指、对数函数复习课件

合集下载

人教A版高中数学必修一 《指数》指数函数与对数函数PPT课件

人教A版高中数学必修一 《指数》指数函数与对数函数PPT课件

考点
学习目标
利用指数幂的性质化 理解指数幂的含义及其
简求值
运算性质
会根据已知条件,利用
条件求值问题
指数幂的运算性质、 根式的性质进行相关求
值运算
核心素养 数学运算
数学运算
问题导学 预习教材 P104-P109,并思考以下问题: 1.n 次方根是怎样定义的? 2.根式的定义是什么?它有哪些性质? 3.有理数指数幂的含义是什么?怎样理解分数指数幂? 4.有理指数幂有哪些运算性质?
A. (-5)2=-5
4 B.
a4=a
C. 72=7
3 D.
(-π)3=π
解析:选 C.由于 (-5)2=5,4 a4=|a|,3 (-π)3=-π, 故 A,B,D 项错误,故选 C.
2.化简( a-1)2+ (1-a)2+3 (1-a)3=________.
解析:由( a-1)2 知 a-1≥0,a≥1. 故原式=a-1+|1-a|+1-a=a-1. 答案:a-1
1
4 =
4 x3
1x3(x>0),
故③正确;对于④,x-13= 1 ,故④错误.综上,故填③. 3 x
答案:③
2.用分数指数幂的形式表示下列各式(a>0,b>0): (1)a2 a;(2)3 a2· a3;(3)(3 a)2· ab3;(4) a2 .
6 a5 解:(1)原式=a2a12=a2+12=a52. (2)原式=a23·a32=a23+32=a163. (3)原式=(a13)2·(ab3)12=a32a12b32=a32+12b23=a67b32. (4)原式=a2·a-56=a2-56=a76.
4.1 指 数
第四章 指数函数与对数函数

高考理科数学总复习课件对数与对数函数

高考理科数学总复习课件对数与对数函数
• (2020年全国卷II)题目:已知函数$f(x) = e^x - ax - 1$,若$f(x)$在$( \infty,0)$上单调递减,则$a$的取值范围是____。
• 解析:由题意得$f'(x) = e^x - a$,因为$f(x)$在$( - \infty,0)$上单调递减, 所以$f'(x) \leq 0$在$( - \infty,0)$上恒成立,即$a \geq e^x$在$( \infty,0)$上恒成立,因为$y = e^x$在$( - \infty,0)$上单调递增,所以$e^x < 1$,所以$a \geq 1$。
对数式化为指数式
根据对数的定义,如果$x=log_aN$,那么 可以转化为指数式$a^x=N$。
利用指数幂进行化简计算
利用指数幂的运算法则进行化简
根据指数幂的运算法则,如$a^m times a^n = a^{m+n}$,$(a^m)^n = a^{mn}$,$(ab)^n = a^n times b^n$等,对指数式进行化简计算。
02
03
用于化简复杂对数表达式。
用于证明对数恒等式。
04
05
用于求解对数方程。
02 对数函数图像与性质
对数函数图像特点
图像位于第一、四象限
对于底数大于1的对数函数,其图像位 于第一象限;对于底数小于1的对数函
数,其图像位于第四象限。
x轴为渐近线
对数函数的图像无限接近x轴,但永 远不会与x轴相交。
恒过定点(1,0)
所有对数函数的图像都经过点(1,0)。
单调性
底数大于1的对数函数在第一象限内 单调递增;底数小于1的对数函数在 第四象限内单调递减。
对数函数性质分析

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

一次函数y=kx(k>0),指数函数y=ax(a>1)和对数函数y=logbx(b>1)的增长有何差异?
一般地,无论k(k>0)、a(a>1)、b(b>1)如何取值,三种函数在区间(0,+∞)上都单调递增,但一次函数总是保持固定的增长速度;指数函数的增长速度都会越来越快,并且指数函数的函数值最终总会大于一次函数的函数值;对数函数的增长速度都会越来越慢,并且对数函数的函数值最终总会小于一次函数的函数值.
401
626
901
y2
2
32
1024
32768
1.05×106
3.36×107
1.07×109
y3
2
10
20
30
40
50
60
y4
2
4.322
5.322
5.907
6.322
6.644
6.907
【解析】(1)由于指数型函数的增长式为爆炸式增长,则当x越来越大时,函数y=的增长速度最快,故选A.
(2)从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,可知变量y2关于x呈指数函数变化.
x
y=2x
y=2x
0
1
0
2
4
4
4
16
8
6
64
12
8
256
16
10
1024
20
12
4096
24



可以看到,当自变量x越来越大时,y=2x的图象就像与x轴垂直一样,2x的值快速增长;而函数y=2x的增长速度依然保持不变,与函数y=2x的增长速度相比几乎微不足道.

高考数学总复习对数与对数函数PPT课件

高考数学总复习对数与对数函数PPT课件

1.已知 b>0,log5 b=a,lg b=c,5d=10,则下列等
式一定成立的是( )
A.d=ac
B.a=cd
C.c=ad
D.d=a+c
解析:选 B 由已知得 5a=b,10c=b,∴5a=10c,
∵5d=10,∴5dc=10c,则 5dc=5a,∴dc=a,故选 B.
2.已知 a=5log23.4,b=5log43.6,c=15log30.3,则(
当a>1, 0<b<1
或0<a<1, b>1
时,logab 为负数.
3.如何确定图中各函数的底数 a,b,c, d 与 1 的大小关系?你能得到什么规律?
提示:图中直线 y=1 与四个函数图 象交点的横坐标即为它们相应的底数,∴ 0<c<d<1<a<b,在 x 轴上方由左到右底数 逐渐增大,在 x 轴下方由左到右底数逐渐 减小.
a<0, 或log12-a>log2-a.
解得 a>1 或-1<a<0.
(4)当 a>1 时,f(x)=loga(8-ax)在[1,2]上是减函数,由 f(x)>1 恒成立,则 f(x)min=loga(8-2a)>1,
解得 1<a<83. 若 0<a<1 时,f(x)在 x∈[1,2]上是增函数, 由 f(x)>1 恒成立, 则 f(x)min=loga(8-a)>1, 且 8-2a>0,∴a>4,且 a<4,故不存在. 综上可知,实数 a 的取值范围是1,83. [答案] (1)C (2)C (3)C (4)1,83
(2)已知函数 f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所 示,则 a,b 满足的关系是( )

指数函数与对数函数(讲义)

指数函数与对数函数(讲义)

(一)基础知识回顾:1.二次函数:当¹a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab 2,下同。

,下同。

2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)∞)上随自变量增大函数值增大(简称递增)。

当a <0时,情况相反。

情况相反。

3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。

1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2). 2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-¹}和空集Æ,f (x )的图象与x 轴有唯一公共点。

轴有唯一公共点。

3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和Æ.f (x )图象与x 轴无公共点。

共点。

当a <0时,请读者自己分析。

时,请读者自己分析。

4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。

《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)

《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)
4.3 对 数
第二课时 对数的运算
第四章 指数函数与对数函数
考点
学习目标
核心素养
对数的运算 掌握对数的运算性质,能运用运算性 数学运算
性质 质进行对数的有关计算
了解换底公式,能用换底公式将一般
换底公式
数学运算
对数化为自然对数或常用对数
能灵活运用对数的基本性质、对数的 对数运算的
运算性质及换底公式解决对数运算 综合问题
栏目 导引
第四章 指数函数与对数函数
■名师点拨 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意 义时,等式才成立.例如,log2[(-3)·(-5)]=log2(-3)+log2(-5) 是错误的. 2.换底公式
logcb logab=__l_o_g_ca_____ (a>0,且 a≠1;c>0,且 c≠1;b>0).
栏目 导引
第四章 指数函数与对数函数
2. 1 1+ 1 1=________. log149 log513 11
解析:log14119+log11513=llgg419+llgg513=- -22llgg23+- -llgg53=llgg23+llgg53=lg13= log310. 答案:log310
)
A.8
B.6
C.-8
D.-6
解析:选 C.log219·log3215·log514=log23-2·log35-2·log52-2= -8log23·log35·log52=-8.
栏目 导引
第四章 指数函数与对数函数
4.已知
a2=1861(a>0),则
log2a=________. 3
解析:由 a2=1861(a>0)得 a=49, 所以 log3249=log23232=2. 答案:2

2025届高中数学一轮复习课件《对数函数》PPT

2025届高中数学一轮复习课件《对数函数》PPT
(2)因为 a,b,c 均为正数,将 a,b,c 分别看成是函数图象的交点的横坐标. 在同一平面直角坐标系内分别画出 y=2x,y=12x,y=log2x,y=log12 x 的图象如图.
由图可知 a<b<c.故选 A.
高考一轮总复习•数学
比较对数值大小的方法
第22页
高考一轮总复习•数学
第23页
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
1.对数函数的图象与性质 a>1
0<a<1
图 象
定义域 值域 定点 单调性 在(0,+∞)上 单调递增 函数值 当 x>1 时,y>0; 正负 当 0<x<1 时,y<0
第18页
对点练 1(1)(多选)已知函数 f(x)=loga(x-b)(a>0,且 a≠1)的图象如图所示,则以下说 法正确的是( )
A.-1<b<0
B.a+b>0
C.0<a<1
D.loga|b|<0
(2)已知 f(x)=lg x,作出函数 y=-f(x),y=f(-x),y=-f(-x),y=f(|x|),y=|f(x)|,y
3
2x-1的定义域为12,1.
高考一轮总复习•数学
第11页
4.(2024·吉林长春月考)函数 f(x)=lg(x2-2x-3)的单调递增区间为__(_3_,__+__∞_)__.
解析:设 g(x)=x2-2x-3,可得函数 g(x)在(-∞,1)上单调递减,在(1,+∞)上单调 递增,又由函数 y=lg(x2-2x-3)满足 x2-2x-3>0,解得 x<-1 或 x>3,根据复合函数的单 调性,可得函数 f(x)的单调递增区间为(3,+∞).

《指数》指数函数与对数函数PPT

《指数》指数函数与对数函数PPT
1.(1)整数指数幂的运算性质有哪些?
提示:①am·an=am+n;②(am)n=am·n;
m-n
③ =a (m>n,a≠0);(4)(a·b)m=am·bm.
(2)零指数幂和负整数指数幂是如何规定的?
1
提示:规定:a0=1(a≠0);00 无意义,a-n=(a≠0).
课前篇
自主预习
在幂的运算中,对于形如 m0 的式子,要注意对底数 m 是否为零进
行讨论,因为只有在 m≠0 时,m 才有意义;而对于形如
0
们一般是先变形为


,再进行运算.
-

的式子,我
课堂篇
探究学习
探究一
解:(1)
探究二
2
3
125
27
探究三
探究四
2
3 -3
5
=
33
5-2
=
=
32
思想方法
随堂演练
9
= 25.
(1)a+a-1; (2)a2+a-2; (3)a2-a-2.
1
1
分析:解答本题可从整体上寻求各式与条件 2 + 2 = 5 的联
系,进而整体代入求值.
1
解:(1)将2
1
2
-
+ = 5的两边平方,
得a+a-1+2=5,即a+a-1=3.
(2)由a+a-1=3,两边平方,得a2+a-2+2=9,


数, =|a|=
-, < 0.
课前篇
自主预习


2.填空

对数与对数函数-高考数学复习课件

对数与对数函数-高考数学复习课件
> 1,
故有ቊ
解得1< a ≤3.
6 − 2≥0,
(2)(2024·河南郑州模拟)设函数 f ( x )=ln| x +3|+ln| x -3|,则
f ( x )( A
)
A. 是偶函数,且在(-∞,-3)上单调递减
B. 是奇函数,且在(-3,3)上单调递减
C. 是奇函数,且在(3,+∞)上单调递增
因为0< a < b ,所以ln a <0,ln b >0,
所以0< a <1, b >1,
所以-ln a =ln b , 所以ln a +ln b =ln( ab )=0,
1
所以 ab =1,则 b = ,

2
所以 a +2 b = a + .

2
令 g ( x )= x + (0< x <1),
a >1
0< a <1
图象
定义域
(0,+∞)

值域
性质
R
过定点 (1,0)
,即 x = 1
时, y = 0

a >1
0< a <1
当 x >1时, y >0 ;
当0< x <1时, y <0

性质
在(0,+∞)上是 增


当 x >1时, y <0 ;
当0< x <1时, y >0




在(0,+∞)上是 减
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 对数与对数运算
1. 对数的概念
如果 ax = N ( a >0,且 a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作

第5节对数与对数函数2024高考数学一轮复习+PPT(新教材)

第5节对数与对数函数2024高考数学一轮复习+PPT(新教材)

(7)(2022·甘肃平凉月考)已知a>0且a≠1,若函数f(x)=loga(ax2-x) 在[3,4]上是减函数,则a的取值范围是_(_13__,_1_)__.
令g(x)=ax2-x, 1 ≥4, 当a>1时,由题意得 2a
无解,
g(4)=16a-4>0,
当0<a<1时,由题意得
21a≤3,
解得1<a<1,
M (2)loga N

_____lo_g_a_M__-__lo_g_a_N_________.
(3)logaMn=_____n_l_o_g_aM_____(n∈R).
4.换底公式 logab=llooggccba (a>0,且a≠1;c>0,且c≠1;b>0). 5.对数函数的概念 一般地,函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变 量,函数的定义域是(0,+∞)
6.对数函数的图象及性质
a的范围 图象
0<a<1
y
o1
x
a>1
y
o1
x
性质
定义域 值域 定点
单调性
___(_0_,__+__∞_)____
R 过定点__(_1_,_0_)______,即x=1____时,y0=
____
减函数
增函数
在(0,+∞)上是
在(0,+∞)上是
常用结论:
1.换底公式的三个重要结论
A .12
B. 1
C.7
1 a
+ 1 ,则5c=(
b D.
1
)
12
7
c=
1 a
+
1 b

指数对数函数复习PPT课件

指数对数函数复习PPT课件

06 总结与展望
复习内容的总结与回顾
定义
a^x (a>0, a≠1)
性质
单调性、奇偶性、周期性等
复习内容的总结与回顾
应用
增长模型、复利计算等
定义
log_a(x) (a>0, a≠1)
复习内容的总结与回顾
性质
单调性、换底公式、对数运算性质等
应用
数据压缩、信号处理等
复习内容的总结与回顾
定义
f(g(x))
对数函数的运算性质
对数的乘法公式
对数的除法公式
对数的指数公式
log_a (mn) = log_a m + log_a n
log_a (m/n) = log_a m - log_a n
log_a m^n = n * log_a m
对数的换底公式
log_b m = log_a m / log_a b
04 指数对数函数的综合应用
对未来学习的展望与建议
01
持续练习
02
通过大量的练习题,巩固和加深 对指数对数函数的理解和掌握。
THANKS FOR WATCHING
感谢您的观看
竞赛模拟题
已知函数f(x) = log_a(x^2),求f'(x) 的表达式。
已知函数f(x) = log_a(b^x),求f'(x) 的表达式。
已知函数f(x) = a^x + b^x + c^x, 求f'(x)的表达式。
已知函数f(x) = x^a + log_a(x),求 f'(x)的表达式。
性质
单调性、奇偶性等
应用
函数建模、数学分析等
对未来学习的展望与建议

指数与对数函数复习ppt课件

指数与对数函数复习ppt课件

小结:
• 1、了解对数及对数函数的定义。
• 2、掌握对数恒等式和运算法则,并能够灵 活用于计算。
• 3、掌握对数函数的图象和性质,能够熟练 应用图象和性质解题,注意和其它章节知 识的综合。
高考链接
3(2006)、log3 (log2 x ) 0,则x=__2__
4(2008)、设a=20.3,b log0.3 2,c 0.32则a,b,c 从大到小的顺序是 _a>_c>b

loga
M N
loga M
loga N
③ loga M P P loga M
(4)两个特殊的对数
常用对数:以10为底的对数叫做常用对数
a的常用对数记作____l_g_a__.
自然对数:以无理数e=2.718 28…为底的对数 叫做自然对数,N的自然对数记作 _____ln_N__
2. 对数函数的图象和性质
loga a 1
b aloga b
logam
bn
n
m
loga b
loga ab b
log c b
loga b logc a
1 loga b logb c logc a
(换底公式)
(3)积、商、幂、方根的的对数运算法则
(M>0,N>0,p∈R,a>0且a ≠ 1,)
① loga MN loga M loga N
5(2012)、若0<a<1,则y=ax与y loga x 在同 一个坐标系中的图像大致是(C )




y=ax
y
(0<a<1)
(0,1)
y=1
0
y=1 x

《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

解下列不等式:
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
栏目 导引
【解】
(1)由题意可得4x->x0>,0, x<4-x,
解得 0<x<2.
所以原不等式的解集为(0,2).
(2)当 x>1 时,logx12>1=logxx,
解得 x<12,此时不等式无解.
栏目 导引
第四章 指数函数与对数函数
2.已知 a=30.5,b=log312,c=log32,则(
)
A.a>c>b
B.a>b>c
C.c>a>b
D.b>a>cog312<0,0<c=log32<1,所以
a>c>b.
栏目 导引
解对数不等式
第四章 指数函数与对数函数
栏目 导引
第四章 指数函数与对数函数
与对数函数有关的值域与最值问题 已知函数 f(x)=loga(1+x)+loga(3-x)(a>0,且 a≠1). (1)求函数 f(x)的定义域; (2)若函数 f(x)的最小值为-2,求实数 a 的值.
栏目 导引
【解】
第四章 指数函数与对数函数
(1)由题意得31-+xx>>00,,解得-1<x<3.
栏目 导引
第四章 指数函数与对数函数
(3)因为 0>log0.23>log0.24, 所以 1 < 1 ,
log0.23 log0.24 即 log30.2<log40.2. (4)因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33=1, 同理,1=logππ>logπ3,即 log3π>logπ3.

指数对数函数复习课件

指数对数函数复习课件
指数函数
一般地,函数y=ax(a>0,且a≠1)叫做指数函数, 其中x是自变量,函数的定义域是R 指数函数的图象和性质(见下表)
a>1
0<a<1
图 象
(1)定义域:R

(2)值域(0,+∞)

(3)过点(0,1),即x=0时,y=1
(4)在R上是增函数
在R上是减函数
对数函数的图象和性质 对数函数y=logax的图象和性质分a>1及0<a<1两种 情况.
比较
3
log2 4

log

2
a
2+a+1
的大小,则有l_o_g_2_a2_+_a+_1_ __l_o_g_2_34 _
比较两个数的大小: 底数相同,直接利用单调性 底数不相同,利用0或者1搭桥 底数不相同,真数相同,可用图象或者进行换底后比较
;/naotanby 小儿脑瘫病因 新生儿脑瘫病因 脑瘫出现的原因
基础训练题
5如图中曲线C1,C2,C3,C4分别是函数y=ax,y=bx,
D y=cx,y=dx的图象,则a,b,c,d与1的大小关系是( )
(A)a<b<1<c<d (B)a<b<1<d<c (C)b<a<1<c<d (D)b<a<1<d<c
6.(1)若f(x)的图象与g(x)=
1 4
x
2
D
2.函数y=ax-2+(3 a>0,且a 1)的图象必经过点( )
A.(0,1) B.(1,1) C.(2,3) D.(2,4)
3.函数y=2x+1的定义域为 R ,值域为1,
基础训练题
4.比较60.7、0.76、log0.76 的大小,则有_6_0._7>0_._7_6>_lo_g_0.76

《对数与对数函数》指数函数、对数函数与幂函数PPT课件(对数函数的性质与图像)【品质课件PPT】

《对数与对数函数》指数函数、对数函数与幂函数PPT课件(对数函数的性质与图像)【品质课件PPT】

y= loga x PPT模板:/moban/
P P T背景:www.1ppt.c om /be ij ing/ P P T下载:www.1ppt.c om /xia za i/
资料下载:www.1ppt.c om /zilia o/
一般地,函数____________称为对数函数,其中 试卷下载:/shiti/
PPT教程: /powerpoint/
资料下载:www.1ppt.c om /zilia o/
个人简历:www.1ppt.c om /j ia nli/
试卷下载:www.1ppt.c om /shiti/
教案下载:www.1ppt.c om /j ia oa n/
手抄报:www.1ppt.c om /shouc ha oba o/
4.2 对数与对数函数 4.2.3 对数函数的性质与图像 第1课时 对数函数的性质与图像
第四章 指数函数、对数函数与幂函数
考点
学习目标
核心素养
理解对数函数的概念,会 对数函数的概念
判断对数函数
数学抽象
初步掌握对数函数的图
对数函数的图像
直观想象、数学运算
像与性质
对数函数的简单 能利用对数函数的性质
数学建模、数学运算
历史课件:www.1ppt.c om /ke j ia n/lishi/
问题导学
预习教材 P24-P27 的内容,思考以下问题: 1.对数函数的概念是什么?它的解析式具有什么特点? 2.对数函数的图像是什么,通过图像可观察到对数函数具有哪 些性质?
栏目 导引
第四章 指数函数、对数函数与幂函数
对数函数
历史课件:www.1ppt.c om /ke j ia n/lishi/

第4章 指数函数与对数函数(复习课件)高一数学(人教A版2019必修第一册)

第4章 指数函数与对数函数(复习课件)高一数学(人教A版2019必修第一册)

9=
7.
典例
例 1 (2)已知 log ax=4,logay=5,试求 A
1
解法一 log a A
1 5
2 6
2
2
1
1
+ 3 - 2 log -2log
log
log - 3 log
故 A=1.
1
5
2
6
2
× 4- 3 × 5 =0.
解法二∵log ax=4,loga y=5,∴x=a 4,y=a5 ,
以有2m-3<1,解得m<2.故实数m的取值范围为(-∞,2).
解题技巧
1.求定义域注意事项
(1)分母不等于零;(2)偶次方根大于等于零;(3)对数
函数中真数大于零.
2.一般采用换元法转化为两个函数,再利用两个函数的单调性
与图像求值域,换元后注意新元范围.
3.分别判断a,b,c与0和1的大小,利用中间量法比较大小.
5
=lg 5(lg 5+lg 2)+2lg 2-lg 2+1-2
=lg 5+lg 2-1=1-1=0.
题型二 指数函数、对数函数的定义和性质
典例
例 2 (1)求函数 f(x)
3 2
1-3
lg(3
1-3
>
0,
解:要使函数有意义,则
解得
3 + 1 > 0,
1 1
故函数f(x)的定义域为 - 3 , 3 .
4. 恒成立问题,采用分离参数,转化为求最值问题.
专题三
指数函数、对数函数图象的应用
典例
例3(1)已知a>0,且a≠1,函数y=ax与y=loga(-x)的图象可能是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习指数函数、对数 函数的图象和性质
怎 么 考?
1.“指数、对数函数的图象、性质 ”是每年高考的必考内容,
常以选择题、填空题的形式考查; 2.或与其他知识交汇以解答题的形式考查其综合应用,同时考 查分类讨论、数形结合、函数与方程思想.
环节一:师友复习讨论
复习要点: 1、两个函数的图象特征 2、类比两个函数的性质
1.(2013年高考山东卷(文))函数 的定义域为 ( A.(-3,0] C.

B.(-3,1] D.
【答案】A
环节四:师友互助检测
2.函数y=lg|x| ( ) A.是偶函数,在区间(-∞,0)上单调递增 B.是偶函数,在区间(-∞,0)上单调递减 C.是奇函数,在区间(0,+∞)上单调递减
D.是奇函数,在区间(0,+∞)上单调递增
环节四:师友互助检测
解析:分别作出三个函数的图象,如图所示: 由图可知,x2<x3<x1.
答案: A
环节五:师友归纳
师友互问: 今天你学到了什么? 有那些收获?。。。。。。
环节六:布置作业
1、函数f(x)=log2x2的图象的大致形状是( )
答案:B
环节四:师友互助检测
3、 (2012· 烟台调研)函数y=ln(1-x)的图象大致为( )
答案:C
环节四:师友互助检测
4、已知函数f(x)=ln x,g(x)=lg x,h(x)=log3x,直线y= a(a<0)与这三个函数的交点的横坐标分别是x1,x2,x3,则 x1,x2,x3的大小关系是 A.x2<x3<x1 C.x1<x2<x3 ( ) B.x1<x3<x2 D.x3<x2<x1
C.b>a>cD.c>来自>b答案:B环节三:教师点拨
例3(2014辽宁)已知 a 2 则( ) A. a b c C. c a b


1 3b
1 1 log 2 , c log 1 3 2 3
B. a c b D.
cba
答案:C
环节四:师友互助检测
环节四:师友互助检测
2 A.0,3
)
2 B.3,0
C.(1,0)
答案:B
D.(0,1)
环节三:教师点拨
考点一
图象应用
例1、(2013 年高考福建卷(文))函数 的图象大致是 ( )
A.
【答案】A
B.
C.
D.
环节三:教师点拨
考点二 性质的应用
[例2] (2011· 天津高考)已知a=log23.6,b=log43.2,c= log43.6,则 A.a>b>c B.a>c>b ( )

[1,1) (1, ) D.
【答案】C
环节二:师友互助强化基础
log 1 x, x 1 2.(2013年高考北京卷(文))函数f(x)= x 2 x 1 2 ,
的值域为_________.
【答案】(-∞,2)
环节二:师友互助强化基础
3.函数 y=loga(3x-1)(a>0,a≠1) 的图象必然经过点 A,则 A 点坐标 是 (
函数
图象
a>1
y ax
(a>0且a 1)
0<a<1
y loga x
(a>0且a 1)
环节二:师友互助强化基础
lg( x 1) 1.(2013年高考广东卷(文))函数 f ( x) x 1
的定义域是( ) A. (1, ) B [1, ) C.(1,1) (1, )
相关文档
最新文档