河南省天一大联考2018届高三阶段性测试(三)数学(理)试题(图片版)
2018新课标全国卷3高考理科数学试题及答案解析
绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2020届河南省天一大联考高三高考全真模拟(三)数学(理)试题解析
绝密★启用前2020届河南省天一大联考高三高考全真模拟(三)数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题1.已知集合{}{}222450,20A x x y x y B x x =+-++==+>,则集合A B =U ( )A .[)1,+∞B .[]0,1C .(],1-∞D .()0,1答案:A通过配方求出集合A ,解不等式求出集合B ,进而可得并集. 解:对于集合A :配方得()()22120,1,2x y x y -++=∴==-, 从而{}1A =.对于集合):120,0B >Q20,10>>,解得1x >,()1,B ∴=+∞,从而[)1,A B ∞=+U . 故选:A. 点评:本题考查集合的并集运算,考查运算能力,是基础题. 2.已知z 为z 的共轭复数,若32zi i =+,则z i +=( )A .24i +B .22i -C .D .答案:C先由已知求出z ,进而可得z i +,则复数的模可求. 解:由题意可知3223iz i i+==-,从而23,24,z i z i i z i =+∴+=+∴+==.点评:本题考查复数的运算及共轭复数,命题陷阱:1z +易被看成绝对值,从而导致错选,另外,易疏忽共轭复数的运算.3.为了贯彻素质教育,培养各方面人才,使每位学生充分发挥各自的优势,实现卓越发展,某高校将其某- -学院划分为不同的特色专业,各专业人数比例相关数据统计.如图,每位学生限修一门专业.若形体专业共300人,则下列说法错误的是( )A .智能类专业共有630人B .该学院共有3000人C .非文化类专业共有1800人D .动漫类专业共有800人 答案:D根据形体专业所占比例和人数可求出总人数,分别求出文化类和智能类所占比例,根据比例和总人数可求出不同专业的人数,进而可得答案. 解: 该学院共有300300010%=人,B 正确; 由题意可知,文化类共有115%18%12%10%5%40%-----=, 而智能类共有40%3%6%10%21%---=, 所以智能类专业共有300021%630⨯=人,A 正确; 非文化类专业共有300060%1800⨯=人,C 正确; 动漫类专业共有15%3000450⨯=人,故D 错误. 故选:D. 点评:本题考查数据统计知识,考查数据分析,解决问题能力,命题陷阱:饼状图中信息较多,容易分析错误,从而会导致出错.4.已知数列{}n a 是等比数列,48,a a 是方程2840x x -+=的两根,则6a =( ) A .22±B .2C .2±D .2-根据韦达定理可得48,a a 均为正数,再通过等比数列的性质可得6a . 解:方程2840x x -+=的两根分别为48,a a ,48480084a a a a +>⎧∴⎨>==⎩,∴4800a a >⎧⎨>⎩,由等比数列性质可知24864a a a ==,62a ∴=±又26460,2a a q a =>∴=.故选:B. 点评:本题考查等比数列性质,考查运动知识解决问题的能力,是基础题. 5.已知函数()1f x +是定义在R 上的偶函数,12,x x 为区间()1,+∞上的任意两个不相等的实数,且满足()()12210f x f x x x -<-,131,,,042a f b f c f t t t ⎛⎫⎛⎫⎛⎫===+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .b a c <<答案:D先根据函数(1)f x +是偶函数可得出函数()f x 的图象关于直线1x =对称,再由()()12210f x f x x x -<-得()f x 在()1,+∞上为增函数,根据131,,42t t+的大小关系可得函数值的大小. 解:Q 函数(1)f x +是偶函数,∴函数(1)f x +的图象关于直线0x =对称,从而函数()f x 的图象关于直线1x =对称,由()()12210f x f x x x -<-得()f x 在()1,+∞上为增函数,1744a f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,由0t >得12t t +≥,从而1731731,4242t f t f f t t ⎛⎫⎛⎫⎛⎫+>>>∴+>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即b a c <<. 故选:D. 点评:本题考查函数的奇偶性与单调性,考查对知识综合运用的能力,本题的根源是函数性质的综合,将奇偶性转化成对称性,结合对称性把变量化归到同一单调区间,从而应用单调性比较函数值的大小.6.已知,,m n l 是不同的直线,,αβ是不同的平面,若直线m α⊂,直线,,n l m l βαβ⊂⋂=⊥,则m n ⊥是αβ⊥的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要答案:B通过面面垂直的判定和性质分别判断充分性和必要性即可. 解:当//n l 时,若m n ⊥,则不能得到αβ⊥,所以m n ⊥不能推出αβ⊥; 反之,若αβ⊥,因为,,m l m l ααβ⊂⋂=⊥,可推出m β⊥.又n β⊂, 所以m n ⊥,故m n ⊥是αβ⊥的必要不充分条件. 故选:B. 点评:本题考查面面垂直的判定与性质定理,以及充分条件、必要条件的判断,考察空间想象能力.7.已知某空间几何体的三视图如图所示,则该几何体的表面积是( )A .206+B .216+C .20D .392答案:A由三视图可知该几何体正方体''''ABCD A B C D -截去一个小三棱锥'D AD E -,如图,根据面积公式求出每个面的面积相加即可. 解:由三视图可知该几何体正方体''''ABCD A B C D -截去一个小三棱锥'D AD E -,如图()()''''111123,1223,222222ABCE CED C AA D S S S ∆=⨯+⨯==⨯+⨯==⨯⨯=在'AED ∆中,''22125,22AE ED AD =+== 可计算'AD 3'122362AED S ∆∴=⨯=,从而可得该几何体的表面积为332634206++⨯=+. 故选:A. 点评:本题考查切割体的三视图,考察空间想象能力以及运算求解能力,本题根源在于三视图的概念,要求学生会通过三视图还原几何体原图,旨在考查直观想象能力.8.随着交通事业的快速发展,中国高铁在我国各地已普遍建成,并投入使用,加强了各地的联系.已知某次列车沿途途经河南的安阳焦作、洛阳、郑州.开封五个城市,这五个城市有各自有名的景点:红旗渠、云台山、白马寺、二七塔、清明上河园某小朋友对河南比较陌生,他将五个景点与五个城市进行连线(一个城市对一个景点),则他至少能连正确两对的方法数共有( ) A .4种 B .5种C .31种D .36种答案:C分别算出该小朋友连正确两对,连正确3对,连正确4对(即5对)的方法数,相加即可. 解:该小朋友连正确两对的方法数为25220C ⨯=种; 连正确3对的方法数为35110C ⨯=种;连正确4对(即5对)的方法数为1种,至少连正确两对的方法数共有2010131++=种, 故选:C. 点评:本题考查排列组合中典型的不在其位问题,考察分析、解决问题的能力,本题问“至少”,不细心易只计算“连正确两对”的情况;另外学生会出现连正确4对与5对分开来算的情况.9.已知函数()()()sin 0,0,0f x A x A ωω=+ϕ>><ϕ<π的部分图像如图所示,给出下列四个结论:①()f x 的最小正周期为2π; ②()f x 的最小值为4-; ③(),0π是()f x 的一个对称中心;④函数()f x 在区间25,312⎛⎫-π-π ⎪⎝⎭上单调递增.其中正确结论的个数是( ) A .4 B .3C .2D .1答案:B通过图像可得函数的周期,过点,12A π⎛⎫⎪⎝⎭,()0,2列方程可得解析式为()4sin 46f x x π⎛⎫=+ ⎪⎝⎭,再根据正弦函数的图像和性质逐一判断.解:由图象知函数()f x 的最小正周期为23122T πππ⎛⎫=⨯-= ⎪⎝⎭,则4ω=, 即()()sin 4f x A x =+ϕ, 又由12f A π⎛⎫=⎪⎝⎭,得sin 13πϕ⎛⎫+= ⎪⎝⎭, 由0ϕπ<<可知6π=ϕ,从而()sin 46f x A x π⎛⎫=+ ⎪⎝⎭,又(0)2f =,可得sin 26A π=, 所以4A =, 从而()4sin 46f x x π⎛⎫=+⎪⎝⎭,易判断①②正确, 而()0f π≠,所以③错误, 又由242,262k x k k Z ππππ-≤+≤π+∈, 得()f x 的增区间为,,26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 可知当1k =-时,25,312⎛⎫-π- ⎪π⎝⎭是()f x 的一个增区间,④正确.故选:B. 点评:本题主要考查利用三角函数部分图象求解析式和三角函数的基本性质,考查运算求解能力,是基础题.10.已知实数,a b 满足,a b R +∈,且31a b +=,则()1924a b a b +++的最小值为( ) A .173B .174C .163D .194答案:C由31a b +=得()()283a b a b +++=,变形()()()()191912824243a b a b a b a b a b a b ⎛⎫+=++++⨯⎡⎤ ⎪⎣⎦ ⎪++++⎝⎭,展开,利用基本不等式即可求最值.解:因为31a b +=,所以393a b +=,即()()283a b a b +++=,()()()()191912824243a b a b a b a b a b a b ⎛⎫∴+=++++⨯⎡⎤ ⎪⎣⎦ ⎪++++⎝⎭ ()()()928111610102924333a b a b a b a b ⎡⎤++=++⨯≥⨯+=⎢⎥++⎣⎦, 当且仅当()283a b a b +=+即51,88a b ==时取等号. 故选:C. 点评:本题考查基本不等式,考察转化与规划思想,应用基本不等式时,由和为定值,求其他和的最值,须两和相乘,化为基本不等式应用的模型.11.如图,在ABC ∆中,D 为AB 的中点,,E F 为BC 的两个三等分点,AE 交CD 于点M ,设,AB a AC b ==u u u r r u u u r r ,则FM =u u u u r( )A .171515a b -r rB .171515a b +r rC .241515a b -r rD .241515a b -r r答案:A连接,FA FD ,由,,E M A 三点共线,可设()1FM FE FA λλ=+-u u u u r u u u r u u u r ,将,FE FA u u u r u u u r用,AB AC u u u r u u u r表示,则可得21233FM AB AC λλ--=+u u u u r u u u r u u u r ,同理,,D M C 由三点共线,可设()3213163FM FD FC AB AC μμμμ--=+-=+u u u u r u u u r u u u r u u u r u u u r ,利用平面向量基本定理列方程组求解. 解:连接,FA FD ,。
2018年高考理科数学全国卷3(含答案与解析)
2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。
2018 年全国 III 卷数学(理)答案及解析
− x + x + 2 的图像大致为( 7.函数 y =
4 2
)
A.
B.
C.
D.பைடு நூலகம்
【答案】D 【考点】函数图像以及性质 【难易程度】基础题 【解析】当 x=1 时,函数值大于 0,排除 A、B;因为 F(x)=F(-x),函数为偶函数,图像关于 y 轴
−4 x 3 + 2 x =0 ,解得 x=0、 、 对称, 令F '( x) =
p ,各成员的支付方式相互独立。设 X 为该群
,
P( x = 4) < p( x = 6) ,则 p =(
D.0.3
)
C.0.4
DX = np(1 − p) =10 × p(1 − p) = 2.4 , 解 得
= p1 0.6 = , p2 0.4 .
因为 P(X=4)<P(X=6),即
4 6 C10 p 4 (1 − p )6 < C10 p 6 (1 − p ) 4 ,所以 p 取 0.6。故答案选 B.
2 7 = 9 9 ,故答案选 B.
2 ( x 2 + )5 x 的展开式中 5、
A.10 【答案】C 【考点】二项式定理 【难易程度】基础题 B.20
的系数为( D.80
)
C.40
2 ( x 2 + )5 x 的展开式中的第 r+1 项为 【解析】
,题目中需要求解 ,故答案选 C
的系
4 ,则 r = 2 ,∴ 数,需使 2 × (5 − r ) − r =
是带卯眼的木构件的俯视图可以是(
)
A.
B.
C. 【答案】A 【考点】三视图 【难易程度】基础题
高中数学导数经典100题
题401:云南省峨山彝族自治县第一中学2018届高三2月份月考理科 已知函数()ln f x ax x =+,其中a 为常数,e 为自然对数的底数.(1)若()f x 在区间(0,]e 上的最大值为3-,求a 的值;(2)当1a =-时,判断方程ln 1|()|2x f x x =+是否有实根?若无实根请说明理由,若有实根请给出根的个数.题402:2018年普通高等学校招生全国统一考试仿真卷-(理六)已知()ln()f x x m mx =+-(1)求()f x 的单调区间;(2)设1m >,12,x x 为函数()f x 的两个零点,求证:120x x +<题403:吉林省实验中学2018届高三上学期第六次月考数学(文)已知函数2()ln (0)f x x a x a =->(1)讨论函数()f x 在(,)a +∞上的单调性;(2)证明:322ln x x x x -≥且322ln 16200x x x x --+>题404:西北师大附中2017届高三校内第二次诊断考试试题数学(理科) 已知函数21()ln (1)..2f x a x x a x a R =+-+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≥对定义域内的任意x 恒成立,求实数a 的取值范围;(3)证明:对于任意正整数,,m n 不等式111...ln(1)ln(2)ln()()n m m m n m m n +++>++++恒成立. 题405:铜仁一中2017-2018学年度高三年级第五次月考数学(理)试已知函数3()ln(1)ln(1)(3)()f x x x k x x k R =++---∈(1)当3k =时,求曲线()y f x =在原点处的切线方程;(2)若()0f x >对(0,1)x ∈恒成立,求k 的取值范围.题406:宁夏固原第一中学2018届高三上学期期末考试数学(理) 已知函数()ln 1,a f x x a R x=+-∈ (1)若函数()f x 的最小值为0,求a 的值;(2)证明:(ln 1)sin 0x e x x +->题407:2017—2018学年度衡中七调理科数学已知函数1()x f x e a -=+,函数()ln ,g x ax x a R =+∈(1)求函数()y g x =的单调区间;(2)若不等式()()1f x g x ≥+在区间[1,)+∞内恒成立,求实数a 的取值范围(3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+题408:安徽省皖西高中教学联盟2018届三上学期期末质量检测数学文 已知函数1()()ln ,f x a x x a R x=--∈ (1)若1a =,求曲线()y f x =在点(1,(1))P f 处的切线方程;(2)若对任意1x ≥,都有()0f x ≥恒成立,求实数a 的取值范围题409:安徽省池州市2018届高三上学期期末考试数学(理) 已知函数1()ln (0)1f x a x a x =+≠-在1(0,)2内有极值 (1)求实数a 的取值范围;(2)若121(0,),(2,)2x x ∈∈+∞,且1[,2)2a ∈时,求证:213()()ln 24f x f x ->+ 题410:安徽省池州市2018届高三上学期期末考试数学(文) 已知函数21()ln 2f x x a x =+ (1)若1a =-,求()f x 的单调增区间;(2)当1x >时,不等式()ln f x x >恒成立,求a 的取值范围题411:山东省枣庄市第八中学东校区2018届高三1月月考数学(理) 已知函数21()2f x x =,()lng x a x =. (1)若曲线()()y f x g x =-在1x =处的切线方程为6250x y --=,求实数a 的值;(2)设()()()h x f x g x =+,若对任意两个不等的正数12,x x ,都有1212()()2h x h x x x +>-恒成立,求实数a 的取值范围;(3)若在[1,]e 上存在一点0x ,使得00001()()()()f xg x g x f x ''+<+'成立,求实数a 的取值范围. 题412:2018年陕西省高三教学质量检测试题(一) 设函数()ln ()k f x x k R x=+∈ (1)若曲线()y f x =在点(,())e f e 处的切线与直线20x -=垂直,求()f x 的单调递减区间和极小值(其中e 为自然对数的底数);(2)若对任何120x x >>,1212()()f x f x x x -<-恒成立,求k 的取值范围.题413:安徽省淮南市2018届高三第一次(2月)模拟考试数学(理)已知函数2()ln 2f x ax x =++(1)若a R ∈,讨论函数()f x 的单调性;(2)曲线2()()g x f x ax =-与直线l 交于11(,)A x y ,22(,)B x y 两点,其中12x x <,若直线l 斜率为k ,求证:121x x k<< 题414:安徽省淮南市2018届高三第一次(2月)模拟考试数学(文)已知函数2()ln f x x x =-(1)求函数()f x 在点(1,(1))f 处的切线方程;(2)在函数2()ln f x x x =-的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间1[,1]2上,若存在,求出这两点坐标;若不存在,请说明理由 题415:河南周口市2017—2018学年度上期期末高高三抽测调研(文)已知函数()sin x f x e x =,其中,x R ∈e 是自然对数的底数(1)求函数()f x 的单调区间;(2)当[0,]2x π∈时,()f x kx ≥,求实数k 的取值范围;题416:河南周口市2017—2018学年度上期期末高高三抽测调研(理)已知函数2()8ln ()f x x x a x a R =-+∈(1)当1x =时,()f x 取得极值,求a 的值; (2)当函数()f x 有两个极值点1212,()x x x x <,且11x ≠时,总有21112ln (1)(43)1a x m x x x >-+--成立,求m 的取值范围 题417:广西南宁市第二中学2018届高三1月月考(期末)数学(文) 已知函数()ln 1,a f x x a R x=+-∈ (1)若2a =,求函数()f x 的最小值;(2)若关于x 的不等式1()12f x x ≤-在[1,)+∞上恒成立,求a 的取值范围 题418:江苏省徐州市王杰中学2018届高三12月月考数学试题 已知函数1()ln ,()f x x axg x a x =-=+ (1)当2a =时,求()()()F x f x g x =-在(0,2)的最大值;(2)讨论函数()()()F x f x g x =-的单调性;(3)若()()0f x g x ⋅≤在定义域内恒成立,求实数a 的取值集合题419:内蒙古赤峰市2018届高三上学期期末考试数学(理)已知函数()ln ,()f x x x mx ϕ==(1)若函数图象有两个不同的公共点,求实数m 的取值范围;(2)若1(,)2x ∈+∞,()x n e f x x x +<,求实数n 的最大值 题420:河南省2018届高三中学生标准学术能力诊断性测试(2月) 数学(文) 设函数1()ln ,()3a f x x g x ax x-=+=- (1)求函数()()()x f x g x ϕ=+的单调增区间;(2)当1a =时,记()()()h x f x g x =⋅,是否存在整数λ,使得关于x 的不等式2()h x λ≥有解?若存在,请求出λ的最小值;若不存在,请说明理由题421:山东省青岛市城阳区2018届高三上学期学分认定考试(期末)数学(理)已知2()(21)ln ,f x ax a x x R x=-+-∈ (1)分析判断函数()f x 在定义域上的单调性情况; (2)若10a e <<,证明:方程2(21)ln 0ax a x x-+-=在区间[1,]e 上没有零根.(其中e 为 自然对数的底数) 解:212(21)2154()(21)(1)0ax a x a a f x ax a x x x x-++--≤-+--=<< 题422:2018年普通高等学校招生全国统一考试仿真卷数学-(理八) 已知函数21()ln (1)31f x x x x =---+- (1)求函数()f x 的单调区间;(2)若当1x ≥时,不等式(1)x m x m x ex +++≤恒成立,求实数m 的取值范围题423:2018年浙江省高考信息优化卷(二)已知函数2()ln f x x x x x =--(1)求证:()0f x ≥;(2)证明:()f x 存在唯一的极大值点1x ,且11()4f x < 题423:2018年浙江省高考信息优化卷(三) 已知1()3ln (1)()f x x k x x=+-- (1)当0k =时,求函数()f x 的图象在点(1,0)P 处的切线方程;(2)若1()()(()ln )0G x x f x x x =--≥恒成立,求k 的取值范围 题424:2018年浙江省高考信息优化卷(五) 设21()12x f x e x =-+,正项数列{}n a 满足111,()n n a f a a +==,证明: (1)411,[0,1]2x x e x x+≤≤-+∈- (2)对于任意*n N ∈,都有132n a n n ≤≤+ 题425:河北省石家庄市2018届高三毕业班教学质量检测数学(理)已知函数()(1)(21)xf x axe a x =-+-(1)若1a =,求函数()f x 的图象在点(0,(0))f 处的切线方程;(2)当0x >时,函数()0f x ≥恒成立,求实数a 的取值范围题426:湖北省孝感一中、应城一中等五校2017-2018学年高三上学期期末联考高三数学(理) 已知函数()2ln x f x ax b x=-+的图象在点(,())e f e 处的切线方程为3y ax b =-+ (1)求曲线32()y x b e x x =--+在2x =处的切线方程;(2)若存在2[,]x e e ∈,满足1()29f x e ≤+,求a 的取值范围 题427:湖北省孝感一中、应城一中等五校2017-2018学年高三上学期期末联考高三数学(文) 已知函数2()(1)3ln f x a x x =+-(1)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若对任意的[1,],()2x e f x ∈<恒成立,求a 的取值范围题428:河南省南阳市第一中学校2018届高三第七次考试数学(理)已知函数2()ln(1),f x x ax x a R =++-∈ .(1)当14a =时,求函数()y f x =的极值; (2)是否存在实数(1,2)b ∈,使得当(1,]x b ∈-时,函数()f x 的最大值为()f b ?若存在,取实数a 的取值范围,若不存在,请说明理由 题429:皖东县中联盟2017-2018学年第一学期高三期末联考(理)/山东省济南市山东师大附中2015级2017-2018学年冬季学习竞赛中期检测数学理 已知函数1()ln(2)(),()()1bx f x ax a R g x b R x+=+∈=∈+ (1)讨论函数()f x 与函数()g x 的零点情况;(2)若2,()()a b f x mg x ==≥对任意1[,)2x ∈-+∞恒成立,求实数m 的取值范围 解:令2(1)22,ln m t t x t t-=+≥ 题430:四川省南充高级中学2018届高三1月检测考试(12) 已知函数231(),()ln 42x x f x e g x -==+,若()()f m g n =成立,则n m -的最小值为( ) 题431:河南省天一大联考2018届高三阶段性测试(三)(12)已知函数32()ln 3,()a f x x x g x x x x =++=-,若121,[,2]3x x ∀∈,12()()0f x g x -≥,则a 的取值范围( ) 题432:河南省天一大联考2018届高三阶段性测试(三)(21) 已知函数()ln m f x x x=+ (1)探究函数()f x 的单调性;(2)若()1f x m x ≥+-在[1,)+∞上恒成立,求实数m 的取值范围题433:北京市东城区2018届高三上学期期末考试数学(理) 已知函数311()ln 62f x x x x x =+-. (1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()f x a <对1(,)x e e∈恒成立,求a 的最小值. 题434:荆、荆、襄、宜四地七校考试联盟2018届高三联考2月文科数学试已知函数2()ln f x x x ax =-(1)若()f x 有两个零点,求a 的取值范围;(2)若()f x 有两个极值点,求a 的取值范围;(3)在(2)的条件下,若()f x 的两个极值点为1212,()x x x x <,求证:11()2f x >- 题435:湖北省四地七校2018年2月高三联考试卷 理科数学已知a 为正的常数,函数2()ln f x ax x x =-+(1)若2a =,求函数()f x 的单调递增区间;(2)设()()f x g x x=,求()g x 在区间[1,]e 上的最小值(e 为自然对数的底数) 题436:黑龙江省双鸭山市第一中学2018届高三上学期期末考试数学(文) 已知函数22()ln ,()(1)21f x x x x g x m x mx =-+=-+-(1)求函数()f x 的单调区间和极值;(2)若不等式()()f x g x ≤恒成立,求整数m 的最小值.题437:河北省鸡泽县第一中学高三理科数学押题1已知函数2()e 1ax f x x -=-(a 是常数),(1)求函数()y f x =的单调区间;(2)当(0,16)x ∈时,函数()f x 有零点,求a 的取值范围。
河南省天一大联考(原豫东、豫北十所名校联考)2015届高三上学期阶段性测试(三) 英语 扫描版含答案
2014—2015学年高中毕业班阶段性测试(三)英语·答案(1-20题;每小题1.5分,满分30分)1-5 BCCBA6-10 CABBA11-15 BACBA16-20 CBABC(21-40题;每小题2分,满分40分)21.C 22.A 23.B 24.C 25.C26.D 27.A 28.B 29.C 30.D31.A 32.D 33.A 34.B 35.C36-40 BFCGA(41-60题;每小题1.5分,满分30分)41.C 42.D 43.A 44.B 45.B46.C 47.A 48.D 49.A 50.B51.C 52.A 53.D 54.B 55.C56.A 57.D 58.A 59.D 60.D(61-70题;每小题1.5分,满分15分)61.simply 62.unbearable 63.blew 64.living 65.the other66.to stick 67.friends 68.that/which 69.but 70.to短文改错(共10小题;每小题1分,满分10分)When I was eight years old and was spending a weekend visit my Aunt Libby at her home,a man dropped invisitingone evening.At that time,I happened ∧be excited about boats.The visitor discuss the subject in the way thatto discussedaseemed particularly interesting to me.Before he left,I said,“What a man!And how extreme he is interested inAfter extremely boats!”My aunt told me that he was a businessman and that he took no interests in the subject.“But why did heinteresttalk about boats?”“Because he saw you were interested in boats,so he talked about the things to please you.At thesame time,he made him agreeable,too.”I still remember that my aunt said.himself what书面表达(满分25分)One possible version:Reportedly,a headmaster in Guangxi province forced some boy students to gather on the playground and cut their hair,while others were watching beside them.Our class had a hot debate about it.Some students think that what the headmaster did was wrong,because he didn’t respect thestudents.His deed hurt the self-esteem of those students,which would affect their mental development.Moreover,students have the right to choose their favorite hairstyles.But some other students support the headmaster.They think that students shouldn’t blindly worship Japanese and South Korea’s style s.Students should have a right attitude towards beauty.In my opinion,we students should pay attention to our personal image as well as obey the school rules.作文评分标准1. 本题总分为25分,按5个档次给分。
2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析
2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)(x2+)5的展开式中x4的系数为( )A.10B.20C.40D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:-=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.12.(5.00分)设a=log0.20.3,b=log20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。
2018-2019学年河南省天一大联考高二下学期期末测试数学(理)试题(解析版)
【解析】设 ,根据已知可得 ,由 ,得到 ,结合双曲线的定义,得出 ,再由已知求出 ,即可求解.
【详解】
设 ,则由渐近线方程为 , ,
又 ,
所以
两式相减,得 ,
而 ,所以 ,
所以 ,所以 , ,
故双曲线的方程为 .
故选:D
【点睛】
本题考查双曲线的标准方程、双曲线的几何性质,注意焦点三角形问题处理方法,一是曲线的定义应用,二是余弦定理(或勾股)定理,利用解三角形求角或面积,属于中档题.
,则 ,又 ,所以 ,
,所以 ,从而有 ,
故④正确.
因此,真命题的个数是 .
故选:B
【点睛】
本题考查了空间线面位置关系的判定和证明,其中熟记空间线面位置中的平行与垂直的判定定理与性质定理是解题的关键,考查直观想象能力,属于基础题.
9.函数 的图象大致为()
A. B.
C. D.
【答案】B
【解析】函数 图象是由函数 图象向左平移1个单位,做出函数 的图象,即可求解.
【答案】(Ⅰ) ;(Ⅱ)存在, 或
【解析】(1)由已知可得 ,再将点 代入椭圆方程,求出 即可;
(2)设 ,由已知可得 ,结合 ,可得 ,从而有 ,验证 斜率不存在时是否满足条件,当 斜率存在时,设其方程为 ,与椭圆方程联立,根据根与系数关系,得出 关系式,结合 ,即可求解.
【详解】
(Ⅰ)由椭圆 的右顶点为 知,
4.已知 ,则 ()
A. B. C. D.
【答案】A
【解析】根据已知结合二倍角的正弦,求出 ,再由二倍角的正切公式,即可求解,
【详解】
由 ,得 .
又因 ,得 .
所以 .
故选:A
【点睛】
2018年高考理综全国卷3(含答案与解析)
生物试卷 第1页(共56页) 生物试卷 第2页(共56页)绝密★启用前2018年普通高等学校招生全国统一考试课标全国卷Ⅲ理 综可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24Al 27 S 32 Cr 52 Zn 65 I 127一、选择题:本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列研究工作中由我国科学家完成的是( )A .以豌豆为材料发现性状遗传规律的实验B .用小球藻发现光合作用暗反应途径的实验C .证明DNA 是遗传物质的肺炎双球菌转化实验D .首例具有生物活性的结晶牛胰岛素的人工合成 2.下列有关细胞的结构和生命活动的叙述,错误的是( )A .成熟个体中的细胞增殖过程不需要消耗能量B .细胞的核膜、内质网膜和细胞膜中都含有磷元素C .两个相邻细胞的细胞膜接触可实现细胞间的信息传递D .哺乳动物造血干细胞分化为成熟红细胞的过程不可逆 3.神经细胞处于静息状态时,细胞内外K +和+Na 的分布特征是( )A .细胞外K +和+Na 浓度均高于细胞内B .细胞外K +和+Na 浓度均低于细胞内C .细胞外K +浓度高于细胞内,+Na 相反D .细胞外K +浓度低于细胞内,+Na 相反4.关于某二倍体哺乳动物细胞有丝分裂和减数分裂的叙述,错误的是( )A .有丝分裂后期与减数第二次分裂后期都发生染色单体分离B .有丝分裂中期和减数第一次分裂中期都发生同源染色体联会C .一次有丝分裂与一次减数分裂过程中染色体的复制次数相同D .有丝分裂中期和减数第二次分裂中期染色体都排列在赤道板上 5.下列关于生物体中细胞呼吸的叙述,错误的是( )A .植物在黑暗中可进行有氧呼吸也可进行无氧呼吸B .食物链上传递的能量有一部分通过细胞呼吸散失C .有氧呼吸和无氧呼吸的产物分别是葡萄糖和乳酸D .植物光合作用和呼吸作用过程中都可以合成A TP6.某同学运用黑光灯诱捕的方法对农田中具有趋光性的昆虫进行调查。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
河南天一大联考2025届高三第三次测评数学试卷含解析
河南天一大联考2025届高三第三次测评数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合U ={1,2,3,4,5,6},A ={2,4},B ={3,4},则()()UU A B =( )A .{3,5,6}B .{1,5,6}C .{2,3,4}D .{1,2,3,5,6}2.已知双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,则双曲线1C 的离心率为( )A .54B .5C .5D .523.水平放置的ABC ,用斜二测画法作出的直观图是如图所示的A B C ''',其中2,O A O B ''''== 3O C ''=,则ABC 绕AB 所在直线旋转一周后形成的几何体的表面积为( )A .83πB .163πC .(833)π+D .(16312)π+4.设f (x )是定义在R 上的偶函数,且在(0,+∞)单调递减,则( )A .0.30.43(log 0.3)(2)(2)f f f -->> B .0.40.33(log 0.3)(2)(2)f f f -->> C .0.30.43(2)(2)(log 0.3)f f f -->>D .0.40.33(2)(2)(log 0.3)f f f -->>5.已知函数有三个不同的零点 (其中),则 的值为( )A .B .C .D .6.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形ABCD 为朱方,正方形BEFG 为青方”,则在五边形AGFID 内随机取一个点,此点取自朱方的概率为( )A .1637B .949C .937D .3117.已知命题P :x R ∀∈,sin 1x ≤,则p ⌝为( ) A .0x R ∃∈,0sin 1x ≥ B .x R ∀∈,sin 1x ≥ C .0x R ∃∈,0sin 1x >D .x R ∀∈,sin 1x >8.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )A .764B .1132C .5764D .11169.己知全集为实数集R ,集合A ={x |x 2 +2x -8>0},B ={x |log 2x <1},则()RA B ⋂等于( )A .[-4,2]B .[-4,2)C .(-4,2)D .(0,2)10.若4log 15.9a =, 1.012b =,0.10.4c =,则( ) A .c a b >> B .a b c >> C .b a c >>D .a c b >>11.设i 是虚数单位,若复数5i2i()a a +∈+R 是纯虚数,则a 的值为( ) A .3-B .3C .1D .1-12.如图,在三棱锥D ABC -中,DC ⊥平面ABC ,AC BC ⊥,2AC BC CD ===,E ,F ,G 分别是棱AB ,AC ,AD 的中点,则异面直线BG 与EF 所成角的余弦值为A .0B 6C 3D .1二、填空题:本题共4小题,每小题5分,共20分。
河南省天一大联考(原豫东、豫北十所名校联考)2015届高三上学期阶段性测试(三) 数学(理) Word版含答案
天一大联考(原豫东、豫北十所名校联考) 2014-2015学年高中毕业班阶段性测试(三)数学(理科)本试题卷分第I 卷(选择题)和第H 卷(非选择题)两部分考生作答对,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效考试结束后,将本试题卷和答题卡一并交回第I 卷一、选择题:本大题共12小题,每小题5分在每小题给出的四个选项中,只有一项是符合题目要求的(1)已知全集U=R ,集合 {}{}2|02,|0A x x B x x x =≤≤=->,则图中的阴影部分表示的集合为(A)(-∞,1]U(2,+∞) (B) ()(),01,2-∞(C)[1,2) (D)(1,2] (2)已知i 是虚数单位,则复数213(1)ii -++在复平面内所对应的点位于 (A)第四象限 (B)第三象限 (C)第二象限 (D)第一象限(3)已知数列 {}n a 的通项为 22n a n n λ=-,,则“ 0λ<”是“ 1,n n n N a a *+∀∈>”的 (A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件(4)已知圆 222:(1)C x y r ++=与抛物线 2:16D y x =的准线交于A ,B 两点,且 8AB =,则圆C 的面积为( A)5 π (B)9π (C)16π (D)25 π(5)已知 ()f x 是定义在R 上的奇函数,且当x>0对, 2cos ,08,()6log ,8,xx f x x x π⎧<≤⎪=⎨⎪>⎩((16))f f -=(A) 12-(B)32- (C)12 (D) 32(6)高三某班上午有4节课,现从6名教师中安排4人各上一节课如果甲、乙两名教师不上第一节课,丙必须上最后一节课,则不同的安排方案种数为( A)36 (B)24 (C)18 (D)12 (7)设 331sin(810),tan(),lg 85a b c π=-==,则它们的大小关系为 (A)a<b<c (B)a<c<b (C)b<c<a (D)c<a<b(8)函数 33()xx f x e-=的大致图象是(9)如图的几何体是长方体 1111ABCD A B C D -的一部分,其中 113,2AB AD DD BB cm ====则该几何体的外接球的表面积为(A 211cm π (B) 222cm π(C)211223cm ( D)21122cm π (10)执行如图所示的程序框图,输出的S 为 (A)1 006 (B)1 007 ( C)1 008 (D)1 009(11)双曲线 2222:1(0,0)x y C a b a b-=>>的一条渐近线与直线X+2y +1 =0垂直, 12,F F 为C 的焦点A 为双曲线上一 点,若 122F A F A =,则 21cos AF F∠= (A) 32 (B) 54 ( C) 55(D)14(12)设 ()ln f x x =,若函数 ()()g x f x ax =-在区间(0,4)上有三个零点,则实数a 的 取值范围是(A) 10,e ⎛⎫ ⎪⎝⎭ (B) l n 2,2e ⎛⎫⎪⎝⎭ ( C) l n 21,2e ⎛⎫⎪⎝⎭ (D) l n 20,2⎛⎫⎪⎝⎭第Ⅱ卷二、填空题:本大题共4小题,每小题5分(13)设 2010sin n xdx π=⎰,则 31nx x ⎛⎫- ⎪⎝⎭展开式中的常数项为_________(用数字作答) (14某天,小赵、小张、小李、小刘四人一起到电影院看电影,他们到达电影院之后发现,当天正在放映A ,B ,C ,D ,E 五部影片于是他们商量一起看其中的一部影片: 小赵说:只要不是B 就行; 小张说:B ,C ,D ,F 都行;小李说:我喜欢D ,但是只要不是C 就行; 小刘说:除了E 之外,其他的都可以据此判断,他们四人可以共同看的影片为____(15)△ABC 中, 2,1,120AB AC BAC ==∠=,若 2BD DC =,则 AD BC ⋅= =______________.(16)已知数列 {}n a 的各项取倒数后按原来顺序构成等差数列,各项都是正数的数列 {}n x满足 11233,39,x x x x =++=. 1211n nn a a an n n x x x ++++==,则 n x =__________.三、解答题:解答应写出文字说明,证明过程或演算步骤 (17)(本小题满分10分)已知向量 2(3sin,1),(cos ,cos )444x x xm n ==,记 ()f x m n =⋅ (I)若 3()2f a =,求 2cos()3a π-的值; (Ⅱ)将函数 ()y f x =的图象向右平移 23π个单位得到 ()y g x =的图象,若函数()y g x k =-在 70,3π⎡⎤⎢⎥⎣⎦上有零点,求实数k 的取值范围(18)(本小题满分12分)设等差数列 {}n a 的前n 项和为 n S , 561124,143a a S +==数列 {}n b 的前n 项和为n T 满足112(1)()n a n T a n N λ-*=--∈(I)求数列 {}n a 的通项公式及数列 11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和;(Ⅱ)是否存在非零实数 λ,使得数列 {}n b 为等比数列?并说明理由 (19)(本小题满分12分)已知国家某5A 级大型景区对每日游客数量拥挤等级规定如下表:该景区对3月份的游客量作出如图的统计数据:(I)某人3月份连续2天到该景区游玩,求这2天他遇到的游客拥挤等级均为良的概率; (Ⅱ)从该景区3月份游客人数低于10 000人的天数中随机选取3天,记这3天游客拥挤等级为优的天数为ξ,求ξ的分布列及数学期望(20)(本小题满分12分)如图,在四棱锥P -ABCD 中,AD ⊥DB ,其中三棱锥P- BCD 的三视图如图所示,且3s i n5B DC ∠=(I)求证:AD ⊥PB(Ⅱ)若PA 与平面PCD 所成角的正弦值为 121365,求AD 的长 (21)(本小题满分12分)已知椭圆 2222:1(0)x y E a b a b +=>>)过点 2(1,)2Q -,且离心率 22e =,直线 l 与E 相交于M ,N 两点,l 与x 轴、y 轴分别相交于C ,D 两点,0为坐标原点(I)求椭圆E 的方程:(Ⅱ)判断是否存在直线l ,满足 2,2OC OM OD OD ON OC =+=+?若存在,求出直 线 l 的方程;若不存在,说明理由 :22)(本小题满分12分) 设函数 (),ln bxf x ax e x=-为自然对数的底数 (I)若函数f(x)的图象在点 22(,())e f e 处的切线方程为 2340x y e +-=,求实数a ,b 的值;(Ⅱ)当b=l 时,若存在 212,,x x e e ⎡⎤∈⎣⎦,使 12()'()f x f x a ≤+成立,求实数a 的最小值- 11 -。
2024届河南省天一大联考高三第三次联考物理试题
2024届河南省天一大联考高三第三次联考物理试题一、单选题:本题共7小题,每小题4分,共28分 (共7题)第(1)题如图甲所示,修正带是通过两个齿轮相互咬合进行工作的,其原理可简化为图乙中所示的模型。
A、B是大、小齿轮边缘上的两点,C是大轮上的一点。
若大轮半径是小轮半径的2倍,小轮中心到A点和大轮中心到C点的距离之比为2∶1,则A、B、C三点( )A.线速度大小之比为4∶4∶1B.角速度之比为1∶1∶1C.转速之比为2∶2∶1D.向心加速度大小之比为2∶1∶1第(2)题如图所示,在温度为17℃的环境下,一根竖直的轻质弹簧支撑着一倒立汽缸的活塞,使汽缸悬空且静止,此时倒立汽缸的顶部离地面的高度为h=49cm,已知弹簧原长,劲度系数k=100N/m,汽缸的质量M=2kg,活塞的质量m=1kg,活塞的横截面积,大气压强,且不随温度变化。
设活塞与缸壁间无摩擦,可以在缸内自由移动,缸壁导热性良好,使缸内气体的温度保持与外界大气温度相同。
(弹簧始终在弹性限度内,且不计汽缸壁及活塞的厚度)下列说法正确的是()A.弹簧的压缩量为0.4mB.汽缸内封闭气体的压强为C.若环境温度缓慢上升到37C,此时倒立汽缸的顶部离地面的高度为51cmD.环境温度升高后该气体的熵减小第(3)题一定质量的理想气体从状态经过状态变化到状态再回到状态,其图像如图所示。
三点在同一直线上,与纵轴平行,则下列说法不正确的是( )A.过程中,单位时间内打到容器壁上单位面积的分子数增多B.过程中,气体吸收热量C.过程中,气体放出的热量比外界对气体做的功多D.过程中,速率大的分子数增多第(4)题在电磁学中,电导率(conductivity)是用来描述物质中电荷定向移动难易程度的物理量。
电导率为电阻率的倒数,即,则电导率的单位是( )A.B.C.D.第(5)题北京高能光源是我国首个第四代同步辐射光源,计划于2025年建成。
同步辐射光具有光谱范围宽(从远红外到X光波段,波长范围约为10-5m~10-11m,对应能量范围约为eV~105eV)、光源亮度高、偏振性好等诸多特点,在基础科学研究、应用科学和工艺学等领域已得到广泛应用。
天一大联考2023-2024学年高一年级阶段性测试(三)试卷及答案
绝密*启用前天一大联考2023—2024 学年高一年级阶段性测试(三)语文考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,18分)阅读下面的文字,完成1~5题。
材料一:孔子作为活人,有与常人无异的行为、活动、意向和喜怒哀乐。
所谓孔学,正是对人们日常生活、现实处境提出的各种意见、评论、主张和看法。
它具体,并不虚玄;它普通,并无奥秘。
但真要想到、做到,却又不容易。
所以这些主张、意见等便具有很高的理想性和一贯性。
这就是所谓“极高明而道中庸”。
《论语》一书道理高深但语言平易,记述平易(大都是日常普通事实)。
孔学特别重视人性情感的培育,重视动物性(欲)与社会性(理)的交融统一。
我以为这实际是以“情”作为人性和人生的基础、实体和本源。
它即是我所谓的“文化心理结构”的核心:“情理结构”。
人以这种“情理结构”区别于动物和机器。
中国人的“情理结构”又有其重要特征。
这特征与孔子、《论语》、儒学直接有关。
孔子和儒学一直强调以“亲子之情”(孝)作为最后实在的伦常关系,以建立“仁”的根本,并由亲子、君臣、兄弟、夫妇、朋友“五伦”关系,辐射交织而组成和构建各种社会性——宗教性感情,作为“本体”所在。
强调培植人性情感的教育,以之作为社会根本,这成为华夏文明的重要传统。
除“仁”之外,《论语》和儒学中许多重要概念、词语、范畴,如诚、义、敬、庄、信、忠、恕等,实际均具有程度不一的这种情感培育的功能或价值。
例如,“敬”“庄”等概念、范畴本来自对鬼神、天地、祖先的巫术礼仪,其中,情感因素浓厚而重要。
《论语》和儒学虽把它们世俗化、理性化了,却又仍然保存着宗教性传统的情感特征。
2024届河南省天一大联考高三第三次联考物理试题(基础必刷)
2024届河南省天一大联考高三第三次联考物理试题(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图,港珠澳大桥人工岛建设时,起重机用8根对称分布且长度均为22米的钢索将直径为22米、质量为的钢筒匀速吊起,重力加速度取,则此过程每根钢索所受到的拉力大小为( )A.B.C.D.第(2)题新冠肺炎疫情突发,中华儿女风雨同舟、守望相助,筑起了抗击疫情的巍峨长城。
志愿者用非接触式体温测量仪,通过人体辐射的红外线测量体温,防控人员用紫外线灯在无人的环境下消杀病毒,为人民健康保驾护航。
红外线和紫外线相比较()A.红外线的光子能量比紫外线的大B.真空中红外线的波长比紫外线的长C.真空中红外线的传播速度比紫外线的大D.红外线能发生偏振现象,而紫外线不能第(3)题根据热力学定律和分子动理论,可知下列说法中正确的是( )A.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动B.第二类永动机是不可能制成的是因为违背了能量转化与守恒C.密封在体积不变的容器中的气体,若温度升高,则气体分子对器壁单位面积上的平均作用力增大D.根据热力学第二定律可知,热量能够从高温物体传到低温物体,但不可能从低温物体传到高温物体第(4)题大部分过山车的竖直回环轨道均不是正圆,而是上下高、左右窄的扁轨道结构,如图甲所示,乙图为简化后的示意图,一辆小车(可视为质点)从倾斜轨道某一确定高度由静止释放,不计一切阻力,当小车运动到扁轨道最高点时,与在相同高度的正圆轨道最高点相比( )A.在扁轨道上小车向心力更大,对轨道压力更大B.在扁轨道上小车速度更大,对轨道压力更大C.在扁轨道上小车加速度更小,对轨道压力更小D.在扁轨道上小车机械能更小,对轨道压力更小第(5)题一台激光器发出的激光功率为P,光束垂直入射到真空中的某一平面,被平面完全反射后频率保持不变。
2018年全国卷3高考理科数学试题解析版
C. 40
D. 80
【解析】分析:写出
,然后可得结果
详解:由题可得
令
,则
所以
故选 C.ຫໍສະໝຸດ 拓展:本题主要考查二项式定理,属于基础题。
6. 直线
分别与轴,轴交于,两点,点在圆
范围是
A.
B.
C.
D.
【答案】A
上,则
面积的取值
【解析】分析:先求出 A,B 两点坐标得到 再计算圆心到直线距离,得到点 P 到直线距
详解:由题可得
,即
故答案为
拓展:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。
14. 曲线
在点
处的切线的斜率为 ,则 ________.
【答案】
【解析】分析:求导,利用导数的几何意义计算即可。
详解:
则
所以
故答案为-3.
拓展:本题主要考查导数的计算和导数的几何意义,属于基础题。
15. 函数
【答案】2
【解析】分析:利用点差法进行计算即可。
详解:设
则
所以
所以
取 AB 中点 因为
,分别过点 A,B 作准线 ,
的垂线,垂足分别为
因为 M’为 AB 中点,
所以 MM’平行于 x 轴
因为 M(-1,1)
所以 ,则
即
故答案为 2.
拓展:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设
,利
详解:当 时, ,排除 A,B.
,当
时, ,排除 C
故正确答案选 D.
拓展:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。
8. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体
(完整)2018年高考理科数学全国3卷(附答案)
(2)求 中点 的轨迹的参数方程.
23.[选修4—5:不等式选讲](10分)
设函数 .
(1)画出 的图像;
(2)当 , ,求 的最小值.
绝密★启用前
2018年普通高等学校招生全国统一考试
理科数学试题参考答案
一、选择题
1
2
3
4
5
6
7
8
9
10
11
12
C
D
A
B
C
A
D
B
C
B
C
B
二、填空题
三、解答题:共70分。解答题应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
等比数列 中, .
(1)求 的通项公式;
(2)记 为 的前 项和.若 ,求 .
18.(12分)
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知 .
列联表如下:
超过
不超过
第一种生产方式
15
5
第二种生产方式
5
15
(3)由于 ,所以有99%的把握认为两种生产方式的效率有差异.
19.解:
(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC 平面ABCD,所以BC⊥平面CMD,故BC⊥DM.
2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)
2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知向量,若,则m=()A.﹣4 B.4 C.﹣3 D.32.(5分)函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)3.(5分)已知等比数列{a n}的前n项和为S n,若a5=3,S6=28S3,则a3=()A.B.C.3 D.94.(5分)将函数f(x)=3sin(5x+φ)的图象向右平移个单位后关于y轴对称,则φ的值可以是()A. B.C. D.5.(5分)已知m>n>0,则下列说法错误的是()A. B.C.D.6.(5分)已知等差数列{a n}的前n项和为S n,若S6=4a2,a3=3,则a10=()A.﹣3 B.3 C.﹣6 D.67.(5分)已知函数,若a<﹣2,b>2,则“f(a)>f(b)”是“a+b<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)已知函数f(x)=,若关于x的方程f(x)﹣k(x+2)=0有3个实数根,则实数k的取值范围是()A.(0,)B.(0,)C.(0,1) D.(0,)9.(5分)已知sinα=﹣(α∈[,2π]),若=2,则tan(α+β)=()A.B.C.﹣D.﹣10.(5分)已知实数x,y满足,若z=mx+y的最大值为10,则m=()A.1 B.2 C.3 D.411.(5分)已知数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,其前n项和为S n,则下列说法正确的个数为()①数列{a n}是等差数列;②a n=3n﹣2;③S n=.A.0 B.1 C.2 D.312.(5分)已知m,n∈(0,+∞).若m=+2.则当+2n2﹣﹣取得最小值时,m+n=()A.2 B.4 C.6 D.8二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)不等式2x2﹣9x+9>0的解集为.14.(5分)已知实数a∈(﹣3,1),b∈(,),则的取值范围是.15.(5分)若函数在(1,+∞)上单调递增,则实数m的取值范围是.16.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若,且,记h为AC边上的高,则h的取值范围为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=4,D在线段AC上,∠DBC=.(1)若△BCD的面积为24,求CD的长;(2)若,且c=12,求CD的长.19.(12分)已知向量.(1)若m=4,求函数f(x)=的单调递减区间;(2)若向量满足,求m的值.20.(12分)已知等比数列{a n}的前n项和为,等差数列{b n}的前5项和为30,b7=14.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.21.(12分)已知函数.(1)讨论函数f(x)的单调性;(2)已知点M(1,0),曲线Y=f(x)在点P(x0,y0)(﹣1≤x0≤1)处的切线l与直线x=1交于点N,求△OMN(O为坐标原点)的面积最小时x0的值,并求出面积的最小值.22.(12分)已知函数.(1)若m=1,求曲线y=f(x)在(2,f(2))处的切线方程;(2)探究函数F(x)=xf(x)的极值点的情况,并说明理由.2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知向量,若,则m=()A.﹣4 B.4 C.﹣3 D.3【解答】解:根据题意,向量,若,则•=2×(﹣6)+(﹣3)m=0,解可得m=﹣4,故选:A.2.(5分)函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:函数f(x)=x+lnx﹣3,(x>0)∴f′(x)=1+,可得f′(x)>0,f(x)为增函数,f(1)=1+0﹣3=﹣2<0,f(2)=2+ln2﹣3=ln2﹣1<0,f(3)=3+ln3﹣3=ln3>0,∵f(2)f(3)<0,所以f(x)的零点所在区间为(2,3),故选B;3.(5分)已知等比数列{a n}的前n项和为S n,若a5=3,S6=28S3,则a3=()A.B.C.3 D.9【解答】解:若q=1时,a5=3,∴a1=3,∴6a1=28a1,显然不成立,∴q≠1,由a5=3,S6=28S3,可得,解得q=3,a1=,∴a3=×9=,故选:B4.(5分)将函数f(x)=3sin(5x+φ)的图象向右平移个单位后关于y轴对称,则φ的值可以是()A. B.C. D.【解答】解:将函数f(x)=3sin(5x+φ)的图象向右平移个单位,得到:y=3sin[5(x﹣)+φ]=3sin(5x﹣+φ),得到的图象关于y轴对称,则:φ﹣=k(k∈Z),解得:φ=k(k∈Z),当k=﹣2时,φ=﹣.故选:D.5.(5分)已知m>n>0,则下列说法错误的是()A. B.C.D.【解答】解:根据对数函数的单调性可得A正确,∵m>n>0,∴m+1>n+1∴m(m+1)>n(n+1),∴>,故B正确,根据幂函数的单调性可得C正确,对于D,﹣==,∵1﹣mn与0无法比较大小,故D错误,故选:D.6.(5分)已知等差数列{a n}的前n项和为S n,若S6=4a2,a3=3,则a10=()A.﹣3 B.3 C.﹣6 D.6【解答】解:设等差数列{a n}的公差为d,∵S6=4a2,a3=3,∴6a1+d=4(a1+d),a1+2d=3,解得a1=,d=﹣.则a10=﹣×9=﹣3.故选:A.7.(5分)已知函数,若a<﹣2,b>2,则“f(a)>f(b)”是“a+b<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由2|x|﹣4>0,解得x>2或x<﹣2,关于原点对称.又f(﹣x)=f(x).可得函数f(x)在定义域内为偶函数.x>2时,f(x)=5x﹣在(2,+∞)上单调递增.∴a+b<0⇔2<b<﹣a⇔f(b)<f(﹣a)=f(a),∴“f(a)>f(b)”是“a+b<0”的充要条件.故选:C.8.(5分)已知函数f(x)=,若关于x的方程f(x)﹣k(x+2)=0有3个实数根,则实数k的取值范围是()A.(0,)B.(0,)C.(0,1) D.(0,)【解答】解:在同一坐标系中画出分段函数y=f(x)的图象与y=k(x+2)的图象,由图可知:当k∈(0,k AQ)时,分段函数f(x)的图象与y=k(x+2)的图象有三个交点,A(0,1),Q(﹣2,0),k AQ==,实数k的取值范围是(0,).故选:D.9.(5分)已知sinα=﹣(α∈[,2π]),若=2,则tan(α+β)=()A.B.C.﹣D.﹣【解答】解:∵sinα=﹣(α∈[,2π]),∴cosα==,∴tanα==﹣,∵==sinα+cosα•tanβ═﹣+tanβ=2,∴tanβ=,则tan(α+β)===,故选:A.10.(5分)已知实数x,y满足,若z=mx+y的最大值为10,则m=()A.1 B.2 C.3 D.4【解答】解:由实数x,y满足,作出可行域如图,易知A(3,1),B(3,4),C(0,1).化目标函数z=mx+y为y=﹣mx+z,当直线z=mx+y经过B点时,取得最大值10;∴10=3m+4,解得m=2.故选:B.11.(5分)已知数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,其前n项和为S n,则下列说法正确的个数为()①数列{a n}是等差数列;②a n=3n﹣2;③S n=.A.0 B.1 C.2 D.3【解答】解:数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,可得a2=|1﹣a1|+2a1+1=2﹣2+1=1,a3=|1﹣a2|+2a2+1=0+2+1=3,a4=|1﹣a3|+2a3+1=2+6+1=9,则a4﹣a3=6,a3﹣a2=2,即有a4﹣a3≠a3﹣a2,则数列{a n}不是等差数列,故①不正确;a n=3n﹣2,不满足a1=﹣1,故②不正确;若S n=满足n=1时,a1=S1=﹣1,但n=2时,a2=S2﹣S1=﹣(﹣1)=1,当n≥2时,a n=S n﹣S n﹣1=﹣=3n﹣2,n≥2,n∈N*.=|1﹣a n|+2a n+1,代入a n+1左边=3n﹣1,右边=3n﹣2﹣1+2•3n﹣2+1=3n﹣1,=|1﹣a n|+2a n+1恒成立.则a n+1故③正确.故选:B.12.(5分)已知m,n∈(0,+∞).若m=+2.则当+2n2﹣﹣取得最小值时,m+n=()A.2 B.4 C.6 D.8【解答】解:m,n∈(0,+∞).若m=+2.则m=>0,解得n>1.则+2n2﹣﹣=+2n2﹣﹣=+2n2=f(n).f′(n)==,令f′(n)≥0,解得n≥2,可得n=2,m=4时,f(n)取得最小值时,m+n=6.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)不等式2x2﹣9x+9>0的解集为(﹣∞,)∪(3,+∞).【解答】解:不等式2x2﹣9x+9>0,即为(x﹣3)(2x﹣3)>0,解得x>3或x<,解集为(﹣∞,)∪(3,+∞).故答案为:(﹣∞,)∪(3,+∞).14.(5分)已知实数a∈(﹣3,1),b∈(,),则的取值范围是(﹣12,8).【解答】解:∵b∈(,),∴∈(4,8),∵a∈(﹣3,1),∴∈(﹣12,8).故答案为:(﹣12,8).15.(5分)若函数在(1,+∞)上单调递增,则实数m的取值范围是[,+∞).【解答】解:∵函数在(1,+∞)上单调递增,∴≥0在(1,+∞)上恒成立,即m≥在(1,+∞)上恒成立,令g(x)=,则g′(x)=,当x∈(1,)时,g′(x)>0,当x∈(,+∞)时,g′(x)<0,故当x=时,g(x)取最大值,故实数m的取值范围是[,+∞),故答案为:[,+∞).16.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若,且,记h为AC边上的高,则h的取值范围为(0,] .【解答】解:∵,∴sinBcosC=2sinAcosB﹣sinCcosB,即sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,即sinA=2sinAcosB,∴cosB=,∴B=.=acsinB=bh,∵S△ABC∴h=,由余弦定理可得cosB==,∴a2+c2=ac+3≥2ac,∴0<ac≤3.∴0<h≤.故答案为:(0,].三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.【解答】解:(1)数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).+2=2(a n+2),则:a n+1所以:{a n+2}是以3为首项,2为公比的等比数列.则:,解得:.(2)由于=n,则:=,所以:+…+,解得:.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=4,D在线段AC上,∠DBC=.(1)若△BCD的面积为24,求CD的长;(2)若,且c=12,求CD的长.【解答】解:(1)由S=•BD•BC•=24,△BCD解得:BD=12,在△BCD中,CD2=BC2+BD2﹣2BC•BD•cos45°,即CD2=32+BD2﹣8BD,故CD2=32+144﹣8×12,解得:CD=4;(2)∵tanA=,且A∈(0,π),故sinA=,cosA=,由题意得=,即=,解得:sinC=,∵C∈(0,),∴cosC=,∴sin∠BDC=sin(C+)=,在△BCD中,由正弦定理得=,解得:CD=2.19.(12分)已知向量.(1)若m=4,求函数f(x)=的单调递减区间;(2)若向量满足,求m的值.【解答】解:(1)向量.∴函数f(x)==4sinxcosx+msin2x=2sin2x﹣当m=4时,可得f(x)=2sin2x﹣2cos2x+2=2sin(2x﹣)+2.由≤2x﹣,得:≤x≤+kπ.∴函数f(x)=的单调递减区间为[,],k∈Z.(2)由=(),即,∵x∈(0,)由sin2x+cos2x=1可得sinx=,cosx=.那么m=sin2x=.20.(12分)已知等比数列{a n}的前n项和为,等差数列{b n}的前5项和为30,b7=14.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)等比数列{a n}的前n项和为,∴n≥2时,a n=S n﹣S n=﹣=3n﹣1,﹣1n=1时,a1=S1=1对于上式也成立.∴a n=3n﹣1.设等差数列{b n}的公差为d,∵前5项和为30,b7=14.∴5b1+=30,b1+6d=14,联立解得:b1=d=2.∴b n=2+2(n﹣1)=2n.(2)a n b n=2n•3n﹣1.∴T n=2(1+2×3+3×32+…+n•3n﹣1),3T n=2[3+2×32+…+(n﹣1)•3n﹣1+n•3n],﹣2T n=2(1+3+32+…+3n﹣1)﹣2n•3n=﹣2n•3n,解得:T n=+.21.(12分)已知函数.(1)讨论函数f(x)的单调性;(2)已知点M(1,0),曲线Y=f(x)在点P(x0,y0)(﹣1≤x0≤1)处的切线l与直线x=1交于点N,求△OMN(O为坐标原点)的面积最小时x0的值,并求出面积的最小值.【解答】解:(1)由题意得:f′(x)=e x﹣x,令m(x)=e x﹣x,故m′(x)=e x﹣1,令m′(x)=0,解得:x=0,故m(x)在(﹣∞,0)递减,在(0,+∞)递增,故[m(x)]min=m(0)=1,故e x﹣x>0,即f′(x)>0,故函数f(x)在R递增;(2)由题意,切线l的斜率为f′(x0)=﹣x0,由此得切线l的方程为y=(﹣)=(﹣x0)(x﹣x0),令x=1,得y=(2﹣x0)(﹣x0),=|OM|•|y|=|(1﹣x0)(﹣x0)|,x0∈[﹣1,1],∴S△MON设g(x)=(1﹣x)(e x﹣x),x∈[﹣1,1],则g′(x)=﹣(x﹣1)(e x﹣1),令g′(x)=0,解得:x=0或x=1,故g(x)在(﹣1,0)递减,在(0,1)递增,故g(x)min=g(0)=1,即x0=1时,△MON的面积有最小值1.22.(12分)已知函数.(1)若m=1,求曲线y=f(x)在(2,f(2))处的切线方程;(2)探究函数F(x)=xf(x)的极值点的情况,并说明理由.【解答】解:(1)由题意,f′(x)=+1,故f′(2)=2,由f(2)=3,故所求切线方程为:y﹣3=2(x﹣2),即2x﹣y﹣1=0,∴曲线y=f(x)在(2,f(2))处的切线方程2x﹣y﹣1=0;(2)F(x)=xf(x)=xln(x﹣1)+x2+mx,F′(x)=ln(x﹣1)++2x+m,记g(x)=F′(x)﹣m,g′(x)=﹣+2=,令g′(x)=0,则x=,当x∈(1+,)时,g′(x)<0,当x∈(,e+1)时,g′(x)>0,∴当x=时,g(x)取的极小值6﹣ln2,由g(+1)=e++2,g(e+1)=2e++4,F′(x)=0,则g(x)=﹣m,①当﹣m≤6﹣ln2,即m≥ln2﹣6,F′(x)≥0恒成立,函数F(x)在(+1,e+1)上无极值点,②当6﹣ln2<﹣m<e++2,即﹣e﹣﹣2<m<ln2﹣6,F′(x)有两个不同解,函数F(x)在区间(+1,e+1)有两个极值点;③当e++2≤﹣m<2e++4,即﹣2e﹣﹣4<m<﹣e﹣﹣2时,F′(x)有一个解,函数F(x)在区间(+1,e+1)有一个极值点;④当﹣m≥2e++4,即m≤﹣2e﹣﹣4,F′(x)≤0,函数F(x)在区间(+1,e+1)上无极值点.。