中考数学专题复习——锐角三角函数的实际应用

合集下载

中考专题复习-锐角三角函数的应用

中考专题复习-锐角三角函数的应用
≈0.82,
第8题解图
答: 旗杆AB的高度约为18米.
感谢聆听!
答:A.B间的距离约为115.5海里.
3. (2019内江)如图,两座建筑物DA与CB,其中CB的高为120米,从DA的顶点A测得
CB顶部B的仰角为30°,测得其底部C的俯角为45°,求这两座建筑物的地面距离DC
为多少米? (结果保留根号)
Rt△ABE
Rt△ACE
120
30° 45°
列方程
第3题图
解: 如解图,作FG⊥AB于点G,AG=AB-GB=AB-FD=AB-1.8,
由题意知,△ABE和△FDE均为等腰直角三角形,
∴AB=BE,DE=FD=1.8米,
∴FG=DB=DE+BE=AB+1.8.
在Rt△AFG中,

A B -1.8 A B +1.8
∴AB≈18.2≈18.
AG=tan∠AFG=tan39.3°, FG
模型一 解一个直角三角形
基本图形及所作辅 助线
总结
作BE⊥AC,构造Rt△ABE和矩形BDCE,根据已知条件求解
针对训练
1. (2019吉林)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170 cm,花洒AC的长为30 cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离 CE(结果精确到1 cm).(参考数据: sin43°=0.68,cos43°=0.73,tan43°=0.93)
tanα
3.方向角
锐角三 角函数 的实际 应用
1.方向角:如图4, A点位于O点的北偏东30°方向, B点位于O点的南偏东60° 方向, C点位于O点的北偏西45°方向(或西北方向)
图4
图5

中考数学专题讲练 锐角三角函数的实际应用三大模型

中考数学专题讲练 锐角三角函数的实际应用三大模型

度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(
精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,
tan55°≈1.43)
[思维方法]过点N作EF∥AC交AB于点E,交CD于
点F,构造Rt△BEN、Rt△DNF和矩形AEFC,分别解
两个直角三角形可得DF、BE的长,进而可得AB的高
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录

62m,100m,200m.若管道AB与水平线AA2的夹角为30°,管道BC与水
目 录
平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).
回 首 页
总 目 录
回 首 页
总 目 录
模型三 拥抱型
分别解两个直角三角形,其中公共边BC是解题的关键.在
Rt△ABC和Rt△DCB中,BC=BC.图形演变及对应的数量关系
回 首 页
总 目 录
模 型 一 背靠背型
通过在三角形内作高CD,构造出两个直角三角形求解,其中
公共边CD是解题的关键.在Rt△ACD和Rt△BCD中,CD为公共

边,AD+BD=AB.图形演变及对应的数量关系如下:
首 页
总 目 录
经典母题
如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口
C测得教学楼楼顶D的仰角为18°,教学楼底部B的俯角为20°
总 目

回 首 页
总 目 录
3.(2020·邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划

2.中考数学锐角三角函数实际应用

2.中考数学锐角三角函数实际应用

中考复习——锐角三角函数的实际应用1、在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距 km 的C 处. (1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.2、如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.24, ≈2.45)3、如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.( 取73.1)(1)求楼房的高度约为多少米?(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.第25题图DBAC东l4,图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE 为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)5.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)6.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡角(即∠ABC)的度数等于▲度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).7.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.41,≈1.73)8、如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:≈1.4,≈1.7,结果保留整数.)9、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).10、如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).11、如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.73)12.如图,小莉的家在锦江河畔的电梯公寓AD内,她家的河对岸新建了一座大厦BC,为了测量大厦的高度,小莉在她家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D处测得大厦顶部B的仰角为30°,已知电梯公寓高82米,请你帮助小莉计算出大厦的高度BC及大厦与电梯公寓间的距离AC.13.如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD 为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)14.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)15.如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC 的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)16.小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)17.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).18.为给人们的生活带来方便,2017年兴化市准备在部分城区实施公共自行车免费服务.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离(结果保留整数).(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)图1 图219.如图2,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,展开小桌板使桌面保持水平时如图1,小桌板的边沿O点与收起时桌面顶端A点的距离OA=75厘米,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与支架长BC的长度之和等于OA的长度.(1)求∠CBO的度数;(2)求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)20.如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.求:(1)P到OC的距离.(2)山坡的坡度tanα.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)21.(2017湖南常德第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.414,≈1.732)22.如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯。

(名师整理)最新中考数学专题复习《锐角三角函数的应用》精品教案

(名师整理)最新中考数学专题复习《锐角三角函数的应用》精品教案

俯角水平线中考数学人教版专题复习:锐角三角函数的应用一、教学内容锐角三角函数的应用1.利用锐角三角函数解决与直角三角形有关的实际问题.2.了解方向角,仰角、俯角,坡度,水平距离、垂直距离等概念,并能在具体问题中正确运用.二、知识要点1.方向角如图所示,过观测点作一条水平线(向右为东)和一条铅垂线(向上为北),则从观测点出发的视线与铅垂线或与水平线的夹角叫做方向角.若∠1=30°,则称方向角为北偏东30°,若∠2=60°,则称方向角为北偏西60°,若∠3=45°,则称东南方向.北21西3东南2.仰角和俯角在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角,如图所示.视线铅垂线仰角视线13.坡角、坡度(1)坡角:坡面与水平面的夹角.(2)坡度:地面的铅直高度h与水平宽度l的比叫做坡度(或坡比),用字母i表示.如h.坡度一般写成1∶m的形式(比例的前项为1,后项可以是小数).图所示,i=l(3)坡度与坡角的关系h=tanα.坡度越大,则α角越大,坡面越陡.若坡角为α,坡度为i,则有i=li=h∶lhαl三、重点难点重点是能够把实际问题转化为数学问题,能够进行有关三角函数的计算.难点是能够将实际问题转化为解直角三角形的问题,正确选用直角三角形的边角关系.四、考点分析三角函数广泛应用于解各种多边形,如等腰三角形、平行四边形、梯形和正多边形,是初中几何的重要组成部分,其主要命题热点如下:(1)会计算特殊角的三角函数以及与三角函数有关的代数式的值的问题.(2)能正确运用sin A、cos A、tan A表示直角三角形中两边的比,并借助直角三角形边角之间的关系解证三角问题.(3)会运用勾股定理,直角三角形的两个锐角互余,及锐角三角函数解直角三角形,并会用解直角三角形中的有关知识来解决某些简单的实际问题.【典型例题】2∴BC = .tan 30° 3 评析:本题是一类典型问题,因为 BC = 、BD = ,所以 - =CD .例 1. 如图所示,河对岸有铁塔 AB ,在 C 处测得塔顶 A 的仰角为 30°,向塔前进 14 米到达 D 处,在 D 处测得 A 的仰角为 45°,求铁塔 AB 的高.ACD B分析:本题主要考查利用解直角三角形的知识去解决实际问题. 设 AB =x ,则可用 x 的代数 式表示 BC 和 BD ,再利用 BC =CD +DB 列关于 x 的方程,可解出 x .AB解:在 R t △ACB 中,∠C =30°,tan C =BC ,ABtan 30°在 R t △ADB 中,∠ADB =45°,∴AB =BD .∵BC -BD =CD =14,设 AB =x ,x x则 -x =14,即 -x =14,3解得 x =7( 3+1).∴AB =7( 3+1)米,即铁塔 AB 的高为 7( 3+1)米.AB AB AB ABtan 30° tan 45° tan 30° tan 45°例 2. 某水库大坝某段的横截面是等腰梯形,坝顶宽 6m ,坝底宽 126m ,斜坡上的坡比为 1∶ 3,试求此处大坝的坡角和高.=1∶ 3D 6 CAE F B3故可得A E=BF=AB-DC∵i=1∵tan A=i=13,∴AE=DE1分析:构造直角三角形,过D、C作DE⊥AB,CF⊥AB,在R t△ADE中,利用坡比即AE=可求DE.解:如图所示,由题意可知CD=6,AB=126且AD=BC,AE=BF且EF=CD=6.2=60.DE133,33∴DE=3AE=3×60=203.33=3,∴∠A=30°.答:坡角是30°,坝高为203m.例3.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60°.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.E C F30°60°A D B分析:把已知条件和所求的AB间的距离转化到直角三角形中,运用三角函数相关知识求解.解:根据题意,∠A=∠ECA=30°,∠B=∠FCB=60°.CD在R t△ACD中,CD=90米,tan A=AD.CD3∴AD=tan A=90÷3=903米.同理,在R t△BCD中,BD=CD÷tan B=303米.AB=AD+BD4A1C=903+303=1203米所以,建筑物A、B间的距离为1203米.例4.(1)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5mB.6mC.7mD.8m(1)(2)(2)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了__________m.分析:根据题意构造直角三角形.B1B BA(1)CA(2)解:(1)A(2)2(3-2)例5.如图所示,MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心,500m为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°.已知MB=400m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区.5tan∠AMC tan30°北M东B ACN分析:欲求输水线路是否穿过居民区,可通过点A作AC⊥MN于C,比较AC与500m的大小,若AC>500m,则输水线路不会穿过居民区,反之,会穿过居民区,解此类问题要弄清方向角,把解斜三角形问题转化成解直角三角形问题.解:过点A作AC⊥MN于C,设AC=x.由题意可知∠AMC=30°,∠ABC=45°.AC在R t△AMC中,tan∠AMC=MC,AC x所以MC===3x.在R t△ABC中,∠ABC=45°,所以BC=AC=x.因为MC-BC=MB=400,所以3x-x=400,所以x=200(3+1)(m).因为x=200(3+1)≈546(m)>500m,所以不改变方向,输水路线也不会穿过居民区.【方法总结】在学习中应注意两个转化(1)把实际问题转化成数学问题.这个转化分为两个方面:一是将实际问题的图形转化为几何图形,画出正确的平面或截面示意图;二是将已知条件转化为图中的边角或它们之间的关系.6D .米(2)把数学问题转化成锐角三角函数问题,如果示意图不是直角三角形,可添加适当的辅助线,作出直角三角形确定合适的边角关系,细心推理,按要求的精确度作近似计算,最后写出答案并注明单位.【模拟试题】(答题时间:50 分钟)一、选择题1. 在 R t △ABC 中,∠C =90°,如果∠A =30°,那么 sin A +cos B 等于()A . 1+ 3 2B . 1+ 2 21C . 4D . 142. 如图所示,△ABC 中,∠C =90°,cos B =5,则 AC ︰BC ︰AB =()A . 3︰4︰5B . 4︰3︰5C . 3︰5︰4D . 5︰3︰4BAC3. 在直角坐标系中,点 P (4,y )在第一象限内,且 OP 与 x 轴正半轴的夹角为 60°,则 y 的值是( )4A . 3 3B . 4 3C . -3D . -14. 某人沿倾斜角为 β 的斜坡前进 100 米,则他上升的最大高度是( )100A . sin β米100B . 100sin β 米C . cos β米D . 100cos β 米5. 某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成 80°角,房屋朝南的窗子高 AB =1.8 米;要在窗子外面上方安装一个水平挡光板 AC ,使午间光线不能直接射入室 内(如图),那么挡光板 AC 的宽度应为()1.8A . 1.8tan 80°米B . 1.8cos 80°米C . sin 80°米1.8tan 80°7A.33B.C.1111D.A CB*6.如图所示,在△ABC中,BC=10,∠B=60°,∠C=45°,则点A到边BC的距离是()A.10-53B.5+53C.15-53AD.15-103B C**7.如图所示,CD是平面镜,光线从A点出发经CD上点E反射后照射到B点.若入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=11,则tanα的值为()119AC αBD E二、填空题1.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.EAOB DC2.在△ABC中,AB=3,AC=4,∠A=60°,则S△ABC=______.83.一出租车从立交桥头直行500米,到达立交桥上25米处,则这段斜坡路的坡度是______.4.如果某人沿坡度i=1∶3的斜坡前进100米后,他所在的位置比原来的位置升高了____米.5.把两块含有30°的相同的直角尺按如图所示摆放,使点C、B、E在同一条直线上,连结CD,若AC=6cm,则ΔBCD的面积是__________.A DC B E**6.△ABC中,AB=AC=3,BC=2,则cos A=______.三、解答题1.如图,某一水库大坝的横断面是梯形ABCD,坝顶宽CD=3米,斜坡AD=16米,坝高8米,斜坡BC的坡度i=1︰3,求斜坡AD的坡角∠A和坝底宽AB.D CA B2.某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.如图,他们在河东岸边的A点测得河西岸边的标志物B在它的正西方向,然后从A点出发沿河岸向正北方向行进550米到点C处,测得B在点C的南偏西60°方向上,他们测得的湘江宽度是多少米?(结果保留整数,参考数据:2≈1.414,3≈1.732)北C东B A3.如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高度.现测得树顶C 处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸9计算树的高度(精确到0.1米).A45°60°CB D4.如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为1.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70)10∴ ∴【试题答案】一、选择题1. D2. A3. B4. B5. D6. C7. D二、填空题11. 22. 33. 1︰ 3994. 10 10米5. 27cm 276. 9(解析:过点 C 作 CD ⊥AB 于 D ,则 AC 2-AD 2=BC 2-(AB -AD )2,即 32-AD 2=7 722-(3-AD )2,解得 AD =3,cos A =9)三、解答题1. ∠A =30°,AB =AD ·cos A +3+8×3=(27+8 3)米2. 由题意得:△ABC 中,∠BAC =90°,∠ACB =60°,AC =550,AB =AC ·tan ∠ACB≈550 3≈953(米). 答:他们测得湘江宽度为 953 米.3. 过点 A 作 AE ∥BD 交 DC 的延长线于点 E ,则∠AEC =∠BDC =90°. ∵ ∠EAC =AB45°,AE =BD =20, EC =20. ∵ tan ∠ADB =tan ∠EAD =BD , AB =20·tan 60°=20 3,CD =ED -EC =AB -EC =20 3-20≈14.6(米). 答:树高约为 14.6 米.A E45°60°CBD14. 过点 A 作 AE ⊥BC 于点 E ,过点 D 作 DF ⊥BC 于点 F . ∵AB =AC ,∴CE =2BC =0.5. 在111 2AER t△AB E 和 R t △DFC 中,∵tan 78°=EC ,∴AE =EC ×tan 78°≈0.5×4.70=2.35. 又∵sinAE DF DC 3α= AC =DC ,DF =AC ·A E =7×AE ≈1.007. 李师傅站在第三级踏板上时,头顶距地面高度约为: .007+1.78=2.787. 头顶与天花板的距离约为:.90-2.787≈0.11. ∵0.05<0.11<0.20,∴他安装比较方便.12。

九年级思维拓展:锐角三角函数的综合运用

九年级思维拓展:锐角三角函数的综合运用

九年级思维拓展:锐角三角函数的综合运用➢ 知识点睛1. 利用锐角三角函数解直角三角形(1)直角三角形中,除直角外,共有五个元素.即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.知道五个元素中的两个元素(至少有一个是边),就可以求出其余三个未知元素.(2)利用解直角三角形解决实际问题: ①将实际问题抽象为数学问题画图平面图形,提取信息并标注,明确所求目标及判断标准,转化为解直角三角形的问题.②根据问题中的条件,选用适当的锐角三角函数和其他信息解直角三角形 作高是构造直角三角形的常见手段;在分析直角三角形时,往往先从已知边长的直角三角形出发;若没有完整边长,则通常考虑从两个直角三角形的相等线段长出发,先设,然后借助三角函数值表达其他边长后进行求解. ③求解验证,回归实际结合实际场景和判断标准进行比较后,确定判断结果,回归实际场景. 2. 利用锐角三角函数解三角形(1)在三角形中,由已知的边、角出发,求未知边、角的过程叫做解三角形.已知边指已知该边的长度,已知角指已知该角的三角函数值.解三角形时,往往会通过作高的方式将三角形分割为2个直角三角形进行研究;作高时,一般要保留已知三角函数值的角. (2)常见的可解三角形 ①1边2角βαc CB A βαaCBA②2边1角αc aCBAαbaCBA注:当一个三角形具有三个元素,但不能利用全等判定确定形状唯一时,三角形可解,但图形不唯一.③3边bcaB A④1边1角2表达αaCBAαbBAAB =mAC AB +BC =n3. 锐角三角函数在综合问题中的应用研究题目背景往往是分析综合问题的第一步,可以帮助我们找到题目中隐藏的信息——已知三角函数值的角.①在直角三角形中研究边,分析直角三角形三边之比,判断两锐角的三角函数值是否已知;②研究角度,来转移计算,判断背景中是否有特殊角(30°,45°,60°,150°,135°,120°),比如由三角形中60°,75°可以计算出第3个角为45°.➢ 精讲精练1. (2019河南)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55 m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21 m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1 m .参考数据:sin 34°≈0.56,cos34°≈0.83,tan34°≈0.671.73 )60°34°A BCDE2.(2018济宁)如图,在一笔直的海岸线l上有相距2 km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是________km.3.(2017河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向.已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:4sin535︒≈,3cos535︒≈,4tan533︒≈1.41≈)ABC45°53°4. (2017赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC =20 cm ,BC =18 cm ,∠ACB =50°,王浩的手机长度为17 cm ,宽为8 cm ,王浩同学能否将手机放入卡槽AB 内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)图2ABC图1ABC5. 如图,在△ABC 中,AB =5,BC =4,AC =6,则∠B 的正切值为_________.CB A6. (2019盐城)如图,在△ABC 中,BCC =45°,AB,则AC 的长为______.CB A7. (2018山东枣庄)如图,在正方形ABCD 中,AD=BC 绕点B 逆时针旋转30°得到线段BP .连接AP 并延长交CD 于点E ,连接PC ,则三角形PCE 的面积为___________.ABCDEP8. (2017呼和浩特)如图,四边形ABCD 是边长为1的正方形,E ,F 为BD所在直线上的两点,若AEEAF =135°,则以下结论正确的是( ) A .DE =1 B .1tan 3AFO ∠=C .AF=2D .四边形AFCE 的面积为94FEOD CB ACB′C′BA第8题图第9题图9. (2018苏州)如图,在Rt △ABC 中,∠B =90°,AB=BC.将△ABC 绕点A 按逆时针方向旋转90°得到△AB′C′,连接B′C ,则sin ∠ACB′=________.10. (2017河北)平面内,如图,在□ABCD 中,AB =10,AD =15,tan A =43,点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan ∠ABP :tan A =3:2时,求点Q 与点B 的距离(结果保留根号).C11. (2014河南)如图,矩形ABCD 中,AD =5,AB =7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D'落在∠ABC 的角平分线上时,DE 的长为__________.D'EDCBA12. (2018包头)如图,在Rt △ACB 中,∠ACB =90°,以点A 为圆心,AC 长为半径的圆交AB 于点D ,BA 的延长线交⊙A 于点E ,连接CE ,CD ,F 是⊙A 上一点,点F 与点C 位于BE 两侧,且∠FAB =∠ABC ,连接BF . (1)求证:∠BCD =∠BEC ;(2)若BC =2,BD =1,求CE 的长及sin ∠ABF 的值.13. (2018河南)如图,抛物线y =ax 2+6x +c 交x 轴于A ,B 两点,交y 轴于点C .直线y =x -5经过点B ,C . (1)求抛物线的解析式.(2)过点A的直线交直线BC于点M.连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.备用图备用图14. (2018河南)(1)问题发现如图1,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =40°,连接AC ,BD 交于点M .填空:①AC BD的值为_____________; ②∠AMB 的度数为_____________. (2)类比探究如图2,在△OAB 和△OCD 中,∠AOB =∠COD =90°,∠OAB =∠OCD =30°,连接AC 交BD 的延长线于点M .请判断ACBD的值及∠AMB 的度数,并说明理由. (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M .若OD =1,OBC 与点M 重合时AC 的长.MOD CBA M DCO BAOAB图1 图2 备用图【参考答案】1. 炎帝塑像DE 的高度为51 m .2.3. C 船至少要等待0.94小时才能得到救援.4. 因为17<,所以王浩同学能将手机放入卡槽内.5. 6. 27. 9- 8. C9. 4510. (1)∠APB 为80°或100°;(2)点Q 与点B 的距离为. 11.52或5312. (1)证明略;(2)CE 的长为5;sin ∠ABF 的值为50.13. (1)抛物线的解析式为y =-x 2+6x -5;(2)点M 的坐标为(136,176-)或(236,76-). 14. (1)①1;②40°;(2)AC BDAMB 的度数为90°;理由略;(3)AC 的长为。

初中锐角三角函数及应用

初中锐角三角函数及应用

初中锐角三角函数及应用锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切。

这些函数在数学和物理学中有着广泛的应用。

首先,我们来介绍一下锐角三角函数的定义和性质。

在一个直角坐标系中,对于一个锐角ABC(角A小于90度), 我们可以定义正弦函数sinA 为点B的纵坐标除以斜边AC的长度,余弦函数cosA 为点B的横坐标除以斜边AC的长度,正切函数tanA 为点B的纵坐标除以横坐标。

其中,sinA、cosA和tanA都是角A的函数。

这些函数有许多重要的性质。

首先,它们的定义域都是锐角的正数集合,即(0,90)。

其次,它们的值域都是(-1,1),即在定义域内,这些函数的值都在-1到1之间变化。

此外,正弦函数和余弦函数还具有周期性,周期为360度或2π弧度。

也就是说,对于一个锐角A,sin(A+360k) = sinA,cos(A+360k) = cosA,其中k 为整数。

在应用方面,锐角三角函数有着广泛的作用。

首先,它们被广泛应用于三角计算。

例如,我们可以利用正弦定理或余弦定理,通过已知边和角来求解三角形的其他未知边和角。

这在测量、建筑、工程等领域都有着重要的应用。

其次,锐角三角函数在物理学中也有着重要的应用。

例如,对于一个斜抛运动的物体,我们可以利用正弦函数和余弦函数来分析其垂直和水平方向上的运动。

它们可以帮助我们计算物体的落点、飞行时间、最大高度等。

另外,锐角三角函数还与周期函数和图像有着密切的关系。

它们的图像可以通过函数的周期性来得到。

例如,正弦函数的图像是一个周期为2π的曲线,具有对称性和单调性,而余弦函数的图像是一个周期为2π的曲线,也具有对称性和反单调性。

此外,锐角三角函数还与三角恒等式有着重要的联系。

三角恒等式是指对于锐角A和B,成立的恒等关系。

利用三角恒等式,我们可以化简复杂的三角函数表达式,简化计算过程。

总的来说,锐角三角函数是数学中一类重要的函数,具有广泛的应用。

它们不仅在三角计算和几何题目中有着重要作用,还与物理学、周期函数和三角恒等式等有着紧密的联系。

2023中考一轮复习:锐角三角函数及其应用

2023中考一轮复习:锐角三角函数及其应用

考点16锐角三角函数及其应用【命题趋势】中考数学中,对锐角三角函数的考察主要以特殊角的三角函数值及其有关计算、解直角三角形、解直角三角形的应用三个方面为主。

其中,锐角三角函数的性质及解直角三角形多以选择填空题为主,解直角三角形的应用多以解答题为主。

整体难度不大,但是所占分值有3~12分,还是需要考生对这块易拿分的考点多加重视。

【中考考查重点】一、锐角三角函数的定义及其性质二、特殊角的三角函数值三、解直角三角形四、解直角三角形的应用考向一:锐角三角函数的定义及其性质一.锐角三角函数的定义:在Rt △AABC 中,∠C=90°,AB=c ,BC=a ,AC=b 则:∠A 正弦:caA A =∠=斜边的对边sin ;∠A 余弦:c bA A =∠=斜边的邻边cos ;∠A 正切:baA A A =∠∠=的邻边的对边tan ;二.锐角三角函数的函数关系当∠A +∠B=90°时,有以下两种关系:(1).同角三角函数的关系:AAA cos sin tan =;1cos sin 22=+A A (2)互余两角的三角函数的关系:B A B A sin cos ;cos sin ==;)90(1tan tan ︒=∠+∠=∙B A B A 【同步练习】1.(2021•句容市模拟)在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则()A .c =b sin BB .b =c sin BC .a =b tan BD .b =c tan BACBabc2.(2021•饶平县校级模拟)如图,在Rt△ABC中,∠C=90°,BC=m,∠B=β,那么AB=()A.m⋅sinβB.C.m⋅cosβD.3.(2021•张湾区模拟)如图,小正方形的边长均为1,有格点△ABC,则sin C=()A.B.C.D.4.(2021•商河县校级模拟)当A为锐角,且<cos∠A<时,∠A的范围是()A.0°<∠A<30°B.30A<60°C.60°<∠A<90°D.30°<∠A<45°5.(2021•桓台县一模)在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.6.(2021•蒙阴县模拟)如图,在△ABC中,∠ACB=∠ADC=90°,若sin A=,则cos∠BCD的值为.考向二:特殊角的三角函数值特殊角的三角函数值表αsin αcos αtan α30°21233345°2222160°23213【同步练习】1.(2021•宜兴市模拟)已知cos α=,且α是锐角,则α=()A .30°B .45°C .60°D .90°2.(2022•龙岗区一模)Rt △ABC 中∠C =90°,sin A =,则tan A 的值是()A .B .C .D .3.(2021•邵阳模拟)在△ABC 中,若|sin A ﹣|+(cos B ﹣)2=0,则∠C 的度数是()A .30°B .45°C .60°D .90°4.(2022•无为市校级一模)计算:(1)sin60°•cos30°﹣1;(2)2sin30°+3cos60°﹣4tan45°.考向三:解直角三角形解直角三角形相关:在Rt△ABC中,∠C=90°AB=c,BC=a,AC=b 三边关系:222cba=+两锐角关系:︒=∠∠90BA+边与角关系:caBA==cossin,cbBA==sincos,baanA=t,abanB=t锐角α是a、b的夹角面积:αsin21abS=【方法提炼】与三角函数有关的倍半角问题倍半角模型①知“半角”求“倍角”→知θ,截取使相等(或中垂线),得2θ②知“倍角”求“半角”→知2θ,延长使相等(或做角平分线),得θ(等腰出,半角现)解题主要思想特别记忆:1.“倍半角”模型也可用于“角平分线”类问题2.“倍半角模型”常常转化为“θ”的正切值来计算3.☆【同步练习】1.(2021•樊城区一模)如图,A 、B 、C 是3×1的正方形网格的三个格点,则tan ∠ABC 的值为()A .B .C .D .2.(2021•滨江区校级三模)如图,点A 为∠B 边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示tan B 的值,错误的是()A .B .C .D .3.(2021•榆阳区模拟)如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是的中点,若tan ∠ACB =2,AC=,则BC 的长为()A .B .2C .1D .2时,③当时,②当时,①当7242tan 43tan 432tan 31tan 342tan 21tan ======θθθθθθ相等角倍角半角常构造(或选择)Rt △延长直角边=斜边,得半角作斜边的中垂线,得2倍角可构造K 型相似,得矩形当有特殊tan α值时,可转化为“倍半角”问题主要思想变“求点的坐标”为“求直线与函数图象交点”抓本质——对称全等+l 1⊥l 2此处k 型相似比已知,矩形对边相等是列方程的等量关系4.(2021•阿城区模拟)如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足是D,设∠CAB=α,CD=h,那么BC的长度为()A.B.C.D.h•cosα考向四:解直角三角形的应用解直角三角形的应用:仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作lhi=坡角:坡面与水平面的夹角叫做坡角,记作α,αtan=i坡度越大,坡角越大,坡面越陡【方法提炼】1.在实际测量高度、宽度、距离等问题中,常结合平面几何知识构造直角三角形,利用三角函数或相似三角形来解决问题,常见的构造的基本图形有如下几种:(1)不同地点看同一点,如图①(2)同一地点看不同点,如图②(3)利用反射构造相似,如图③2.常用结论:【同步练习】1.(2022•鹿城区校级一模)如图,在Rt△ABC中,∠CAB=90°,点A,B分别在墙面ED和地面FD上,且斜边BC∥ED,若AC=1,∠CBA=α,则AD的长为()A.cosα×tanαB.C.D.2.(2022•无为市校级一模)如图,给出了一种机器零件的示意图,其中CE=1米,BF=米,则AB=()A.(1+)米B.(﹣1)米C.(2﹣)米D.(2+)米3.(2020•秦皇岛一模)如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼上钩的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m1.在直角△ABC中,∠C=90°,AB=3,AC=2,则sin A的值为()A.B.C.D.2.如图所示,△ABC的顶点是正方形网格的格点,则sin B的值为()A.B.C.D.13.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°4.下列计算错误的个数是()①sin60°﹣sin30°=sin30°;②sin245°+cos245°=1;③;④.A.1B.2C.3D.45.如图所示,网格中的每个小正方形的边长都是1,△ABC的顶点都在交点处,则∠ABC的正弦值为()A.B.C.D.6.把直尺、三角尺和圆形螺母按如图所示的方式放置于桌面上,AB与螺母相切,D为螺母与桌面的切点,∠CAB=60°.若量出AD=6cm,则圆形螺母的外直径是()A.cm B.12cm C.cm D.cm7.计算tan30°•sin60°的结果是.8.如图所示,在一次数学活动课上,初三1班的同学们利用长杆来测量某段城墙的倾斜角α,把一根长为6.6米的长杆AC斜靠在城墙旁,量出杆长2米处在地面投影AE的长约为1米,长杆的底端与墙角的距离AB约为2.7米,则倾斜角α的正切值约为.(结果精确到0.01,参考数据≈1.73)9.如图1是我们经常看到的一种折叠桌子,它是由下面的支架AD,BC与桌面构成如图2,已知OA=OB=OC=OD=20cm,∠COD=60°,则点A到地面(CD所在的平面)的距离是cm.10.计算:tan30°sin60°﹣cos245°+tan45°.11.计算:(1)sin60°•cos30°﹣1;(2)2sin30°+3cos60°﹣4tan45°.12.如图,在△ABC中,BC=4,∠B=45°,∠A=30°,求AB.13.如图1,2分别是某款篮球架的实物图与示意图,已知支架AB与支架AC所成的角∠BAC=15°,点A、H、F在同一条直线上,支架AH段的长为0.5米,HF段的长为1.50米,篮板底部水平支架HE的长为0.75米,篮板顶端F到地面的距离为4.4米.(1)则篮板底部支架HE与支架AF所成的角∠FHE的度数为;(2)求底座BC的长(结果精确到0.1米;参考数据:sin15°≈026,cos15°≈097,tan15°≈027,≈1.732,≈1.414).1.(2021·浙江湖州)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是.2.(2021·浙江金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米3.(2021·浙江丽水)如图,AB是⊙O的直径,弦CD⊥OA于点E,连结OC,OD.若⊙O的半径为m,∠AOD =∠α,则下列结论一定成立的是()A.OE=m•tanαB.CD=2m•sinαC.AE=m•cosαD.S△COD=m2•sinα4.(2021·浙江温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为()A.+1B.sin2α+1C.+1D.cos2α+15.(2021·浙江绍兴)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.26.(2021·浙江杭州)计算:sin30°=.7.(2021·浙江金华)计算:(﹣1)2021+﹣4sin45°+|﹣2|.8.(2021·浙江嘉兴)计算:2﹣1+﹣sin30°;9.(2021·浙江绍兴)计算:4sin60°﹣+(2﹣)0.10.(2021·浙江衢州)计算:+()0﹣|﹣3|+2cos60°.11.(2021·浙江金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.12.(2021·浙江台州)图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地面l,活动杆CD固定在支撑杆上的点E处.若∠AED=48°,BE=110cm,DE=80cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)13.(2021·浙江嘉兴)一酒精消毒瓶如图1,AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=6cm,BE=4cm.当按压柄△BCD按压到底时,BD转动到BD′,此时BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)14.(2021·浙江宁波)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D'的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC =140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)15.(2021·浙江绍兴)拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内.(1)转动连杆BC,手臂CD,使∠ABC=143°,CD∥l,如图2,求手臂端点D离操作台l的高度DE的长(精确到1cm,参考数据:sin53°≈0.8,cos53°≈0.6).(2)物品在操作台l上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.16.(2021·浙江衢州)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得FA=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD的度数达到最小值30°时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)1.(2021•余杭区二模)若sinα=,则锐角α=()A.30°B.45°C.50°D.60°2.(2021•吴兴区一模)如图,已知Rt△ABC中,∠ACB=90°,AC:AB=3:5,则tan A的值为()A.B.C.D.3.(2021•杭州二模)如图,在Rt△ACB中,∠C=90°,sin B=0.5,若AC=6,则AB的长为()A.8B.12C.6D.124.(2021•婺城区模拟)若∠A,∠B都是锐角,且tan A=1,sin B=,则△ABC不可能是()A.等腰三角形B.等腰直角三角形C.锐角三角形D.直角三角形5.(2021•余杭区一模)在Rt△ABC中,∠C=90°,cos B=,则tan A的值为()A.B.C.D.6.(2021•宁波模拟)如图,A,B,C,D均为网格图中的格点,线段AB与CD相交于点P,则∠APD的正切值为()A.3B.2C.2D.37.(2021•北仑区一模)如图,点A在半径为6的⊙O内,OA=2,P为⊙O上一动点,当∠OPA取最大值时,PA的长等于()A.3B.2C.D.28.(2021•吴兴区二模)如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()A.2B.C.D.9.(2021•金华模拟)如图,点A(x,4)在第一象限,OA与x轴所夹的锐角为α,cosα=,则tanα的值为()A.B.C.D.10.(2021•越秀区校级三模)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠BAC的值为()A.B.C.D.11.(2021•拱墅区二模)如图,△ABC中,∠A=120°,若BM,CM分别是△ABC的外角平分线,则∠M的余弦值是()A.B.C.D.12.(2022•温州模拟)一个长方体木箱放置在斜面上,其端点A落在水平地面上,相关数据如图所示,则木箱端点C距地面m的高度是()A.a•cosα+b•sinαB.a•sinα+b•cosαC.a•sinα+b•sinαD.a•cosα+b•cosα13.(2021•下城区校级四模)在直角三角形ABC中,若cos C=,则=.14.(2022•温州模拟)如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm),且AC=BD,AF∥BE,sin∠BAF=0.8,箱盖开起过程中,点A,C,F不随箱盖转动,点B,D,E 绕点A沿逆时针方向转动相同角度,分别到点B′,D′,E′的位置,气簧活塞杆CD随之伸长CD′.已知直线BE⊥B′E′,CD′=2CD,那么AB的长为cm,CD′的长为cm.15.(2021•杭州校级模拟)计算:tan45°﹣sin30°cos60°﹣cos245°.16.(2021•鹿城区校级三模)如图,△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,DB=3.(1)求BE的长;(2)若sin∠DAB=,求△CAD的面积.17.(2021•宁波模拟)把矩形纸片ABCD,先沿AE折叠使点B落在AD边上的B',再沿AC折叠,恰好点E也落到AD上,记为E'.求:(1)∠B'EE'的度数;(2)∠DAC的正切值.18.(2022•宁波模拟)如图①,一台灯放置在水平桌面上,底座AB与桌面垂直,底座高AB=5cm,连杆BC=CD=20cm,BC,CD与AB始终在同一平面内.(1)如图②,转动连杆BC,CD,使∠BCD成平角,∠ABC=143°,求连杆端点D离桌面l的高度DE.(2)将图②中的连杆CD再绕点C逆时针旋转16°,如图③,此时连杆端点D离桌面l的高度减小了多少cm?(参考数据:sin37°=0.6,cos37°=0.8,tan37°=0.75)19.(2021•宁波模拟)小甬要外出参加“建党100周年”庆祝活动,需网购一个拉杆箱,图①,图②分别是他上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求DE的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).。

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。

中考数学复习指导:锐角三角函数在日常生活中的应用

中考数学复习指导:锐角三角函数在日常生活中的应用

锐角三角函数在日常生活中的应用锐角三角函数是学好三角学及本章内容的关键和基础. 锐角三角函数, 既是本章的重点,也是难点. 此内容又是数形结合的典范. 这涉及数学各个分支,又在工程,测量,军事,工业,农业,航海,航空等诸领域都有应用. 因而,对本单元的学习必须引起足够的重视,特别是在日常生活中的应用更加广泛,下面举几例与同学们共赏一、车厢离地面多少米?问题1:如图,自卸车厢的一个侧面是矩形ABCD ,AB =3米,BC =0.5米,车厢底部离地面1.2米,卸货时,车厢倾斜的角度060=θ,问此时车厢的最高点A 离地面多少米?(精确到1米)【思路解析:】此题只需求出点A 到CE 的距离,于是过A 、D 分别作AG ⊥CE ,DF ⊥CE ,构造直角三角形,解Rt △AHD 和Rt △CDF 即可求解.过点A 、D 分别作CE 的垂线AG 、DF ,垂足分别为G 、F ,过D 作DH ⊥AG 于H ,则有:23323360sin 0=⨯=⋅=CD DF 41215.060cos 0=⨯=⋅=AD AH 于是A 点离地面的高度为42.141233≈++(米). 所以,车厢的最高点A 离地面约为4米.点评:本题只要将实际问题转化为解直角三角形的问题,然后,运用三角函数的有关知识即可解决.二、如何将角橱搬进房间?问题2:如图1所示是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高2米,房间高2.6米,所以不从高度方面考虑方案的设计),按此方案可以使该家具通过如图2中的长廊搬入房间,在图2中把你的设计方案画成草图,并说明按此方案可把家具搬入房间的理由(注:搬动过程中不准拆卸家具,不准损坏墙壁).问题二图1问题二图2【思路解析:】如说理图所示,作直线AB ,延长DC 交AB 于E ,由题意可知,△ACE 是等腰直角三角形,所以CE =0.5,DE =DC +CE =2,作DH ⊥AB 于H ,则245sin 2sin 0==∠⋅=HED DE DH ,∵5.12<,∴可按此方案设计图将家具从长廊搬入房间. 答案:设计方案草图如图所示.设计方案图设计方案说理图.点评:本题是一道比较贴近生活的实际问题,学生看到题目感到比较亲切、自然,但本题重点考查学生综合运用所学知识解决实际问题的探究和创新能力.本题还反映了生活中常见的实际情况,很有创意,并充分体现了学数学用数学的价值,角书橱过长廊进入房间,必须要放倒倾斜搬进,不能正面直入,方案的设计也多种多样.三、是否有进入危险区域的可能?问题3:一艘渔船正以30海里/小时的速度由西向东追赶鱼群,在A 处看见小岛C在船的北偏东600方向,40分钟后,渔船行至B 处,此时看见小岛C 在船的北偏东300方向,已知以小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区域的可能?【思路解析】此题是一个重要题型——航海问题,解这类题要弄清方位角、方向角的概念,正确地画出示意图,然后根据条件解题.此题可先求出小岛C 与航向(直线AB )的距离,再与10海里进行比较得出结论.解:过C 作AB 的垂线CD 交AB 的延长线于点D ∵CD AD =30cot ,CDBC =060cot , ∴030cot ⋅=CD AD ,060cot ⋅=CD BD ,∴20)60cot 30(cot 0=-=-CD BD AD ∴31033320=-=CD , ∵310>10.∴这艘渔船继续向东追赶鱼群不会进入危险区域.点评:正确解答这类问题,第一步,根据材料提供的生活背景,画出几何图形,并把实际问题数学化,分析出作为一个数学问题的已知条件和问题。

中考专项复习锐角三角函数

中考专项复习锐角三角函数

与几何图形有关的锐角三角函数问题
总结词
理解几何图形中的角度关系与边长关 系,掌握三角函数的定义及使用。
详细描述
在几何图形中,锐角三角函数通常被 用于求解角度、边长等问题。例如, 在直角三角形中,可以用正弦、余弦 、正切等函数来描述各边与斜边的关 系。
与实际生活有关的锐角三角函数问题
总结词
将实际问题转化为数学问题,通过锐 角三角函数求解。
余弦函数的图像与性质
图像描述
余弦函数图像也是周期性的,但其波形与正弦函数相反,波 峰和波谷随着x的增大而交替出现,且函数值先正后负,周期 为2π。
性质总结
余弦函数具有对称性和周期性,其对称轴为y轴,对称中心为 (kπ+π/2,0),其中k为整数。此外,余弦函数在区间[0,π/2] 上为增函数,在区间[π/2,π]上为减函数。
中考专项复习锐角三角函

汇报人:
2023-12-11
• 锐角三角函数概述 • 锐角三角函数的图像与性质 • 锐角三角函数的应用题解析 • 锐角三角函数的实际应用 • 中考中锐角三角函数的常见考点与题
型 • 中考真题解析与备考策略01锐角三角函数概述
锐角三角函数的定义
正弦函数(sine function): 锐角α的正弦值与直角三角形 斜边长度的比值,记作sin α。
总结
中考中锐角三角函数一般以填空题和选择题 的形式出现,主要考察的是锐角三角函数的 定义以及运用。题目会设定一个或者几个锐 角,然后利用锐角三角函数的定义,求出这 个锐角的三角函数值。
例子
例如,如果一个锐角A的对边长度为4,邻 边长度为3,那么我们可以使用锐角三角函 数的定义来求出这个锐角的正弦值和余弦值 。根据定义,正弦值=对边长度/斜边长度

中考复习专题之-锐角三角函数实际应用

中考复习专题之-锐角三角函数实际应用

事故船位于巡逻艇的北偏东58°方向上,巡逻艇立刻前往A处救援,已知巡逻艇每分钟行驶120米,请估计几分
钟可以到达事故船A处.
(结果保留整数.参考数据: 3 1.73
cos53 3
, sin 53 4
, tan 53 54
, )
5
3
名校模拟
10.(2023·安徽亳州·校联考模拟预测)如图,某数学兴趣小组为了测量塔AB的高度,他们先在水平地面上的
典例2.先化简,再求值
6a a2
9
1
2a 3 a3
其中 a 2sin30 3
典例3.如图,在△ABC中,C 90 , tan A 3 , ABC 的平分线BD交AC于点D,CD= 3.求AB的 3
长?
典例剖析
典例4.如图,△ABC的顶点B,C的坐标分别是1,0,0,3 且 ABC 90 A 30,求点A的坐标?
求观测点B到A船的距离(结果精确到0.1海里).
参考数据:
sin 67.4 12 , cos 67.4 5 ,sin 67.6 0.925, cos 67.6 0.381, 2 1.4临沂·统考一模)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能 环保的举措,某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度,如图,已知测倾器的高度为 1.5米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3米的测点D处安置测倾器,测得点M 的仰角∠MEC=45°(点A,D与N在一条直线上).求电池板离地面的高度MN的长
5
4
5
3
名校模拟
11.(2023·安徽亳州·统考一模)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量 距离和角度.某校“综合与实践”活动小组的同学要测量AB、CD两座楼之间的距离,他们借助无人机设计了如下 测量方案:无人机在AB、CD两楼之间上方的点O处,点O距地面AC的高度为120m,此时观测到楼AB底部点A 处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行48m到达点F,测得点E处俯角为60°,其中 点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确

中考数学专题复习10锐角三角函数及其运用(解析版)

中考数学专题复习10锐角三角函数及其运用(解析版)

锐角三角函数及其运用复习考点攻略考点一 锐角三角函数1. 锐角三角函数的定义:在Rt △ABC 中.∠C =90°.AB =c .BC =a .AC =b .正弦:sin A =∠的对边=斜边A ac ;余弦:cos A =∠的邻边=斜边A bc;正切:tanA =∠的对边=邻边A ab.【注意】根据定义求三角函数值时.一定要根据题目图形来理解.严格按照三角函数的定义求解.有时需要通过辅助线来构造直角三角形.2【例2】A .BCD .1【答案】C 【解析】把sin45°=代入原式得:原式=2×.故选C . 考点三 解直角三角形1.在直角三角形中.求直角三角形所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系: 在Rt △ABC 中.∠C =90°.则: (1)三边关系:a 2+b 2=c 2; (2)两锐角关系:∠A +∠B =90°; (3)边与角关系:sin A =cos B =a c .cos A =sin B =b c .tan A =ab; (4)sin 2A +cos 2A =1.3.科学选择解直角三角形的方法口诀: 已知斜边求直边.正弦、余弦很方便; 已知直边求直边.理所当然用正切; 已知两边求一边.勾股定理最方便; 已知两边求一角.函数关系要记牢; 已知锐角求锐角.互余关系不能少; 已知直边求斜边.用除还需正余弦.【例3】如图.我市在建高铁的某段路基横断面为梯形ABCD .DC ∥AB ,BC 长为6米.坡角β为45°.AD 的坡角α为30°.则AD 的长为 ________ 米 (结果保留根号)2sin 222【答案】62【解析】解:过C 作CE ⊥AB 于E.DF ⊥AB 于F.可得矩形CEFD 和Rt △CEB 与Rt △DFA. ∵BC=6.∴CE=2sin 456322BC ︒=⨯=.∴DF=CE=32.∴62sin 30DF AD ==︒.故答案为:62.【例4】如图.大海中有A 和B 两个岛屿.为测量它们之间的距离.在海岸线PQ 上点E 处测得74AEP =︒∠.30BEQ =︒∠;在点F 处测得60AFP =︒∠.60BFQ =︒∠.1km EF =.⑴ 判断AB 、AE 的数量关系.并说明理由⑵ 求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3 1.73≈. sin740.96︒≈.cos740.28︒≈.tan74 3.49︒≈.sin760.97︒≈.cos760.24︒≈)【答案】(1)见解析;(2)3.6km【解析】(1)相等.证明:∵30BEQ =︒∠.60BFQ =︒∠.∴30EBF =︒∠.EF BF =.又∵60AFP =︒∠.∴60BFA =︒∠.在AEF △与ABF △中.EF BF =.AFE AFB =∠∠.AF AF =. ∴AEF ABF △≌∠.∴AB AE =. (2)作AH PQ ⊥.垂足为H .设AE x =.则sin74AH x =︒.cos74HE x =︒.cos741HF x =︒+.Rt AHF △中.tan60AH HF =⋅︒.∴()cos74cos741tan 60x x ︒=︒+⋅︒.即()0.960.281 1.73x x =+⨯. ∴ 3.6x ≈.即 3.6km AB ≈.考点四 锐角三角函数的应用1.仰角和俯角:仰角:在视线与水平线所成的角中.视线在水平线上方的角叫做仰角. 俯角:在视线与水平线所成的角中.视线在水平线下方的角叫做俯角. 2.坡度和坡角坡度:坡面的铅直高度h 和水平宽度l 的比叫做坡面的坡度(或坡比).记作i =h l. 坡角:坡面与水平面的夹角叫做坡角.记作α.i =tan α. 坡度越大.α角越大.坡面越陡. 3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.4.解直角三角形中“双直角三角形”的基本模型:5.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语.根据题意画出图形.建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系.把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式.使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义.从而得到问题的解.6.解直角三角形应用题应注意的问题:(1)分析题意.根据已知条件画出它的平面或截面示意图.分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形.但可添加适当的辅助线.把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件.选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算.检验是否符合实际.并按题目要求的精确度取近似值.注明单位.【例5】如图.一名滑雪爱好者先从山脚下A处沿登山步道走到点B处.再沿索道乘坐缆车到达顶部C.已知在点A处观测点C.得仰角为35°.且A.B的水平距离AE=1000米.索道BC 的坡度i=1:1.长度为2600米.求山的高度(即点C到AE的距离)(参考数据:sin35°≈0.57.cos35°≈0.82.tan35°≈0.70.≈1.41.结果保留整数)【答案】1983米【解析】:如图.作CD⊥AE于点D.BF⊥CD于点F.又∵BE⊥AD.∴四边形BEDF是矩形.在Rt△BCF中.∵BC的坡度i=1:1.∴∠CBF=45°.∵BC=2600米.∴米.∴米.∵A.B的水平距离AE=1000米.∴米.∵∠CAD=35°.∴(米).答:山高CD约为1983米.【例6】如图.一艘海轮位于灯塔P的南偏东30°方向.距离灯塔100海里的A处.它计划沿正北方向航行.去往位于灯塔P的北偏东45°方向上的B处.(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域.它的圆心位于射线PB上.距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里.进入这个区域.就有触礁的危险.请判断海轮到达B处是否有触礁的危险?如果海伦从B处继续向正北方向航行.是否有触礁的危险?并说明理由.(参考数据:≈1.414.≈1.732)【答案】(1)71海里;(2)见解析【解析】解:(1)过点P作PD⊥AB于点D.依题意可知.P A=100.∠APD=60°.∠BPD=45°.∴∠A=30°.∴PD=50.在△PBD中.BD=PD=50.∴PB =50≈71.答:B 处距离灯塔P 约71海里.(2)依题意知:OP =150.OB =150﹣71=79>60. ∴海轮到达B 处没有触礁的危险.海伦从B 处继续向正北方向航行.有触礁的危险.第一部分 选择题一、选择题(本题有10小题.每题3分.共30分)1. 比萨斜塔是意大利的著名建筑.其示意图如图所示.设塔顶中心点为点B .塔身中心线AB 与垂直中心线AC 的夹角为A ∠.过点B 向垂直中心线AC 引垂线.垂足为点D .通过测量可得AB 、BD 、AD 的长度.利用测量所得的数据计算A ∠的三角函数值.进而可求A ∠的大小.下列关系式正确的是( )A .sin BDA AB= B .cos ABA AD=C .tan ADA BD=D .sin ADA AB=【答案】A【解析】由题可知.△ABD 是直角三角形.90BDA ∠=︒.sin BD A AB ∴=.cos AD A AB=,tan BDA AD =.∴选项B 、C 、D 都是错误的.故答案选A . 2. 如图.在ABC 中.∠C =90°.设∠A .∠B .∠C 所对的边分别为a .b .c .则( )A .c =b sinB B .b =c sin BC .a =b tan BD .b =c tan B【答案】B【解析】∵Rt ABC 中.90C ∠=︒.A ∠、B 、C ∠所对的边分别为a 、b 、c ∴sin bB c=.即sin b c B =.则A 选项不成立.B 选项成立 tan bB a=.即tan b a B =.则C 、D 选项均不成立故选:B . 3. 已知α是锐角.sin α=cos60°.则α等于( ) A .30° B .45°C .60°D .不能确定4. 若∠A 是锐角.且sinA= 3.则( )A. 0°<∠A<30°B. 30°<∠A<45°C. 45°<∠A<60°D. 60°<∠A<90° 【答案】 A【解析】∵sin0°=0.sinα= 13.sin30°= 12.又0< 13< 12.∴0°<α<30°. 故答案为:A .5. 点(-sin60°.cos60°)关于y 轴对称的点的坐标是( )A. (√32.12) B. (-√32.12) C. (-√32.-12) D. (- 12.- 32)【答案】 A 【解析】∵sin60°=√32.cos60°=12.∴(-sin60°.cos60°)=(-√32. 12).关于y 轴对称点的坐标是( √32.12).故答案为:A .6. 在Rt △ABC 中.∠C =90°.BC =5.AC =12.则sinB 的值是( )A .512B .125C .513D .1213【答案】D【解析】解:如图所示:∵∠C =90°.BC =5.AC =12.∴13AB =. ∴12sin 13AC B AB ==.故选:D .7. 如图.某停车场入口的栏杆AB.从水平位置绕点O 旋转到A′B′的位置.已知AO 的长为4米.若栏杆的旋转角∠AOA′=α.则栏杆A 端升高的高度为( ) A .米 B .4sinα米 C .米 D .4cosα米【答案】B【解析】 解:如答图.过点A′作A′C ⊥AB 于点C .在Rt △OCA′.sinα=.所以A′C =A′O ·sinα.由题意得A′O =AO =4.所以A′C =4sinα.因此本题选B .8. 菱形ABCD 的对角线AC =10cm.BD =6cm.那么tan为( )【解析】如图.由题意得.AO ⊥BO .AO =AC =5cm.BO =BD =3cm. 4sin α4cos αA CA O''2B1212则tan=tan ∠OBA .故选A.9. 如图.AB 是圆锥的母线.BC 为底面直径.已知BC =6 cm.圆锥的侧面积为15π cm 2 . 则sin∠ABC 的值为 ( )A.34B.35C.45 D. 53【答案】 C【解析】解:设圆锥的母线长为R.由题意得: 15π=π6R.解得:R=5. ∴圆锥的高为4. ∴.故答案为:C.10. 如图.四边形ABCD 是一张平行四边形纸片.其高2cm AG =.底边6cm BC .45B ∠=︒.沿虚线EF 将纸片剪成两个全等的梯形.若30BEF ∠=︒.则AF 的长为( )2B53AO BO ==A .1cm B.cm 3C.3)cm - D.(2-【答案】D【解析】如图所示.过点F 作FM BC ⊥交BC 于点M.∵AG BC ⊥.45B ∠=︒.AG=2.∴BG=FM=2.AF=GM.令AF=x. ∵两个梯形全等.∴AF=GM=EC=x.又∵30BEF ∠=︒.∴2=tan 30FMME =︒.∴ME =.又∵BC=6.∴26BC BG GM ME EC x x =+++=+++=.∴2x =-D .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11..若tan (α–15°)= .则锐角α的度数是________.【答案】 75°【解析】【解答】由tan(α−15°)= √3.得 α−15°=60°. 解得α=75°. 故答案为:75°12.如图.在Rt △ABC 中.∠C =90°.BC =12.tan A =.则sin B =___________.125【答案】【解析】在Rt △ABC 中.∠C =90°.BC =12.tan A =.得.即. ∴AC =5.由勾股定理.得AB.所以sin B =. 故答案为:.13. 如图.A.B.C 是O上的三点.若OBC ∆是等边三角形.则cos A ∠=___________.【解析】解:∵△OBC 是等边三角形∴∠COB=60° ∴∠A=12COB ∠=30°∴cos cos30A ∠= 14. 如图是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为30.在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60︒.A 、C 之间的距离为4m . 则自动扶梯的垂直高度BD =_________m .(结果保留根号)【答案】【解析】∵∠BAC+∠ABC=∠BCD=60°.∠BAC=30°. ∴∠ABC=30°.∴∠ABC=∠BAC.∴BC=AC=4. 在Rt △BCD 中.BD=BCsin60°=4×2=故答案为: 513125125BC AC =12125AC =513AC AB =51315. 如图所示.在四边形ABCD 中.90B ∠=︒.2AB =.8CD =.连接AC .AC CD ⊥.若1sin 3ACB ∠=.则AD 长度是_________.【答案】10【解析】解:在Rt ABC 中.∵12,sin 3AB AB ACB AC =∠==.∴1263AC =÷=.在Rt ADC 中.AD ==10=.故答案为:10.16. 如图.某校教学楼后面紧邻着一个山坡.坡上面是一块平地.//,BC AD BE AD ⊥.斜坡AB 长26m .斜坡AB 的坡比为12∶5.为了减缓坡面.防止山体滑坡.学校决定对该斜坡进行改造.经地质人员勘测.当坡角不超过50°时.可确保山体不滑坡.如果改造时保持坡脚A 不动.则坡顶B 沿BC 至少向右移________m 时.才能确保山体不滑坡.(取tan50 1.2︒=)【答案】10【解析】解:如图.设点B 沿BC 向右移动至点H.使得∠HAD=50°.过点H 作HF ⊥AD 于点F.∵AB=26.斜坡AB 的坡比为12∶5.则设BE=12a.AE=5a.∴()()22212526a a +=.解得:a=2.∴BE=24.AE=10.∴HF=BE=24.∵∠HAF=50°.则24tan50 1.2HFAF AF︒===.解得:AF=20.∴BH=EF=20-10=10.故坡顶B沿BC至少向右移10m时.才能确保山体不滑坡.故答案为:10.第三部分解答题二、解答题(本题有7小题.共46分)17. 如图.在ABC中.90,tanC A ABC∠==∠的平分线BD交AC于点.D CD=AB的长?【答案】6【解析】解:在Rt ABC中.90,3C tanA∠==30,60,A ABC∴∠=∠=BD是ABC∠的平分线.30,CBD ABD∴∠=∠=︒又3,CD=330CDBCtan∴==.在Rt ABC中.90,30∠=︒∠=︒C A.630BCABsin∴==︒.故答案为:6.18. 已知:如图.在菱形ABCD中.AE⊥BC.垂足为E.对角线BD=8.tan∠CBD=.(1)求边AB的长;(2)求cos∠BAE的值.12【答案】(1)2√5 ;(2)35【解析】(1)连接AC .AC 与BD 相交于点O .∵四边形ABCD 是菱形.∴AC ⊥BD .BO =BD =4. ∵Rt △BOC 中.tan ∠CBD ==.∴OC =2. ∴AB =BC(2)∵AE ⊥BC.∴S 菱形ABCD =BC ·AE=BD ·AC . ∵AC=2OC =4.∴=×8×4.∴AE =.∴BE. ∴cos ∠ABE ==.19. 如图.小明利用学到的数学知识测量大桥主架在水面以上的高度AB .在观测点C 处测得大桥主架顶端A 的仰角为30°.测得大桥主架与水面交汇点B 的俯角为14°.观测点与大桥主架的水平距离CM 为60米.且AB 垂直于桥面.(点,,,A B C M 在同一平面内)12OC OB 1212125BE AB 35(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24,cos140.97,tan14 1.73︒︒︒≈≈≈≈)【答案】(1)大桥主架在桥面以上的高度AM 为(2)大桥主架在水面以上的高度AB 约为50米.【解析】解:(1)AB 垂直于桥面90︒∴∠=∠=AMC BMC在Rt AMC △中.60,30︒=∠=CM ACMtan ∠=AM ACM CM tan 30603︒∴=⋅=⨯=AM CM (米)答:大桥主架在桥面以上的高度AM 为(2)在Rt BMC △中.60,14︒=∠=CM BCMtan ∠=MBBCM CMtan14600.2515︒∴=⋅=⨯≈MB CM=+AB AM MB 1550∴≈+≈AB (米)答:大桥主架在水面以上的高度AB 约为50米.20. 如图.某船向正东航行.在A 处望见海岛C 在北偏东60°.前进6海里到B 点.此时测得海岛C 在北偏东45°.已知在该岛周围6海里内有暗礁.问船继续向正东航行.有触礁的危险吗?【答案】见解析【解析】 解:如图.过点C 作CD ⊥AB 于点D.∵∠CAD=90°-60°=30°.∠CBD=90°-45°=45°.∴BD=CD.设CD=x.∴AD=AB+6=6+x.在Rt△CAD中.tan∠CAD=CD AD.∴√33= xx+6.3x=6 √3+ √3x.(3-√3)x=6 √3.解得x=3 √3+3>6.答:若船继续向东航行.无触礁危险。

应用锐角三角函数解实际问题

应用锐角三角函数解实际问题

应用锐角三角函数解实际问题锐角三角函数是数学中一个重要的概念,它能够帮助我们解决日常生活中的实际问题。

本文将从四个方面来讨论锐角三角函数在实际问题中的应用。

首先,锐角三角函数可以解决根据两条边求三角形面积的问题。

设有一个三角形ABC,其中AB=2,BC=3,则可以使用锐角三角函数求解这个三角形的面积。

首先,我们需要根据已知条件计算出三角形ABC的内角度数,即α=60°,可以由两条边求出其它边的长度AC=2.5。

然后,我们可以使用锐角三角函数中的S=1/2absinα公式,来求出三角形ABC的面积,即S=1/2*2*3*sin60°=3.464。

其次,锐角三角函数可以解决根据两个内角和外角求三角形面积的问题。

设有一个三角形ABC,其中A=60°,B=30°,C=90°,则可以使用锐角三角函数求解这个三角形的面积。

首先,我们需要根据已知条件计算出三角形ABC的边长,即AB=2,BC=2,可以由两个内角求出外角的长度AC=3。

然后,我们可以使用锐角三角函数中的S=1/2a bsinα公式,来求出三角形ABC的面积,即S=1/2*2*2*sin90°=2.000。

此外,锐角三角函数还可以用来解决求抛物线焦点距离中心点的问题。

假设有一个抛物线y=-1/4x^2,其中x为横坐标,y为纵坐标,则可以使用锐角三角函数求出抛物线的焦点距离中心点的距离为2。

首先,我们需要根据抛物线的模型求出抛物线的焦点坐标(0,1/2),然后通过三角函数来求出焦点距离中心点的距离,即a=√(0-1/2)^2+(1/2)^2=√2。

最后,锐角三角函数还可以应用于光学中,用来求解折射率等问题。

假设有一个简单的透镜系统,镜片一边入射面和出射面之间有n条光线,可以使用锐角三角函数求出透镜系统的折射率。

这里,我们可以先分别求出入射面和出射面的角度α1、α2,再用反射率的定义,即n1sinα1=n2sinα2,求出折射率n2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:锐角三角函数的实际应用
【基础知识回顾】
知识点1:锐角三角函数的概念(正弦、余弦、正切、余切)
技巧点拨:
①弦——分母都是斜边 ②正弦——分子是正对的边(谐音“正邪”) ③切——垂直的意思,只与直角边有关 ④正切——分子是正对的边 ⑤余——剩余的意思
余弦——分子是剩下的直角边(即邻边) 余切——分子是剩下的直角边(即邻边)
简记为:正弦——对比斜(或正比斜) 正切——对比邻 余弦——邻比斜
知识点2:常见的锐角三角函数值
三角函数 30°
45°
60°
技巧点拨
sinα
2
1 2
2 2
3 分母都是2,分子分别是
√13 cos α
23 2
2 2
1 分母都是2,分子分别是
3√1
tan α 3
3 1
3
分母都是3,分子分别是
3、1、3
【新课知识讲解】
知识点3:解直角三角形
1、解直角三角形的概念
在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

2、解直角三角形的理论依据
在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c
(1)三边之间的关系:222c b a =+(勾股定理) (2)锐角之间的关系:∠A+∠B=90°(三角形内角和) (3)边角之间的关系:(锐角三角函数)
b
a
B a b B c a B c b B a b A b a A c b A c a A ========
cot ,tan ,cos ,sin ;cot ,tan ,cos ,sin 知识点4:直击中考——解直角三角形的实际应用:测距、测高、测长等
例1、如图,直升飞机在跨河大桥AB 的上方点P 处,此时飞机离地面的高度PO =450 m ,且A ,B ,O 三点在一条直线上,测得∠α=30°,∠β=45°,求大桥AB 的长(结果保留根号).
【分析】
第一步:确定相关直角三角形
本题中∠α、∠β 分别在Rt ΔAOP 、Rt ΔBOP 中(由平行线内错角相等转化已知角) 第二步:分别在直角三角形中列出已知角的锐角三角函数值 第三步:代入已知条件求值,并简答 【答案】
由题意得,ΔAOP 、ΔBOP 均为直角三角形,
∠PAO=∠α=30°,∠PBO=∠β=45°,PO=450m 在RtΔAOP 中,tan ∠PAO=PO/AO 在RtΔBOP 中,tan ∠PBO=PO/BO 代入数值,计算得 tan ∠PAO=PO/AO=tan ∠α=
3
3
所以AO=3PO tan ∠PBO=PO/BO=tan ∠β=1 所以BO=PO AB=AO-BO=(3-1)PO=450(3-1)m 答:AB 长为450(3-1)m
例2、如图,已知两座高度相等的建筑物AB 、CD 的水平距离BC =60米,在建筑物CD 上有一铁塔PD ,在塔顶P 处观察建筑物的底部B 和顶部A ,分别测行俯角0
30,45==βα,求建筑物AB 的高。

(计算过程和结果一律不取近似值)
【分析】 P 第一步:确定相关直角三角形Rt ΔADP 、Rt ΔBCP 第二步:分别在直角三角形中列出已知角的锐角 三角函数值
第三步:代入已知条件求值,并简答 【解答】
由题意得:ΔA DP 、ΔBOP 均为直角三角形,
∠PBC=∠α=45°,∠PAD=∠β=30°,BC=AD=60m ,AB=CD 在RtΔA DP 中,tan ∠PAD=PD/AD 在RtΔBOP 中,tan ∠PBC=PC/BC 代入数值,计算得 tan ∠PAD=PD/AD=tan ∠β =
33 所以PD=3
3
AD tan ∠PBC=PC/BC=tan ∠α=1 所以PC=BC AB=CD=PC-PD=(1-
33)BC=(1-3
3)× 60m=(60-203)m
答:AB 长为(60-203)m
【技巧点拨】(1)此类题型解答步骤:
第一步:围绕题目中给出的已知角度、线段长度,构建合适的直角三角形,一 般需要确定两个直角三角形
注意:合适的直角三角形指的是包含已知角和已知线段的直角三角形,或者是先利用平行线性质、角度互余关系将已知角转化为其同位角、内错角或余角,包含这些转化后的角的直角三角形)
第二步:分别在两个直角三角形中利用已知角和已知线段(边)列出已知角的 锐角三角函数
第三步:代入数值计算,注意题目对计算结果的要求,并简要作答。

(2)常见数学模型总结:
模型①
P 已知角∠POA、∠POB
已知线段AB,求线段PO
或已知线段PO,求线段AB
——对应例1
点拨:利用RtΔAOP、RtΔBOP
O B A
模型②
P 已知角∠PAC、线段AB和BD,
求线段PC
点拨:利用RtΔACP、RtΔBDP
C A
D B
模型③
P 已知∠PAC、∠PBD,线段AB和BD,
求线段PC或PD
——对应例2
C A 点拨:利用RtΔACP、RtΔBDP
D B
模型④
P Q 已知∠APQ和∠BPQ,线段AB,
求线段PO
点拨;利用RtΔAPQ、RtΔBPQ
A
O B
模型⑤
P
已知∠PAO和∠BAO,
已知线段AO,求线段PB
B 或已知线段PB,求线段OA
点拨:利用RtΔAPO、RtΔABO
O A
【课堂练习】
为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.(提示:参照模型⑤)
【分析】
第一步:确定RtΔABD、RtΔACD
第二步:分别在RtΔABD、RtΔACD中,列出已知角∠ADB、∠ADC的正切值
tan∠ADB=AB/AD tan∠ADC=AC/AD
第三步:代入数值计算并作答
【解】由题意得:ΔABD、ΔACD均为直角三角形,且∠ADB=45°,∠ADC=60° AB=3m
在RtΔABD中,tan∠ADB=AB/AD
在RtΔACD中,tan∠ADC=AC/AD
代入数值计算得,AD=AB=3m,AC=3AD=33m
故BC=AC-AB=(33-3)m
【真题演练】
1、在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C 处(如图).现已知风筝A 的引线(线段AC )长20m ,风筝B 的引线(线段BC )长24m ,在C 处测得风筝A 的仰角为60°,风筝B 的仰角为45°.
(1)试通过计算,比较风筝A 与风筝B 谁离地面更高? (2)求风筝A 与风筝B 的水平距离.
(精确到0.01 m ;参考数据:sin45°≈0.707,cos45°≈0.707,
tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)
2、(9分)(2014•河南)在中俄“海上联合﹣2014”反潜演习中,我军舰A 测得潜艇C 的俯角为30°,位于军舰A 正上方1000米的反潜直升机B 测得潜艇C 的俯角为68°,试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,
1.7)(提示:参照模型④)
A
B
45° 60°
C
E
D
3、(2013年河南省)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角68BAE ︒∠=,新坝体的高为DE ,背水坡坡角60DCE ∠=︒。

求工程完工后背水坡底端水平方向增加的宽度AC .(结果精确到0.1米,参考数据:sin 680.93,cos 680.37,tan 68 2.50,3 1.73︒︒︒≈≈≈≈)(提示:参照模型①)
4、(2012年河南省)(9分)某宾馆为庆祝开业,
在楼前悬挂了许多宣传条幅,如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直固定,小明为了测量此条幅的长度,他先在楼前D 处测得楼顶A 点的仰角为31°,再沿DB 方向前进
16米到达E 处,测得点A 的仰角为45°,已知点C 到大厦的距离BC=7米,
90ABD ∠=︒,请根据以上数据求条幅的长度(结果保留整数.参考数据:tan310.6,sin310.52,cos310.86︒≈︒≈︒≈)(提示:参照模型①)
5、(2011年河南省)(9分)如图所示,中原福塔(河南广播电视塔)是世界第—高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D处,测得地面上点B的俯角α为45°,点D到AO的距离DG为10米;从地面上的点B 沿BO方向走50米到达点C处,测得塔尖A的仰角β为60°。

请你根据以上数据计算塔高AO,并求出计算结果与实际塔高388米之间的误差.(参考数据:3≈1.732,2≈1.414.结果精确到0.1米)。

相关文档
最新文档