3,23,92,-3-8,0,-π,-1173,-4.2·01·,3.1010010001…(相邻两个1之间0的个数逐次加1).有理数集合:{ …};无理数集合:{ …};整数集合:{ …};分数集合:{ …}; 正实数集合:{ …}; 负实数集合:{ …}; 解析:根据有理数、无理数等的概念进行分类,应注意先把一些数化简再进行判断,如-3-8=2. 解:有理数集合:{-12,92,-3-8,0,-1173,-4.2·01·,…};无理数集合:{-3,23,-π,3.1010010001…(相邻两个1之间0的个数逐次加1),…};整数集合:{-3-8,0,…};分数集合:{-12,92,-1173,-4.2·01·,…};正实数集合:{23,92,-3-8,3.1010010001…(相邻两个1之间0的个数逐次加1),…};负实数集合:{-12,-3,-π,-1173,-4.2·01·,…}.方法总结:至今我们所学的数不是有理数就是无理数,因此可先把题目中所列各数分成这两类,再从有理数中找整数及分数,这样可分散难点,逐个突破,同时可避免重复或遗漏.探究点二:实数的性质分别求下列各数的相反数、倒数和绝对值.(1)3-64;(2)225;(3)11.解析:根据实数的相反数、倒数和绝对值的定义写出相应结果.注意(1)(2)中的两个数要先化简为整数.解:(1)∵3-64=-4,∴3-64的相反数是4,倒数是-14,绝对值是4.(2)∵225=15,∴225的相反数是-15,倒数是115,绝对值是15.(3)11的相反数是-11,倒数是111,绝对值是11.方法总结:在实数范围内,相反数、倒数和绝对值等的意义和在有理数范围内的完全相同.探究点三:实数与数轴上点的关系【类型一】求数轴上的点对应的实数如图所示,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,求点C所表示的实数.解析:首先结合数轴和利用已知条件可以求出线段AB的长度,然后利用对称轴的性质即可求出点C所表示的实数.解:∵数轴上A,B两点表示的数分别为-1和3,∴点B到点A的距离为1+3,则点C到点A的距离为1+3,设点C表示的实数为x,则点A到点C的距离为-1-x,∴-1-x=1+3,∴x=-2- 3.方法总结:本题主要考查了实数与数轴之间的对应关系,其中利用了:当点C为点B关于点A的对称点时,点C到点A的距离等于点B到点A的距离;两点之间的距离为两数差的绝对值.【类型二】利用数轴进行估算如图所示,数轴上A,B两点表示的数分别为2和5.1,则A,B两点之间表示整数的点共有( )A.6个 B.5个 C.4个 D.3个解析:∵2≈1.414,∴2和5.1之间的整数有2,3,4,5,∴A,B两点之间表示整数的点共有4个.故选C.方法总结:数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论.探究点四:实数的大小比较已知0<x<1,则x,1x,x2,x的大小关系为( )A.x<1x<x2<x B.x<x2<x<1xC.x2<x<x<1xD.x<x2<x<1x解析:本题可以用特殊值法求解.例如取x=14,则1x=4,x2=116,x=12,从而可以比较其大小,116<14<12<4,即x2<x<x<1x.故选C项.方法总结:当直接比较大小较困难时,我们可以采用特殊值法,所取特殊值必须符合两个条件:(1)在字母取值范围内;(2)求值计算简单.而求实数的相反数、倒数、绝对值的方法与求有理数的相反数、倒数、绝对值的方法是一样的.探究点五:实数的运算计算:(1)52+2.34-π(精确到0.1);(2)(3+5)(2-1)(精确到0.01);(3)(3-216+214+364)×1(-0.1)2.解析:在进行实数的运算时,有理数的运算法则及运算性质等同样适用.解:(1)52+2.34-π≈12×2.24+2.34-3.14≈0.3.(2)(3+5)(2-1)≈(1.732+2.236)×(1.414-1)=3.968×0.414≈1.64.(3)(3-216+214+364)×1(-0.1)2=(-6+32+4)×10=-0.5×10=-5.方法总结:实数的运算同有理数的运算法则一样.实数运算中,无理数可选取近似值转化为有理数计算,中间结果所取的近似值要比最终结果要求的多一位小数.三、板书设计实数⎩⎪⎨⎪⎧概念及分类实数的性质实数与数轴上点的关系实数大小的比较与运算前面已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数的认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础.。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版6
1.3 勾股定理的应用1.能熟练运用勾股定理求最短距离;(难点) 2.能运用勾股定理及其逆定理解决简单的实际问题.(重点) 一、情境导入一个门框的宽为1.5m ,高为2m ,如图所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过?为什么?二、合作探究 探究点一:求几何体表面上两点之间的最短距离【类型一】长方体上的最短线段如图①,长方体的高为3cm ,底面是正方形,边长为2cm ,现有绳子从D 出发,沿长方体表面到达B′点,问绳子最短是多少厘米?解析:可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.解:如图②,在Rt △DD ′B ′中,由勾股定理得B ′D 2=32+42=25;如图③,在Rt △DC ′B ′中,由勾股定理得B′D 2=22+52=29.因为29>25,所以第一种情况绳子最短,最短为5cm.方法总结:此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.【类型二】圆柱上的最短线段 为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图①.已知圆筒的高为108cm ,其横截面周长为36cm ,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?解析:将圆筒侧面展开成平面图形,利用平面上两点之间线段最短求解,构造直角三角形,利用勾股定理来解决.解:如图②,在Rt △ABC 中,因为AC =36cm ,BC =108÷4=27(cm).由勾股定理,得AB 2=AC 2+BC 2=362+272=2025=452,所以AB =45cm ,所以整个油纸的长为45×4=180(cm).方法总结:解决这类问题的关键就是转化,即把曲面转化为平面,曲线转化成直线,构造直角三角形,利用勾股定理求出未知线段长.探究点二:利用勾股定理解决实际问题如图,在一次夏令营活动中,小明从营地A 出发,沿北偏东53°方向走了400m 到达点B ,然后再沿北偏西37°方向走了300m 到达目的地C.求A 、C 两点之间的距离.解析:把实际问题中的角度转化为图形中的角度,找到直角三角形,利用勾股定理求解.解:如图,过点B作BE∥AD.∴∠DAB =∠ABE=53°.∵37°+∠CBA+∠ABE=180°,∴∠CBA=90°,∴AC2=BC2+AB2=3002+4002=5002,∴AC=500m,即A、C两点间的距离为500m.方法总结:此类问题解题的关键是将实际问题转化为数学问题;在数学模型(直角三角形)中,应用勾股定理或勾股定理的逆定理解题.三、板书设计勾股定理,的应用)错误!)通过观察图形,探索图形间的关系,培养学生的空间观念.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.在利用勾股定理解决实际问题的过程中,感受数学学习的魅力.。
2017秋八年级数学上册全一册教案(90份) 北师大版67(免费推荐下载)
* 三元一次方程组第一环节:创设情景,导入新课内容:问题.已知甲、乙、丙三数的和是,甲数比乙数大,甲数的两倍与乙数的和比丙数大,求这三个数.(这里有三个要求的量,直接设出三个未知数列方程组,顺理成章,直截了当,容易理解)教师提问:如果设这三数分别为,,,用它们可以表示哪些等量关系?预测学生回答:23x y z ++=;-1x y =;220x+y-z =教师提问:这个方程组和前面学过的二元一次方程组有什么区别和联系?预测学生回答:①未知数个数和方程都比二元一次方程组多一个;②未知数次数都是一次. 活动:翻开书本,朗读三元一次方程组的概念:在这个方程组中,23x y z ++=和220x+y-z =都含有三个未知数,并且所含未知数的项的次数都是,这样的方程叫做三元一次方程( ).像这样共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组( )关注概念中的三个要点:①未知数的个数;②未知数的次数;③未知数同时满足三个等量关系,三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.目的:通过第个活动,希望学生能找出等量关系,设出未知数建立方程,此环节既是学习了二元一次方程组后对建立方程组基本方法的练习,也通过类比引出本节课的要解决的问题——解三元一次方程组.教学要求与效果:通过创设问题情境,引入新课,使学生了解三元一次方程组的概念及本节课要解决的问题,强调审题抓住的三个等量关系,从而表示成以上三个方程,这个问题的解答必须同时满足这三个条件,因此,把这三个方程联立起来,成为232+-20-1x y zx y zx y++=⎧⎪=⎨⎪=⎩,引出三元一次方程组的概念.第二环节:类比学习,探究新知内容:引导学生回顾前面所学二元一次方程组解法的基本指导思想——消元,以及消元的基本方法(代入消元、加减消元),尝试对232+-20-x y zx y zx y++=⎧⎪=⎨⎪=⎩ ① ②1 ③进行消元,从而解决问题.步骤()选取一种方法解此三元一次方程组,由学生独立思考解决,教师注意指导学生规范表达.步骤()在学生独立选择方法解决的基础上,引导学生进行比较:在解三元一次方程组时的消元与解二元一次方程组的消元有什么不同?解上面的方程组时,你能先消去未知数(或),从而得到方程组的解吗?(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点).三元一次方程组的消元可以类比二元一次方程组的消元进行;.用代入消元法:由于方程组③式的特点,可将③式分别代入①②式,消去,从而转化为关于,的二元一次方程组的求解;.用加减消元法:由于③式中没有含,可以将①,②式联立相加,消掉,从而得到关于,的二元一次方程组的求解;.总结求解三元一次方程组的整体思路——消元,实现三元二元一元的转化.在消元过程中,消“谁”都行,用那种消法(代入法、加减法)也可,但如果选择合适,可提高计算的效率.目的:结合情境问题中列出的方程组,类比前面所学二元一次方程组的解法,得到解三元一次方程组的整体思路——消元,并找出相应的消元方法.教学要求与效果:()教师板书用代入法消元的求解过程,强调解题的格式.求解完后引导学生总结三元一次方程组的求解思路:三元二元一元,关键在于消元;()引导学生类比一元二次方程组加减消元法对方程组进行消元.第三环节:理解巩固内容:解方程()262-+18-x y zx y zx y++=⎧⎪=⎨⎪=⎩ ① ②1 ③()102+3+173+2-x y zx y zx y z++=⎧⎪=⎨⎪=⎩ ① ②8 ③目的:方程组()是在课本例的基础上,改变系数所得,因为本题的意图是让学生模仿老师的做法自行操作的第一题,所以尽量让各项系数简单一些,让学生练习感觉愉悦一些.方程组()的三个方程均含有三个未知数的三元一次方程组,和学生一起探求出解决的整体思路.然后让学生自行求解,使其进一步理解三元一次方程组的求解方法,培养计算能力.教学要求与效果:()引导学生观察方程组()的特点,此方程组与前面不一样,三个方程都不缺“谁”,消谁好,用什么方法消?()通过对()()的对比,引导学生总结出消元的具体做法是:①如果已有某个未知数的表达式,直接用代入消元,否则常用加减消元.②用加减消元时,如果方程组中有至少一个方程只有两个未知数,缺哪个未知数就消哪个.()在前面例题和练习的基础上,对本课解过的三个方程组进行比较,谈谈解决的方法.总结求解三元一次方程组的整体思路——消元,实现三元二元一元的转化.在消元过程中,消“谁”都行,用那种消法(代入法、加减法)也可,但如果选择合适,可提高计算的效率. 具体做法是:①如果已有某个未知数的表达式,直接用代入消元,否则常用加减消元.②用加减消元时,如果方程组中有至少一个方程只有两个未知数,缺哪个未知数就消哪个.③用加减消元时,如果方程组中三个方程均含有三个未知数,通常要进行两次消元才能转化为二元一次方程组.第四环节:实际应用内容:某校初中三个年级共有人,八年级的学生比九年级的学生人数多,七年级的学生比八年级多,求三个年级各有多少学生?解:由题意设七,八,九年级的学生人数分别为人,得方程:651(1+10%)(+%)x y z y z x y ++=⎧⎪=⎨⎪=⎩① ②15 ③由②可将用表示,由③可将用表示,代入①可得到关于的一元一次方程.解得:231220200x y z =⎧⎪=⎨⎪=⎩所以,七,八,九年级的学生人数分别为人.目的:运用数学知识解决实际问题是数学教学的重要内容.本环节回归用三元一次方程组解决实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识. 教学要求与效果:放手让学生用已经获取的经验去解决新的问题,由学生自己完成,让两个学生在黑板上规范的板书,教师巡视:发现学生的闪光点以及存在的问题并适时的加以辅导,以期学生在解答的过程中领会“代入消元法”的真实含义和“化归”的数学思想. 第五环节:课堂小结内容:()三元一次方程组的概念;()三元一次方程组的解法;注意选好要消的“元”,选好要消的“法”:代入消元、加减消元;()谈谈求解多元一次方程组的思路,提炼化归的思想.目的:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.教学要求与效果:学生能够在课堂上畅所欲言,并通过自己的归纳总结,进一步巩固了所学知识,教师视其情况,可以选择展示一些前面小节中用过问题情境和实际问题对学生的总结从知识、方法和思想层面去总结和提高,让学生体会到数学与生活的联系,激发学生的学习热情.第六环节:布置作业;内容:.课本习题.有同学说列三元一次方程组能解决的问题,一元一次方程也能解决,说一下你的看法. 目的:课后作业设计包括了两个层面:作业是为了巩固基础知识而设计;作业是为了扩展学生的知识面;拓广知识,增加学生对数学问题本质的思考而设计,通过此题可让学生进一步运用三元一次方程组解决问题.教学设计反思.本节课的内容属于选修学习的内容,主要突出对数学兴趣浓厚、学有余力的同学进一步探究和拓展使用,在数学方法和思想方面需重点引导,通过引导,使学生明白解多元方程组的一般方法和思想,理解巩固环节需多注意多种解题方法的引导,并且比较各种解题方法之间的优劣,总结出解多元方程的基本方法..作为选修课,在内容上要让学生理解三元一次方程组概念的同时,要让学生理解为什么要用三元一次方程组甚至多元方程组去求解实际问题的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解对复杂的实际问题方程中元越多,等量关系的建立就越直接;充分理解代入消元法和加减法解方程的优点和缺点,有关这一方面的题目要让学生充分讨论、交流、合作,其理解才会深刻.。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版21
2.6 实数第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类? (2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。
通过举例明确了无理数的表现形式,也为后续判断或者对实数进行分类提供了认知准备。
第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)知识整理:有理数和无理数统称为实数。
意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念。
效果:学生动手填写,并进行小组交流讨论,对带根号的数是否是无理数有了进一步认识。
内容2:1.你能把上面各数分别填入下面相应的集合内吗?有理数集合无理数集合正数集合负数集合2.0属于正数吗?0属于负数吗?知识整理:无理数和有理数一样,也有正负之分。
1.从符号考虑,实数可以分为正实数、0、负实数,即:⎪⎩⎪⎨⎧负实数正实数实数02.另外从实数的概念也可以进行如下分类:⎩⎨⎧无理数有理数实数意图:在实数概念形成的基础上对实数进行不同的分类。
上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类。
提醒学生分类可以有不同的方法,但要按同一标准不重不漏。
效果:让学生讨论回答,形成共识:实数也可以分为正实数、0、负实数,并体会到了分类中不能出现遗漏和重复的要求。
第三环节:实数的相关概念内容1:1.在有理数中,数a 的相反数是什么?绝对值是什么?当a 不为0时,它的倒数是什么?2.2的相反数是什么?35的倒数是什么?3,0,—π的绝对值分别是什么?意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版63
5.6 二元一次方程与一次函数教学目标 知识与技能1.理解作函数图象的方法与代数方法各自的特点.2.掌握利用二元一次方程组确定一次函数的表达式.3.进一步理解方程与函数的联系. 过程与方法:1.经历应用问题多种解法的探究过程,在探究中学会解决应用问题的一些基本方法和策略.2.在对作图象解法与代数解法的对比中,体会知识之间的普遍联系和知识之间的相互转化.3.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力. 情感态度与价值观:1.在探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验. 教学重点利用二元一次方程组确定一次函数的表达式. 教学难点建立数形结合的思想. 教学准备教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本,坐标纸.教学过程第一环节 复习引入(3分钟,学生回顾口答)内容:(1)二元一次方程组与一次函数有何联系? (2) 二元一次方程组有哪些解法?第二环节 设计实际问题情境,导入新课(10分钟,教师引导学生理解题意、解决问题)内容:教材议一议A ,B 两地相距100千米,甲、乙两人骑车同时分别从A ,B 两地相向而行.假设他们都保持匀速行驶,则他们各自到A 地的距离S (千米)都是骑车时间t (时)的一次函数.1小时后乙距离A 地80千米;2小时后甲距离A 地30千米.问经过多长时间两人将相遇? 第三环节 典型例题,探究一次函数解析式的确定(15分钟,学生解题,教师指导)内容:例1 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.(1) 写出y 与x 之间的函数表达式; (2) 旅客最多可免费携带多少千克的行李?解:(1)设b kx y +=,根据题意,可得方程组⎩⎨⎧+=+=.9010,605b k b k解该方程组,得⎪⎩⎪⎨⎧-==.5,61b k所以.561-=x y (2)当x =30时,y =0.所以旅客最多可免费携带30千克的行李.例2 某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示.(1) 分别写出当0≤x ≤15和x >15时,y 与x 的函数关系式;(2) 若某用户十月份用水量为10吨,则应交水费多少元?若该用户十一月份交了51元的水费,则他该月用水多少吨?解:(1)当0≤x ≤15时,设x k y 1=,根据题意得11527k =,解得591=k 所以当0≤x ≤15时,x y 59=; 当x >15时,设b x k y +=2,根据题意,可得方程组⎩⎨⎧+=+=.2039,152722b k b k 解这个方程组,得⎪⎩⎪⎨⎧-==.9,5122b k所以当x >15时,9512-=x y . (2)当x =10时,代入x y 59=中,得y =18.当y =51时,代入9512-=x y 中,得x =25. 第四环节 练习与提高(10分钟,小组讨论,全班交流)内容:1. 图中的两条直线1l ,2l 的交点坐标可以看做方程组的解x (吨)y (元)答案:⎩⎨⎧-=-=+.12,4y x y x2. 在弹性限度内,弹簧的长度y (厘米)是所挂 物体质量x (千克)的一次函数.当所挂物体的质量 为1千克时弹簧长15厘米;当所挂物体的质量为3 千克时,弹簧长16厘米.写出y 与x 之间的函数关 系式,并求当所挂物体的质量为4千克时弹簧的长度. 答案:5.145.0+=x y当x =4是,y =5.16 3. 教材例2的再探索:我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶,如图所示,1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.当时间t 等于多少分钟时,我边防快艇B 能够追赶上A 。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版64
5.7 用二元一次方程组确定一次函数表达式1.能利用二元一次方程组确定一次函数的表达式.(难点)一、情境导入 在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似满足一次函数关系.下面是蟋蟀所叫次数与温度变化情况对的关系式吗?(2)如果蟋蟀1分钟叫了63次,那么该地当时的温度约为多少摄氏度?二、合作探究探究点一:利用二元一次方程组确定一次函数的表达式已知直线l 1经过点A(0,3)及点B(3,0),l 2经过点M(1,2)及点N(-2,-3).求l 1、l 2的交点坐标.解析:先用待定系数法确定l 1、l 2的表达式,再列方程组求解.解:设直线l 1的方程为y =k 1x +b 1,则⎩⎪⎨⎪⎧k 1·0+b 1=3,3k 1+b 1=0,解得⎩⎪⎨⎪⎧b 1=3,k 1=-1. 故有l 1:y =-x +3,即x +y =3.①设直线l 2的方程为y =k 2x +b 2,则⎩⎪⎨⎪⎧k 2+b 2=2,-2k 2+b 2=-3.解得⎩⎪⎨⎪⎧k 2=53,b 2=13.故有l 2:y =53x +13,即5x -3y +1=0.②由①②得方程组⎩⎪⎨⎪⎧x +y =3,5x -3y =-1.解得⎩⎪⎨⎪⎧x =1,y =2.故直线l 1、l 2的交点坐标是(1,2).方法总结:先用待定系数法求出两条直线的表达式,再把它们组成二元一次方程组求解.也可以用图象法解题,但代数法要比图象法解题准确. 探究点二:利用二元一次方程组与一次A ,B 两地相距100千米,甲、乙A ,B 两地相向而行,A 地的距离s(千米)都是时间t(时)的一次函数,已知1小时后乙距离A 地80千米,2小时后甲距离A 地30千米.问甲、乙两人出发后多长时间相遇. 解析:甲、乙两人相遇时,他们与A 地距离相等,结合函数图象经过点坐标(0,0),(2,30),(0,100),(1,80)分别运用待定系数法确定甲、乙的函数表达式.根据函数表达式,构造方程组求解,可得出交点坐标,即是两人出发的相遇时间. 解:根据题意画图,如图.设乙的函数表达式为s =kt +b.把t =0时,s =100;t =1时,s =80代入s =kt +b ,联立方程组解得⎩⎪⎨⎪⎧b =100,k =-20.所以s =-20t +100.设甲的函数表达式为s =mt. 把t =2时,s =30代入s =mt ,得m =15,所以s =15t. 联立这两个函数表达式,得⎩⎪⎨⎪⎧s =15t ,s =-20t +100,解得⎩⎪⎨⎪⎧t =207,s =3007.因此甲、乙两人出发207小时后相遇.方法总结:利用二元一次方程(组)与一次函数图象的联系解决实际问题,如果确定交点坐标,那么常用两个函数表达式构造方程组求解.探究点三:利用二元一次方程组和一次函数解决几何问题在平面直角坐标系中,直线l 1经过点(2,3)和(-1,-3),直线l 2经过原点,且与直线l 1交于点(-2,a).(1)试求a 的值;(2)试问(-2,a)可看成是怎样的二元一次方程组的解?(3)设交点坐标为P ,直线l 1与y 轴交于点A ,你能求出△APO 的面积吗?试试看.解析:(1)利用待定系数法先求出直线l 1的关系式,因为点(-2,a)为l 1和l 2的交点,所以把⎩⎪⎨⎪⎧x =-2,y =a 代入直线l 1的关系式,可求出a ;(2)要想知道(-2,a)是怎样的二元一次方程组的解,已知(-2,a)是直线l 1和直线l 2的交点坐标,故需求出直线l 2的关系式;(3)在直角坐标系内画出直线l 1的图象,利用三角形面积计算公式,进一步求出△APO 面积.解:(1)设直线l 1对应的函数关系式为y =k 1x +b.由题意,得⎩⎪⎨⎪⎧2k 1+b =3,-k 1+b =-3,解得⎩⎪⎨⎪⎧k 1=2,b =-1.故直线l 1对应的函数关系式为y =2x -1.又因为点(-2,a)是直线l 1和直线l 2的交点,所以把⎩⎪⎨⎪⎧x =-2,y =a 代入y =2x -1,得a =2×(-2)-1=-5.(2)设直线l 2对应的函数关系式为y =k 2x(因为直线l 2过原点).因为(-2,-5)是直线l 1和直线l 2的交点,故把⎩⎪⎨⎪⎧x =-2,y =-5代入y =k 2x ,解得k 2=52.故直线l 2对应的函数关系式为y =52x.故(-2,-5)可看成是二元一次方程组⎩⎪⎨⎪⎧5x -2y =0,2x -y =1的解. (3)在平面直角坐标系内画出直线l 1,l 2的图象如图,可知点A(0,-1),故S △APO =12×1×2=1. 方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y =kx +b(k≠0);2.将已知条件代入上述表达式中得k ,b 的二元一次方程组;3.解这个二元一次方程组得k ,b 的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版78
7.2 定义与命题第1课时定义与命题1.理解定义、命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.(难点)一、情境导入神舟十号是中国神舟号系列飞船之一,主要由推进舱(服务舱)、返回舱、轨道舱组成.神舟十号在酒泉卫星发射中心“921工位”,于2013年6月11日17时38分02.666秒发射,由长征二号F改进型运载火箭(遥十)“神箭”成功发射.在轨飞行十五天左右,加上发射与返回,其中停留天宫一号十二天,共搭载三位航天员——聂海胜、张晓光、王亚平.6月13日与天宫一号进行对接.6月26日回归地球.要读懂这段报导,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:定义下列语句属于定义的是( )A.明天是晴天B.长方形的四个角都是直角C.等角的补角相等D.平行四边形是两组对边分别平行的四边形解析:作出正确选择的关键是理解定义的含义.A是对天气的预测,B是描述长方形的性质,C是描述补角的性质.只有D符合定义的概念.故选D.方法总结:定义指的是对术语和名称的含义的描述,是对一个事物区分于其他事物的本质特征的描述,而不是对其性质的判断.探究点二:命题【类型一】命题的概念下列各语句中,哪些是命题,哪些不是命题?(1)相等的角都是直角.(2)空气是无色无味的.(3)同旁内角相等吗?(4)两条直线被第三条直线所截.(5)画线段AB=5cm.(6)对顶角不相等.解析:(1)(2)(6)是命题,因为它们指出了是什么或不是什么;(3)是疑问句,(4)描述的是一个状态,(5)叙述的是一个过程,因此(3)(4)(5)都不是命题,因为它们都不含有判断的意思.解:(1)(2)(6)是命题,(3)(4)(5)不是命题.方法总结:认为“错误的命题不是命题”是错误的,实际上错误的命题也是命题,如本题中的(6)题.【类型二】命题的结构把下列命题改写成“如果……那么……”的形式.(1)对顶角相等;(2)垂直于同一条直线的两条直线平行;(3)同角或等角的余角相等.解析:设法把命题的题设和结论部分省略的文字找出来,要从文字的内在顺序、内在意义进行全面考虑,分清命题的题设部分和结论部分;再将它写成“如果……那么……”的形式.解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两条直线都和第三条直线垂直,那么这两条直线平行.(3)如果两个角是同一个角的余角或两个相等的角的余角,那么这两个角相等.方法总结:(1)命题改写的原则:不改变命题的原意;为了改写后的语句通畅且保持原意,应适当地增加或删减词语或调换词序;(2)命题改写的方法:先搞清命题的题设(已知事项)部分和结论部分;再将其改写为“如果……那么……”的形式:“如果”后面跟的是已知事项,“那么”后面跟的是由已知事项推出的事项(即结论).【类型三】真命题、假命题、反例判断下列命题是真命题还是假命题,若是假命题请举一个反例加以说明.(1)两个角的和是180°,则这两个角是邻补角;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)如果x>y ,那么x 2>y 2.解析:(1)互补的两个角的和为180°,但是互补的两个角不一定是邻补角;(2)一组对边平行,但这组对边不相等,即使另一组对边相等,也不一定是平行四边形;(3)若|x|<|y|,则x 2<y 2.解:(1)假命题.例如:两条直线平行,同旁内角的和为180°,但它们不是邻补角.(2)假命题.例如:等腰梯形中,两底互相平行,两腰相等,但它不是平行四边形.(3)假命题.例如:x =2,y =-3,x>y ,但x 2<y 2.方法总结:识别命题真假的关键是在条件成立的前提下,看结论是否正确,可以举“特例”验证,特例成立还不能证明其为真命题,要由特殊形式转化为一般形式,再用推理的方法证明结论正确;若特例不成立,则原命题一定是假命题.三、板书设计定义与命题⎩⎪⎨⎪⎧定义命题⎩⎪⎨⎪⎧概念:判断一个事件的句子结构:如果……那么……分类:真命题、假命题 通过对学生的启发、调整、激励让学生对定义、命题等概念有一个清楚的认识和了解,用比较数学化的观点来审视生活中或数学学习中遇到的语句特征,充分展示学生的语言表达能力,力图通过学生的自主学习来体现学生的主体地位.。
2017秋八年级数学上册全一册教案(90份) 北师大版50(免费推荐下载)
. 认识二元一次方程组.了解二元一次方程(组)及其解的定义;(重点).会列二元一次方程组,并检验一组数是不是某个二元一次方程组的解.(难点)一、情境导入小红到邮局寄挂号信,需要邮资元角.小红有票额为角和角的邮票若干张,问各需要多少张这两种票额的邮票?这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为角的邮票张,需要票额为角的邮票张,你能列出方程吗?二、合作探究 探究点一:二元一次方程及其解的定义 【类型一】 利用二元一次方程的定义求字母的值已知-+-=是二元一次方程,则+=.解析:根据题意得=且-≠,-=,解得=-,=.所以+=,故填.方法总结:二元一次方程必须符合以下三个条件:()方程中只含有个未知数;()含未知数的项的最高次数为一次;()方程是整式方程.【类型二】二元一次方程的解已知是方程-=的一个解,那么的值是( ). . .- .-解析:将代入方程-=,得+=,所以=.故选.方法总结:根据方程的解的定义知,将,的值代入方程中,方程左右两边相等,即可求解.探究点二:二元一次方程组及其解的定义【类型一】识别二元一次方程组 有下列方程组:①②③④⑤其中二元一次方程组有( ) .个 .个 .个 .个 解析:①方程组中第一个方程含未知数的项的次数不是;②方程组中第二个方程不是整式方程;③方程组中共有个未知数.只有④⑤满足,其中⑤中的π是常数,不是未知数.故选.方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是共含两个未知数;三看含未知数的项的次数是不是都为.【类型二】二元一次方程组的解甲、乙两人共同解方程组由于甲看错了方程①中的,得到方程组的解为乙看错了方程②中的,得到方程组的解为试计算+(-)的值.解析:由方程组解的定义知:甲看错了方程①中的得到方程组的解为说明是方程②的解;同样是方程①的解.解:把代入②,得-+=-,所以=;把代入①,得5a +=,所以=-;所以+(-)=(-)+(-×)=.方法总结:利用方程组的解确定字母参数的方法是将方程组的解代入它适合的方程中,得到关于字母参数的新方程,从而求解.探究点三:列二元一次方程组小刘同学用元钱购买两种不同的贺卡共张,单价分别是元与元.设元的贺卡为张,元的贺卡为张,那么,所适合的一个方程组是( )解析:根据题意可得到两个相等关系:()元贺卡张数+元贺卡张数=(张);()元贺卡钱数+元贺卡钱数=(元).设元的贺卡为张,元的贺卡为张,可列方程组为故选.方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.三、板书设计二元一次方程组通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解.。
[初中数学]2017秋八年级数学上册全一册教案(90份) 北师大版62
5.6 二元一次方程与一次函数1.理解二元一次方程(组)与一次函数的关系;(重点) 2.能根据一次函数的图象求二元一次方程组的近似解.(难点) 一、情境导入 1.方程组⎩⎪⎨⎪⎧x +y =2,x +y =5有________个解;2.方程组⎩⎪⎨⎪⎧x +y =3,2x +2y =6有________个解;3.方程组⎩⎪⎨⎪⎧3x -y =7,2x -y =5有________个解.两条直线互相平行,有________个交点,两条直线重合,有________个交点;两条直线相交,有________个交点.二、合作探究 探究点一:二元一次方程与一次函数的关系以方程12x +3y =2的解为坐标的所有点都在一次函数y =________的图象上.解析:因为以方程12x +3y =2的所有的解为坐标的点组成的图象就是一次函数的图象,将方程12x +3y =2用含x 的代数式表示y ,得y =2-12x3=-16x +23.故填-16x +23.方法总结:y =kx +b(k≠0)既可以看做是一个二元一次方程,也可以看做是一个一次函数的表达式;y -kx =b 与y =kx +b 虽然只是形式不同,但却只能表示二元一次方程,而不能表示一次函数的表达式.因此对于一个二元一次方程,只有把它写成用一个未知数表示另一个未知数的形式时,才能看做是一个一次函数的表达式.探究点二:二元一次方程组与一次函数的关系【类型一】 利用交点的坐标确定二元一次方程组的解一次函数y =5-x 与y =2x -1的图象的交点为(2,3),则方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1的解为________.解析:方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1的解就是直线y =5-x 与直线y =2x -1的交点坐标,又∵两直线的交点坐标为(2,3),∴方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1的解为⎩⎪⎨⎪⎧x =2,y =3.故填⎩⎪⎨⎪⎧x =2,y =3. 方法总结:二元一次方程组是由含有两个未知数的两个一次方程组成的,而每个一次方程的图象都是一条直线.两条直线的交点坐标表示该方程组中两个方程的公共解,也就是这个二元一次方程组的解.【类型二】 利用二元一次方程组的解确定交点的坐标已知方程组⎩⎪⎨⎪⎧-3x +4y =6,2x -3y =m 的解是⎩⎪⎨⎪⎧x =2,y =3,确定一次函数y =34x +32与y =23x-13m 图象交点的坐标. 解析:可以根据方程组的解,得出m 的值,构造方程组计算交点坐标,也可以变化两个函数解析式使其与方程组中的两个方程的形式相同,直接得出图象的交点坐标.解:将y =34x +32变为-3x +4y =6,y=23x -13m 变为2x -3y =m ,所以直线y =34x +32与y =23x -13m 交点的坐标即是原方程组的解中x ,y 的对应值,因此两个一次函数图象的交点坐标即是(2,3).方法总结:灵活运用方程组的解与一次函数图象交点坐标信息,通过方程与一次函数的适当形式变化,达到不解方程组即可得出方程组的解或图象交点坐标的目的,即是“整体思想”的灵活运用.【类型三】 用图象法解二元一次方程组用图象法解方程组⎩⎪⎨⎪⎧3x -y =4,①2x -3y =-2.② 解析:先将两个方程变形为y =kx+b(k≠0)的形式,再在同一直角坐标系中作出其图象,交点的坐标即为方程的解.解:由①得y =3x -4. 由②得y =23x +23.在同一直角坐标系中分别作出一次函数y =3x -4和y =23x +23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组⎩⎪⎨⎪⎧3x -y =4,2x -3y =-2的解是⎩⎪⎨⎪⎧x =2,y =2. 方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤: (1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.。
八年级数学上册全册教案(北师大)
八年级数学上册全册教案(北师大)本资料为woRD文档,请点击下载地址下载全文下载地址第八章数据的代表回顾与思考一、学生起点分析学生的知识技能基础:经过本章的学习,学生已掌握了一定的数据处理的方法,会用笔或计算器求一组数据的平均数、中位数和众数,能利用它们解决一些实际问题,并能初步选择恰当的数据代表对数据作出自己的评判。
学生活动经验基础:学生在本章的学习活动中,解决了一些相关的实际问题,获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了一些数学探究活动的经验。
二、学习任务分析本节课的学习任务是:整理归纳本章所学的知识,形成知识网络结构;会用计算器准确地求出一组数据的平均数、中位数和众数,能选择恰当的数据代表对数据作出评判;培养综合运用统计知识解决实际问题的能力,达成有关的情感态度目标。
为此,本节课的教学目标是:.知识与技能:会用计算器准确地求出一组数据的平均数、中位数和众数。
了解平均数、中位数和众数的差别,能选择恰当的数据代表对数据作出评判,并解决实际问题。
2.过程与方法:初步经历调查、统计、分析、研讨等活动过程,在活动发展学生综合运用统计知识解决实际问题的能力。
3.情感与态度:通过本章内容的回顾与思考,培养学生整理归纳知识的方法,逐步养成勤于思考、善于总结的好习惯。
三、教学过程设计本节课设计了五个教学环节:第一环节:归纳知识结构;第二环节:回顾重点内容;第三环节:综合运用提高;第四环节:课堂小结;第五环节:布置作业。
第一环节:归纳知识结构内容:本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?留出时间让学生思考、交流、梳理知识,然后师生共同归纳总结出如下知识网络结构图:目的:引导学生将所学的知识整理归纳,总结出网络结构图,形成知识系统。
帮助学生掌握正确的学习方法,养成良好的学习习惯。
注意事项:以上知识的归纳总结要以学生为主体来完成,教师不要包办代替。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.5 应用二元一次方程组——里程碑上的数
1.利用二元一次方程组解决数字问题和行程问题;(重点)
2.进一步经历和体验列方程组解决实际问题的过程.
一、情境导入 小刚的爸爸开车带着小刚出去玩,他们匀速行驶在公路上.10:00时,小刚看到里程碑上是一个两位数,它的两个数字之和是8;11:00时,他又看到里程碑上是一个两位数,它的两个数字与第一次看到的两位数的数字刚好互换了位置;14:00时他看到里程碑上的数变成了三位数,它的百位数字比第一次看到的两位数的十位数字少1,十位数字比第一次看到的两位数的个位数字多1,个位数字是0.你能算出小刚第一次看到的里程碑上的数是多少吗? 二、合作探究
探究点一:
利用二元一次方程组解决数字问题
【类型一】 年龄问题
父亲给儿子出了一道题,要儿子猜出答案:有一对母女,5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍只多6岁.那么现在这对母女的年龄分别是多少? 解析:先分别设出现在这对母女的年龄,再用它们表示出5年前母女的年龄和15年后母女的年龄,则根据①5年前,母亲的年龄是女儿年龄的15倍;②15年后,母亲的年龄是女儿年龄的2倍再加6,列出方程
x 岁和y 岁,由题意,得
⎩⎪⎨⎪⎧x -5=15(y -5),x +15=2(y +15)+6.解得⎩
⎪⎨⎪
⎧x =35,y =7.
答:现在这对母女的年龄分别是35岁和7岁.
方法总结:解答年龄问题的关键是年龄
差不变及增长岁数相同.
【类型二】 数字问题 一个两位数,个位上的数字与十位上的数字之和为9,把这个两位数的十位数字和个位数字对调所得新两位数比原两位数大9,求这个两位数. 解析:若个位上的数字为x ,十位上的数字为y ,则这个两位数为10y +x.由相等关系“数字之和为9”及“新两位数比原两位数大9”可列方程组. 解:设这个两位数的个位上的数字为x ,十位上的数字为y. 根据题意,得
⎩⎪⎨⎪⎧x +y =9,
(10x +y )-(10y +x )=9.
解得⎩
⎪⎨⎪⎧x =5,
y =4,则10y +x =45.
故这个两位数是45. 方法总结:数字问题中所求的未知量一般是原数,解题时,一般先设原数数位上的
数字为未知数,再写出这个数. 探究点二:利用二元一次方程组解决行程问题 【类型一】 相遇问题 某体育场的一条环形跑道长400m.甲、乙两人从跑道上同一地点出发,分别以
不变的速度练习长跑和骑自行车.如果背向而行,每隔1
2
min 他们相遇一次;如果同向而
行,每隔11
3min 乙就追上甲一次.问甲、乙
每分钟各行多少米?
解析:题中的两个相等关系为:①乙骑车的路程+甲跑步的路程=400m(背向);②乙骑车的路程-甲跑步的路程=400m(同向).
解:设乙骑车每分钟行xm ,甲每分钟跑
ym ,由题意,得⎩
⎪⎨⎪
⎧12x +1
2
y =400,43x -4
3
y =400.解得
⎩
⎪⎨⎪⎧x =550,
y =250. 答:甲每分钟跑250m ,乙每分钟骑550m.
方法总结:环路上的等量关系:若同时同地出发,当背向而行,第一次相遇时,二者路程之和=环路的周长;若同时同地出发,同向而行,第一次相遇时,快者的路程-慢者的路程=环路的周长.
【类型二】
行程问题
A 、
B 两码头相距140km ,一艘轮
船在其间航行,顺水航行用了7h ,逆水航行用了10h ,求这艘轮船在静水中的速度和水流速度.
解析:设这艘轮船在静水中的速度为xkm/h ,水流速度为ykm/h ,列表如下,
解:设这艘轮船在静水中的速度为xkm/h ,水流速度
为ykm/h.由题意,得
⎩⎪⎨⎪⎧7(x +y )=140,10(x -y )=140.解得⎩
⎪⎨⎪⎧x =17,y =3. 答:这艘轮船在静水中的速度为
17km/h ,水流速度为3km/h.
方法总结:本题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间”列方程组.
三、板书设计
“里程碑上的数”问题⎩⎪⎨⎪⎧数字问题
行程问题
数学思想方法是数学学习的灵魂.教学中注意关注蕴含其中的数学思想方法(如化归方法),介绍化归思想及其运用,既可提高学生的学习兴趣,开阔视野,同时也提高学生对数学思想的认识,提升解题能力.。