沉积相的研究方法与沉积作用

合集下载

沉积学的研究进展及其应用

沉积学的研究进展及其应用

沉积学的研究进展及其应用沉积学是研究沉积物的组成、特征、成因及环境演化过程的一门学科。

沉积学的研究对象是全球范围内的各种沉积物,包括海洋、湖泊、河流和沙漠等地质环境。

沉积学的繁荣与地质学、环境科学、生态学等学科密切相关。

随着科学技术的不断进步,沉积学的研究持续推进,涌现出许多新的研究成果,广泛应用于资源开发、环境保护和地质灾害预测等领域。

一、沉积学的基本概念1. 沉积物的定义沉积物是指初始状态在液体或气体中悬浮的物质,经过重力作用沉降并固结形成的固体物质。

沉积物的形成包括物质的输入、输运、沉积和固结四个过程。

沉积物的类型包括沉积岩、沉积物和表生层。

2. 沉积相的分类沉积相指沉积物在发生时所处的水或地理环境,包括海相、湖相、河相和沙漠相等。

不同沉积相的物质来源、沉积速率、沉积物质量和物质组成等特征均不相同。

3. 沉积学的研究方法沉积学是一门综合性学科,需要借助各种手段进行研究。

例如,通过样品采集和实验室分析技术来研究沉积物的颗粒组成和结构、沉积速率和时代、沉积相和成因等。

同时,地球物理学、地球化学、古生物学等学科也为沉积学提供了有力的研究方法。

二、沉积学的研究进展1. 沉积物的源和作用沉积物的源是河流、山脉、冰川、火山和陆地等多种因素共同作用的结果。

研究沉积物的来源有助于了解形成这些物质的原因和过程,并指导资源勘探和管理。

除了源的研究,土地利用、气候变化和人类活动等因素也会影响沉积物的形成、堆积和演变。

对这些因素的深入研究有助于更好地预测、评估和管理环境问题。

2. 沉积物的成因沉积物的成因主要包括物理沉积和化学沉积两种。

物理沉积指的是重力、水流、风力和冰雪等作用下物质由高处向低处沉积。

化学沉积则是指物质通过水文、气体或生物作用形成新的化合物。

了解这些沉积物成因有助于确定沉积物古气候和古环境,帮助识别矿物资源和石油天然气等。

3. 沉积物的组成和特征沉积物的组成和特征在很大程度上受到其来源、沉积环境和时间等因素的影响。

沉积相的研究方法

沉积相的研究方法

沉积相的研究方法摘要:沉积相的研究方法。

关键词:沉积相;沉积岩;沉积物;岩石;测井;地震;沉积相的研究方法很多,归纳起来主要有以下几类:一、地质方法:①沉积岩和沉积物的研究:利用各种方法和技术研究沉积岩和沉积物的岩性、结构和构造,确定岩石类型,分析其成因。

②沉积相分析:在了解盆地结构、构造和演化历史的基础上,通过区域对比,综合应用沉积岩和沉积物的颜色、岩性、结构和构造等特征,分析沉积相,恢复古地理和古环境。

③建立相模式:在大量沉积相研究的基础上总结出可以起到标准、对比和预测作用的相模式。

二、地球物理方法:特定的岩石,具有特定的物理响应,因此用反演的方法,根据岩石的物理响应可以研究其岩性特征,所以可以用地球物理方法来研究沉积学的某些问题。

用地球物理方法来研究沉积相可分为测井和地震两种方法。

①测井相分析法:测井相分析的基本原理就是从一组能够反映地层特征的测井响应中,提取测井曲线的变化特征,包括幅度、形态等定性方面的曲线特征以及定量方面的测井参数值来描述地层的地质相,运用各种模式识别方法,利用测井相进行地层的岩性、沉积环境等方面的研究。

测井相分析的基本步骤为:a.建立测井曲线和测井参数与沉积相的对应关系;b.选择测井曲线和测井参数,并对之进行深度较正和环境影响较正;c.对所选择测井曲线和测井参数进行主成份分析;d.对主成份进行聚类分析;e.对测井相进行判别归类,确定最终测井相,最终测井相具有单一的地质特征,与沉积相有很好的对应关系。

②地震相方法:根据地震相参数如振幅、连续性、频率、内部结构、外部形态和层速度等可确定地震相类型和空间展布范围。

在实际工作中,常选择可信度较高的地震反射内部结构和外部形态作为地震相类型的主要依据,其它参数作为辅助参数。

在把地震相向沉积相平面转化的过程中可确定沉积体系的成因类型,在转相过程中应与盆地古地理背景结合、充分利用钻、测井资料与地震相之间的内在联系。

目前已建立各种地震相模式与其相应的相参数。

沉积相的研究方法与作用_测井相的识别与模式

沉积相的研究方法与作用_测井相的识别与模式
第二节 测井相的识别与模式
油气勘探与开发始终都离不开对测井资料的分析与研究。而测井 相分析依据不同的测井资料进行沉积相的识别与研究,因此它是地 下储层沉积相识别的基础手段之一,也是进行小层对比的最基本、 最直接的依据。
一、概述
微相是沉积体系中最基本的构成单元,反映了沉积条件基本一致 情况下形成的沉积岩。不同微相的沉积特征在测井资料中有所反映 和表现的观点,是测井识别沉积微相的基础。
Serra的划分为测井相研究奠定了良好的基础,但在具体 分析时,还应考虑其组合特征等。马正1981年根据我国油 田的实际情况,依据测井曲线幅度、形态、接触关系、平 滑程度以及组合关系进行了分类(图3-15),这一分类对 我国的陆相沉积更具有意义。
(四)组合类型
测井曲线的组合形式包括幅变组合与形态组合(表3-3)。幅变组 合包括加速幅变、均匀幅变和减速幅变,形态组合包括箱形-钟形组 合、漏斗形-箱形组合、指形-漏斗形组合、箱形-钟形-漏斗形组合以 及齿形-箱形-钟形-漏斗形组合等(图3-15),不同的组合特征可以 更好地反映地层的沉积环境。
表3-2 不同测井曲线在油气储层研究中的作用
测井系列
自然电位 (SP)
自然伽玛 (GR)
声波 (AC)
密度 (DEN)
中子 (CNL)
电阻率 /感应
直接作用
计算地层水电阻率 和指示渗透性
定量计算泥质含量 及地质对比
定量计算孔隙度、地震层速度 及声阻抗
计算孔隙度,间接地计算烃密度, 以及波阻抗
计算岩层的孔隙度
砂泥岩剖面,砂岩的泥质含量与沉积环境密切相关:高能环境, 水体强烈簸选,形成相对粒级较粗的纯净砂岩,SP/Gr幅度大;低 能环境,泥质得以沉积,形成纯泥岩,其SP/Gr幅度与基线一致, 故SP/Gr的相对高低,可判断砂岩中泥质含量的多少和沉积环境能 量的强弱。

沉积微相研究方法

沉积微相研究方法

一、沉积微相研究方法沉积微相研究可从以下几个方面入手:1.1.基础地质资料当在一定的区域范围内对某一地层单位进行沉积相或沉积微相或沉积环境分析时:1.1.1应从最基础的地质工作入手,研究岩层本身的性质,诸如成分、颜色、结构、沉积构造、分选性、组成颗粒的特征(圆度、球度、表面微观特征)、层序特征(如向上变细或向上变粗,交互层等),分析其岩相特征。

1.1.2应仔细研究岩层中所含的各种生物化石的特征,尤其是生态特征,它可以更多地反映古生物的生存环境。

这里所讲的生物化石也包括各种遗迹化石,在许多情况下,生物遗迹化石更为常见,其重要性已为大家所共识。

这些工作主要依靠大量的野外露头观察和钻井岩芯描述来进行。

1.1.3 如果条件允许,在进行相分析时应将其与地球物理方法相结合。

1.2利用地球物理测井资料目前,利用地球物理测井资料进行相分析,已成为研究工作中不可缺少的重要手段之一。

1979年,法国地质学家O.Serra首先提出“电相”(即测井相),他定义“电相”是:表征地层特征,并可使该地层与其它地层区分开来的一组测井响应特征。

“电相”分析就是利用各测井响应的定性特征和定量参数来描述地层的沉积相。

能用于沉积相分析的测井资料,如视电阻率、自然伽马、声波时差、感应等近十种测井信息,其中以自然电位、电阻率和自然伽马曲线在相分析中的效果最为理想。

在研究中主要利用曲线的幅度、形态、组合形态,适当参照接触关系和次级关系等参数,并密切与岩芯和岩屑录井资料相结合。

1.3 综合分析的方法除此之外,利用地震资料、地球化学分析资料等也可以对沉积相进行研究。

当然,地质科学是一门综合性很强的科学,对于古代沉积相和沉积体系的研究,需要利用各种手段,也就是综合的方法,而不是单纯依赖某一种方法。

事实上,由于自然环境的复杂性和各种地质作用之间的相互作用与影响,对地层记录的认识很不容易,需要考虑的因素很多,决不能失之于片面、主观。

研究工作要结合研究区目的层的特征,大量搜集野外及室内资料,通过取芯井详细的岩芯描述和室内测井沉积相的划分,并结合岩芯分析测试资料对研究区目的层先建立单井沉积微相柱状剖面,然后通过连井剖面分析,最后作出平面沉积微相展布图。

沉积岩与沉积相内容简介

沉积岩与沉积相内容简介

沉积岩与沉积相Sedimentary Rocks and Facies一、内容提要第一部分:前言第二部分:分析原理与方法第三部分:碎屑岩岩石学与沉积相第四部分:碳酸盐岩岩石学与沉积相二、主要内容1、古环境恢复方法与所用资料主要方法:垂直相序列(Vertical Facies Profile)沃塞尔相律(Walther's Law)沉积模式(Depositional Model)物源与古流分析(Provenance and Paleocurrent)地震地层(Seismic Stratigraphy)层序地层(Sequence Stratigraphy)构造—沉积体系分析(Tectonics-Depositional System)主要资料:野外露头资料(Outcrops)岩心资料(Cores)岩屑资料(Sieve residue log)地球物理测井资料(Geophysical Logging)地球物理勘探资料(Geophysical Exploration)实验室分析资料(Laboratory data)2、沉积环境解释参数物理参数(Physical parameters):沉积构造(Sedimentary structures), 颗粒特征及分布(Grain and grain size distribution)生物参数(Biological parameters):生物成因构造(Biogenic structures), 生物化石及生态特征(fossils and Paleocology)化学参数(Chemical parameters): 岩性(Lithology), 岩矿(Minerals), 氧化还原电位(Oxidation-Reduction Potential),酸碱度(Acidicity-Alkalinity),盐度(Salinity),温度(Temperature)3、主要沉积体系及相构成冲积扇体系河流体系扇三角洲体系三角洲体系碎屑海岸体系碳酸盐岩台地体系深水扇体系4、地质应用对于地质勘探:平面及剖面相关系;确定有利勘探目标;寻找隐蔽及岩性圈闭;储层评价;对于地质研究:了解古代及近代地理变迁;沉积盆地的充填样式及其对构造活动与气候变化的响应;湖泊及海洋的水介质特征;5、学习方法整体分析(Integrated analysis):概括各种资料--岩心(cores),录井(logging),地震(seismic),露头(outcrops),化验资料(laboratory data),古生物(paleontology)层次分析(Gradation of analysis):盆地尺度(Basin scale), 油藏尺度(Oil reservoir scale), 油层尺度(Oil layer scale)6、课程目的及意义意义:一直作为地质研究的热点尽管沉积物与沉积岩只占岩石圈体积的5%,但地球表面的75%被沉积物与沉积岩覆盖。

沉积相分析方法论述

沉积相分析方法论述

沉积相分析方法论述沉积相分析是指通过研究沉积物中的物理特征、岩相组成及生物群落等,确定沉积环境的方法。

该方法旨在揭示沉积作用背景下的地貌发展、气候演变等地球科学领域的问题。

沉积相分析方法日益成为地质勘探、资源开发和环境保护等领域的关键技术之一,并逐渐成为石油地质、地质灾害等领域最为常用的技术。

沉积相分析主要使用多种地质、生物学方法,以较为清晰的序列——沉积剖面(又称震源资料组)为基础,分析沉积相和物源分布情况。

常用技术包括多波束测深、岩芯、化石、地球化学、地震记录等多种方法。

其中,多波束测深技术可以获取海底地形、海沟、海峡、海岸线、水深等地质信息,为沉积相分析提供了可靠的数据。

岩芯是从地下岩层中取出的实际的岩石样品,由于取样深度的不同,能够记录不同时间、地层各自的沉积过程,是研究沉积相的最为直接的方式之一。

通过对岩芯中颗粒的分析,可以定量地描述颗粒粒度、成分和有机质含量,从而确定沉积相、古环境等信息。

生物群落的研究方法是通过对不同时间、环境下生存的动植物的化石、遗骸以及痕迹化石的分析,来确定当时的生物特征,进而判断出沉积相环境。

这种方法仅适用于古生物群的研究,具有很好的地层区划及环境指示意义。

地球化学方法是通过岩芯分析,特别是对其中某些元素含量和组成、同位素等进行的分析,来推导出岩石的成因、沉积环境变化、地球物理学参数等方面的信息。

沉积相分析方法的基本原理是,通过分析不同时间和空间的沉积物,推断出当时地理环境及其特征,从而确定相应的沉积相。

常用的沉积相有低地沉积相、海侵沉积相、海岸沉积相、河流沉积相等。

其中,低地沉积相多由淤泥、砂、卵石等非生物成分组成,是一种比较平静的环境;海侵沉积相是海水侵入陆地形成的沉积相;海岸沉积相是位于海岸或岛屿沿岸的沉积相;河流沉积相是由河流带来的泥沙沉积形成的沉积相。

沉积相研究是探索地球演化规律的必不可少的技术。

通过对沉积剖面的分析,可以研究区域地貌演化,为勘探油气资源、矿产资源、水资源等提供依据。

沉积相和沉积体系分析报告

沉积相和沉积体系分析报告

沉积相和沉积体系分析报告1. 引言沉积相和沉积体系是描述地质研究中重要的概念。

沉积相是指一定时间和空间范围内形成的沉积特征和岩石特征的综合,而沉积体系则是沉积相在相互关联的空间上的总体表现。

本报告旨在对沉积相和沉积体系进行分析和解释。

2. 沉积相的定义沉积相是指在一定时间和空间尺度内具有相似沉积特征的地质单元。

它反映了在该地区沉积作用发生时的物理、化学和生物环境条件。

沉积相的研究对于研究过去的环境条件、沉积作用的影响以及油气和矿产资源的勘探与开发具有重要意义。

沉积相可以根据沉积构造、沉积物类型、沉积结构和岩石组合等方面进行划分和定义。

常见的沉积相包括三角洲相、海滨相、湖相、河道相等。

不同的沉积相具有不同的特征和沉积物组合,可以通过地层剖面、物相图和地球物理资料等进行识别和解释。

3. 沉积体系的定义沉积体系是指在一定时间和空间尺度内具有一致性的沉积相相互组合形成的地质体系。

它是由多个沉积相所组成的,反映了不同沉积相之间的空间和时间关系。

沉积体系的研究对于解释区域地质演化、预测沉积物储量分布等具有重要意义。

沉积体系可以根据主导沉积相、地貌和沉积层序等特征进行划分和描述。

常见的沉积体系包括海陆过渡体系、断陷湖盆体系、潮汐沉积体系等。

不同的沉积体系具有不同的沉积相组合和沉积构造,可以通过钻井、地震资料和岩心分析等进行研究和解释。

4. 沉积相和沉积体系的分析方法4.1 相关地质图件分析方法 - 根据地层剖面图、物相图和陆地地貌图等进行沉积相的识别和分析。

- 利用电子显微镜、红外光谱仪和X射线衍射分析仪等设备对沉积岩样本进行岩相和矿物分析。

4.2 钻井分析方法 - 通过钻井岩心的不同组分、厚度和孔隙度的变化,来判断不同沉积相和沉积体系的存在与分布。

- 利用钻井测井资料,如自然伽马、电阻率和声波测井数据,解释沉积体系的特征和性质。

4.3 地震资料解释方法 - 利用地震反射波的振幅、频率和相位等信息,分析沉积体系的展布、结构和时空变化。

地层的沉积相及沉积环境

地层的沉积相及沉积环境

地层的沉积相及沉积环境地层是地球表面不同岩石的堆积序列,其中沉积岩层是沉积岩和沉积物构成的。

地层的沉积相和沉积环境描述了这些沉积物的特征和形成背景。

了解地层的沉积相和沉积环境对于研究地质历史、资源勘探和环境保护都具有重要意义。

沉积相沉积相是指沉积物在沉积过程中所表现的不同特征,反映了沉积物的组成、结构、纹理和化学性质。

根据沉积物质的不同特征,可以将地层划分为不同的沉积相。

常见的沉积相包括:水下沉积相水下沉积相是指在水下环境中形成的沉积相,如海相、湖相和河相。

海相沉积物通常具有明显的海底沉积结构,如潮汐沉积、浪潮沉积和海底碎屑沉积。

湖相沉积物则呈现出平静水体的特征,如泥页岩和石灰岩。

河相沉积物则主要是由河流带来的碎屑颗粒构成的。

陆相沉积相陆相沉积相是指在陆地环境中形成的沉积相,如沙漠相、冲积扇相和盆地相。

沙漠相沉积物主要由风力作用形成的砂岩、页岩和泥岩组成。

冲积扇相沉积物是由山脉中的河流带来的碎屑颗粒在冲积扇上堆积而成的。

盆地相沉积物主要是在构造盆地中形成的,沉积物类型多样,包括泥岩、煤炭、盐岩和石灰岩等。

沉积环境沉积环境是指沉积物堆积的具体地理位置和特定环境条件,包括盆地、海陆界面和陆相地表等。

沉积环境不仅影响着沉积相的形成,还决定了沉积岩层的分布和性质。

海相沉积环境海相沉积环境主要包括近岸海域、大陆架和深海盆地等。

近岸海域是沉积物最活跃的区域,常见的沉积物有砂岩、页岩和泥岩。

大陆架是海底浅海区域,在这里形成的砂岩和碳酸盐岩通常与生物作用有关。

深海盆地是海水深埋的区域,常见的沉积物包括深海碳酸盐岩和热液沉积物。

陆相沉积环境陆相沉积环境主要包括河流、湖泊、沙漠和冰川等。

河流是地表水体流动的区域,河流带来的碎屑颗粒在这里堆积形成沉积岩。

湖泊是由于地形或气候变化而形成的静止水体,主要沉积物有泥岩和煤炭等。

沙漠是干旱地区的沉积环境,主要沉积物是风成沉积岩。

冰川是寒冷地区的沉积环境,主要沉积物有冰碛石和冰碛土。

沉积岩沉积相要点自己总结

沉积岩沉积相要点自己总结

沉积岩沉积相要点第一章绪论1.沉积岩:是组成岩石圈的三大类岩石(岩浆岩、变质岩、沉积岩)之一。

它是在地壳表层的条件下,由母岩的风化产物、火山物质、有机物质等沉积岩的原始物质成分,经过搬运作用、沉积作用以及沉积后作用而形成的一类岩石。

2.地壳表层:指大气圈的下层、水圈和生物圈的全部以及岩石圈的上层,称“沉积岩生成圈”或“沉积圈”。

3.沉积岩的原始物质来源:陆源物质,生物源物质,深源物质,宇宙源物质。

第二章沉积岩的形成与演化1.风化作用:是地壳最表层的岩石在温度变化、大气、水、生物等因素的作用下,发生机械破碎和化学变化的一种作用。

(风化作用的地壳表层岩石的一种破坏作用。

)2.物理风化作用:岩石主要发生机械破碎,而化学成分不改变的风化作用。

3.化学风化作用:在氧、水和溶于水中的各种酸的作用下,母岩遭受氧化、水解和溶滤等化学变化,使其分解而产生新矿物的过程。

4.母岩风化的四个阶段:破碎阶段、饱和硅铝阶段、酸性硅铝阶段、铝铁土阶段。

5.母岩风化产物的类型:碎屑残留物质、新生成的矿物、溶解物质。

6.风化壳:由风化残余物质组成的地表岩石的表层部分,或者说已经风化了的地表岩石的表层部分。

7.层流:一种缓慢流动的流体,流体质点作有条不紊的平行线状运动,彼此不相掺混。

8.紊流:一种充满了漩涡的多湍流的流体,流体质点的运动轨迹极不规则,其流速大小和流动方向随时间而变化,彼此相互掺混。

9.尤尔斯特隆图解:(1)颗粒开始搬运的水流速度要比继续搬运所需的流速大,这是因为始动流速不仅要克服颗粒本身的重力,还要克服颗粒间的吸附力才能发生移动。

(2)0.05~2mm的颗粒所需始动流速最小,而且始动流速与沉积临界流速相差也不大。

这说明沙粒质点在流水中搬运时很活跃,容易搬运也容易沉积,故常呈跳跃式前进。

(3)大于2mm的颗粒其搬运与沉积的两个流速曲线更接近,但两者的流速值也都是随着粒径的增大而增加。

故砾石不能长距离搬运,并多沿河底呈滚动式前进。

微量元素、常量元素、稀土在研究沉积环境和沉积相中的作用和意义

微量元素、常量元素、稀土在研究沉积环境和沉积相中的作用和意义

微量元素、常量元素、稀土在研究沉积环境和沉积相中的作用和意义常量元素, 微量元素▲常量元素:一般地球化学书中将O、Si、Al、Fe、Ca、Mg、Na、K、Ti 等9种元素列入常量元素,但是因为不同地区各元素含量相对富集程度可能不同,所以在对常量元素归类的时候也应考虑实际区域资料和研究目的。

在沉积相的应用中是要根据上述元素的化合物含量和分布规律来作推测的,主要包括两个方面:1、物源分析例如:Al2O3、K2O、Fe2O3、MgO、TiO2、Na2O等主要为与陆源碎屑有关的元素化合物,这些元素的高含量大多出现在细粒沉积物和碎屑矿物中,可以指示物源性质的差异;CaO、CaCO3也用来判断物源,但是要具体情况具体分析。

2、沉积环境例如:CaO、CaCO3等氧化物除部分来自陆源方解石外,还受自生作用和生物作用影响。

这些元素的高含量一般出现在氧化条件下,水动力活跃,生物活动频繁的环境。

Ti等元素含量的变化反映的是陆源物加入的程度,该值愈高则表明陆源物含量愈丰富,表明了一种温暖潮湿的气候背景。

与微量元素Sr类似,沉积岩中P的高含量指示干旱炎热高盐度环境的气候背景,低含量则指示潮湿的气候背景。

--------------▲微量元素(痕量元素)主要测试的微量元素有V、Ni、Fe、Mn、Cu、Zn、Cr、Ba、B、Ga、Pb、Sr、Li等1、物源分析微量元素对物源有示踪作用,因为微量元素多源自母岩,根据不同微量元素组合及分布规律,配合重矿物资料及区域背景资料做综合分析,可以良好进行沉积物源分析;2、沉积环境(PH、EH、盐度)对沉积环境反应敏感的微量元素有硼(、锶(Sr)、钡(Ba)、钛(Ti)、铁(Fe)、磷(P)、锰(Mn)等等,不同微量元素反映沉积环境的侧重点和敏感度各具特点,简单举几个例子:氯(Cl)等微量元素组成可以指示水介质的古盐度,咸水(海水)中Cl、B的含量明显高于淡水;陆相湖泊、盐湖卤水及其沉积物中B丰度及B同位素组成变化极大;对于陆相盐湖的不同层位或不同区域位置的泥页岩地层,若B含量偏高,说明其沉积环境为干旱—半干旱的盐湖沉积环境;若B含量偏低或正常,表明泥页岩沉积时处于较潮湿的盐湖沉积环境,但当沉积区远离盐湖中心时,也可代表干旱—半干旱盐湖沉积环境。

威尔逊沉积相模式

威尔逊沉积相模式

威尔逊沉积相模式威尔逊沉积相模式是指在沉积环境变化的基础上,根据地层中的岩石组合、沉积构造以及古生物特征等,将沉积相划分为几种类型,以反映特定的沉积条件和过程的模式。

威尔逊沉积相模式最早由美国地质学家W.R.威尔逊提出,后来经过不断发展与完善,并逐渐成为了沉积相研究领域中的一项重要理论工具。

1.冲积相:冲积相主要由含河流等泥砂物质沉积而成,包括冲积扇、冲积平原等类型。

这种相模式常见于现代大河流域,以及古代河流打破山脉的地区。

2.河道相:河道相由河流运输的较粗粒的沉积物组成,包括河床沉积、滨浅岸相等类型。

这种相模式常见于现代河流中,以及在古代的河川沉积岩中。

3.湖泊相:湖泊相由静水环境中的泥、砂泥沉积物组成,包括湖泊平原、湖泊边缘等类型。

这种相模式常见于现代湖泊和古代湖泊沉积岩中。

4.海湾相:海湾相主要由海湾中的泥质、砂质沉积物组成,包括海湾沉积盆地、海岸平原等类型。

这种相模式常见于海湾等浅海环境中。

5.海洋相:海洋相主要由海洋中的碳酸盐沉积物组成,包括浅海碳酸盐平原、深海碳酸盐盆地等类型。

这种相模式常见于现代海洋中,以及古代海洋沉积岩中。

威尔逊沉积相模式的研究通过对不同类型沉积相的认识,可以帮助研究者了解沉积环境的特点以及沉积作用的过程。

通过对沉积相模式的划分,可以为沉积相的识别和解释提供依据,进而推测古代沉积体系的原貌和成因。

此外,沉积相模式还可以提供油气勘探中的有效依据,通过对特定沉积相模式的分析,可以准确预测烃源岩和储层分布,为石油勘探与开发提供科学依据。

总之,威尔逊沉积相模式是一种在地质学研究中常用的工具,通过对沉积相特征的划分和解释,可以帮助研究者更好地理解沉积环境的演化过程,推测古代沉积体系的形成与变化,为油气勘探与开发提供科学依据。

沉积相研究

沉积相研究

②划分岩石相不仅要区分岩石类型,而且要反映沉积时水动力、地化及生物作用条件,对于碎屑岩储层水动力条件和能量与储层质量好坏一般有紧密联系,因此储层碎屑岩的岩石相尽可能与能量单元统一起来。

③对每种岩石相的沉积作用或沉积环境作出解释。

(2)垂向层序的分析①垂向层序是地下地质工作中沉积相分析的重要依据。

一般来说,一定的微相有一定的垂向沉积层序,但一种垂向层序可能有几种微环境成因,所以垂向层序是很重要的相标志,而不是绝对标志,需结合其它标志综合判别。

②碎屑岩储层垂向层序一般又是层内非均质性的决定性因素,因此确定各微相砂体的典型垂向层序是储层描述中必不可少的内容。

③垂向层序以自下而上岩石相的组合序列来表示,以最基本的沉积旋回为单元进行组合。

④垂向层序的分类和描述要满足划分微相和各微相作用沉积学解释的要求。

⑤每类垂向层序应选择代表性取心井段分别作出相柱子图,内容除沉积学描述外,还应包括反映储层物性及典型测井曲线。

(3)沉积旋回分析①以最小沉积旋回为单元的垂向层序分析作为基础,逐级向上扩大进行各级沉积旋回分析。

②沉积旋回分析的目的是搞清垂向上微相演化,进一步确认亚相(大相),并从相组合上检验微相,要应用全部的相标志进行综合分析。

③各级沉积旋回反映盆地构造活动、气候变化、碎屑物供应量的变化,水进水退、沉积体的废弃转移、各次沉积事件间能量的差异以及每次沉积事件本身能量的变化过程。

④沉积旋回分析应从小到大,从大到小反复进行,从各级旋回的岩相组合和演化规律上互相检验相分析的合理性。

⑤沉积旋回界线应是确定性的时间界线。

(4)单项指标相分析常用于碎屑岩储层相分析的单项指标有:①粒度分析;②微量元素分析;③孢粉古气候分析;④古生物分布分析。

(5)地震相分析地震相分析是利用地震反射波的特征来识别的,这些特征包括地震相的外形、内部结构、顶底接触关系、振幅、连续性、视周期、层速度、反射特征的横向变化等。

由于不同的沉积相具有不同的岩石组合及结构,它们就具有不同的地震波的反射特征。

Chapter3沉积相的研究方法与沉积方法

Chapter3沉积相的研究方法与沉积方法

Chapter3沉积相的研究⽅法与沉积⽅法第三章沉积相的研究⽅法与沉积作⽤沉积环境和沉积相的鉴别主要是依据各种相标志;然⽽,这些相标志的获取和确定则主要来⾃三个⽅⾯:①地质;②地震;③测井。

⽆论哪种类型的资料分析与研究,它都离不开讨论这些标志的形成机理或沉积作⽤,因⽽可以说沉积标志是基础,测井和地震标志则是辅助。

第⼀节流体动⼒学的概念与⽔动条件分析⼀、流体动⼒学的概念⼀)⽜顿与⾮⽜顿流体及其搬运⽅式1、⽜顿流体与⾮⽜顿流体从流体⼒学性质来讲,凡是服从⽜顿内摩擦定律的流体均称做⽜顿流体;否则称为⾮⽜顿流体。

所谓服从⽜顿内摩擦定律是指在时间不变的条件下,随流速梯度的变化,流体动⼒粘度系数始终保持为⼀常数。

牵引流属⽜顿流体,沉积物重⼒流属⾮⽜顿流体。

1)牵引流(Tractional current)定义:“服从⽜顿内摩擦定律使碎屑物质作牵引运动的流体”,如含有少量碎屑物的⽔流(河流、海流、湖流、波浪流、潮汐流、等源流等)和⼤⽓流等;因此,牵引流也有⼈称流体重⼒流(fluid gravityflow)。

2)重⼒流(Gravity current or gravity flow)定义:“在重⼒作⽤下使碎屑物质与流体⾼度混合,不符合⽜顿内摩擦定律的⾼密度流体”,也称沉积物重⼒流(sediment gravity flow),它可进⼀步划分为①碎屑流(泥⽯流);②颗粒流;③液化(沉积)流;④浊流。

3)浊流(Turbidity current):属于重⼒流的⼀种,是指由⼤量泥、砂物质和⽔混合,受紊流⽀撑的⼀种⽔下重⼒流。

2、流体的基本搬运⽅式从物理学上来看,有两种最基本的物质搬运类型(或搬运⽅式),即悬浮载荷(悬移质)和床沙载荷(推移质),相对应的有两种搬运形式,悬浮搬运和推移搬运1)悬浮搬运(Suspension transport)空⽓或⽔流把细粒沉积物弥散开来(如粉砂、粘⼟级颗粒以及不同⽐例的砂级颗粒),并使其在流动的内部呈悬浮状进⾏搬运。

二、砂岩储层沉积相研究详解

二、砂岩储层沉积相研究详解

1)区域沉积背景分析
利用区域岩相古地理研究成果,分析某一期的区域沉积背景, 并从中获取以下认识:
①古地貌特征和古水系分布,为分析物源和沉积方向提供依 据。
②由工区所处沉积地位置,判断古地形,古水流方向和工 区应发育的沉积相带。
③分析古气候
孢粉组合 植被 微古生物
温暖潮湿型- 古 水系发育(湖 气 泊扩张期) 候
层内渗透率韵律模式图
不同韵律油层的水驱油效率和波及厚度相差很大。
渗透率的方向性:以河流相最为突出,表现在以下几个方面:源自①相对高渗段沿河床主流 线分布
位于河床上的油井首先 见效,首先水淹
②由河床向边滩过渡,即在 横向上渗透率发生突变
不同类型注采井匹配关 系表现为不同的开发效

③沿河床下游方向的渗透率 优于向上游方向的渗透率
炎热干旱型
河流大段 废弃
湖泊收缩
水退式河 流沉积
盐湖形成 (赵兰庄)
(赵41)
含盐度在 100‰以上
2)岩芯剖面资料整理
岩芯剖面是反映地下最真实、最直接的第一 性的宝贵资料,掌握观察岩芯剖面的正确方法, 收集整理好与沉积环境有关的各种相标志,对于 单井定相和沉积微相研究都是至关重要。岩芯剖 面观察内容是极为丰富的,是油田地质工作者一 项很重要的基本功,这里仅做一般介绍。
1)沉积体系的定义
沉积体系——在一时间地层单元内,把与沉积作用 有内在联系的沉积相,组成的一个连续体系,这个连续 体能与相邻的体系区分开来。
因此沉积相的划分应该是沉积体系→沉积相→ 沉积 亚相→ 沉积微相。
2)沉积体系类型
陆源碎屑盆地,一般是多物源的,盆地类型也 是多样的,因此从源区流入湖盆水系的沉积过程中, 可以组合成多种类型的沉积体系,可多达15种。限 于篇幅和时间,这里只简单介绍两种主要的沉积体 系。

沉积相的基本概念和分类

沉积相的基本概念和分类

沉积相的基本概念和分类及研究进展一、沉积岩概述1.定义沉积岩是在地壳表层条件下,由母岩风化产物、火山物质、有机物质等沉积岩原始物质成分(沉积物),经搬运作用、沉积作用以及沉积后作用而形成的一类岩石。

它是地壳中三大岩类之一,具有岩石的共同属性;是地壳中地质作用的产物;在一定的地质条件和环境中是稳定的;是矿物的集合体。

2.基本特征①沉积岩(主要)是外动力地质作用的产物,形成并稳定在地壳表层。

②沉积岩与岩浆岩、变质岩具有相似的矿物成分和化学成分,但仍有很大差别。

外动力地质作用③生物在沉积岩的形成过程有着重要的作用与意义。

④沉积岩具有特殊的复杂多样的结构与构造。

⑤沉积岩形成过程的空间与时间跨度大,阶段性明显,分异作用普遍。

3.分布沉积岩在地壳表层分布十分广泛。

具体地说,①面积陆地的大约3/4被沉积物(岩)所覆盖,而海底几乎全被沉积物(岩)所覆盖。

②体积沉积岩约占岩石圈体积的5%,而岩浆岩和变质岩约占95%。

③厚度沉积岩在地壳表层各处的具体厚度变化很大。

有的地方可达几十公里,如高加索地区,仅中生代和新生代的沉积厚度就达20~30km;但有的地方则很薄,甚至没有沉积岩的分布,直接出露着岩浆岩和变质岩。

④分布区域现代和古代沉积物大量沉积的场所为:大陆边缘和大陆内部的拗陷带。

4.分类沉积岩的分类是沉积岩石学研究中要解决的首要问题之一。

①分类的原则A.分类要明确清晰而有系统性,要正确反映客观事实的内在联系。

B.分类切记要能够便于应用和操作。

②综合分类(冯增昭,1982,1992)首先根据沉积岩的形成作用划分大类和基本类型,然后根据粒度、主要成分特征及是否可燃等细分。

我们采用的分类方案。

二、沉积相的基本概念1.环境的概念环境是指地球表面的地理景观单元。

如山地、高原、冲积平原、河流、湖泊、海洋等。

2.沉积环境沉积作用进行的自然地理环境,是物理上、化学上和生物学上有别于相邻地区的一块地表(塞利,1970年)。

即是说有沉积物堆积并保存的环境区域,如河流、湖泊、三角洲、滨海、浅海、深海等。

沉积相的定义

沉积相的定义

沉积相的定义沉积相是指在一定时期内,沉积物质的环境、物质组成、成岩作用等因素相同或相似的区域。

研究沉积相可以帮助我们理解地球历史、古气候和古环境,也可以指导油气勘探、矿产资源开采和环境保护等。

1. 沉积相的形成沉积相的形成与沉积物质的来源、物理化学性质、气候环境等因素有关。

例如,海洋沉积相的形成与海洋环境(如深度、水位、海洋流动)和沉积物来源(如陆源物质和海洋有机质)密切相关;另外,湖泊、河流和风成沙丘等沉积相也具有各自的形成条件。

2. 沉积相的分类沉积相根据沉积物质性质、成岩作用和形成环境的差异,可以分为多种类型。

根据沉积物质性质,可将沉积相分为碳酸盐岩相、砂岩相、泥岩相等;根据成岩作用,可分为原生岩相和后生岩相;而根据形成环境,可以分为陆相、浅海相、深海相、洲缘海相等。

3. 沉积相的研究方法研究沉积相的方法主要包括地质实地调查、沉积物样品分析、地球化学测试、沉积物特征描述等。

地质实地调查是最为基础的方法,可帮助研究人员了解该地区的地质、构造、地貌等情况,为后续研究奠定基础;沉积物样品分析可以提取物质,进行化学成分分析、地球化学测试和矿物学分析等,以深入了解沉积相的成因和演化过程。

4. 沉积相的应用沉积相的研究应用广泛,可指导石油勘探、矿产资源开采和环境保护等领域。

在石油勘探中,沉积相的确定可帮助定位储层和预测油气藏有利区;而在矿产资源开采中,沉积相的研究可指导开采方式和选矿流程设计;另外,沉积相的研究也可用于环境保护,如判断水源地沉积相类型,评价污染蔓延和清理效果等。

总之,沉积相是地球科学研究中的重要领域,通过深入了解沉积相的形成、演化和应用,可为地球科学的发展和人类社会的可持续发展作出重要贡献。

沉积相研究在油田注水开发分析中作用

沉积相研究在油田注水开发分析中作用

沉积相研究在油田注水开发分析中作用沉积相研究在油田注水开发分析中发挥着重要的作用。

通过对沉积相的研究,可以了解沉积物在地质历史中的形成过程和分布特征,为油田注水开发提供重要的地质信息和指导。

本文将从沉积相研究的基本概念和方法、沉积相对注水开发的影响、沉积相研究在注水开发中的应用等方面进行讨论。

首先,沉积相研究的基本概念和方法。

沉积相是指在一定时间和空间范围内,具有一定特征的沉积物组合。

一般来说,沉积相包括主要沉积物类型、沉积构造、沉积层序、相对海面水平变化等多个要素。

通过对这些要素的综合分析,可以确定沉积物的环境条件、成因机制等关键信息。

沉积相研究的方法主要有地质剖面观测、地震地质解释、钻孔分析、岩心描述、沉积物粒度分析、地震地层分析等。

其中,地震地质解释是目前比较常用的方法之一,通过解释地震剖面上的反射波形变化,研究不同深度和地层中的沉积相特征。

其次,沉积相对注水开发的影响。

沉积相研究可以揭示油田地质中的储集空间和流动路径。

在注水开发中,油田中的油水两相通过孔隙和裂缝等储集空间进行流动,而沉积相对储集空间的形成和分布起着决定性作用。

不同的沉积相具有不同的孔隙结构和流动性能,因此对注水开发产生不同的影响。

例如,在通过注水开发提高油田产能的过程中,常常需要考虑注水层的分布和储集性能。

沉积相的研究可以确定注水层的分布范围和水平连通性,为注水工艺和策略的制定提供依据。

另外,沉积相也对注水效果的评价和预测具有重要意义。

通过研究沉积相的特征和改造前后的变化,可以评估注水后储层的改善情况和油水流动的调整效果。

最后,沉积相研究在注水开发中的应用。

沉积相研究可以为不同类型的油田注水开发提供一系列的技术支持和解决方案。

例如,在碳酸盐岩油田的注水开发中,沉积相研究可以帮助确定合适的注水位置和注水层位,避免非有效油层的注水。

在高渗透油田的注水开发中,沉积相研究可以评估沉积岩中的储藏空间和流动性能,指导注水井的布置和控制。

第3章 地层形成的沉积环境沉积作用、古地理

第3章 地层形成的沉积环境沉积作用、古地理

幻灯片1第三章地层形成的沉积环境沉积作用、古地理第一节沉积古地理学的概念和定律一、沉积环境:一个具有独特的物理、化学和生物特征的自然地理单元。

二、沉积相:能够反映沉积环境的岩石及古生物特征的综合。

或者说,相是形成特定沉积环境的一套有规律岩石和生物特征的组合。

三、相变:地层的岩石特征和生物特征及其所反映的沉积环境和沉积作用在空间(横向)上的变化。

相变:沉积相在空间上横向的变化。

幻灯片2三、相变:地层的岩石特征和生物特征及其所反映的沉积环境和沉积作用在空间(横向)上的变化。

Sandstone faciesShale & coal faciesCarbonate faciesShale faciesFacies changes幻灯片3四、相分析(facies analysis):综合地层的岩石特征和生物特征,推断其成因(沉积环境和沉积作用)相分析三要素1、基本素材M a t e r i a l2、基本原理P r i n c i p l e s3、模式M e t h o d o l o g yM u d c r a c k s+R a i n d r o p s 幻灯片4Induction(归纳), Deduction(演绎)幻灯片5五、相对比定律:19世纪末期由德国学者瓦尔特(J.Walther,1894)提出,“只有那些目前可以观察到是彼此毗邻的相和相区,才能原生的重叠在一起”。

并进一步研究认为:岩相类型在时、空分布上存在着内在的联系(相变)。

相对比定律又称瓦尔特定律即在垂向上整合叠置的相是在侧向上相邻的沉积环境中形成的。

幻灯片6相对比定律:只有那些目前可以观察到是彼此毗邻的相和相区,才能原生的重叠在一起”。

并进一步研究认为:岩相类型在时、空分布上存在着内在的联系(相变)。

相对比定律又称瓦尔特定律幻灯片7六、均变论Uniformitarianism“The past history of our globe must be explained by what can be seen to be happening now”(James Hutton). It was named Uniformitarianism by Charles Lyell (1830; Hutton, 1795)幻灯片8Mars幻灯片9幻灯片10Deep biosphere热液喷口是最具化学多样性的微生物生长地. 地球化学梯度和热梯度提供了多种微生物(嗜冷、温、热、压、酸、碱、盐菌)聚集的小生境表层生物圈仅占生物生成空间的3%,深部生物圈则占生物生成空间的97%,深海极端条件下生活的极端生物,其2/3的基因与迄今科学上的已知基因不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档