公务员行测数量关系知识总结
行测数量关系公式大全
行测数量关系公式大全一、比例关系公式:1.同比例的两个量之积等于它们的一平方。
(a/b=c/d=>a*d=b*c)2.两个量成反比例,其乘积等于常数。
(a/b=c/d=>a*b=c*d)二、百分数关系公式:1.百分数x%等于小数x/100。
(x%=x/100)2.数x占总数y的百分比等于数x与y之比乘以100%。
(x/y×100%)3.两个百分比相加、相减等于数与数相加、相减。
三、平均数关系公式:1.平均数=和/个数。
2.和=平均数×个数。
四、利率、利息和本金关系公式:1.简单利息=本金×年利率×时间。
2.平均利率=总利息/总本金五、速度、时间和距离关系公式:1.速度=距离/时间。
2.时间=距离/速度。
3.距离=速度×时间。
六、面积和体积关系公式:1.长方形面积=长×宽。
2.正方形面积=边长×边长。
3.圆面积=π×半径的平方。
4.圆柱体体积=底面积×高。
5.球体体积=4/3×π×半径的立方。
6.锥体体积=1/3×底面积×高。
七、等差数列关系公式:1.第n项=首项+(n-1)×公差。
2.前n项和=(首项+末项)×n/2八、等比数列关系公式:1.第n项=首项×公比的(n-1)次方。
2.前n项和=(首项×(公比的n次方-1))/(公比-1)。
行测数量关系总结
行测数量关系总结引言在行政能力测验(行测)中,数量关系是一个非常重要的考点。
掌握数量关系的基本概念和解题方法,对于顺利完成行测至关重要。
本文将对数量关系的相关知识进行总结,并提供一些解题技巧和例题,帮助考生更好地备考行测。
基本概念1. 数字与数字关系在数量关系中,数字与数字之间常常存在一定的关系,如等差数列、等比数列等等。
了解这些数列的性质对于解题非常有帮助。
同时还需熟悉常见的数字规律,如数字之和、数字之差等等。
2. 图形与数字关系图形与数字之间的关系也是数量关系考察的一大重点。
常见的图形与数字关系有正方形、长方形、平行四边形、圆等等。
通过研究图形的边长、面积、周长等特征,可以得到有关数字的信息。
3. 符号与数字关系在数量关系中,符号与数字之间的关系也是需要考虑的。
例如,加减乘除符号与数字的关系,大小关系符号与数字的关系等。
正确理解并运用这些关系,对于解题至关重要。
解题技巧1. 善于列式计算对于涉及多个变量的数量关系题目,可以通过列式计算的方法来解决。
将问题中提到的所有变量罗列出来,并找出它们之间的关系,建立数学模型。
通过列式计算,可以更清晰地理解问题,并得到解题的思路。
2. 灵活运用代入法代入法是解决数量关系题目的一种常见方法。
当问题中给出了一些具体数值时,可以尝试将这些数值代入问题中,验证是否符合题意。
通过代入法,可以快速进行解答,并排除一些错误答案。
3. 注意单位的转换在数量关系中,有时会涉及到不同的单位之间的转换。
例如,将米转换为千米、将时速转换为米每秒等等。
在解题过程中,需要注意单位的转换,保持一致性,避免出现计算错误。
示例题目下面是一些典型的数量关系题目,供考生练习。
例题1:甲、乙、丙三人合作来完成一项工作,甲单独完成所需时间为6天,乙单独完成所需时间为8天,丙单独完成所需时间为12天。
如果三人一起合作完成该项工作,他们需要多少天?解答:甲、乙、丙三人一起合作的效率为:1/6 + 1/8 + 1/12 = 11/24。
公考行测数量关系考点总结
数量关系一、核心方法 (1)1.代入排除法 (1)2.数字特性法 (1)3.方程法 (1)4.赋值法 (2)5.线段法 (2)二、高频考点 (3)1.工程问题 (3)2.行程问题 (3)3.经济利润问题 (4)4.溶液问题 (5)5.排列组合与概率 (5)6.容斥原理问题 (7)7.最值问题 (7)8.几何问题 (8)三、专项考点 (9)1.时间问题 (9)2.统筹规划问题 (11)3.计数杂题 (12)一、核心方法1.代入排除法特征:题目有几个量,选项就有几个量与之对应,剩二代一必得答案。
方法:先排除,再代入。
先用奇偶、尾数、倍数等特性排除。
先代入简单好算的。
问最多从最多开始代入,问最少则从最少开始代入。
2.数字特性法2.1奇偶特性基础知识:加减法:同奇同偶才为偶,一奇一偶则为奇。
乘法:一个为偶则为偶,全部为奇才为奇。
2.2倍数特性适用范围:题目中含有“分数、百分数、倍数、比例、分组”等。
基础知识:1.常见形式:AB =mn, A:B=m:n ,A占B的mn等。
结论:A是m的倍数,B是n的倍数,(A±B)是(m±n)的倍数。
2.常见形式:y=ax+b(x为正整数)。
结论:(y-b)能被a整除。
3.方程法3.1普通方程设小不设大、设中间量、问谁设谁。
3.2不定方程第一类:未知数必须是整数的ax+by=M1.方法:分析奇偶、尾数、倍数等数字特性,尝试代入排除。
奇偶:a、b恰好一奇一偶尾数:a或b的尾数是5或0倍数:a或b与M有公因子。
2.不定方程组先消元转化为不定方程,再按不定方程求解。
第二类:未知数可以不是整数的多项式整体代换或赋零法:1)未知数的个数多于方程个数,且未知数可以不是整数。
2)答案是一个算式的值,而非单一未知数的值。
操作:赋其中1个未知数为零,从而快速计算出其他未知数。
尽量选取两式都有的量赋为0。
4.赋值法适用范围:题干中没有出现具体的值,条件都是以倍数、分数、百分数、比例等。
(完整版)行测数量关系知识点汇总
行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
行测数量关系知识点汇总2024
行测数量关系知识点汇总2024一、数字推理。
1. 等差数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。
- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。
2. 等比数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。
- 通项公式:a_n=a_1q^n - 1。
- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。
- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。
3. 和数列。
- 定义:通过相邻项相加得到下一项的数列。
- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。
- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。
4. 积数列。
- 定义:通过相邻项相乘得到下一项的数列。
- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。
- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。
5. 多次方数列。
- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。
公务员行测数量关系速算公式归纳
公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。
然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。
接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。
一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。
2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。
3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。
二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。
三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。
行测数量关系名词概念和公式汇总表
行测数量关系名词概念和公式汇总表以下是行测数量关系中一些重要的名词概念和公式:1. 路程问题基础公式:路程=速度时间2. 相遇追及型:追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间3. 环形运动型:反向运动:第N 次相遇路程和为N 个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N 次相遇路程差为N 个周长,环形周长=(大速度-小速度)×相遇时间4. 流水行船型:顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷25. 扶梯上下型:扶梯总长=人走的阶数×[1±(V 梯÷V 人)],顺行用加法,逆行用减法6. 火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)7. 队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间。
8. 往返相遇问题公式:同向相遇:路程和=(甲速+乙速)×时间反向相遇:路程和=(甲速+乙速)×时间相对运动相遇:路程和=(甲速+乙速)×时间9. 行程问题中的追及问题公式:直线追及:距离=(快速-慢速)×时间环形追及:距离=速度差×时间10. 行程问题中的过桥问题公式:过桥时间=车长/车速,过桥路程=车速×时间+桥长。
11. 行程问题中的流水行船问题公式:顺水速度=船速+水速,逆水速度=船速-水速,静水速度=(顺水速度+逆水速度)/2,水流速度=(顺水速度-逆水速度)/2。
12. 行程问题中的火车过桥问题公式:路程=桥长+车长。
公务员行测数量关系知识点整理
公务员行测数量关系知识点整理公务员考试中,行测的数量关系部分一直是众多考生的难点和重点。
数量关系涉及的知识点繁多,题型复杂,需要我们系统地学习和掌握。
下面就为大家整理一下常见的数量关系知识点。
一、数学运算1、整数特性整数特性是数量关系中的基础知识点。
包括整除特性、奇偶性、质数与合数等。
整除特性:若整数 a 除以非零整数 b,商为整数,且余数为零,我们就说 a 能被 b 整除。
比如,能被 2 整除的数的特征是个位是偶数;能被 3 整除的数,其各位数字之和能被 3 整除。
奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数。
质数与合数:质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。
合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。
2、方程与不等式方程是解决数量关系问题的常用工具。
通过设未知数,根据题目中的等量关系列出方程,然后求解。
一元一次方程:形如 ax + b = 0(a≠0)的方程。
二元一次方程组:由两个未知数,且未知数的次数都是 1 的方程组成。
不等式:用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个代数式的式子。
3、比例问题比例是指两个比相等的式子。
常见的有工程问题中的效率比、行程问题中的速度比等。
若 a:b = c:d,则 ad = bc。
4、行程问题行程问题是数量关系中的重点和难点。
基本公式:路程=速度×时间。
相遇问题:路程和=速度和×相遇时间。
追及问题:路程差=速度差×追及时间。
5、工程问题工程问题的核心是工作总量=工作效率×工作时间。
经常通过设工作总量为 1 或工作总量的最小公倍数来解题。
6、利润问题涉及成本、售价、利润、利润率等概念。
利润=售价成本,利润率=利润÷成本×100% 。
7、几何问题包括平面几何和立体几何。
行测数量关系知识点汇总
行测数量关系知识点汇总一、数字推理。
1. 基础数列。
- 等差数列:相邻两项的差值相等,例如:1,3,5,7,9,…,公差为2。
- 等比数列:相邻两项的比值相等,例如:2,4,8,16,32,…,公比为2。
- 质数数列:由质数组成的数列,如2,3,5,7,11,13,…- 合数数列:由合数组成的数列,如4,6,8,9,10,12,…- 周期数列:数列中的数字按照一定的周期重复出现,例如:1,2,1,2,1,2,…- 简单递推数列。
- 递推和数列:如1,2,3,5,8,13,…,从第三项起,每一项等于前两项之和。
- 递推差数列:如5,3,2,1,1,0,…,从第三项起,每一项等于前两项之差。
- 递推积数列:如1,2,2,4,8,32,…,从第三项起,每一项等于前两项之积。
- 递推商数列:如100,50,2,25,1/12.5,…,从第三项起,每一项等于前两项之商。
2. 多级数列。
- 做差多级数列。
- 对于数列不具有明显规律时,可先尝试做差。
例如数列:5,7,10,14,19,…,相邻两项做差得到2,3,4,5,…,是一个公差为1的等差数列。
- 做商多级数列。
- 当数列各项之间有明显的倍数关系时,可尝试做商。
如数列:2,4,12,48,240,…,相邻两项做商得到2,3,4,5,…,是一个公差为1的等差数列。
- 做和多级数列。
- 有些数列做和后会呈现出规律。
例如数列:1,2,3,4,7,11,…,相邻两项做和得到3,5,7,11,18,…,得到的新数列可能是质数数列或者其他有规律的数列。
- 做积多级数列。
- 数列中相邻项之间有乘积关系时适用。
比如数列:1,2,2,4,8,32,…,相邻两项做积得到2,4,8,32,256,…,做积后得到的数列可能有自身规律。
3. 幂次数列。
- 基础幂次数列。
- 要牢记常见的幂次数:1^2 = 1,2^2=4,3^2 = 9,4^2=16,5^2 = 25,6^2=36,7^2 = 49,8^2=64,9^2 = 81,10^2 = 100;1^3=1,2^3 = 8,3^3=27,4^3 = 64,5^3=125,6^3 = 216,7^3=343,8^3 = 512,9^3 = 729,10^3=1000等。
行测数量关系知识点整理
行测数量关系知识点整理1.能被2,3,4,5,6,整除的数字特点。
2.同余问题口诀:“差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。
①同余问题。
一个数除以4余1,除以5余1,除以6余1,这个数字是?(4,5,6的最小公倍数60n+1)②差同减差。
一个数除以4余1,除以5余2,除以6余3,这个数是?因为4-1=5-2=6-3=3,所以取-3, 表示为60n-3。
③和同加和。
“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。
最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。
3.奇偶特性。
奇±奇=偶奇±偶=奇偶±偶=偶奇×偶=偶奇×奇=奇偶×偶=偶;例:同时扔出A、B两个骰子,两个骰子出现的数字的奇为偶数的情形有多少种?解析:偶×偶C3.1*C3.1 + 奇×偶C3.1*C3.1+偶×奇C3.1*C3.1=27;4.一个数如果被拆分成多个自然数的和,那么这些自然数中3越多,这些自然数的积越大。
例如21拆分成3×3×3×3×3×3×3,比其他的如11×10要大。
5.尾数法。
①自然数的多次幂的尾数都是以4为周期。
3的2007次方的尾数和3的2007÷4次方的尾数相同。
②5和5以后的的自然数的阶乘的尾数都是0。
如2003!的尾数为0;③等差数列的最后一项的尾数。
1+2+3+……+N=2005003,则N是();A.2002 B.2001C.2008D.2009解析:根据等差公式展开N(N+1)=......6,所以N为尾数为2的数,所以选择A。
④在木箱中取球,每次拿7个白球、3个黄球,操作M次后剩余24个,原木箱中有乒乓球多少个?A.246 B.258 C.264 D.272解析:考察尾数。
公务员行测数量关系十大知识要点
数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。
如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。
行测数量关系公式大全
行测数量关系公式大全
行测中的数量关系是指通过对事物数量的分析和计算来解决问题的方法。
在行测中,关于数量关系的问题非常常见,因此掌握相关的公式和解题方法非常重要。
下面是行测中常用的数量关系公式:
一、基本数量关系公式:
1.两个数的比例关系:两个数a和b的比例关系表示为a:b,可以用分数形式a/b或者百分数形式a%表示。
2.百分数与小数的关系:100%=1或者1%=0.01
3.百分数、小数和分数的转化关系:百分数转化为小数除以100,小数转化为百分数乘以100,分数转化为百分数分子除以分母再乘以100或者分子除以分母再乘以100%。
4. 两个数的倍数关系:如果一个数a是另一个数b的倍数,可以表示成a = nb,其中n是整数。
二、增长和减少关系公式:
1.增长率的公式:增长率=(增长的数量/原来的数量)*100%。
2.减少率的公式:减少率=(减少的数量/原来的数量)*100%。
3.点数和百分数的关系:点数表示的是增长或减少的比例,1个点
=1%。
三、综合数量关系公式:
1.一对一关系:两个集合A和B中的元素一一对应,集合A中的元素个数等于集合B中的元素个数。
即,集合A和集合B的元数相等。
2.多对一关系:集合A中的一个元素对应集合B中的多个元素,集合B中的元素个数小于集合A中的元素个数。
3.多对多关系:集合A中的一个元素对应集合B中的多个元素,而集合B中的一个元素又对应集合A中的多个元素。
集合A和集合B的元素个数都可以不相等。
(完整版)行测数量关系知识点汇总
行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
公考行测——数量关系——知识点整理
公考行测——数量关系——知识点整理1. 数量关系题型介绍
- 数量关系题是公务员考试行测中的一种常见题型。
- 主要考查数量大小、比例关系、代数运算等方面的能力。
2. 数量大小比较
- 直接数量比较
- 利用已知条件推理数量大小关系
3. 比例与占比
- 比例概念及计算
- 百分比、千分比等占比问题
- 利率计算
4. 代数运算
- 四则运算
- 方程式求解
- 函数运算
5. 数列规律
- 等差数列
- 等比数列
- 找规律推理
6. 几何计算
- 平面图形面积、周长计算
- 立体图形表面积、体积计算
7. 逻辑推理
- 利用已知条件进行逻辑推理
- 排除无关选项
- 验证选项正确性
8. 题型技巧
- 注意题干中的限制条件
- 关注数据单位及换算
- 利用选项互斥性进行排除
- 审题细致,避免粗心错误
以上是公考行测数量关系部分的主要知识点整理,建议多加练习,熟练掌握解题思路和方法。
公务员考试行测数量关系:数学运算基础知识
①一个数能被2(或5)整除,当且仅当其末一位数能被2(或5)整除。
②一个数能被4(或25)整除,当且仅当其末两位数能被4(或25)整除。
③一个数能被8(或125)整除,当且仅当其末三位数能被8(或125)整除。
④一个数被2(或5)除得的余数,就是其末一位数被2(或5)除得的余数。
④一个数被9除得的余数,就是其各位数字和被9除得的余数。
7.标准质因数分解
①如果质数b是a的因数,则称b是a的质因数。
②将一个数写成它的质因数的乘积的形式,称为质因数分解。
③将这些质因数按照从小到大‘排列,称为标准(质因数)分解。
8.公倍数、公因数、最小公倍数、最大公因数及互质
①能同时整除一组数中的每一个数的数,称为这组数的公因数
②通分:将分数的分母化为相同;
③有理化:通过将分数的分子与分母同时乘以一个不为O的数(算式)的方法,将分母中的无理数(式)化成有理数(式)的方法,称为分数(式)的分母有理化。
4.整除基本知识点
①往下研究整除、倍数、因数(约数)、余数及其相关特性时,仅限于在整数范围内讨论(某些性质需要在正整数范围内讨论),不再重复说明;
②如果存在整数c,使整数a、b满足a=bc,则称b能整除a,a能被b整除。此时也称a为b的倍数,b为a的因数(也称b是a的约数);
③1是任何整数的因数,0是任何非零整数的倍数;
④在正整数中,除了1之外,只有l和它本身两个(正)因数的数称为质数,除了1和它本身之外,还有其他(正)因数的数称为合数。1既不是质数,也不是合数。
1.基本运算律
①加法交换律:a+b=b+a
②加法结合律:(a+b)+c=a+(b+c)
公考数量关系资料分析必背公式30条
数量关系必背公式 一、增长量和增长率 1、已知现期量和基期量,求增长量和增长率 2、已知基期量和增长量,求增长率和现期量 3、已知基期量和增长率,求增长量和现期量 4、已知现期量和增长量,求基期量和增长率 5、已知现期量和增长率,求基期量和增长量 6、已知增长率和增长量,求基期量和现期量 二、间隔增长率 三、混合增长率 六、平均数 二、行程问题 1、流水行船 3、混合浓度=混合前溶质的和/混合前溶液的和=(溶质1+溶质2)/(溶液1+溶液2) 4、巧用“十字交叉法”解决混合溶液问题 六、经济利润问题 1、收入=成本+利润 2、利润率=利润/成本 *100%【备注:数学运算中,除非题干特意说明,否则利润率均等于利润/成本。
但经济学方面、资料分析中未必如此,注意注意!】 3、收入=成本(1+利润率) 七、钟表问题 1.一个指针走完一圈3600,一个表盘3600;总共分为12个大格和60个小格;1个大格等于300,1个小格等于60; 2.时针每分钟走0.50,分针每分钟走60,速度差为5.50/分,速度之比为12:1; 3.时针与分针每小时出现2次直角,1次重合,一次180度;时针与分针每昼夜出现44次直角,22次重合,22次180度。
八、牛吃草问题 基础公式:y=(N-x)×t,其中y代表原草量,N代表牛的头数,x代表草生长的速度,t 代表牛吃完这片草所用的时间。
九、植树问题 1.单边线形植树公式(两端都植): 棵数=总长÷间隔+1 2.单边楼间植树公式(两端都不植): 棵数=总长÷间隔-1 3.环形植树公式: 棵数=总长÷间隔 十、方阵问题 1、n排n列的实心方阵:人数为n2。
2、n排n列的方阵:最外层有(4n-4)人。
3、无论是方阵还是矩形方阵,相邻两圈的人数都满足外圈比内圈多8人。
十一、过河爬楼问题 1、从地面爬到第n楼,需要爬n层。
2、从第m层爬到第n层,需要爬(n-m)层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
整除基本法则
其末一位的两倍,与剩下的数之差,或其末三位与剩下的数之差为7的倍数,则这个数就为7的倍数。
奇数位与偶数做差,为11的倍数,则这个数为11的倍数,或末三位与剩下的数之差为11的倍数则这个数为11的倍数。
末三位与剩下的数之差为13的倍数,则这个数为13的倍数。
末两位能被4和25整除,则这个数能被4和25整除。
末三位能被8和125整除,则这个数能被8和125整除。
有N 颗相同的糖,每天至少吃一颗,可以有2N-1种吃法。
和=12、同和:一个数除以4余3,除以5余2,除以6余1则取760n+7
3、差同:一个数除以4余1,除以5余2,除以6余3则取-360n-3
周期问题
一串数以T 为周期,且N
A =N …a 那么A 项等同于第a 项 等差数列(如几层木头,相连的奇偶数等)
和=2
(项数末项)首项⨯+=平均数×项数=中位数×项数
项数公式:项数=1+-公差
首项末项 级差公式:第N 项-第M 项=(N-M )×公差 调和平均数b
a a
b 2+ 十字交叉法
例题重量分别为A 与B 的溶液,其浓度分别为a 与b ,混合后浓度为r
浓度相关问题
溶液=溶质+溶剂浓度=溶质÷溶液溶质=溶液×浓度溶液=溶质÷浓度
多次混合问题核心公式
1
Cn=C 0×2Cn=C 0×距离12341往返平均速度=2
1212u u u u + 2、沿途数车问题核心公式
沿途时间间隔=21212t t t t +车速=人速=1
212t t t t -+ 3、漂流瓶问题核心公式
漂流所需时间=顺
逆顺逆t t t t +2 4、两次相遇核心公式
单岸型S=
2
321s s +两岸型S=3S 1-S 2S 表示两岸的距离 5、电梯运动问题能看到的电梯级数=(人速+电梯速度)×沿电梯运动方向运动所需时间
能看到的电梯级数=(人速-电梯速度)×沿电梯运动所需时间
几何基本公式
圆周长C 圆=2πr 圆面积S 圆=πr 2S 三角=21ahS 梯=2
1(a+b )hN 边形内角和=(N-2)×180° 几何特性:若一个几何图形其尺度为原来的M 倍则
面积M 2倍体积M 3倍
平面图形周长一定,越接近圆,面积越大
平面图形面积一定,越接近圆,周长越小
均如何量为Z 排列组合排列A 38=组合C 410D 1=0D 2=1D M 个人传第二接近的正整数便是传给自己的方法数
比赛问题:N 为人数
淘汰赛①仅需决出冠亚军比赛场次=N-1
②需要决出1、2、3、4名比赛场次=N
循环赛①单循环(任意两个打一场)比赛场次=C 2
N
②双循环(任意两个打两场)比赛场次=A 2
N
概率问题
1、单独条件概率=总的情况数
满足条件的情况数
2、某条件成立概率=1-不成立的概率
3、总体条件概率=满足条件的各种情况概率之和
4、分步概率=满足条件的各种情况概率之积
5、条件概率=“A成立”是B成立的概率=A、B同时成立的概率
植树问题
1、单边线型植树公式:棵树=总长÷间隔+1;总长=(棵树-1)×间隔
2、单边环型植树公式:棵树=总长÷间隔;总长=棵树×间隔
3、单边楼间植树公式:棵树=总长÷间隔-1;总长=(棵树+1)×间隔
裂增计数
如果一个量每个周期后变为原来的A倍,那么,N个周期后就是原来的AN倍
例:10分钟分裂一次(1个分裂为2个),经过90分钟,可有1分裂为几个
9
1、N
2、M
3、N
4
5
6
M
出现
T=T
T
利润率=利润÷成本=(售价-成本)÷成本=售价÷成本-1
售价=成本×(1+利润率)
成本=售价÷(1+利润率)
两位数乘法:
一个数乘以5可以看成乘以10除以2
例:42×48=2016
等于后两位数相乘,前两位数也相乘在加上十位上相同的数。
相同且互补(和为10)中间两边互补除外。