Eye Dominance in Excimer Laser
视网膜功能启发的边缘检测层级模型
视网膜功能启发的边缘检测层级模型郑程驰 1范影乐1摘 要 基于视网膜对视觉信息的处理方式, 提出一种视网膜功能启发的边缘检测层级模型. 针对视网膜神经元在周期性光刺激下产生适应的特性, 构建具有自适应阈值的Izhikevich 神经元模型; 模拟光感受器中视锥细胞、视杆细胞对亮度的感知能力, 构建亮度感知编码层; 引入双极细胞对给光−撤光刺激的分离能力, 并结合神经节细胞对运动方向敏感的特性, 构建双通路边缘提取层; 另外根据神经节细胞神经元在多特征调控下延迟激活的现象, 构建具有脉冲延时特性的纹理抑制层; 最后将双通路边缘提取的结果与延时抑制量相融合, 得到最终边缘检测结果. 以150张来自实验室采集和AGAR 数据集中的菌落图像为实验对象对所提方法进行验证, 检测结果的重建图像相似度、边缘置信度、边缘连续性和综合指标分别达到0.9629、0.3111、0.9159和0.7870, 表明所提方法能更有效地进行边缘定位、抑制冗余纹理、保持主体边缘完整性. 本文面向边缘检测任务, 构建了模拟视网膜对视觉信息处理方式的边缘检测模型, 也为后续构建由视觉机制启发的图像计算模型提供了新思路.关键词 边缘检测, 视网膜, Izhikevich 模型, 神经编码, 方向选择性神经节细胞引用格式 郑程驰, 范影乐. 视网膜功能启发的边缘检测层级模型. 自动化学报, 2023, 49(8): 1771−1784DOI 10.16383/j.aas.c220574Multi-layer Edge Detection Model Inspired by Retinal FunctionZHENG Cheng-Chi 1 FAN Ying-Le 1Abstract Based on the processing of visual information by the retina, this paper proposes a multi-layer model of edge detection inspired by retinal functions. Aiming at the adaptive characteristics of retinal neurons under periodic light stimulation, an Izhikevich neuron model with adaptive threshold is established; By simulating the perception ability of cones and rods for luminance and color in photoreceptors, the luminance perception coding layer is con-structed; By introducing the ability of bipolar cells for separating light stimulation, and combining with the charac-teristics of ganglion cells sensitive to the direction of movement, a multi-pathway edge extraction layer is constructed;In addition, according to the phenomenon of delayed activation of ganglion cell neurons under multi-feature regula-tion, a texture inhibition layer with pulse delay characteristics is constructed; Finally, by fusing the result of multi-pathway edge extraction with the delay suppression amount, the final edge detection result is obtained. The 150colony images from laboratory collection and AGAR dataset are used as experimental objects to test the proposed method. The reconstruction image similarity, edge confidence, edge continuity and comprehensive indicators of the detection results are 0.9629, 0.3111, 0.9159 and 0.7870, respectively. The results show that the proposed method can better localize edges, suppress redundant textures, and maintain the integrity of subject edges. This research is oriented to the task of edge detection, constructs an edge detection model that simulates the processing of visual information by the retina, and also provides new ideas for the construction of image computing model inspired by visual mechanism.Key words Edge detection, retina, Izhikevich model, neural coding, direction-selective ganglion cells (DSGCs)Citation Zheng Cheng-Chi, Fan Ying-Le. Multi-layer edge detection model inspired by retinal function. Acta Automatica Sinica , 2023, 49(8): 1771−1784边缘检测作为目标分析和识别等高级视觉任务的前级环节, 在图像处理和工程应用领域中有重要地位. 以Sobel 和Canny 为代表的传统方法大多根据相邻像素间的灰度跃变进行边缘定位, 再设定阈值调整边缘强度和冗余细节[1]. 虽然易于计算且快速, 但无法兼顾弱边缘感知与纹理抑制之间的有效性, 难以满足复杂环境下的应用需要. 随着对生物视觉系统研究的进展, 人们对视觉认知的过程和视觉组织的功能有了更深刻的了解. 许多国内外学者在这些视觉组织宏观作用的基础上, 进一步考虑神经编码方式与神经元之间的相互作用, 并应用于边缘检测中. 这些检测方法大多首先会选择合适的神经元模型模拟视觉组织细胞的群体放电特性, 再关联例如视觉感受野和方向选择性等视觉机制, 以不收稿日期 2022-07-14 录用日期 2022-11-29Manuscript received July 14, 2022; accepted November 29,2022国家自然科学基金(61501154)资助Supported by National Natural Science Foundation of China (61501154)本文责任编委 张道强Recommended by Associate Editor ZHANG Dao-Qiang1. 杭州电子科技大学模式识别与图像处理实验室 杭州 3100181. Laboratory of Pattern Recognition and Image Processing,Hangzhou Dianzi University, Hangzhou 310018第 49 卷 第 8 期自 动 化 学 报Vol. 49, No. 82023 年 8 月ACTA AUTOMATICA SINICAAugust, 2023同的编码方式将输入的图像转化为脉冲信号, 经过多级功能区块处理和传递后提取出图像的边缘. 其中, 频率编码和时间编码是视觉系统编码光刺激的重要方式, 在一些计算模型中被广泛使用. 例如,文献[2]以HH (Hodgkin-Huxley)神经元模型为基础, 使用多方向Gabor滤波器模拟神经元感受野的方向选择性, 实现神经元间连接强度关联边缘方向,将每个神经元的脉冲发放频率作为边缘检测的结果输出, 实验结果表明其比传统方法更有效; 文献[3]在 LIF (Leaky integrate-and-fire) 神经元模型的基础上进行改进, 引入根据神经元响应对外界输入进行调整的权值, 在编码的过程中将空间的脉冲发放转化为时序上的激励强度, 实现强弱边缘分类, 对梯度变化幅度小的弱边缘具有良好的检测能力. 除此之外, 也有关注神经元突触间的相互作用, 通过引入使突触的连接权值产生自适应调节的机制来提取边缘信息的计算方法. 例如, 文献 [4] 构建具有STDP (Spike-timing-dependent plasticity) 性质的神经元模型, 根据突触前后神经元首次脉冲发放时间顺序来增强或减弱突触连接, 对真伪边缘具有较强的辨别能力; 文献 [5] 则在构建神经元模型时考虑了具有时间不对称性的STDP机制, 再融合方向特征和侧抑制机制重建图像的主要边缘信息, 其计算过程对神经元突触间的动态特性描述更加准确.更进一步, 神经编码也被应用于实际的工程需要.例如, 文献 [6]针对现有的红外图像边缘检测算法中存在的缺陷, 构建一种新式的脉冲神经网络, 增强了对红外图像中弱边缘的感知; 文献 [7] 则通过模拟视皮层的处理机制, 使用包含左侧、右侧和前向3条并行处理支路的脉冲神经网络模型提取脑核磁共振图像的边缘, 并将提取的结果用于异常检测,同样具有较好的效果. 上述方法都在一定程度上考虑了视觉组织中神经元的编码特性以及视觉机制,与传统方法相比, 在对复杂环境的适应性更强的同时也有较高的计算效率. 但这些方法都未能考虑到神经元自身也会随着外界刺激产生适应, 从而使活动特性发生改变. 此外, 上述方法大多也只选择了频率编码、时间编码等编码方式中的一种, 并不能完整地体现视觉组织中多种编码方式的共同作用.事实上, 在对神经生理实验和理论的持续探索中发现, 视觉组织(以视网膜为例)在对视觉刺激的加工中就存在着丰富的动态特性和编码机制[8−9]. 视网膜作为视觉系统中的初级组织结构, 由多种不同类型的细胞构成, 共同组成一个纵横相连、具有层级结构的复杂网络, 能够针对不同类型的刺激性选择相应的编码方式进行有效处理. 因此, 本文面向图像的边缘检测任务, 以菌落图像处理为例, 模拟视网膜中各成分对视觉信息的处理方式, 构建基于视网膜动态编码机制的多层边缘检测模型, 以适应具有多种形态结构差异的菌落图像边缘检测任务.1 材料和方法本文提出的算法流程如图1所示. 首先, 根据视网膜神经元在周期性光刺激下脉冲发放频率发生改变的特性, 构建具有自适应阈值特性的Izhikevich 神经元模型, 改善神经元的同步发放能力; 其次, 考虑光感受器对强弱光和颜色信息的不同处理方式编码亮度信息, 实现不同亮度水平目标与背景的区分;然后, 引入固视微动机制, 结合神经节细胞的方向选择性和给光−撤光通路的传递特性, 将首发脉冲时间编码的结果作为双通路的初级边缘响应输出;随后, 模拟神经节细胞的延迟发放特性, 融入对比度和突触前后偏好方向差异, 计算各神经元的延时抑制量, 对双通路的计算结果进行纹理抑制; 最后,整合双通路边缘信息, 将二者融合为最终的边缘检测结果.1.1 亮度感知编码层构建神经元模型时, 本文综合考虑对神经元生理特性模拟的合理性和进行仿真计算的高效性, 以Izhikevich模型[10]为基础构建神经元模型. Izhike-vich模型由Izhikevich在HH模型的基础上简化而来, 在保留原模型对神经元放电模式描述的准确性的同时, 也具有较低的时间复杂度, 适合神经元群体计算时应用, 其表达式如下式所示v thv th 其中, v为神经元的膜电位, 其初始值设置为 −70; u为细胞膜恢复变量, 设置为14; I为接收的图像亮度刺激; 为神经元脉冲发放的阈值, 设置为30; a描述恢复变量u的时间尺度, b描述恢复变量u 对膜电位在阈值下波动的敏感性, c和d分别描述产生脉冲发放后膜电位v的重置值和恢复变量u的增加程度, a, b, c, d这4个模型参数的典型值分别为0.02、0.2、−65和6. 若某时刻膜电位v达到,则进行一次脉冲发放, 同时该神经元对应的v被重置为c, u被重置为u + d.适应是神经系统中广泛存在的现象, 具体表现为神经元会根据外界的刺激不断地调节自身的性质. 其中, 视网膜能够适应昼夜环境中万亿倍范围的光照变化, 这种适应能够帮助其在避免饱和的同时保持对光照的敏感性[11]. 研究表明, 视网膜持续1772自 动 化 学 报49 卷接受外界周期性光刺激时, 光感受器会使神经元细胞的活动特性发生改变, 导致单个神经元的发放阈值上升, 放电频率下降; 没有脉冲发放时, 对应阈值又会以指数形式衰减, 同时放电频率逐渐恢复[12].因此, 本文在Izhikevich 模型的基础上作出改进,加入根据脉冲发放频率对阈值进行自适应调节的机制, 如下式所示τ1τ2τ1τ2v th τ1v th τ2其中, 和 分别为脉冲发放和未发放时阈值变化的时间常数, 其值越小, 阈值变化的幅度越大, 神经元敏感性变化的过程越快; 反之, 则表示阈值变化的幅度越小, 神经元敏感性变化的过程也就越慢.生理学实验表明, 在外界持续光刺激下, 神经元对刺激产生适应导致放电频率降低后, 这种适应衰退的过程比产生适应的过程通常要长数倍[13]. 因此,为了在准确模拟生理特性的同时保证计算模型的性能, 本文将 和 分别设置为20和40. 这样, 当某时刻某个神经元产生脉冲发放时, 则对应阈值 根据 的值升高, 神经元产生适应, 活跃度降低; 反之, 对应阈值 根据 的值下降, 神经元的适应衰退, 活跃度提升. 实现限制活跃神经元的脉冲发放频率, 促进不活跃神经元的脉冲发放, 改善神经元群体的同步发放能力, 减少检测目标内部冗余. 图2边缘检测结果图 1 边缘检测算法原理图Fig. 1 Principle of edge detection algorithm8 期郑程驰等: 视网膜功能启发的边缘检测层级模型1773显示了改进前后的Izhikevich 模型对图像进行处理后目标内部冗余情况.0∼255为了规范检测目标图像的亮度范围, 本文将输入的彩色图像Img 各通路的亮度映射到 区间内, 如下式所示Img (;i )I (;i )其中, 和 表示经亮度映射前和映射后的R 、G 、B 三种颜色分量图像; max(·) 和min(·)分别计算对应分量图像中的最大和最小像素值.光感受器分两类, 分别为视锥细胞和视杆细胞[14], 都能将接收到的视觉刺激转化为电信号, 实现信息的编码和传递. 其中, 视锥细胞能够根据外界光刺激的波长来分解为三个不同的颜色通道[15].考虑到人眼对颜色信息的敏感性能有效区分离散目标与背景, 令图像中的每个像素点对应一个神经元,将R 、G 、B 三种颜色分量图像分别输入上文构建的神经元模型中, 在一定时间范围内进行脉冲发放,如下式所示fires (x,y ;i )其中, 为每个神经元的脉冲发放次数,函数Izhikevich(·)表示式(2)给出的神经元模型.视杆细胞对光线敏感, 主要负责弱光环境下的外界刺激感知. 当光刺激足够强时, 视杆细胞的感知能力达到饱和, 视觉系统转为使用视锥细胞负责亮度信息的处理[16]. 因此, 除了对颜色信息敏感外,视锥细胞对强光也有高度辨别能力. 考虑到作为检测对象的图像中, 目标与背景具有不同的亮度水平,本文构建一种综合视锥细胞和视杆细胞亮度感知能力的编码方法, 以适应目标与背景不同亮度对比的多种情况, 如下式所示I base I base (x,y )fires Res (x,y )其中, var(·) 计算图像亮度方差; ave(·) 计算图像亮度均值. 本文取三种颜色分量图像中方差最大的一幅作为基准图像 , 对于其中的像素值 ,将其中亮度低于平均亮度的部分设置为三种颜色分量脉冲发放结果的最小值, 反之设置为最大值, 最终得到模型的亮度编码结果 , 实现在图像局部亮度相对较低的区域由视杆细胞进行弱光感知, 亮度较高区域由视锥细胞处理, 强化计算模型对不同亮度目标和背景的区分能力, 凸显具有弱边缘的对象. 图3显示了亮度感知编码对存在弱边缘的对象的感知能力.1.2 基于固视微动的多方向双通路边缘提取层Img gray 人眼注视目标时, 接收的图像并非是静止的,而是眼球以每秒2至3次的微动使投射在视网膜上的图像发生持续运动, 不断地改变照射在光感受器上的光刺激[17]. 本文考虑人眼的固视微动机制,在原图像的灰度图像 上构建大小为3×3的微动作用窗口temp , 使窗口接收到的亮度信息朝8个方向进行微动, 如下式所示p i q i θi temp θi d x d y 其中, 和 是用于决定微动方向 的参数, 其值被设置为 −1、0或1, 通过计算反正切函数能够得到以45° 为单位、从0° 到315° 的8个角度的微动方向, 对应8个微动结果窗口 ; 和 分别表示水平和竖直方向的微动尺度; Dir 为计算得到(a) 原图(a) Original image (b) Izhikevich 模型(b) Izhikevich model (c) 改进的 Izhikevich 模型(c) Improved Izhikevich model图 2 改进前后的Izhikevich 模型对图像进行脉冲发放的结果对比图Fig. 2 Comparison of the image processing results of the Izhikevich model before and after improvement1774自 动 化 学 报49 卷Dir (x,y )的微动方向矩阵, 其中每个像素点的值为 ;sum(·) 计算窗口中像素值的和. 本文取每个微动窗口前后差异最大的方向作为该点的偏好方向, 分别用数字1 ~ 8表示.视网膜存在一类负责对运动刺激编码、具有方向选择性的神经节细胞 (Direction-selective gangli-on cells, DSGCs)[18]. 经过光感受器处理, 转化为电信号的视觉信息, 通过双极细胞处理后传递给神经节细胞. 双极细胞可分为由光照增强 (ON) 激发的细胞和由光照减弱 (OFF) 激发的细胞[19], 分别将信号输入给光通路 (ON-pathway)和撤光通路 (OFF-pathways) 两条并行通路[20], 传递给光运动和撤光运动产生的刺激. 而神经节细胞同样包括ON 和OFF 两种, 会对给光和撤光所产生的运动方向做出反应[21]. 因此, 本文构造5×5大小的对特定方向微动敏感的神经节细胞感受野窗口, 将其对偏好方向和反方向微动所产生的响应分别作为给光通路和撤光通路的输入. 以偏好方向为45° 的方向选择性神θi fires Res S xy ∗通过上述定义, 可以形成以45° 为单位、从0°到315° 的8个方向的感受野窗口, 与上文 的8个方向对应. 之后本文在亮度编码结果 上构筑与感受野相同大小的局部窗口 , 根据最优方向矩阵Dir 对应窗口中心点的方向, 取与其相同和相反方向的感受野窗口和亮度编码结果进行卷积运算 (本文用符号 表示卷积运算), 分别作为ON 和OFF 通道的输入, 如下式所示T ON T OFF 考虑到眼球微动能够将静止的空间场景转变为视网膜上的时间信息流, 激活视网膜神经元的发放,同时ON 和OFF 两通路也只在光刺激的呈现和撤去的瞬时产生电位发放, 因此本文采用首发脉冲时间作为编码方式, 将 和 定义为两通路首次脉冲发放时间构成的时间矩阵, 并作为初级边缘响应的结果. 将1个单位的发放时间设置为0.25, 当总发放时间大于30时停止计算, 此时还未进行发放的神经元即被判断为非边缘.1.3 多特征脉冲延时纹理抑制层视网膜神经节细胞在对光刺激编码的过程中,外界刺激特征的变化会显著影响神经元的反应时间. 研究发现, 当刺激对比度增大时, 神经元反应延时会减小, 更快速地进行脉冲发放; 反之, 则反应延时增大, 抑制神经元的活性[22]. 除此之外, 方向差异也会影响神经元活动, 突触前后偏好方向相似的神经元更倾向于优先连接, 在受到外界刺激时能够更快被同步激活[23]. 因此, 本文引入视网膜的神经元延时发放机制, 考虑方向和对比度对神经元敏感性的影响, 构造脉冲延时抑制模型. 首先结合局部窗口权重函数计算图像对比度, 如下式所示ω(x i ,y i )其中, 为窗口权重函数, L 为亮度图像, Con(a) 原图(a) Original image (b) Izhikevich 模型(b) Izhikevich model (c) 改进的 Izhikevich 模型(c) Improved Izhikevich model (d) 亮度感知编码(d) Luminance perception coding图 3 不同方式对存在弱边缘的菌落图像的处理结果Fig. 3 Different ways to process the image of colonies with weak edges8 期郑程驰等: 视网膜功能启发的边缘检测层级模型1775S xy x i y i µ=∑x i ,y i ∈S xy ω(x i ,y i )为对比度图像, 为以(x , y )为中心的局部窗口,( , ) 为方窗中除中心外的周边像素, ws 为局部方窗的窗长, . 之后考虑局部方窗中心神经元和周边神经元方向差异, 同时用高斯函数模拟对比度大小与延时作用强度之间的关系, 构建脉冲延时抑制模型, 如下式所示D Dir (x,y )D Con (x,y )D (x,y )∆Dir (x i ,y i )min {|θ(x i ,y i )−θ(x,y )|,2π−|θ(x i ,y i )−θ(x,y )|}δ其中, 和 分别表示方向延时抑制量和对比度延时抑制量; 为计算得到的综合延时抑制量; 为突触前后神经元微动方向的差异, 被定义为 ; 用于调节对比度延时抑制量.T ON T OFFRes ON Res OFF 将上文计算得到的两个时间矩阵 和 中进行过脉冲发放的神经元与综合延时抑制量相加, 同样设置1个单位的发放时间为0.25, 将经延时作用后总发放时间大于30的神经元设置为不发放, 即判定为非边缘, 反之则判定为边缘. 根据式(19)和式(20) 得到两通道边缘检测结果 和. 最后, 将两通道得到的结果融合, 得到最终边缘响应结果Res ,如下式所示2 算法流程基于视网膜对视觉信息的处理顺序和编码特性, 本文构建图4所示的算法流程, 具体步骤如下:1) 根据视网膜在外界持续周期性光刺激下产生的适应现象, 在式(1)所示的Izhikevich 模型上作出改进, 构建如式(2)所示的具有自适应阈值的Izhikevich 模型.2) 根据式(3)将作为检测目标的图像映射到0 ~ 255区间规范亮度范围, 接着分离3种通道的颜色分量, 根据式(4)输入到改进的Izhikevich 模型中进行脉冲发放.3) 根据式(5)的方差计算提取出基准图像, 再结合基准图像根据式(6)对三通道脉冲发放的结果进行亮度感知编码, 得到亮度编码结果.4) 考虑人眼的固视微动机制, 根据式(7)和式(8)通过原图的灰度图像提取每个神经元的偏好方向, 得到微动方向矩阵, 接着根据式(9)和式(10)构筑8个方向的方向选择性神经节细胞感受野窗口.5) 根据式(11)和式(12), 将感受野窗口与亮度编码图像作卷积运算, 并输入Izhikevich 模型中得到ON 和OFF 通路的首发脉冲时间矩阵, 作为两通道的初级边缘响应.6) 根据式(13) ~ 式 (15), 结合局部窗口权重计算图像对比度.7) 考虑对比度和突触前后偏好方向对脉冲发放的延时作用, 根据式(16) ~ 式 (18)构建延时纹理抑制模型, 并根据式(19)和式(20)将纹理抑制模型和两通道的初级边缘响应相融合.8) 根据式(21)将两通路纹理抑制后的结果在神经节细胞处进行整合, 得到最终边缘响应结果.3 结果为了验证本文方法用于菌落边缘检测的有效性, 本文选择Canny 方法和其他3种同样基于神经元编码的边缘检测方法作为横向对比, 并进行定性、定量分析. 首先, 选择文献[4]提出的基于神经元突触可塑性的边缘检测方法(Synaptic plasticity model, SPM), 用于对比本文方法对弱边缘的增强效果; 其次, 选择文献[24]提出的基于抑制性突触的多层神经元群放电编码的边缘检测方法 (Inhibit-ory synapse model, ISM), 验证本文的延时抑制层在抑制冗余纹理方面的有效性; 然后, 选择文献[25]提出的基于突触连接视通路方向敏感的分级边缘检测方法(Orientation sensitivity model, OSM), 对比本文方法在抑制冗余纹理的同时保持边缘提取完整性上的优势; 最后, 还以本文方法为基础, 选择去除亮度感知编码后的方法(No luminance coding,NLC)作为消融实验, 以验证本文方法模拟光感受器功能的亮度感知编码模块的有效性.本文使用实验室在微生物学实验中采集的菌落图像和AGAR 数据集[26]作为实验对象. 前者具有丰富的颜色和形态结构, 用于检验算法对复杂检测环境的适应性; 后者则存在更多层次强度的边缘信息, 菌落本身与背景的颜色和亮度水平也较为相近,用于检测算法对颜色、亮度特征和弱边缘的敏感性.本文通过局部采样生成150张512×512像素大小的测试图像, 其中38张来自实验室采集, 112张来自AGAR 数据集. 然后分别使用上文的6种边缘1776自 动 化 学 报49 卷检测算法提取图像边缘, 使每种算法得到150张边缘检测结果, 其中部分检测结果如图5所示.定性分析图5可知, Canny 、SPM 和ISM 方法在Colony4和Colony5等存在弱边缘的图像中往往会出现大面积的边缘丢失. OSM 方法对弱边缘的敏感性强于以上3种方法, 但仍然会出现不同程度的边缘断裂, 且在调整阈值时难以均衡边缘连续性和目标菌落内部冗余. NLC 方法同样丢失了Colony4和Colony5中几乎所有的边缘, 对于Colony3也只能检出其中亮度较低的菌落内部, 对于梯度变化不明显的边缘辨别力差. 与其他方法相比, 本文方法检出的边缘更加显著且完整性更高, 对于弱边缘也有很强的检测能力, 在Colony3、Colony4和Colony5等存在多层次水平强弱边缘的菌落图像中能够取得较好的检测结果. 为了对检测结果进行定量分析并客观评价各方法的优劣, 计算边缘图像重建相似度MSSIM [27]对检测结果进行重建, 并计算重建图像与原图像的相似度作为边缘定位的准确性RGfires (R)fires (G)亮度编码结果Luminance codingresult方差计算Variance1 2 3ON-result对比度Contrast脉冲延时抑制量Neuron spiking delay感受野窗口感受野窗口DSGC templateOFF-通路输出OFF-result 5)6)7)图 4 边缘检测算法流程图Fig. 4 The procedure of edge detection algorithm8 期郑程驰等: 视网膜功能启发的边缘检测层级模型1777图 5 Colony1 ~ Colony5的边缘检测结果(第1行为原图; 第2行为Canny 检测的结果; 第3行为SPM 检测的结果; 第4行为ISM 检测的结果; 第5行为OSM 检测的结果; 第6行为NLC 检测的结果; 第7行为本文方法检测的结果)Fig. 5 Edge detection results of Colony1 to Colony5 (The first line is original images; The second line is the results of Canny; The third line is the results of SPM; The fourth line is the results of ISM; The fifth line is the results of OSM;The sixth line is the results of NLC; The seventh line is the results of the proposed method)1778自 动 化 学 报49 卷指标. 首先对检测出的边缘图像做膨胀处理, 之后将原图像上的像素值赋给膨胀后边缘的对应位置,得到的图像记为ET , 则边缘重建如下式所示T k ET d k 其中, 为图像 上3×3窗口中8个方向的周边像素, 为窗口中心像素点与周边像素的距离, 计算得到重建图像R . 重建图像的相似度指标如下式所示µA µB σA σB σAB 其中, 和 为原图像和重建图像的灰度均值, 和 为其各自的标准差, 为原图像与重建图像之间的协方差. 将原图像和重建图像各自分为N 个子图, 并分别计算相似度指标SSIM , 得到平均相似度指标MSSIM . 除此之外, 为了验证边缘检测方法检出边缘的真实性和对菌落内部冗余纹理的抑制能力, 本文计算边缘置信度BIdx [28], 根据边缘两侧灰度值的跃变程度判断边缘的真伪. 边缘置信度指标如下式所示σij E (x i k ,y ik )(x i ,y i )d i其中, 为边缘像素在原图像对应位置的邻域标准差, EdgeNum 为边缘像素数量. 另外, 本文进一步计算边缘连续性 CIdx [29]来验证检出目标的边缘完整性. 首先将得到的边缘图像E 分割为m 个区域, 分别计算每个区域中的边缘像素 到其空间中心 的距离 ,则连续性指标如下式所示c i k C i n i 其中, 为边缘连续性的贡献值, D 为阈值, 为第i 个区域的像素点的连续性贡献值之和,为第i 个区域边缘像素点数量. 最后, 将计算得到的3个指标根据下式融合, 得到综合评价指标EIdx [21]其中, row 和col 分别为原图像的行数和列数. 于是, 检测图像的各项性能指标如表1 ~ 表5所示, 图像重建的结果如图6所示.表 1 不同检测方法下的重建相似度MSSIM Table 1 MSSIM of different methodsSerial number MSSIMCanny SPMISMOSMNLC本文方法Colony10.74520.77250.83570.92650.91750.9371Colony20.79510.79710.84900.95280.94470.9725Colony30.85760.86620.83140.91490.83370.9278Colony40.96900.98270.98380.98870.98930.9972Colony50.96340.97580.97800.97710.98830.9933表 2 不同检测方法下的边缘置信度BIdx Table 2 BIdx of different methodsSerial number BIdxCanny SPMISMOSMNLC本文方法Colony10.49880.46180.43070.58010.50580.6026Colony20.18210.15370.15530.33650.46150.4479Colony30.19830.15100.16100.26340.12630.3257Colony40.16310.14880.19060.14370.15210.2016Colony50.16200.18960.19020.18820.17350.1654表 3 不同检测方法下的边缘连续性CIdxTable 3 CIdx of different methodsSerial numberCIdxCanny SPMISMOSMNLC本文方法Colony10.83770.85300.86010.86760.97490.9652Colony20.80690.86550.85330.82930.91770.9518Colony30.80640.74080.72930.82690.77640.9406Colony40.81430.86110.90440.84300.90150.9776Colony50.90470.84480.86320.85920.87090.95718 期郑程驰等: 视网膜功能启发的边缘检测层级模型1779。
眼中的激光英文作文
眼中的激光英文作文英文:Laser in My Eyes。
I had always been fascinated by the idea of getting laser eye surgery to correct my vision. I had been wearing glasses since I was a child and the thought of being able to see clearly without them was very appealing. So, I finally decided to take the plunge and scheduled the surgery.The day of the surgery arrived and I was feeling a mix of excitement and nervousness. I was taken into the operating room and the surgeon began the procedure. I was told to look straight ahead at a green light while the laser did its work.As the laser started, I felt a slight pressure on my eye and saw a bright flash of light. It was over in amatter of seconds and the surgeon moved on to the other eye. The whole procedure took less than 15 minutes and I was amazed at how quick and painless it was.After the surgery, my eyes were a bit sore andsensitive to light, but within a few days, I was able tosee clearly without glasses. It was a life-changing experience and I was thrilled with the results.中文:我的眼中的激光。
具有组合的边角膜缘环和虹膜图案的有色隐形眼镜[发明专利]
专利名称:具有组合的边角膜缘环和虹膜图案的有色隐形眼镜专利类型:发明专利
发明人:J·W·鲍威尔斯,J·W·杜克斯,K·D·麦卡蒂,A·L·鲍威尔斯申请号:CN200580028667.1
申请日:20050818
公开号:CN101010617A
公开日:
20070801
专利内容由知识产权出版社提供
摘要:本发明提供有色隐形眼镜,其包括用于增强戴镜者的虹膜的清晰度的角膜缘环,使得对于戴镜者的观察者而言该虹膜显得更大。
所述的眼镜还具有多个覆盖戴镜者虹膜的一部分或全部的锥形轮辐。
本发明的眼镜可以用作美容眼镜,用于增强或改变个体的虹膜。
申请人:庄臣及庄臣视力保护公司
地址:美国佛罗里达州
国籍:US
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。
考研英语时文赏读(61):测量人眼睛的“杀伤力”
考研英语时文赏读(61):测量人眼睛的“杀伤力”摘要:考研英语作为一门考研公共课,虽然大家都学了英语十几年,却仍经常有总分过线挂在英语上的情况,因此英语复习不单单是单词、做题。
阅读作为考研英语的大头,仅仅做考研真题或许没法满足你的阅读量,因此之后会不定时推出一篇英文美文,这些文章都与考研英语阅读同源,多读必有好处。
A new study suggests that, unconsciously, we actually do believe that looking exerts a slight force on the things being looked at. Karen Hopkin reports.一项新研究表明,在潜意识上,我们确实相信我们目光对所看的事物施加了轻微的力量凯伦霍普金报道。
Youre at a party and you suddenly feel someone looking at you. But how can it be possible to feel another persons glance?I mean, its not like people shoot actual beams out of their eyes.在参加派对时,你突然觉得有人在看着你。
但是你怎么可能会感受到另一个人的目光呢?我的意思是,人们并没有从眼睛里射出实实在在的光线。
Yeta new study suggests that, unconsciously, we actually do believe that looking exerts a slight force on the things being looked at. That eye-opening finding appears in the Proceedings of the National Academy of Sciences. [Arvid Guterstam et al, Implicit model of other peoples visual attention as an invisible, force-carrying beam projecting from the eyes]然而......一项新研究表明,在潜意识上,我们确实相信我们目光对所看的事物施加了轻微的力量。
上海新视界中兴眼科医院阿玛仕准分子
领先不止一步阿玛仕准分子激光精细超乎想象——0.54 mm最小激光光斑极致准确定位——1050 Hz全方位眼球跟踪切削转瞬完成——500 Hz高速飞点扫描理想触手可及——最小化术源性像差及选择性像差安全与众不同——全激光TransPRK一步完成阿玛仕的含义来源于拉丁语“amare”,含义与英文中的“love”相近。
Amaris的意思是“被关爱着”,在国内我们采用AMARIS的音译名----阿玛仕。
德国SCHWIND公司推出的新一代AMARIS阿玛仕准分子激光代表了当今最先进的准分子技术,拥有目前最高的激光发射频率、最小的激光光斑、完备高速的眼球跟踪系统和热效应控制技术,为每一位患者带来安全、准确、舒适的角膜屈光手术体验。
SCHWIND AMARIS准分子手术五大优势手术速度最快阿玛仕拥有目前最高的切削频率,高达500 Hz,远远高于目前常见的其他准分子激光设备(60 Hz – 400 Hz)。
常规手术矫正近视1个屈光度(100度近视)仅需2.0秒钟,患者术中配合将十分轻松。
手术过程中,AMARIS 阿玛仕将采用高、低两种激光能量密度水平(Automatic Fluence Level Adjustment,AFLA)切削角膜组织,既保证了手术速度,又获得非常光滑的角膜基质表面,术后愈合更迅速,视觉质量更佳。
最可靠的安全性能阿玛仕配备目前最先进的高速六维眼球跟踪系统,全方位监测眼球在各个维度上的运动。
高达1050Hz的跟踪速度,手术中可发现眼球任何快速微小的运动,及时调整激光发射位置,保证手术安全精准。
除此之外,高分辨率的实时角膜厚度测量功能将全程监测角膜厚度变化,医生时时掌握各项治疗数据,安全基线高,避免术后发生角膜变薄等不良反应。
最大程度保护角膜组织阿玛仕拥有目前直径最小的激光光斑(仅为0.54mm),精确切削角膜基质组织,同时它还应用了新型智能化热效应控制技术(Intelligent Thermal Effect Control,ITEC)以动态部署激光光斑的发射位置,避免相邻激光光斑及热量扩散区域叠加后导致的角膜组织表面热量累积效应,故而经AMARIS手术绝无间接损伤角膜胶原组织可能,手术效果更理想。
好奇逐星波的英语作文
Curiosity has always been a driving force in human exploration and discovery.It is the very essence of our desire to understand the world around us and beyond.As we gaze up at the night sky,the twinkling stars beckon us with their silent call,igniting the spark of curiosity within us.This essay will delve into the concept of curiosity and its role in our pursuit of the stars.The human race has been captivated by the cosmos since time immemorial.Ancient civilizations studied the heavens,mapping constellations and predicting celestial events with remarkable accuracy.This innate curiosity led to the development of astronomy,a field that has expanded our understanding of the universe and our place within it.The invention of the telescope by Galileo Galilei in the early17th century marked a significant leap in our ability to observe and study celestial bodies,further fueling our curiosity about the stars.Curiosity is not merely a passive interest it is an active pursuit of knowledge.It propels us to ask questions,to challenge existing theories,and to seek answers that may lie beyond our current understanding.This inquisitive nature has led to numerous scientific breakthroughs and technological advancements.For instance,the curiosity about the nature of stars has led to the discovery of nuclear fusion,the process that powers our sun and other stars,and has opened up the possibility of harnessing this energy for human use.The quest for knowledge about the stars has also led to the development of space exploration.From the first human spaceflight by Yuri Gagarin in1961to the recent Mars missions,our curiosity has taken us beyond our own planet and into the vast expanse of space.This exploration has not only expanded our understanding of the universe but has also provided us with a new perspective on our own planet and its place in the cosmos. Moreover,curiosity about the stars has inspired countless individuals to pursue careers in science,technology,engineering,and mathematics STEM.It has motivated generations of students to learn about the cosmos,to dream of becoming astronauts,and to contribute to our collective understanding of the universe.This curiosity has also led to the creation of numerous educational programs and initiatives aimed at fostering interest in astronomy and space exploration.In conclusion,curiosity is the catalyst that drives our exploration of the stars.It is the spark that ignites our desire to learn,to discover,and to understand the universe.As we continue to gaze up at the night sky,let us remember that it is our curiosity that will lead us to new horizons and unlock the mysteries of the cosmos.Whether through the development of new technologies,the pursuit of scientific knowledge,or the inspirationof future generations,curiosity will always be the guiding force in our journey to explore the stars.。
关于眼睛的英语作文
Eyes are often referred to as the windows to the soul,and they play a crucial role in our daily lives.They allow us to perceive the world around us,express our emotions,and communicate with others.In this essay,we will explore the various aspects of eyes, including their structure,function,and the importance of eye health.Structure of the EyeThe human eye is a complex organ composed of several parts that work together to enable vision.The main components include the cornea,iris,pupil,lens,retina,and optic nerve.The cornea is the clear,outer layer that protects the eye and helps focus light.The iris,which is the colored part of the eye,controls the amount of light entering the eye by adjusting the size of the pupil.The lens further focuses the light onto the retina,which contains lightsensitive cells that convert the light into electrical signals.These signals are then transmitted to the brain via the optic nerve.Function of the EyeThe primary function of the eye is to provide vision.It detects light and color,allowing us to see and interpret the world around us.The process of vision begins when light enters the eye through the cornea and passes through the lens,which adjusts its shape to focus the light.The retina then captures the image and converts it into electrical signals. These signals travel along the optic nerve to the brain,where they are processed and interpreted as visual images.Importance of Eye HealthMaintaining good eye health is essential for overall wellbeing.Regular eye examinations can detect issues such as nearsightedness,farsightedness,astigmatism,and presbyopia, which can be corrected with glasses or contact lenses.More serious conditions like glaucoma,cataracts,and agerelated macular degeneration can also be identified and treated early to prevent vision loss.Protecting Your EyesTo protect your eyes,it is important to wear sunglasses that block out harmful UV rays when outdoors.Spending too much time in front of screens can cause eye strain,so its recommended to take regular breaks and follow the202020rule:every20minutes,look at something20feet away for20seconds.Eating a balanced diet rich in vitamins A,C, and E,along with omega3fatty acids,can also contribute to eye health.Emotional ExpressionEyes are not only essential for vision but also serve as a powerful means of emotional expression.They can convey a wide range of emotions,from happiness and sadness to anger and surprise.The dilation of the pupils,the raising of eyebrows,and the movementof the eyelids all contribute to the nonverbal communication of our feelings. ConclusionIn conclusion,the eyes are a remarkable part of the human body that enable us to experience and interact with the world.They are intricately designed for optimal vision and are capable of expressing a multitude of emotions.Taking care of our eyes through regular checkups,protective measures,and a healthy lifestyle is vital to ensure we continue to enjoy the gift of sight.。
[VIP专享]激光在医学上的应用
激光在医学上的应用英文:laser in medicine激光是利用受激发射放大原理产生的高相干性、高强度的单色光。
产生激光束的光源称激光器,在医学领域里有广泛的用途。
激光医学是一门新兴的边缘学科,其内容包括用激光新技术去研究、诊断、预防和治疗疾病。
激光已应用于内、外、妇、儿、眼、耳鼻喉、口腔、皮肤、肿瘤、针灸、理疗等临床各科。
它不仅为研究生命科学和研究疾病的发生发展开辟了新的研究途径,而且为临床诊治疾病提供了崭新的手段。
激光医学发展简史 1960年第一台红宝石激光器研制成功,1961年即用于眼科进行视网膜光凝固治疗。
此后有关激光的生理作用、激光的生物效应等论文相继发表。
1966年用CO2激光束切除狗的肝脏,证明术中出血很少,从而开创激光手术;1968年用激光治疗颌面部病变;1969年用激光刀完成胸廓切开术;1971年石英光导纤维研制成功,使氩离子(Ar+)激光和掺钕钇铝石榴石(YAG)激光得以进入体腔内进行治疗;1972年手术显微镜配合CO2激光进行喉部手术成功,从而开始激光显微手术。
中国从1973年开始将CO2激光用于临床,以后又陆续将Ar+激光、YAG 激光、红宝石激光引入到临床各科。
1965年和1966年动物实验和临床观察证明氦氖(He-Ne)激光有止痛、消炎、提高免疫功能等作用,将其用于局部照射治疗,从而开创激光理疗。
中国在1974年将激光用于理疗。
1966年后激光应用于穴位照射,从而开创激光针灸治疗。
1970年He-Ne激光穴位照射治疗高血压病,取得良好效果,以后用于治疗支气管炎、子宫附件炎也取得良效。
1976年制成He-Ne激光光针仪,用于以治疗传统上常用毫针治疗的急慢性病。
1960年研制成新的光敏剂血卟啉衍生物(HPD),为用激光光动力学诊断和治疗恶性肿瘤开辟一条途径。
在1978年中国引进这项技术,现已用于消化道、呼吸道、泌尿道、头颈部、皮肤肿瘤的诊断和治疗。
目前医用激光器已与电子计算机、光导纤维、图像分析、摄像、录像、荧光光谱和超声技术等新技术结合。
英语中形容慧眼如炬的说法
英语中形容慧眼如炬的说法英语中形容慧眼如炬的常用表达有很多,其中比较常见的是以下几个:1."Eagle-eyed":这个短语直接地将目光敏锐的程度与老鹰的眼睛相提并论,形象地表达了这个人观察事物的细致入微。
2."Sharp-eyed":这个词语组合通过将"sharp"(锐利的)与"eye"(眼睛)相结合,传达了这个人的视力敏锐,能迅速发现细节。
3."Keen-eyed":这个短语中的"keen"(敏锐的)同样强调了观察力的出色,适用于描述在各种场景中目光锐利的人。
在具体场景下,我们可以这样使用这些表达:例如,当你在描述一个侦探时,可以这样说:“He is an eagle-eyed detective who never misses a clue.”(他是一位目光敏锐的侦探,从未错过任何一个线索。
)或者,在描述一个野生动物摄影师时:“She has a sharp eye for discovering the hidden beauty in nature.”(她有一双发现大自然隐藏之美的敏锐眼睛。
)此外,如果想表达一个人具有敏锐的观察力,可以这样说:“He has a keen eye for spotting potential in others.”(他有一双发现他人潜力的敏锐眼睛。
)拓展一下,如果想要表达其他类型的视觉形容词,例如视力不佳,可以使用"short-sighted"(近视的)或"long-sighted"(远视的);如果描述一个人的眼神凶狠,可以使用"stern-eyed"(严厉的眼神);如果想表达一个人眼神迷离,可以使用"dreamy-eyed"(梦幻般的眼神)等。
总之,英语中有很多描述眼神和观察力的词汇,通过巧妙地运用这些词汇,可以使你的描述更生动、形象。
以色列EndyMed考试内容
EndyMed操作医生及咨询考试内容一、单选题(2’*5=10分)1、3DEEP相控射频仪器是哪个国家原装进口的?( C )A.美国B.法国C.以色列D.英国2、3DEEP相控射频仪器有几个手具?( D )A.3个【眼周Ifine、面部Small、身体Shapper】B.2个【眼周Ifine、身体Shapper】C.4个【眼周Ifine、面部Small、身体Shapper、点阵FSR】D.5个【眼周Ifine、面部Small、身体Shapper、点阵FSR、微针intensif】3、多源相控3DEEP射频与传统射频技术区别(A)A. 不需要冷却、无痛、能量均匀深入真皮B.安全但是能量低,大部分作用表皮C. 能量低不需要冷却D. 能量作用深但会痛,需要强烈冷却4、多源相控3DEEP射频需要贴电极片吗(B)A.需要,并且贴两个B.不需要在身体其他部位贴电极片C.需要在手上贴一个D. 需要在背上贴一个5、多源相控3DEEP射频微针手具独特的脉冲模式是(C)A.单一脉冲,模式不可调B.固定脉冲,极大或极小值C.FPM TM脉冲专利技术,能量均匀D. 双脉冲模式二、多选题(3’*5=15分,少选几个扣几分,选错扣3分)6、3DEEP射频治疗后注意事项有哪些?(ABCD)A.治疗后正常饮食,保证睡眠B.注意防晒C.至少3天以上搭配使用修复类产品及补水面膜等D. 控制饮酒和吸烟7、3DEEP射频TC无创手具治疗优势?(ABD)A. 表皮无需冷却,舒适度高B.安全、无痛C.会烫伤D. 多个皮肤特定感应器,非常智能8、Ifine手具项目及适应症是什么?(ABC)A.黑眼圈B.眼周细纹、鱼尾纹C.眼睑松弛、川子纹、鼻背纹D.妊娠纹9、3DEEP相控射频仪器有哪些权威认证?(ABCD)A.CFDAB.FDAC.欧盟CED.ISO900110、3DEEP相控射频仪器有哪些独特的安全设计?(ABC)A.滑动传感器(只有在滑动状态下能量才能释放)B.接触传感器(只有在接触皮肤状态下能量才能释放)C.即时阻抗感应器(实时监测皮肤阻抗)D.能量参数不能调三、填空题(4分*10=40分)1.多源相控3DEEP射频有 6 个射频发生器,每个电极直接的独立的由一个发生器控制。
眼科词汇中英文对照
v眼科词汇中英文对照A型超声图A-scan ultrasonographyB型超声图Maddox杆测验白内障Nd:Y AG激光囊切开术SRK公式,人工晶体状体度数测定二期人工晶状体植入术人工晶状体(IOL)上皮上皮水肿子午线晶状体干燥性角结膜炎无前房或浅前房无晶状体无晶状体眼镜无缝线白内障手术毛果芸香碱出血外伤性白内障外眼病外眼检查对比敏感度平坦部玻璃体切除术白内障手术白内障囊内摘除术(ICCE)白内障囊外摘除术(ECCE)皮质皮质性白内障皮质类固醇先天性白内障全身麻醉关节炎后房后房型人工晶状体后囊混浊地塞米松异物成熟期白内障红光反射老年性白内障冷冻器B-scan ultrasonographymaddox rod testingcataractNd: Y AG laser capsulotomySRK formula, for IOL power secondary intraocular lensintraocular lensesepitheliumepithelial edemameridianslenskeratoconjunctivitis siccaflat or shallow anterior chamber AphakiaAphakic spectaclesNo-stitch cataract surgerypilocarpinehemorrhagetraumatic cataractsexternal eye diseaseexternal eye examinationcontrast sensitivitypars plana lensectomycataract surgeryintracapsular cataract extraction (ICCE) extracapsular cataract extraction (ECCE) cortexcortical cataractscorticosteoridscongenital cataractsgeneral anesthesiaArthritisposterior chamberposterior chamber intraocular lenses posterior capsular opacification dexamethasoneforeign bodiesmature cataractsred reflexAge-related cataractsCryoprobe局部麻醉折叠式人工晶状体角巩膜切口角膜角膜水肿角膜曲率计角膜病变赤道周边部虹膜切除术屈光屈光不正表面麻醉视力视网膜色素变性视网膜脱离视轴青光眼青光眼斑点前房前房积血复视,单眼性玻璃体穿孔伤穿通伤结合膜瓣结膜切口脉络膜上腔出血脉络膜脱离虹膜虹膜切除术剥脱综合症(假性剥脱)恶性青光眼核核性白内障缺血性调节调节幅度透明质酸钠高度近视眼婴儿期白内障接触镜检眼镜检查球后麻醉球旁(周)麻醉local anesthesiafoldable intraocular lensescorneal-scleral incisioncornealcorneal edemakeratomtrykeratoplastyequatorperipheral iridectomyrefractionrefraction errortopical anesthesiavisual acuityretinitis pigmentosaretinal detachmentoptic axisglaucomaglaukomfleckenanterior chamberhyphemadiplopia, monocularvitreousperforating injurypenetrating injury, see also Trauma conjunctival flapconjunctical incisionsuprachoroidal hemorrhagechoroidal detachmentirisiridectomyexfoliation syndrome (pseudoedfoliation) malignant glaucomanucleusnuclear cataractischemiaaccommodationamplitude of accommodationsodium hyaluronatehigh myopiainfantile cataractscontact lensesophthalmoscopyretrobulbar anesthesiaperibulbar anesthesia眼内压升高眼内异物眼内炎眼压增高眼底粘弹剂维生素缺乏黄斑功能黄斑变性黄斑囊样水肿睑板腺炎睑缘炎裂隙灯检查超声晶状体乳化术睫状阻滞睫状麻痹剂解剖碱性烧伤缩瞳剂糖尿病阿托品,弱视治疗AC/A比率,比值,调节性复辏/调节比值弱视病因极性白内障手术杯/盘比眼外肌鼻泪道系统结膜炎新生儿眼炎眼眶早产儿视网膜病变视网膜母细胞瘤剥夺性弱视视神经萎缩角膜映光法垂直肌下斜上斜视力评估垂直性偏离下直肌不全麻痹elevated intraocular pressureintraocular foreign bodies endophthalmitisincreased intraocular pressurefundusviscoelasticsvitamin deficienciesmacular functionmacular degenerationcystoid macular edemameibomianitisblepharitisslit-lamp examinationultrasound for phacoemulsificationciliary blockciliary-block glaucomaanatomyalkali injuriesmioticsdiabetes mellitusatropine in amblyopia treatmentAC/A ratio, See accommodative convergence/accommodation ratio amblyopiaetiologypolarcataract surgerycup/disc ratioextraocular musclesnasolacrimal systemconjunctivitisophthalmia neonatorumorbitalretinopathy of prematurityretinoblastomadeprivation amblyopiaoptic atrophycorneal light reflexvertical rectus muscleshypotropiahypertopiavisual assessmentvertical deviationsinferior rectus muscle上斜肌垂直性非共同性同视机单眼剥夺单眼抑制单眼运动麻痹不全麻痹调节性幅辏调节性内斜对侧的复视对抗肌E图表房角切开分离性垂直性偏离幅辏,集合分散下直肌异侧一致性,同侧复视检查巩膜巩膜扣带固视(视觉)光凝硅胶管植入过敏反应脉络膜葡萄膜虹膜炎虹膜睫状体炎后马托品后葡萄膜炎后退后粘连化脓性化学烧伤黄斑变性Hering运动一致法则Hess屏法Horner综合症眼压superior obliqueverticalinconitancyamblyoscopemonocular deprivationmonocular suppressionmonocular eye movementspalsy, paralysisparesisaccommodative convergence accommodative esotropia contralateraldiplopiaagonist musclesIlliterate Egoniotomydissociated vertical deviation convergencedivergenceinferior rectus muscles heteronymoushomonymousdipiopiasclerascleral bucklingfixation (visual) photocoagulationsilicon intubationallergic reactionchoroidsuvealiritisiridocyclitishomatropineposterior uveitisrecessionposterior synechiaepyogenicchemical burnsmacular degengrationHering’s law of motor correspondence Hess screen testHorner’s syndromeintraocular pressureGraves(甲状腺)眼病激光治疗(激光手术)营养障碍假性外斜假性斜视间歇性睑外翻睑下垂交替抑制角膜角膜病变角膜曲率计角膜炎角膜移植术拮抗肌睫状肌麻痹性睫状体近点近点集合近点联合运动反射痉挛泪点泪囊泪囊鼻腔吻合术泪小管类风湿性关节炎棱镜眼球震颤棱镜检查立体感觉立体视觉立体视觉检查眼睑协同肌内毗赘皮内斜屈光性后天性共同性非调节性假性内斜内旋内隐斜皮质类固醇Graves (thyroid) eye disease laser therapy (laser surgery) dystrophy pseudoexotropia pseudostrabismus intermittentectropion blepharoptosis alternating suppression corneakeratopathykeratometrykeratitiskeratoplastyantagonist muscles cycloplegicciliary bodynear point ofnear point of convergence near synkinetic reflex spasm oflacrimal punctalacrimal sac dacryocystorhinostomy canaliculirheumatoid arthritis prismsnystagmusprism teststereoscopic perception stereopsisstereo acuity testing eyelidssynergistsepicanthusesotropiarefractiveacquiredcomitant nonaccommodative pseudoesotropiaincycloesophoria corticosteroids偏中心固视交感性眼炎前房角镜强的松角膜混浊发生率青光眼植入阀青霉素眼部护理穹窿部切口球筋膜屈光不正屈光参差性热烧伤融合感觉性和运动性双眼视觉融合性集合融合性散开沙眼上睑下垂上直肌失明视交叉视力评估视盘视神经萎缩视神经炎视网膜遗传性全身病视网膜出血视网膜对应视网膜竞争视网膜色素变性同向运动瞳孔瞳孔光反射瞳孔散大瞳孔缩小托品卡胺外斜外侧直肌外伤eccentric fixation sympathetic ophthalmia gonioscopyprednisonecorneal opacityincidenceglaucoma implant procedures pencillinophthalmic carefornix incisionfascia bulbiisoametropic anisometropicthermal burnsfusionsensory and motor binocular visionfusional convergence fusional divergence trachomaptosissuperior rectusblindnessoptic chiasmvisual assessmentoptic discoptic atrophyoptic neuritisretinahereditarysystemic diseaseretinal hemorrhagesretinal correspondence retinal rivalrypigmentosaversionspupilspapillary light reflex mydriasismiosistropicamideexotropialateral rectus muscle trauma外旋外旋转外隐斜外展Worth四点检查法下斜肌下斜视下直肌霰粒肿新生儿淋球菌眼炎小梁切除术A型垂直肌无力调节缝线切口适应症新生儿眼炎眼镜调节性内斜结缔组织恶性色素上皮分离性眼位异常视网膜对应隐斜拥挤现象圆锥角膜YAG激光正位眼痣肿瘤眼球表面周边的轴长注视位置配偶肌板层角膜移植术表层角膜切除术带状疱疹单纯疱疹病毒干眼巩膜炎过敏性反应Excyclo-Extorsion (excycloduction)ExophoriaAbductionWorth’s four-dot testInferior oblique muscleHypotropiaInferior rectuschalaziagonococcal ophthalmia neonatorum trabeculotomyA patternmyasthenia gravisadjustable suturesincisionindicationophthalmic neonatorumspectacleaccommodative esotropiaconnective tissuemalignantpignent epithelialdissociatedalignmentabnormal (anomalous) retinal correspondence phoria, heterophoriacrowding phenomenonkeratoconusYAG laserorthophorianevitumorsepibulbarperipheralaxial lengthgazeyoke musclelamellar keratoplastysuperficial keratectomyherpes zosterherpes simplex virusdry eyesscleritisallergic reaction虹膜切除术虹膜脱出红霉素化学烧伤环丙沙星间断缝合法碱性化学烧伤角膜磨削术角膜切开术角膜咬切器角膜移植术接触镜结膜瓣结膜结石金霉素,氯化四环素局部异体植片排斥片泪囊炎泪腺炎利福平睑板腺睑板腺炎氯霉素绿脓杆菌麦粒肿前房积血前房消失前房蓄脓强的松龙青霉菌属霰粒肿三叉神经散光色素沉着沙眼新生血管形成血管翳远视眼真菌翳状赘肉Goldmann眼底接触镜Goldmann压平眼压计Humphrey视野分析仪Maddox杆阿熙提iridectomyprolapse of iriserythromycinchemical burnsciprofloxacininterrupted suture closure technique alkaline burnkeratomileusiskeratotomycorneal puncheskeratoplastycontact lensconjunctival flapconjunctival concretions chlortetracyclineallograft rejection dacryocystitisdracyoadenitisrifampinmeibomian glandsmeibomitischloramphenicolpseudomonas aeruginosa hordeolumhyphemaflat anterior chamberhypopyonprednisolonepenicilliumchalaziontrigeminal nerveastigmatismpigmentationtrachomaneovasculariationpannushyperopiafungipterygiumGoldmann fundus contact lens Goldmann applanation tonometer Humphrey vision analyzer Maddox rodapostib等效镜度低视力助视器地形图第一焦点调节调节不足调节的近点调节反应调节X围调节X围(域)调节幅度调节痉挛调节麻痹对比敏感度干涉滤片光轴几何光学假性老视检眼镜检影镜检影镜法交叉柱镜法焦点焦度计角膜曲率计角膜移植术内皮细胞睫状肌麻痹验光界面近视近视力助视器老花棱镜棱镜度内皮细胞镜检查内皮显微镜逆动逆规散光前房角镜屈光参差屈光度屈光度人工晶体(IOL)人工晶体计算equivalent powerlow-vision aids topographyprimary focal point accommodation insufficiencynear point of accommodation responserangerange of accommodation amplitude of accommodation spasmparalysiscontrast sensitivity interferenceoptical axisgeometrical optics pseudopresbyopia ophthalmoscopy shiascopyretinoscopycross cylinderfocal pointsfocimeterkeratometerkeratoplastyendothelialcycloplegic refraction interfacesmyopianear-vision aids presbyopiaprismsprism diopterspecular microscopy specular microscopy against motionagainst-the-rule astigmatism gonioscopy anisometropiadiopteroptical powerintraocular lensesIOL calculation人工晶体曲率计算散光镜片色差试验镜片,镜片箱双眼调节雾视氩激光眼底照相机眼镜处方隐斜视主观验光柱镜柱镜度闭角型青光眼玻璃体后脱离玻璃体牵引玻璃体前脱离,挫伤性玻璃体切除术玻璃体视网膜手术巩膜加压巩膜扣带光损伤硅油激光光凝术激光治疗(激光手术)旁中心凹区色觉色盲视网膜出血视网膜色素变性视网膜色素上皮视网膜水肿视网膜脱离视网膜中央动脉视网膜中央动脉阻塞视网膜中央静脉阻塞眼科仪器眼内异物低眼压光凝术虹膜结节脉络膜脱离皮质类固醇眼内炎calculation, IOL powerastigmatic lenseschromatictrial lensesbinocular amplitudefoggingargon laserfundus cameraprescribing glassesheterophoria correctionsubjective refractioncylindrical lenscylinder axisangle-closure glaucomaposterior vitreous syndromevitreous tractionanterior vitreous detachment contusion vitrectomyvitreoretinal surgerysclera indentationsclera bucklephotic damagesilicone oillaser photocoagulationlaser therapy (laser surgery) parafoveal areacolor visionachromatopsia, color blindness retinal hemorrhagesretinitis pigmentosaretinal pigment epithelium (RPE) retinal edemaretinal detachmentcentral retinal arterycentral retinal artery occlusion central retinal vein occlusion ophthalmic instrumentation intraocular foreign bodieshypotonyphotocoagulationnodules of irischoroidal detachment corticosteroidendophthalmitisCT扫描,计算机断层摄影重建术眦角倒睫眶骨折睑下垂交感性眼炎甲状腺相关性眶病变眶减压术眶内容切除术泪囊鼻腔吻合术内翻瘢痕性内眦赘皮外翻眼球摘除术眼球突出内皮营养障碍溃疡穿刺术地塞米松发育性青光眼房水甘露醇甘油高渗剂假性剥脱角巩膜撕裂伤角膜擦伤角膜穿通伤角膜异物冷冻摘出术冷冻治疗盲点毛果芸香碱囊膜切除术囊膜切开术前房角切开术青光眼斑全视网膜光凝术视神经萎缩视网膜电图视网膜中央阻塞视野检查computed tomography (CT scan) reconstructioncanthaltrichiasisorbital fracturesptosissympathetic ophthalmia thyroid related orbitopathy decompressionexenterationdacryocystitisentropioncicatricialepicanthusectropionenucleationexopthalmosendothelial dystrophyulcerparacentesis dexamethasone developmental glaucoma aqueousmannitolglycerinhyperosmotic agent pseudoexfoliation corneoscleral laceration corneal abrasionpenetrating injury of cornea cornea foreign body cryoextractioncryotherapyblind spotpilocarpinecapsulectomycapsulotomygoniotomyglaukomfleckenpanretinal photocoagulation optic atrophy electroretinogram (ERG) central retinal vein occlusion perimetry视诱发电位酸烧伤缩瞳剂碳酸酐酶抑制剂通知同意书瞳孔瞳孔放大瞳孔缩小瞳孔阻滞小梁成形术小梁切除术小梁切开术小梁网眼前段巩膜外的巩膜环扎术视网膜前膜剥离视网膜切除术视网膜切开术娩核翼状胬肉visual evoked potential VEP (evoked response)acid burnsmiotics agentcarbonic anhydrase inhibitorinformed consentpupilmydriasismiosispapillary blocktrabeculoplastytrabeculectomytrabeculomytrabecular meshworkanterior segmentepiscleralscleral encircling operationpreretinal membrane peelingretinectomyretinotomynucleus deliverypterygium。
LASIK常识详细图解(1)
激光视力矫正
利用准分子激光进行近视和远视的矫正
准分子激光角膜切削术(PRK)
一、原理:去除角膜上皮后,用准分子激光切削 角膜前弹力层和浅层基质,使角膜前表面曲率变 平,以矫正近视。 二、优点:对低、中度近视准确性及预测性好; 操作简便安全。 三、缺点:因手术破坏了角膜上皮和前弹力层, 因此改变了角膜的正常解剖结构,术后可能形成 角膜混浊。为预防 混浊的发生,术后需应用较 长时间的激素眼药水,一部分病人可能发生激素 性高眼压,严重者导致视功能损害。
一个 “负”透镜使光线发散.. ... 将光线聚焦点后移,落在视网膜上
准分子激光
准分子激光打断分子链
准分子激光在头发上的切削
激光技术进行屈光矫正
Radial Keratotomy
激光治疗屈光不正的先驱
放射状角膜切开术(RK)
一、原理:是以中央视区角膜为中心,在周边 部角膜做8-16条深层放射状切开,使中央视区 角膜相对变平而降低角膜屈光度,从而改变近 视状态。 二、优点:机械方法切开角膜,不须昂贵的手 术设备,对低度及中度近视矫正效果较好。 三、缺点:1、对高度近视矫正效果差;2、因 角膜切开深度达90%以上,故存在外伤和角膜 破裂的危险;3、角膜上遗留瘢痕。
In the Myopic Eye... ...眼球较长
Myopia – 近视眼
…或角膜太“陡
” 造成光线 造成光线聚焦在视网膜的前方 不能落在视网膜上
近视眼的治疗
• 药物:目前尚无疗效确切的治疗近视眼 的药物。 • 物理治疗:如各种治疗机,短期疗效尚 好。 • 配戴眼镜(框架眼镜或角膜接触镜): 合适的眼镜可获得良好的视力,但框架 眼镜有时不方便,接触镜较麻烦。 • 手术治疗
角膜瓣复位
眼科英语词汇大全
编号中文英文1视网膜retinal2角膜corneal3细胞cells4白内障cataract5鼻咽nasopharyngeal6青光眼glaucoma7视力visual8手术surgery9激光laser10鼻咽癌nasopharyngeal11只眼eyes12并发症complications13喉癌laryngeal14脱离detachment15儿童children16近视myopia17黄斑macular18植入术implantation19视网膜脱离retinal20晶状体lens21乳化phacoemulsification22转移metastasis23超声乳化phacoemulsification 24糖尿病diabetic25培养cells26放疗radiotherapy27人工晶状体implantation28晶体lens29视神经optic30眼压iop31上皮细胞cells32鼻炎rhinitis33内皮endothelial34玻璃体vitreous35前房anterior36植入implantation37鼻腔nasal38移植transplantation39切口incision40听力hearing41外伤traumatic42型青光眼glaucoma43高度high44视网膜病变retinopathy45角型青光眼glaucoma46复发recurrence47人工晶体lens48豚鼠guinea49外伤性traumatic50羊膜amniotic51翼状胬肉pterygium52耳蜗cochlear53先天性congenital54变应性allergic55人工intraocular56睡眠sleep57变应性鼻炎rhinitis58鼻息肉nasal59病人patients60上皮epithelial61眼底fundus62脉络膜choroidal63小梁切除术trabeculectomy 64矫正visual65水肿edema66性白内障cataract67散光astigmatism68预后prognosis69高度近视myopia70淋巴结转移metastasis71巩膜scleral72声带vocal73中耳炎otitis74提高improved75新生neovascularization76准分子激光laser77鼻窦炎sinusitis78激光治疗laser79白内障超声乳化phacoemulsification 80角膜缘limbal81术前operation82呼吸暂停apnea83例患者patients84鼻窦sinus85内皮细胞endothelial86结膜conjunctival87性青光眼glaucoma88弱视amblyopia89角膜内皮corneal90内镜endoscopic91中央central92眼眶orbital93阻塞obstructive94近视眼myopia95化疗chemotherapy96矫正视力acuity97糖尿病视网膜病变retinopathy98内窥镜endoscopic99眼内intraocular100癌患者carcinoma101视野visual102染色staining103阻塞性obstructive104性睡眠sleep105性视网膜retinal106后囊posterior107开角glaucoma108突变mutation109视网膜色素retinal110上颌maxillary111放射治疗radiotherapy112yag激光laser113开角型glaucoma114鳞状squamous115中耳ear116虹膜iris117闭角型青光眼glaucoma118光凝photocoagulation119晶体植入术lens120鼻内镜endoscopic121术后视力visual122鳞癌carcinoma123癌组织carcinoma124变性degeneration125胆脂瘤cholesteatoma126后房posterior127白内障患者cataract128老年性白内障cataract129老年性senile130角型angle131淋巴瘤lymphoma132上颌窦maxillary133鳞状细胞squamous134组化immunohistochemical 135角膜炎keratitis136硅油silicone137治愈cured138屈光refractive139血管内皮endothelial140放疗后radiotherapy141血管造影angiography142喉鳞laryngeal143神经nerve144房型chamber145新生血管neovascularization 146烧伤burn147白内障手术cataract148角膜上皮corneal149慢性鼻窦炎sinusitis150小切口incisiond eafness151耳聋152继发secondary153细胞癌c arcinoma过filtering154滤155粘膜mucosa156分子excimer157外伤性白内障c ataract158rpe细胞rpe159准分子excimer160鼻中隔nasal161植入术后i mplantation162房水aqueous163突发性sudden164屈光度eyes165葡萄膜炎uveitis166眼内炎endophthalmitis167麻醉anesthesia168眼中eyes169视力≥acuity170视觉v isual171黏膜mucosa172患者中patients173术中operation174视功能v isual175真菌fungal176糖尿病性diabetic177鳞状细胞癌c arcinoma178重建reconstruction179囊膜posteriorr etinoblastoma 180视网膜母细胞瘤181鼻内窥镜endoscopic182眼球eyes183扫描c t184移植治疗t ransplantation185神经节细胞ganglion186斜视strabismus187丝裂霉素mitomycin188角膜移植术keratoplasty 189病变patients190穿透性penetrating191角膜溃疡ulcer192喉鳞状laryngeal193合并patients194复发性recurrent195角膜磨镶keratomileusis 196裂孔hole197分泌性otitis198黑色素瘤melanoma1990例patients200常规patients201角膜移植keratoplasty 202小梁trabecular203后囊膜posterior204真菌性fungal205眼部ocular206前庭vestibular207手术中surgery208玻璃体切除术vitrectomy 209眼前anterior210显微镜microscope211白内障囊外cataract212鼻甲turbinate213双眼binocular214改善improved215泪道lacrimal216术后角膜corneal217端粒telomerase218愈合healing219周边peripheral220下咽hypopharyngeal221地塞米松dexamethasone222地形图topography223转染cells224兔眼rabbit225乳头状瘤papilloma226呼吸暂停综合征apnea227外周peripheral2281眼eye229角膜磨镶术laser230瞳孔pupil231人工耳蜗cochlear232原发性开角型青光眼glaucoma 233眼占eyes234术后并发症complications 235敏感度sensitivity236干细胞cells237成纤维细胞fibroblast238断层tomography239眼轴axial240裸眼eyes241端粒酶telomerase242玻璃体切除vitrectomy243角膜缘干细胞limbal244大鼠视网膜retina245角膜地形图topography246手术后surgery247滴眼eye248丝裂霉素cmitomycin249确诊patients250板层lamellar251移植术transplantation252相干coherence253眼表ocular254颈部neck255囊外extracapsular256自体transplantation257视网膜下subretinal258患儿children259荧光素fluorescein260术后随访follow-up261白内障摘除cataract262超声乳化术phacoemulsification 263下鼻甲inferior264穿孔perforation265潜伏期latency266玻璃体切割术vitrectomy267睫状体ciliary268分泌secretory269破裂rupture270相干断层coherence271羟基磷灰石hydroxyapatite272视神经病变neuropathy273缝线suture274听觉auditory275阳性细胞cells276耳鸣tinnitus277生存patients278诱发evoked279听力损失hearing280皮瓣flap281角膜散光astigmatism282息肉polyp283白兔rabbits284性黄斑macular285玻璃体切割vitrectomy286视盘optic287治疗翼状胬肉pterygium288后角膜corneal289远处distant290糖尿病患者patients291耳声otoacoustic292呼吸暂停低通气apnea293声门glottic294生性proliferative295透明clear296中心central297增生性proliferative298性角膜炎keratitis299眼睑eyelid300萎缩atrophy301ct扫描ct302内皮生长因子vegf303血管内皮生长因子vegf304回归regression305术后1postoperatively306小儿children307睫状ciliary308超声乳化白内障phacoemulsification 309多焦multifocal310ct表现ct311远处转移metastasis312荧光fluorescein313低通气hypopnea314颅底skull315白内障术后cataract316手术并发症complications317兔角膜corneal318家兔rabbits319化脓性otitis320玻璃体手术vitrectomy321切除surgery322脑干brainstem323直肌rectus324良性benign325继发性secondary326手术方法surgical327中心性central328高度近视眼myopia329声门上supraglottic330视网膜电图electroretinogram331缺氧hypoxia332化脓suppurative333义眼hydroxyapatite334挫伤contusion335性视网膜病变retinopathy 336色素pigment337单侧unilateral338好转improved339排斥反应rejection340月时months341糖尿病大鼠diabetic342鼓膜tympanic343切削术keratectomy344听阈hearing345特发idiopathic346神经性sensorineural347浆液性serous348只眼)eyes349嗓音voice350鼻咽部nasopharyngeal 351氩激光argon352前部anterior353激光光laser354新生血管性neovascular 355角膜切削术keratectomy 356老年性黄斑macular357像差aberrations358ct检查ct359激光光凝laser360眼外伤trauma361鼻炎患者rhinitis362感音sensorineural363特发性idiopathic364外耳道external365性眼内炎endophthalmitis 366视觉诱发电位visual367鼻粘膜nasal368斜肌oblique369眼)eyes370孔源性rhegmatogenous 371孔源rhegmatogenous372保存preserved373内窥镜手术endoscopic 374老年patients375气道airway376泪囊炎dacryocystitis 377鼻腔鼻窦nasal378鼻黏膜nasal379敏感性sensitivity380发病patients381言语speech382纯音tone383难治refractory384软骨cartilage385复位reattachment386增殖性proliferative387难治性青光眼glaucoma 388型人工intraocular389难治性refractory390神经纤维nerve391音神经性sensorineural 392断层扫描tomography393近视患者myopia394鼻出血epistaxis395感音神经性sensorineural 396吲哚indocyanine397癌旁carcinoma398眼病ophthalmopathy399房角angle400内翻inverted401眼内异物intraocular402小梁切除trabeculectomy 403高频high404严重并发症complications 405眼底血管造影angiography 406房型人工intraocular407性弱视amblyopia408屈光参差anisometropia409内镜下endoscopic410穿透性角膜移植术keratoplasty 411豚鼠耳蜗cochlea412误诊misdiagnosis413角膜碱alkali414性鼻炎rhinitis415眩晕vertigo416听性auditory417玻璃体视网膜vitreoretinal 418细胞和cells419圆锥角膜keratoconus420细胞移植transplantation421损伤后injury422缺失deletion423神经元neurons424外斜视exotropia425状态patients426后房型人工晶状体implantation 427内翻性inverted428原发性闭角型青光眼glaucoma 429上睑下垂ptosis430视网膜色素变性pigmentosa431mtt法mtt432遗传genetic433遗传性hereditary434表面麻醉anesthesia435细胞淋巴瘤lymphoma436眼外extraocular437混浊opacification438黄斑区macular439曲安奈德triamcinolone440成纤维细胞生长fibroblast441血管内皮细胞endothelial442谷氨酸glutamate443泪膜tear444调节accommodation445角膜瓣flap446蝶窦sphenoid447玻璃vitreous448合并白内障cataract449鼓室成形术tympanoplasty 450折叠式foldable451白内障摘出cataract452术式operation453缺血再灌注injury454眼角膜corneal455喉切除术laryngectomy456角膜移植术后keratoplasty 457性翼状胬肉pterygium458复杂性complicated459青绿green460常年perennial461发射emissions462ct诊断ct463再造reconstruction464泪液tear465内斜视esotropia466剥夺deprivation467伤后injury468助听器hearing469减压术decompression470腺样adenoid471操作operation472结膜炎conjunctivitis473发青光眼glaucoma474细胞内cells475青光眼滤过filtering476免疫排斥rejection477鼻内镜下endoscopic478残留residual479端粒酶活性telomerase480后视网膜retinal481外毛hair482复视diplopia483碱性成纤维细胞fibroblast484常年性perennial485超声乳化吸出phacoemulsification486奈德acetonide487麻痹paralysis488安奈德acetonide489过敏性allergic490螺旋ctct491取出removal492原发性青光眼glaucoma493常年性变应性鼻炎rhinitis494荧光素眼底fluorescein495庆大霉素gentamicin496患病率prevalence497白内障超声乳化术phacoemulsification 498t细胞淋巴瘤lymphoma499泪腺lacrimal500顺铂cisplatin501视网膜光凝photocoagulation502分割radiotherapy503光凝治疗photocoagulation504性近视myopia505监测patients506屈光不正ametropia507半导体激光laser508晶状体后posterior509术后眼压iop5104个月months511常年性变应性allergic512细胞生长cells513视网膜组织retina514复发性翼状胬肉pterygium515声门上型supraglottic516诱发电位evoked517声学acoustic518住院patients519偏曲deviation520并发症发生complications521性脑干brainstem522胬肉pterygium523眼底荧光fluorescein524脉络膜视网膜病变chorioretinopathy 525羟基磷灰石义眼hydroxyapatite526中耳胆脂瘤cholesteatoma527数量cells528单纯放疗radiotherapy529眼座orbital530血管瘤hemangioma531烧伤后burn532单眼monocular533听性脑干反应abr534眼外肌extraocular535干细胞移植transplantation536放疗前radiotherapy537瘢痕scar538行白内障cataract539远视hyperopia540皮质cortex541神经节ganglion542单克隆monoclonal543非超声乳化incision544黄斑部macular545对侧contralateral546耳廓auricle547细胞数cells548内窥镜下endoscope549视网膜中央动脉retinal550角膜基质corneal551上睑levator552角膜中央corneal553过敏性鼻炎rhinitis554vegf表达vegf555玻璃体腔vitreous556显微镜下microscope557梅尼埃meniere558转移率metastasis559单克隆抗体monoclonal560结膜下subconjunctival561声门型glottic562回退regression563恶性黑色素瘤melanoma564喉镜laryngoscope565癌病patients566免疫排斥反应rejection567白内障晶状体cataract568动力photodynamic569回归分析regression570放射性radiation571角膜病变keratopathy572前房积血hyphema573射频radiofrequency574角膜屈光refractive575致盲blindness576悬吊suspension577葡萄膜uveal578脱离手术detachment579牛磺酸taurine580义眼座hydroxyapatite581新西兰白兔rabbits582中vegfvegf583血管形成neovascularization584二期secondary585移植排斥反应rejection586随访时间follow-up587再灌注损伤injury588新生血管形成neovascularization 589全身systemic590常染色体autosomal591复杂complicated592屈光状态refractive593颞侧temporal594术后3postoperative595发性白内障cataract596发音voice597人rperpe598植入手术implantation599无复发recurrence600眶内orbital601间歇性intermittent602喉部laryngeal603耳蜗毛hair604球后retrobulbar605较高high606共焦confocal607植入后implantation608青少年juvenile609tgfβtgf610乳突mastoid611筛窦ethmoid612白内障摘除术cataract613放射状radial614后发性白内障cataract615增殖性玻璃体视网膜病变proliferative 616康复rehabilitation617微循环microcirculation618结膜瓣flap619测听audiometry620撕囊capsulorhexis621散光度astigmatism622只兔rabbits623方案chemotherapy624角膜新生血管neovascularization625眼科ophthalmology626局部复发recurrence627形觉剥夺deprivation628抗青光眼glaucoma629人喉laryngeal630缝合suture631中后posterior632移行migration633型糖尿病diabetic634光动力photodynamic635固定fixation636胆脂瘤型cholesteatoma637凋亡细胞cells638伤口wound639神经营养neurotrophic640后囊破裂rupture641声门上型喉癌supraglottic642镜观察microscope643冠状coronal644超声乳化手术phacoemulsification 645营养不良dystrophy646杀伤cells647通气patients648肿瘤细胞cells649立体视stereopsis650前房出血hyphema651喉部分切除术laryngectomy652内淋巴endolymphatic653前段anterior654恶性淋巴瘤lymphoma655窦炎sinusitis656并发complicated657经鼻nasal658鼻漏rhinorrhea659眼视网膜retinal660例病人patients661血管纹stria662皮层cortex663性角膜corneal664异体transplantation665睑球粘连symblepharon666咽炎pharyngitis667就诊patients668重建术reconstruction669外科surgical670咽旁间隙parapharyngeal671缺血再灌注损伤injury672切除术patients673老年黄斑macular674鼻侧nasal675坏死necrosis676患者外周peripheral677神经炎neuritis678聋患者deafness679并发白内障cataract680颞骨temporal681月内months682光敏感度sensitivity683哮喘asthma684病患者patients685细胞培养cells686晶状体超声乳化phacoemulsification 687听骨ossicular688填塞packing689采用免疫组织化学immunohistochemical 690性鼻窦炎sinusitis691眼压控制iop692肿瘤坏死因子necrosis693神经营养因子neurotrophic694肥大hypertrophy695.0000696扁桃体炎tonsillitis697低眼压hypotony698囊样cystoid699病因etiology700分泌物secretion701渗出性exudative702透明质hyaluronate703透明质酸hyaluronate704眼压计tonometer705悬吊术suspension706扁桃体tonsil707主要并发症complications708近视组myopia709病情patients710岁儿童children711腭咽成形术uvulopalatopharyngoplasty 712mri检查mri713细胞表达cells714毛细血管capillary715放射radiation716吻合anastomosis717折叠式人工晶状体foldable718视网膜复位reattachment719麻醉下anesthesia720喉乳头状瘤papilloma721超声乳化白内障吸除phacoemulsification 722放疗组radiotherapy723青光眼小梁切除术trabeculectomy724晶状体前lens725渗出exudative726波前wavefront727点突变mutation728视网膜前膜epiretinal7293例13730瘘管fistula731共同性concomitant732放射治疗后radiotherapy733透明质酸钠hyaluronate734相关基因genes735胆脂瘤上皮cholesteatoma736采用免疫组化immunohistochemical737断层成像tomography738吻合术anastomosis739节细胞ganglion740大泡性bullous741低度low742自身免疫性autoimmune743头痛headache744手术方式surgical745波前像差wavefront746鼻nknk747瓣修复flap748球结膜conjunctiva749寡核苷酸cells750近视散光astigmatism751放射敏感性radiosensitivity752生物显微镜biomicroscopy753腺样体adenoid754屈光手术surgery755肥厚hypertrophic756病毒性角膜炎keratitis757明显提高improved758腺病毒adenovirus759颅内intracranial760诱导化疗chemotherapy761转移组metastasis762鼓室tympanic763前囊capsule764降眼压iop765co2激光laser766不变unchanged767听力正常hearing768超声乳化术后phacoemulsification 769立体stereopsis770视乳头optic771囊袋capsular772全喉切除术laryngectomy773鼻内窥镜下endoscopic774明显改善improved775视网膜变性retinal776结膜下注射subconjunctival777mri表现mri778提上睑levator779正确correct780额肌frontalis781晶状体脱位lens782中心凹fovea783预后因素prognostic784良性病变benign785性细胞cells786眼震nystagmus787胆脂瘤型中耳炎cholesteatoma788正常儿童children789玻璃体内intravitreal790提上睑肌levator791神经生长因子nerve792细胞形态cells793上颌窦炎sinusitis794泪囊lacrimal795兔晶状体lens796影像ct797癌发生carcinoma798气管trachea799术后复发recurrence800义眼台hydroxyapatite801悬雍垂腭咽成形术uvulopalatopharyngoplasty 802适应证indications803剥夺性deprivation804激光手术laser805多焦视网膜电图electroretinogram806焦视网膜电图electroretinogram807并发性白内障cataract808波潜伏期latency809镜下microscope810羟基磷灰石义眼座hydroxyapatite811肥厚性hypertrophic812鼻部nasal813颈动脉carotid814梅尼埃病meniere's815葡萄膜黑色素瘤melanoma816视神经炎neuritis817牛眼bovine818穿透penetrating819眩光glare820验光optometry821不同程度提高improved822程度提高improved823oct检查oct824喉切除laryngectomy825屈光回退regression826并发症有complications827超声乳化白内障吸除术phacoemulsification 828术后矫正corrected829潜伏latent830缓解patients831白内障超声乳化吸除phacoemulsification 832良性肿瘤benign833闪光flash834阿托品atropine835造影angiography836泪囊鼻腔吻合术dacryocystorhinostomy837固定术fixation838角膜组织cornea839筋膜fascia840患者术后postoperative841渗出型exudative842乳突根治mastoidectomy843眼动脉ophthalmic844近视性myopic845鼻内窥镜手术nasal846例儿童children847传代cells848等并发症complications849梨状pyriform850支撑喉镜laryngoscope851霍奇金淋巴瘤lymphoma852听骨链ossicular853组织病理学histopathological854喉返laryngeal855免疫组织化学染色immunohistochemical 856鼾症snoring857硅胶silicone858潜时latency859学龄前儿童children860眼挫伤contusion861囊外摘除术extracapsular862辐射radiation863鼻道meatus864清扫dissection865喉全laryngectomy866半乳糖galactose867温热疗法thermotherapy868插管intubation869非霍奇金淋巴瘤lymphoma870玻璃体切割手术vitrectomy871玻璃体腔内intravitreal872abr阈值abr873全视网膜光凝photocoagulation874溃疡ulcer875儿童弱视amblyopia876多导睡眠polysomnography877后徙recession878白内障形成cataract879ffa检查ffa880角膜缘上皮limbal881鼓膜穿孔perforation882半导体diode883鼻骨nasal884并发性complicated885术后第postoperative886超高度近视myopia887悬雍垂uvula888食管esophageal889耳毒性ototoxicity890应用丝裂霉素mitomycin891听力下降hearing892随诊follow-up893软腭palate894细胞计数cells895弱视儿童amblyopia896应用免疫组化immunohistochemical897微血管内皮endothelial898裂孔性hole899应用免疫组织化学immunohistochemical 900手术前surgery901萎缩性atrophic902切缘margin。
超全控制近视度数的方法
超全控制近视度数的方法英文回答:Controlling nearsightedness can be a challenge, but there are several methods that can help manage and potentially reduce the degree of nearsightedness. It is important to note that these methods may not work for everyone, and consulting with an eye care professional is crucial before attempting any of these methods.One method that can help control nearsightedness is through the use of corrective lenses. Eyeglasses or contact lenses with the appropriate prescription can help improve vision and reduce eye strain. These lenses work by bending light in a way that compensates for the shape of the eyeball, which is a common cause of nearsightedness. By wearing the correct prescription lenses consistently, it is possible to slow down the progression of nearsightedness.Another method that has gained popularity in recentyears is orthokeratology, also known as ortho-k. This involves wearing specially designed rigid contact lenses overnight, which reshape the cornea temporarily. By wearing these lenses while sleeping, the cornea is gently flattened, allowing light to focus properly on the retina. This can provide clear vision during the day without the need for glasses or contact lenses. However, it is important to note that ortho-k is not a permanent solution and the effects may wear off if the lenses are not worn consistently.In addition to corrective lenses, there are alsolifestyle changes that can help control nearsightedness. Spending more time outdoors and engaging in activities that require distance vision, such as playing sports or goingfor walks, can help reduce the progression of nearsightedness. The exact reason behind this is still not fully understood, but studies have shown that spending time outdoors can have a positive impact on eye health.Furthermore, practicing good visual habits can also contribute to controlling nearsightedness. This includes taking regular breaks from near work, such as reading orusing electronic devices, to give the eyes a rest. It is also important to maintain proper posture and distance from the screen or book while engaging in near work. By adopting these habits, the eyes are less strained and the progression of nearsightedness can potentially be slowed down.In conclusion, there are several methods that can help control nearsightedness. These include the use ofcorrective lenses, such as glasses or contact lenses, orthokeratology, spending more time outdoors, andpracticing good visual habits. It is important to remember that these methods may not work for everyone and consulting with an eye care professional is essential. By taking proactive measures and making lifestyle changes, it is possible to manage and potentially reduce the degree of nearsightedness.中文回答:控制近视度数可以是一项挑战,但有几种方法可以帮助管理并可能减少近视度数。
近视患者优势眼与非优势眼的Kappa角、瞳孔大小及中心位置的动态变化
欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁氉氉氉氉引文格式:赵景华,贾寓洁,林淑华,赵健,崔红,常玉荣,等.近视患者优势眼与非优势眼的Kappa角、瞳孔大小及中心位置的动态变化[J].眼科新进展,2022,42(2):142 144.doi:10.13389/j.cnki.rao.2022.0029【应用研究】近视患者优势眼与非优势眼的Kappa角、瞳孔大小及中心位置的动态变化△赵景华 贾寓洁 林淑华 赵 健 崔 红 常玉荣 贾法力 许文皓 曹婉莹 李英俊欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁氉氉氉氉作者简介:赵景华(ORCID:00000001 9425 4842),女,1995年1月出生,内蒙古通辽人,硕士研究生。
研究方向:眼屈光与白内障。
Email:jinghuaaa@163.com通信作者:李英俊(ORCID:0000 0002 7704 6651),男,1975年8月出生,博士,教授,副主任医师,博士研究生导师。
研究方向:眼屈光与白内障。
Email:lyjun0811@163.com收稿日期:2021 04 24修回日期:2021 12 05本文编辑:董建军△基金项目:国家自然科学基金项目(编号:81960182)作者单位:133000 吉林省延吉市,延边大学附属医院眼科【摘要】 目的 探讨行飞秒激光制瓣准分子激光原位角膜磨镶术的近视患者优势眼与非优势眼的Kappa角、瞳孔大小及中心位置的动态变化。
方法 选取2018年12月至2020年8月在延边大学附属医院眼科行飞秒激光制瓣准分子激光原位角膜磨镶术的近视患者117例(234眼)为研究对象。
采用ALLEGROTopolyzer角膜地形图仪(德国Wavelight公司)测量并记录患者60s内暗光与亮光状态下的瞳孔大小和瞳孔中心位置的变化。
多焦点眼用透镜的设计方法[发明专利]
专利名称:多焦点眼用透镜的设计方法
专利类型:发明专利
发明人:J·H·罗夫曼,D·R·伊斯坎德尔,B·A·达维斯,M·J·科林斯申请号:CN200380102581.X
申请日:20031028
公开号:CN1708716A
公开日:
20051214
专利内容由知识产权出版社提供
摘要:本发明提供透镜的设计方法,该透镜用于矫正远视眼,其具有在从远距视觉到近距视觉屈光力或近距视觉到远距视觉屈光力的屈光力变化的速率变化功能。
该变化比率在中点附近可以是均匀(symmetrical)的,在中点两侧加快或减慢。
申请人:庄臣及庄臣视力保护公司
地址:美国佛罗里达州
国籍:US
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。
眼科小常识 英语
眼科小常识英语一、眼科基本结构相关小常识(词汇与简单描述)1. Eye Parts(眼睛的组成部分)- Cornea(角膜)- It is the clear front part of the eye. It acts like a window, allowing light to enter the eye. It is very sensitive and has no blood vessels. For example, if something scratches the cornea, it can be very painful and may affect vision.- Iris(虹膜)- The iris is the colored part of the eye. It controls the amount of light that enters the eye by changing the size of the pupil. People have different iris colors, such as blue, brown, green, etc.- Pupil(瞳孔)- The pupil is the black circular opening in the center of the iris. In bright light, the pupil gets smaller to let in less light. In dim light, it gets larger to allow more light in.- Lens(晶状体)- The lens is a clear, flexible structure behind the iris. It focuses light onto the retina. As people age, the lens may become less flexible, which can lead to problems like presbyopia (difficulty in seeing close objects clearly).- Retina(视网膜)- The retina is like the film in a camera. It contains photoreceptor cells (rods and cones) that detect light and convert it into electrical signals. These signals are then sent to the brain through the optic nerve. Diseases of the retina, such as macular degeneration, can cause vision loss.- Optic Nerve(视神经)- The optic nerve is a bundle of nerve fibers that carries the electrical signals from the retina to the brain. Any damage to the optic nerve can result in vision problems. For example, glaucoma can damage the optic nerve over time if not treated properly.2. Eye Movements(眼睛的运动)- The eyes can move in different directions. There are six extraocular muscles that control eye movements. These muscles work together to allow the eyes to look up, down, left, right, and in diagonal directions. For example, when we read, our eyes move smoothly across the page, which is called smooth pursuit movement. When we quickly shift our gaze from one object to another, it is called saccadic movement.二、Common Eye Problems(常见的眼部问题)1. Myopia (Nearsightedness)(近视)- Cause(原因)- Myopia often occurs when the eyeball is too long or the cornea is too curved. As a result, light focuses in front of the retina instead of directly on it. Genetic factors play a role, and also excessive near - work, such as spending a lot of time reading or using electronic devices at a close distance, can contribute to its development.- Symptoms(症状)- People with myopia have difficulty seeing distant objects clearly. For example, they may have trouble reading road signs from a distance or seeing the blackboard clearly in a classroom.- Treatment(治疗)- Glasses or contact lenses are the most common treatments. They help to correct the refractive error so that light focuses properly on the retina. Another option is refractive surgery, such as LASIK (Laser - Assisted in Situ Keratomileusis), which can reshape the cornea to improve vision.2. Hyperopia (Farsightedness)(远视)- Cause(原因)- Hyperopia usually happens when the eyeball is too short or the refractive power of the eye is too weak. This causes light to focus behind the retina. It can also be related to genetics.- Symptoms(症状)- People with hyperopia may have trouble seeing close objects clearly. They may experience eye strain when doing close - work like reading or sewing for a long time.- Treatment(治疗)- Similar to myopia, glasses or contact lenses can be used to correct hyperopia. In some cases, surgical options may also be considered.3. Astigmatism(散光)- Cause(原因)- Astigmatism is caused by an irregularly shaped cornea or lens. Instead of having a spherical shape, the cornea or lens may be more oval - shaped. This causes light to focus at different points on the retina, resulting in blurry vision.- Symptoms(症状)- Blurred vision at all distances is a common symptom. People with astigmatism may also experience eye fatigue, headaches, and difficulty seeing fine details.- Treatment(治疗)- Glasses or contact lenses with a special prescription can correct astigmatism. Some people may also be suitable for refractive surgery.4. Cataract(白内障)- Cause(原因)- Cataract is mainly due to the aging process. The lens in the eye gradually becomes cloudy. Other factors such as long - term exposure to ultraviolet light, certain medications, diabetes, and smoking can also increase the risk of developing cataracts.- Symptoms(症状)- Blurred vision, faded colors, sensitivity to light, and double vision in one eye are some of the symptoms. As the cataract progresses, vision can become severely impaired.- Treatment(治疗)- The most effective treatment is cataract surgery. During the surgery, the cloudy lens is removed and replaced with an artificial intraocular lens.三、Eye Care(眼部护理)1. Diet for Eye Health(有益于眼部健康的饮食)- Foods Rich in Vitamin A(富含维生素A的食物)- Vitamin A is essential for good vision, especially for the function of the retina. Foods like carrots, sweet potatoes, spinach, and liver are rich in vitamin A. Eating these foods can help prevent night blindness and maintain the health of the eyes.- Foods with Antioxidants(含抗氧化剂的食物)- Antioxidants such as lutein and zeaxanthin are important for the eyes. They are found in green leafy vegetables like kale and broccoli, as well as in eggs. These antioxidants can help protect the eyes from damage caused by free radicals, which may be related to age - related macular degeneration.- Omega - 3 Fatty Acids(欧米伽 - 3脂肪酸)- Omega - 3 fatty acids are beneficial for eye health. They can be found in fatty fish like salmon, tuna, and mackerel. These fatty acids may help reduce the risk of dry eyes and macular degeneration.2. Eye Exercises(眼部运动)- Palming(手掌按摩法)- Rub your hands together to warm them up. Then gently place your palms over your closed eyes. Make sure no light enters. Relax and breathe deeply for a few minutes. This can help relieve eye strain.- Eye Rolling(眼球转动)- Slowly roll your eyes in a circular motion, first clockwise and then counterclockwise. Do this a few times. It can help improve the flexibility of the eye muscles.- Focus Shifting(焦点转换)- Hold your finger about 10 inches in front of your face. Focus on it for a few seconds, then shift your focus to an object in the distance. Repeat this several times. This exercise can help improve the focusing ability of the eyes.3. Protecting Your Eyes from the Sun(保护眼睛免受阳光伤害)- Wear sunglasses that block both UVA and UVB rays when you are outdoors. Sunglasses not only protect your eyes from the harmful effects of ultraviolet light, which can cause cataracts and other eye problems, but also reduce glare, making it more comfortable to be outside. A wide - brimmed hat can also provide additional protection for the eyes.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S461
Eye Dominance in Excimer Laser Photorefractive Keratectomy/Hashim
Figure 1: Percent loss of lines of spectacle-corrected visual acuity after PRK, performed first in the dominant eye.
Eye Dominance in Excimer Laser Photorefractive Keratectomy
Adnan A. Hashim, FRCS, FRCOphth
O
cular dominance is well established in the human species and is relevant in clinical practice—to excimer laser photorefractive keratectomy (PRK) in particular. Due to the complexity of the underlying physiological mechanisms, there is no single definition that applies to all aspects of ocular dominance. Nevertheless, a clinically useful definition would be, “The dominant eye is the eye that is preferred in monocular viewing or in pointing at an object with one’s finger.” It is clear that this lateralization in eye function is the result of development of binocular vision, with overlapping of the visual fields of the two eyes.1 The resulting physiologic diplopia is suppressed from the non-sighting eye. This is thought to be the mechanism of development of ocular dominance as the input is favored from the sighting eye. Duke Elder stated that when a choice is forced between the two eyes, the vast majority of people (98%) choose one eye consistently.2 In our series of 2500 patients assessed for PRK at the Optimax Laser Clinic, we found that 68% were right eye dominant and 32% were left eye dominant. Due to the complexity of the cerebral control of the eyes, there must be many types of eye dominance. Porac and Coren1 reported at least three types of eye dominance that may be independent of each other. To this can be added a fourth type of ocular dominance related to the visual field: sighting (motoric) dominance; sensory dominance; acuity dominance; hemifield dominance.
Figure 2: Percent loss of lines of spectacle-corrected visual acuity after PRK, performed first in the non-dominant eye.
Ptosis and Eye Dominance Blepharoptosis is more likely to be present or greater in the non-dominant eye. In unilateral ptosis, the normal eye is almost always dominant. In one study5, 54 patients with either unilateral ptosis or asymmetrical ptosis were examined. The right eye was dominant in 33 people and the left in 21. people. Ptosis occurred on the side of the dominant eye in 14 individuals and on the non-dominant side in 40 individuals. SIGNIFICANCE IN PHOTOREFRACTIVE KERATECTOMY A rare complication of PRK is postoperative ptosis, which could look worse than it really is if it affects the dominant eye as a result of retraction of the contralateral levator muscle. For this reason, it may be important to treat first the non-dominant eye. Although there is no physiologic evidence that links the dominant eye to the dominant hand, it seems to be a functional advantage to have the dominant eye and hand on the same side, particularly in sports—throwing a basketball or hitting a baseball with a bat, shooting, archery, etc. It is therefore advisable (and is our policy) to perform PRK on the non-dominant eye first, as any lesion of the dominant eye could be more incapacitating. Results of loss of spectacle-corrected visual acuity in two groups (dominant eyes and non-dominant eyes) that had PRK are comparable (Figs 1 and 2). The comparability of results is attributed to the strict selection criteria for patients undergoing PRK. Also, the dominant (second) eye was treated only when patients were satisfied with the visual outcome of their first eye. We do not think there is any reason for changing our policy of operating first on the non-dominant eye. Of course, there are exceptions to the rule. Indications for treatment of the dominant eye first are:
CLINICAL IMPLICATIONS Sighting dominance is the most important in clinical investigations and most clinical phenomena are related to this type of dominance. Heterophoria Greater heterophoria was measured in the nondominant eye when the sighting eye was fixed on the test object. Dolman3 measured heterophoria in 100 individuals with their dominant eye fixing a spot of light while a Maddox rod was placed in front of the fellow eye. He found that 66% of patients had greater heterophoria and 17% had some heterophoria when the light spot was fixed with the dominant eye—with an accuracy of 83%. Convergence Maximum convergence is stimulated by having the two eyes converge on an object near to the eyes, without inducing diplopia. If the object moves nearer to the eyes than that point, convergence will break down and one eye will diverge, with consequent diplopia. The deviating eye is the nondominant eye. Amblyopia The repeated suppression of the non-sighting eye to avoid physiologic diplopia and the weaker motoric drive may predispose the non-dominant eye to amblyopia ex anopsia. Eye Dominance and Head Tilt Cerebral lateralization is thought to be due partly to postural imbalances arising from asymmetry of the otolithic and vestibular systems.4 Therefore, most right-handed and right-footed individuals are thought to have left otolithic dominance, rightward tilt of the body, and leftward head tilt to compensate for the rightward body tilt.