高一数学下册期末考试试题数学
新高一数学下期末试卷(含答案)
新高一数学下期末试卷(含答案)新高一数学下期末试卷(含答案)一、选择题1.已知三角形ABC的内角A、B、C的对边分别为a、b、c,且a=b,则A选2.2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=5选3.3.已知三角形ABC中,A为60度,c=2,cosA=1/2,则ABC为有一个内角为30°的等腰三角形选D。
4.已知对任意实数x、y,不等式(x+y)/(1+xy)≥9恒成立,则实数a的最小值为2选D。
5.已知ABC为等边三角形,AB=2,设P,Q满足AP=λAB,AQ=(1-λ)AC(λ∈R),若BQ·CP=-2,则λ=1/2选A。
6.已知f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),ω>π/2,f(x)是奇函数,直线y=2与函数f(x)的图像的两个相邻交点的横坐标之差的绝对值为π/2,则f(x)在[π/3.π/8]上单调递减选B。
7.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是[-1,2]选B。
8.若α,β均为锐角,sinα=2/5,sin(α+β)=3/5,则cosβ=4/5或-3/5选C。
9.要得到函数y=2/3cos2x+1/3的图像,只需将函数y=2sin2x的图像向左平移π/4个单位选C。
10.已知sin(π/3-α)=-1/2,cos(2α+π/3)=2/3,则cosα=7/8选D。
分析】详解】1) 当 $a=1$ 时,$f(x)=-x^2+x+4$,$g(x)=|x+1|+|x-1|$。
因为 $f(x)$ 是一个开口向下的二次函数,所以其图像在顶点处取得最大值。
顶点横坐标为 $x=\frac{-b}{2a}=-\frac{1}{2}$,纵坐标为 $f(-\frac{1}{2})=\frac{15}{4}$。
而 $g(x)$ 的图像是由两个 V 形图像组成的,分别在 $x=-1$ 和 $x=1$ 处取得最小值$0$。
江苏省南通市2023-2024学年高一下学期期末考试数学试卷(含解析)
江苏省南通市2023-2024学年高一下学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.若复数是纯虚数,则实数a 的值为( )A.0B.1C.-1D.2.下列特征数中,刻画一组数据离散程度的是( )A.平均数B.中位数C.众数D.方差3.已知圆锥的底面半径和高均为1,则该圆锥的侧面积为( )A.C. D.4.已知向量,,若,则( )5.一个水果盘子里有2个苹果和3个桃子,从盘中任选2个,则选中的水果品种相同的概率为( )6.若( )A.7.某数学兴趣小组测量学校旗杆的高度,在旗杆底部O 的正东方向A 处,测得旗杆顶端P 的仰角为,在A 的南偏西方向上的B 处,测得P 的仰角为(O ,A ,B在同一水平面内)( )A.10mB.14mC.17mD.20mA. B. C. D.二、多项选择题9.记的内角A ,B ,C 的对边分别为a ,b ,c .下列命题为真命题的是( )()21i z a a =+-1±π2π()2,4a =-()1,b x =//a b||b = πcos 3α⎛⎫-= ⎪⎝⎭π26α⎛⎫-= ⎪⎝⎭60 30 45 ≈ 1.7≈tan tan B C =+∞⎫+⎪⎪⎭⎫+∞⎪⎪⎭()1,+∞()2,+∞ABC △A.若,则为直角三角形B.若,则为等腰三角形C.若,则为等腰三角形为等腰直角三角形10.已知a,b,c为三条直线,,,为三个平面.下列命题为真命题的是( ) A.若,,则 B.若,,,则C.若,,则D.若,,,则11.一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个白色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件“两个球颜色不同”,“两个球标号的和为奇数”,“两个球标号都不小于2”,则( )A.A与B互斥B.A与C相互独立C. D.三、填空题12.样本数据7,8,10,11,12,13,15,17的第40百分位数为______________.13.已知向量,,向量在,则______________.四、双空题14.以棱长为2的正方体的六个面为底面,分别向外作形状相同的正四棱锥,得到一个多数为____________.五、解答题15.记的内角A,B,C的对边分别为a,b,c,.(1)求B;(2)若,求.16.如图,在四棱锥中,底面是菱形,平面,E,F分别是棱,的中点.222sin sin sinA B C+=ABC△sin sina Ab B=ABC△cos cosa Ab B=ABC△cos Bb==ABCαβγa c⊥b c⊥//a b//aαaβ⊂bαβ=//a baα⊥aβ⊂αβ⊥αγ⊥βγ⊥aαβ=aγ⊥A=B=C=()()()P AB P AC P A+=()()()()P ABC P A P B P C=a2aba b⋅=ABC△222a c b+=+c=tan CP ABCD-ABCD PA⊥ABCD BC AP(1)证明:;(2)证明:平面.17.某班学生日睡眠时间(单位:h )频率分布表如下:;(2)用比例分配的分层随机抽样方法,从该班日睡眠时间在和的学生中抽取5人.再从抽取的5人中随机抽取2人,求2人中至少有1人的日睡眠时间在的概率.18.已知的面积为9,点D 在BC 边上,.(1)若,①证明:;②求AC ;(2)若,求AD 的最小值.19.如图,等腰梯形ABCD 为圆台的轴截面,E ,F 分别为上下底面圆周上的点,且B ,E ,D ,F 四点共面.的PC BD ⊥//EF PCD [)7,7.5[]8.5,9[77.5),ABC △2CD DB =cos BAC ∠=AD DC =sin 2sin ABD BAD ∠=∠AB BC =1OO(1)证明:;(2)已知,,四棱锥的体积为3.①求三棱锥的体积;②当母线与下底面所成的角最小时,求二面角的正弦值.//BF DE 2AD =4BC =C BEDF -B ADE -C BF D --参考答案1.答案:A解析:根据题意,复数是纯虚数,所以且,解得.故选:A.2.答案:D解析:平均数、中位数、众数是描述一组数据的集中趋势的量,方差是衡量一组数据偏离其平均数的大小的量,即刻画一组数据离散程度.故选:D.3.答案:B解析:根据题意圆锥的母线长即可求得.故选:B.4.答案:B解析:因为,所以,即所以,所以所以故选:B.5.答案:C解析:根据题意,设2个苹果分别记为:1和2,3个桃子编号为A ,B ,C ,从盘中任选两个,可得,,,,,,,,,共10种情况.选中的水果品种相同的选法有:,,,有4种.故选:C.6.答案:B()21i z a a =+-0a =210a -≠0a =l ==πrl 侧=π1S ⨯=侧=//a b =a b λ()()()()2,4=2,4=1,,x x λλλ⇒--2==24==2x x λλλ--⎧⎧⇒⎨⎨-⎩⎩()1,2b =- ||b ==()1,2()1,A ()1,B ()1,C ()2,A ()2,B ()2,C (),A B (),A C (),B C ()1,2(),A B (),A C (),B C =解析:令,,则令所以故选:B.7.答案:C解析:如图,设米,则米.在中,由题意可得,,由余弦定理可得解得米.故选:C.8.答案:A,所以π3x α=-π2cos 33α⎛⎫-= ⎪⎝⎭cos x =2y α=π22y x =-22ππ21sin 2sin sin 2cos 22cos 1216239y x x x α⎛⎫⎛⎫⎛⎫-==-==-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭OP h =tan 60h OA == tan 45hh ==OAB △60OAB ∠= 2cos cos 60OAB ∠== 17h =≈tan tan B C =+()sin sin sin sin cos cos sin sin cos cos cos cos cos cos cos cos B C B C B C B C A B C B C B C B C++=+===cos B ==又因为三角形ABC 为锐角三角形,所以所以,故选:A.9.答案:ABD解析:对于A,若,由正弦定理得,所以为直角三角形,故A 正确;对于B,若,由正弦定理得,所以,所以为等腰三角形,故B 正确;对于C,若,由正弦定理得,所以或,即或是等腰或直角三角形,故C 错误;,所以,,即为等腰直角三角形,故D 正确;故选:ABD.10.答案:BCD解析:对于A 选项,令,,若,则一定有,,而在同一平面的a ,b 两条直线可以平行,也可以相交,故A 错误;对于B 选项,这是线面平行的性质定理,故B 正确;对于C 选项,这是面面垂直的判定定理,故C 正确;()πsin sin 13tan cos cos 2A A B A A A ⎛⎫+ ⎪+⎝⎭====+ππ00ππ222πππ6200322A A A A C ⎧⎧<<<<⎪⎪⎪⎪⇒⇒<<⎨⎨⎪⎪<-<<<⎪⎪⎩⎩tan A ⎫∈+∞⎪⎪⎭1tan 2A ⎫=++∞⎪⎪⎭222sin sin sin A B C +=222a b c +=C =ABC △sin sin a A b B =22a b =a b =ABC △cos cos a A b B =sin cos sin cos A A B =12sin 22A B =22A B =22πA B +=A B =A B +=ABC cos B b ==cos cos sin sin B CB C==cos sin B B =cos sin C C =B ==ABC a α⊂b α⊂c α⊥a c ⊥b c ⊥对于D 项,设,,过平面内一点A ,分别作,,如图所示,因为,,,,所以,又因为,所以,同理:,又因为,、,所以,故D 项正确.故选:BCD.11.答案:BC解析:根据题意,从袋中不放回地依次随机摸出2个球,则,,,所以有对于A,,事件A 、B 可以同时发生,则A 、B 不互斥,A 错误;对于B,,A 、C 相互独立,B 正确;对于C,,C 正确;对于D,,D 错误.故选:BC .12.答案:11解析:首先对数据从小到大进行排序:7,8,10,11,12,13,15,17,共有8个数据m αγ= l βγ= γAB m ⊥AC l ⊥αγ⊥m αγ= AB γ⊂AB m ⊥AB α⊥a α⊂AB a ⊥AC a ⊥AB AC A ⋂=AB AC γ⊂a γ⊥()()()()()(){}Ω=1,21,31,42,32,43,4、、、、、()()()(){}()()()(){}1,31,42,32,4,1,2142334A B ==、、、、,、,、,()()(){}2,32,43,4C =、、()(){}()(){}()(){}1,42,3,2,32,4,2,33,4AB AC BC ===、、、(){}2,3ABC =()46P A ==()46B ==()3162C ==()26P AB ==()26AC ==()16P ABC =()(){}1,42,3AB =、()()()=P A P C P AC ()()()+=P AB P AC P A ()()()()P ABC P A P B P C ≠,所以这个样本数据的第40百分位数为第四位,即11,故答案为:11.13.答案:2解析:由已知向量在,.所以故答案为:2.14.答案:①.16②.12解析:根据题意,如图,以棱长为2正方体的一个面为底面的正四棱锥,取底面中心O ,中点E ,因为平面,平面,所以,又,,,平面,所以平面,则所以,从而该多面体的体积为,考虑到四棱锥的侧面夹角为.故答案为:16;12.15.答案:(1)(2)-2的840% 3.2⨯=a b1,2b a b b b ⋅=,1a b = ()cos ,cos ,2a b a b a b a a b b ⋅==⋅= P ABCD -CD PO ⊥ABCD CD ⊂ABCD CD PO ⊥CD PE ⊥PO PE P = PO PE ⊂POE CD ⊥POE PEO ∠=1h PO ==12226221163V =⨯⨯+⨯⨯⨯⨯=π12=π4B =解析:(1),故因,所以(2)设,,代入中,,故,解得,由余弦定理得则故.16.答案:(1)见解析(2)见解析解析:(1)连接,交于点O ,由四边形是菱形得,因为平面,平面,所以,因为,,,,平面,所以平面,又平面,所以.(2)连接,,因为四边形是菱形,所以点O 为,中点,又E ,F 分别是棱,的中点,所以,,因为平面,平面,所以平面,同理可得平面,因为,平面,且,为222222a c b a c b +=+⇒+-=222cos 2a c b B ac +-===()0,πB ∈B =a t =c =222a cb +=+2228t t b +=+⋅225b t =b =222cos 2a bc C ab +-===sin C ==sin tan 2cos CC C ===-AC BD ABCD AC BD ⊥PA ⊥ABCD BD ⊂ABCD PA BD ⊥PA BD ⊥AC BD ⊥PA AC A = PA AC ⊂PAC BD ⊥PAC PC ⊂PAC BD PC ⊥OE OF ABCD AC BD BC AP //FO PC //OE CD PC ⊂PCD FO ⊄PCD //FO PCD //EO PCD EO FO ⊂EFO EO FO O =所以平面平面,又平面,所以平面.17.答案:(1)解析:(1)因为容量,所以,,;(2)由(1)知,该班日睡眠时间在和频率比为,由比例分配的分层随机抽样方法,分别从和两组的学生中抽取2人,3人,记中抽取的2人为a ,b ,中抽取的3人为c,d,e ,设“2人中至少有1人的睡眠时间在”为事件A ,则,,所以A 发生的概率所以2人中至少有1人的日睡眠时间在18.答案:(1)证明见解析,(2)4解析:(1)①因为,,所以,在//EFO PCD EF ⊂EFO //EF PCD 8.03h200.450n =÷=500.126y =⨯=50(4206)20x =-++=()7.2547.75208.25208.756⨯+⨯+⨯+⨯()()12915516552.58.03h 50=⨯+++=[)7,7.5[]8.5,92:3[)7,7.5[]8.5,9[)7,7.5[]8.5,9[)7,7.5{}(,),(,),(,),(,),(,)(,),(,),(,),(,),(,)a b a c a d a e b c b d b e c d c e d e Ω={}(,),(,),(,),(,),(,)(,),(,)A a b a c a d a e b c b d b e =()P A =AC =2CD DB =AD DC =2AD DB =△=所以;②设,则因为,所以设,因为,所以,在中,,由①知,所以,所以,整理得,又因为,,所以因为,所以,在中,因为,,所以,所以,则,所以(2)记的内角为A ,B ,C ,所对边为a ,b ,c ,因为,所以,所以,在中,因为,所以由余弦定理可得,整理得,sin sin 2sin AD ABD BAD BAD BD∠=⨯∠=∠BAC θ∠=cos θ=0πθ<<sin θ==C α∠=AD DC =C CAD α∠=∠=ABD △π,B BAD θαθα∠∠=--=-sin 2sin ABD BAD ∠=∠sin()2sin()θαθα+=-sin cos cos sin 2sin cos 2cos sin θαθαθαθα+=-cos 4sin αα=22sin cos 1αα+=0πα<<sin αα==2CD DB =263ACD ABC S S ==△△ACD △AD DC =C α∠=cos 2AC AD α=2cos AC AD AC α==21sin 62ACD S AD AC AC α=⨯⨯⨯== AC =ABC △2CD DB =()22213333AD AC CD AC CB AC AB AC AB AC =+=+=+-=+ 222414cos 999AD c b bc BAC =++∠ ABC △AB BC =2222cos c c b bc BAC =+-∠2cos c BAC b ∠=c =因为,所以所以,所以,当且仅当所以AD 的最小值为4.19.答案:(1)证明见解析解析:(1)证明:在圆台中,平面平面,因为平面平面,平面平面,所以;(2)①将圆台的母线延长交于一点P ,连接,延长交底面于点Q ,连接,,在圆台中,平面平面,因为平面平面,平面平面,所以,又由(1)可知,所以,又,,,,,平面,1sin 92ABC S bc BAC =∠=△bc =236cos sin BAC b BAC ∠=∠22294cos cos sin b c BAC BAC BAC ==∠∠∠22412cos 412cos sin cos sin sin cos BAC BAC AD BAC BAC BAC BAC BAC∠+∠=+=∠∠∠∠∠ 224sin 16cos sin cos BAC BAC BAC BAC∠+∠=∠∠sin 4cos 416cos sin BAC BAC BAC BAC ∠∠⎛⎫=+≥ ⎪∠∠⎝⎭sin BAC ∠=BAC ∠=1OO //ADE BFC BEDF ADE DE =BEDF BFC BF =//BF DE 1OO PE PE BQ CQ 1OO //ADE BFC PCQ ADE DE =PCQ BFC CQ =//ED CQ //BF ED //BF CQ CF BF ⊥BQ CQ ⊥BF CF BQ CQ ⊂BFC所以,所以四边形为平行四边形,所以,在圆台中,,,所以,所以,连接,交所以A ,C 到平面所以②在等腰梯形中,过点D 作边的垂线,垂足为G ,在平面内过点G 作的平行线交于点H ,连接,易得,因为平面,所以平面,所以为母线与下底面所成角,因为,,所以,所以,要使最小,只要最小即可,因为,所以,所以,设,因为为圆的直径,所以,所以,,所以,当且仅当所以因为,,所以,因为平面,平面,所以,因为,,平面,所以平面,所以,因此为二面角的平面角,//BQ CF BFCQ BF CQ =1OO 2AD =4BC =AD BC ==AD BC ==2BDF BDE S S = 223D BFC C BDF C BEDF V V V ---===AC AD BC ==BEDF 1124B ADE A BDE C BED C BDF V V V V ----====ABCD BC DG BFC CF GH BF DH 1//DG OO 1OO ⊥BFC DG ⊥BFC DCG ∠2AD =4BC =1CG =tan DCG DG ∠=DCG ∠DG 2D BFC V -=123D BFC BFC V S DG -=⋅=△Δ6BFC DG S =CBF θ∠=BC 1O BF FC ⊥4sin FC θ=4cos FB θ=Δ14sin 242BFC S FC FB θ=⋅=≤θ=BF ==DG CF BF ⊥//CF GH GH BF ⊥DG ⊥BCF BF ⊂BCF DG BF ⊥DG HG G = DG HG ⊂DGH BF ⊥DGH BF DH ⊥DHG ∠C BF D --在因为平面,平面,所以,在中,由勾股定理得所以二面角BCF △BGBC===DG⊥BFC HG⊂BFC DG HG⊥Rt DGH△DH=DHG∠=C BF--。
高一数学期末考试试题及答案doc
高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。
2023-2024高一第二学期期末数学质量检测试题参考答案与评分细则
2023-2024 学年度第二学期期末质量检测高一数学参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分.题号12345678答案CDACBDDA1.【解析】由题得()()()()231151+12i i i z i i ----==-,所以z 对应的点的坐标是15,22⎛⎫-- ⎪⎝⎭,故选C .2.【解析】零向量的方向是任意的,故A 错误;相等向量要求方向相同且模长相等,共线向量不一定是相等向量,故B 错误;当0λ<,则向量a 与a λ方向相反,故C 错误;对于D :单位向量的模为1,都相等,故D 正确.3.【解析】因为1238,,,,x x x x 的平均数是10,方差是10,所以123832,32,32,,32x x x x ++++ 的平均数是310232⨯+=,方差是231090⨯=.故选A .4.【解析】【方法一】向量a 在b方向上的投影向量为()()22cos ,1,04a b b bb a a b b b⋅<>⋅===;【方法二】数形结合,由图易得选项C 正确,故选C.5.【解析】样本中高中生的人数比小学生的人数少20,所以5320543543n n -=++++,解得120n =,故选B .6.【解析】对于选项A ,易得,αβ相交或平行,故选项A 错误;对于选项B ,,m n 平行或异面,故选项B 错误;对于选项C ,当直线,m n 相交时,//αβ才成立,故选项C 错误;对于选项D ,由线面垂直的性质可知正确,故选D.7.【解析】对于选项A ,因为掷两颗骰子,两个点数可以都是偶数,也可以都是奇数,还可以一奇一偶,即一次试验,事件A 和事件B 可以都不发生,所以选项A 错误;对于选项B ,因为C D ⋂即两个点数都是偶数,即A 与C D ⋂可以同时发生,所以选项B 错误;对于选项C ,因为331()664P B ⨯==⨯,333()1664P D⨯=-=⨯,又()0P BD =,所以()()()P BD P B P D ≠,故选项C 错误;对于选项D ,因为()1P C D = ,所以C D =Ω ,因为必然事件与任意事件相互独立,所以B 与C D ⋃是相互独立事件,故选D .8.【解析】因为11AC CB =,AC BC =,取AB 中点D ,则1C DC ∠为二面角1C AB C --的平面角,所以14C DC π∠=.在1Rt C DC ∆中,可得112,CD CC C D ===,又1182V AB CD CC =⋅⋅=,解得4AB =,所以AC ==.由1111A ABC B AA C V V --=得1111133ABC AA C S h S BC ∆∆⋅=⋅,代入数据求解得到点1A 到平面1ABC的距离h =,故选A .二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.题号题9题10题11全部正确选项ABCBCAD9.【解析】依题意球的表面积为24πR ,圆柱的侧面积为22π24πR R R⨯⨯=,所以AC 选项正确;圆锥的侧面积为2πRR ⨯=,所以B 选项正确;圆锥的表面积为(2222π1π4πR R R R +=<,圆柱的表面积为2224π2π6πR R R +=,所以D 选项错误.故选ABC .10.【解析】由1i z i +=-得22z =,故选项A 错误;根据复数的运算性质,易知BC 正确;根据22z -≤的几何意义求解,点Z 在以圆心为()2,0,半径为2的圆内及圆周上,所以集合M 所构成区域的面积为4π,所以D 选项错误.故选BC .11.【解析】对于选项A ,若60A =︒,2a =,则2222cos a b c bc A =+-,即224b c bc bc =+-≥,当且仅当2b c ==时,取等号,所以1sin 2ABC S bc A ==≤△,所以ABC 故选项A正确,B 错误.对于选项C ,要使满足条件的三角形有且只有两个,则sin b A a b <<,因为4a b==,所以4sin A <πsin 0,2A A ⎛⎫∈ ⎪⎝⎭,所以03A π<<.故选项C 错误.对于选项D ,()cos cos a b c A B +=+等价于cos cos a b A B c +=+,即22222222a b b c a a c bc bc ac++-+-=+,对该等式通分得到()()()2222222ab a b a b c a b a c b +=+-++-,即2222322322a b ab ab ac a a b bc b +=+-++-,即3322220a b a b ab ac bc +++--=.这即为()()()()2220a b a ab b ab a b c a b +-+++-+=,由0a b +≠知该等式即为2220a b c +-=.从而条件等价于2220a b c +-=且1c =,从而该三角形内切圆半径)121122ABC ab S ab ab r a b c a b c a b ab ===++++++ 当且仅当2a b ==时等号成立,从而0r <≤2213πππ24S r ⎛⎫-=≤= ⎪ ⎪⎝⎭内切圆.验证知当2a b ==时,等号成立,所以该三角形的内切圆面积的最大值是3π4-,所以选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分;其中第14题的第一个空2分,第二个空3分.12.71513.a b <【注:也可以是b a >,0b a ->或a 小于b 】14.2;412.【解析】已知甲、乙两人独立的解同一道题,甲,乙解对题的概率分别是23,35,恰好有1人解对题的概率是22137353515⨯+⨯=.【注:写成有限小数不给分】13.【解析】由平均数在“拖尾”的位置,可知a b <.14.【解析】(1)13E ABC ABC V S EB -∆=⋅,在ABC ∆中,由余弦定理可知,1cos 8BAC ∠=,所以sin 8BAC ∠==,所以113772413282E ABC V -=⨯⨯⨯⨯⨯=.(2)作BH AC ⊥,垂足为H ,作1111B H AC ⊥,垂足为H 1,易证棱1BB 在平面11ACC A 上的射影为1HH ,则点E 在平面11ACC A 上的射影1E 在线段1HH 上,由(1)知,1cos 8BAC ∠=,故128AH AH AB ==,解得14AH =,故BH =,则1EE =,设AF 的中点为1Q ,外接球的球心为Q ,半径为1R ,则1QQ ⊥平面11ACC A ,即11//QQ EE ,在1Rt FQQ中,222211QF R QQ ==+①,又因为222211114QE R QQ Q E ⎛⎫==-+ ⎪ ⎪⎝⎭②,由①②可得211131216QQ Q E =+,所以当11Q E 取最小值时,1QQ 最小,即1R 最小,此时111Q E HH ⊥,因为1Q 是AF 的中点,则1E 是1HH 的中点,则E 是棱1BB 的中点.因为11//AA BB ,所以直线EF 与1BB 所成角即为直线EF 与1AA 所成角.由1111cos 8A CB =∠,再由余弦定理可得1B F 因为11EB =,所以EF =11cos 4E FEB B EF =∠=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分,其中第(1)小问6分,第(2)小问7分。
高一期末数学试卷及答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. √-1D. 0.1010010001…2. 若 a > b > 0,则下列不等式成立的是:A. a² > b²B. a - b > 0C. a/b > 1D. ab > 03. 已知函数 f(x) = 2x - 3,若 f(x) + f(2 - x) = 0,则 x 的值为:A. 1B. 2C. 3D. 44. 在直角坐标系中,点 A(2,3),B(4,5),则线段 AB 的中点坐标为:A. (3,4)B. (4,3)C. (3,5)D. (4,4)5. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为:A. 100B. 105C. 110D. 1156. 若复数 z 满足 |z - 1| = |z + 1|,则 z 在复平面上的位置是:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 下列函数中,是奇函数的是:A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = 1/x8. 在△ABC中,若 a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形9. 已知函数f(x) = x² - 4x + 4,其图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 410. 若等比数列 {an} 的前三项分别是 2, 6, 18,则其公比为:A. 2B. 3C. 6D. 9二、填空题(每题5分,共50分)1. 若 a + b = 5,a - b = 1,则a² - b² 的值为________。
2. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为________。
湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案
武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
高一数学第二学期期末考试试题(带参考答案)
高一数学第二学期期末考试试题(带参考答案)选择题1. 以下属于集合 {1, 2, 3, 4} 的真子集的个数是:A. 3B. 7C. 15D. 16正确答案:A2. 已知集合 A = {x | -2 ≤ x ≤ 3},则集合 A 中的元素个数是:A. 4B. 5C. 6D. 7正确答案:C3. 设集合 A = {a, b, c},集合 B = {1, 2, 3},则集合 A × B 的元素个数是:A. 3B. 6C. 9D. 12正确答案:D4. 已知集合 A = {x | -5 ≤ x ≤ 5},则集合 A 的幂集的元素个数是:A. 10B. 20C. 32D. 64正确答案:C解答题1. 已知函数 f(x) = 2x + 3,求 f(-4) 的值。
解答:将 x = -4 代入函数 f(x) = 2x + 3 中,得到 f(-4) = 2(-4) + 3 = -5。
2. 计算下列算式的值:(-3)^4 - 2 × 5^2解答:首先计算指数,得到(-3)^4 = 81,5^2 = 25。
然后代入算式,得到值为 81 - 2 × 25 = 31。
3. 已知一组数据为 {2, 4, 6, 8, 10},求这组数据的中位数。
解答:将数据从小到大排序为 {2, 4, 6, 8, 10},可以看出中间的数为 6,所以这组数据的中位数为 6。
4. 某商品标价为 800 元,商场打折后的售价为 720 元,求打折幅度。
解答:打折幅度为原价与打折后价之间的差值除以原价,所以打折幅度为 (800 - 720) ÷ 800 = 0.1,即打折幅度为 10%。
以上为高一数学第二学期期末考试试题及参考答案。
2023-2024学年北京市海淀区高一下学期7月期末考试数学试题+答案解析
2023-2024学年北京市海淀区高一下学期7月期末考试数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数z满足,则z的虚部为()A. B.2 C. D.i2.已知向量,则()A.0B.C.D.3.函数的部分图象如图所示,则其解析式为()A. B.C. D.4.若,且,则()A. B. C. D.75.在中,点D满足,若,则()A. B. C.3 D.6.已知,则下列直线中,是函数对称轴的为()A. B. C. D.7.在平面直角坐标系xOy中,点,点,其中若,则()A. B. C. D.8.在中,已知则下列说法正确的是()A.当时,是锐角三角形B.当时,是直角三角形C.当时,是钝角三角形D.当时,是等腰三角形9.已知是非零向量,则“”是“对于任意的,都有成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.定义域为、的函数的图象的两个端点分别为点是的图象上的任意一点,其中,点N满足向量,点O为坐标原点.若不等式恒成立,则称函数在上为k函数.已知函数在上为k函数,则实数k的取值范围是()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.知复数z满足,则__________,__________.12.在中,,P满足,则__________.13.在中,若,则k的一个取值为__________;当时,__________.14.一名学生想测算某风景区山顶上古塔的塔尖距离地面的高度,由于山崖下河流的阻碍,他只能在河岸边制定如下测算方案:他在河岸边设置了共线的三个观测点A,B,如图,相邻两观测点之间的距离为200m,并用测角仪器测得各观测点与塔尖的仰角分别为,,,根据以上数据,该学生得到塔尖距离地面的高度为___________________15.已知函数,给出下列四个结论:①对任意的,函数是周期函数;②存在,使得函数在上单调递减;③存在,使得函数的图象既是轴对称图形,又是中心对称图形;④对任意的,记函数的最大值为,则其中所有正确结论的序号是__________.三、解答题:本题共4小题,共48分。
高一(下学期)期末考试数学试卷
高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。
高一下册数学期末试卷(含答案)
高一数学下册期末试卷(含答案)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、若,则下列不等式成立的是( C )A. .B. .C. .D. .2、已知为等比数列,若,则公比的值为( B )A. B. C. D.3、设等差数列的前项和为,若,,则( B )A.63 B.45 C.36 D.274、在中,,,,则的解的个数是(C)A. 0个B. 1个C. 2个D. 不确定5、已知为等比数列,为方程的两根,则=( A )A.16 B. C.10 D.6、在中,则BC =( A )A. B. C. 2 D.7、已知为等差数列,为等比数列,则下列结论错误..的是( D )A.一定是等比数列 B.一定是等比数列C.一定是等差数列 D.一定是等差数列8、已知a,b,c为△ABC的三个内角A,B,C的对边,若,则的形状为(D)A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰或直角三角形9、利用基本不等式求最值,下列各式运用正确的是(D)A. B.C. D.10、在数列中,,则=(A)A. B. C. D.二、填空题:本大题共3小题,每小题5分,共15分.11、不等式的解集为________________.12、在中,,则_______________.13、已知等差数列的首项,公差,则前项和_________________,当=________________时,的值最小. ,5或6三、解答题:本大题共4小题,共35分.解答应写出文字说明、证明过程或演算步骤.14、(6分)解不等式解:,……1分,……2分,……3分……4分由标根法得:原不等式的解集为……6分(漏分母不为零,最多得4分)15、(6分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间的函数关系为:.问:在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?解:……1分……4分……5分所以当汽车平均速度为40(千米/小时)时,车流量最大为10(千辆/小时).……6分16、(11分)已知、、为的三个内角,它们的对边分别为、、,且.(1)求;(2)若,求的值,并求的面积.解:(Ⅰ).. ……2分又,. ……4分(没有说明范围,扣1分),. ……5分(Ⅱ)由余弦定理,得, ……7分即:,. ……9分. ……11分、17、(12分)设数列的前项和为,且;数列为等差数列,且,.(1)求数列、的通项公式;(2)若,为数列的前项和. 求.解:(1)数列为等差数列,公差,……1分可得……2分由,令,则,又,所以. ……3分当时,由,可得.即. ……5分所以是以为首项,为公比的等比数列,于是. ……6分(2)……7分∴、……8分∴. ……10分,从而.(写成也可)……12分第二部分能力检测(共50分)四、填空题:本大题共2小题,每小题5分,共10分.18、若数列满足,且,则通项________________.19、如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个侧点与.现测得,并在点测得塔顶的仰角为,则塔高=_________________.五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤.20、(12分)已知(1)求函数的解析式,并求图象的对称中心的横坐标;(2)若时,不等式恒成立,求实数的取值范围.解:(1)……2分……4分……5分令……6分,对称中心的横坐标为……7分(欠扣1分)(2)由、……8分则……9分所以函数……10分由恒成立,得,……12分(没有等号扣1分)21、(14分)某农场预算用5600元购买单价为50元(每吨)的钾肥和20元(每吨)的氮肥,希望使两种肥料的总数量(吨)尽可能的多,但氮肥数不少于钾肥数,且不多于钾肥数的1.5倍。
贵州省贵阳市2023-2024学年度第二学期期末监测试卷高一数学试题(含答案)
;
(2)若
uuur AB
uuur × AC
=
0
且
AB
=
3,
AC
=
2
,求
uuur CD
.
试卷第41 页,共33 页
17.在 VABC 中,角 A, B,C 的对边分别为 a, b, c ,已知 b =
2,c =
5, cosC = -
2. 2
(1)求 sinB 的值;
(2)求 VABC 的面积. 18.根据央视网消息显示,贵州省文旅厅网站 5 月 1 日公布《2023 年“五一”假期前三天 全省文化旅游情况》,其中显示,假期前三天,根据抽样调查结果,全省接待游客 2038.26
D.0
二、多选题
试卷第21 页,共33 页
9. VABC 中角 A, B,C 所对的边分别为 a,b, c ,若 c = 4, B = 30o ,则下列结论正确的有 ()
A.若 b = 2 ,则 VABC 有一个解 B.若 VABC 有两个解,则 a 有可能等于 3 3
C.若
VABC
为等腰三角形,则 b
=
43 3
或
4
D.若 VABC 为直角三角形,则 b 一定为 2
10.如图,在正方体 ABCD - A1B1C1D1 中,点 P 在线段 BC1 上运动时(包括 B、C1 点),下列 命题正确的是( )
A.三棱锥 A - D1PC 的体积不变 B.直线 AD 一定与平面 PA1D1 平行
C.直线
C1
ar
=
r b
=
2,
ar
+
r b
=
2
3
,则
ar
×
高一下学期期末考试数学试题(含答案)
33高一下学期期末数学试卷第Ⅰ卷(选择题 共50分)一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知α是第二限角,则下列结论正确的是A .sinα•cosα>0B .sinα•tanα<0C .cosα•tanα<0D .以上都有可能( )2.化简 AB + BD - AC - CD =()A . 0B . ADC . BCD . DA3.若 P (-3,4) 为角α终边上一点,则 cos α=()A. -B. 455 C. - D. - 44 34. 若 a = 1, b = 2, 且 a , b 的夹角为120 则 a + b 的值()A .1B . 3C . 2D . 2π5. 下列函数中,最小正周期是A. y = tan 2x的偶函数为() 2B. y = cos(4x + πC. y = 2 cos 22x -1 2D. y = cos 2x6. 将函数 y = sin(3x + π 的图象向左平移π) 个单位,再将所得图象上所有点的横坐标缩短到原 6 61来的 倍(纵坐标不变),则所得图象的函数解析式为( )2A. y =sin( 3 x + 2π2 3B. y = sin(6x + π3C. y = sin 6xD. y = sin(6x +2π37. 如右图,该程序运行后的输出结果为()A .0B .3C .12D .-2))) )8. 函数 y =cos(π π-2x )的单调递增区间是4()5π 5A .[k π+ 8 ,k π+ 8 π]B .[2k π+ 8 ,2k π+ π]83 C .[k π- 8 π,k π+ π3]D .[2k π- 8 8 π,2k π+ π](以上 k ∈Z )89. 已知直线 y = x + b,b ∈[﹣2,3],则直线在 y 轴上的截距大于 1 的概率是()1 234A.B .C .D .555510. 右面是一个算法的程序.如果输入的 x 的值是 20,则输出的 y 的值是()A .100B .50C .25D .150第Ⅱ卷(非选择题 共 100 分)二、填空题(本题共 5 小题,每题 5 分,共 25 分)11.若 a = (2,3) 与b = (-4, y ) 共线,则 y =.12. 某工厂生产 A ,B ,C 三种不同型号的产品,产品数量之比依次为 2∶3∶5.现用分层抽样方法抽出一个容量为 n 的样本,样本中 A 种型号的产品有 16 件,那么此样本的容量 n =.13. 设扇形的周长为8cm ,面积为 4cm 2,则扇形的圆心角的弧度数是 .14. 若tan α= 1,则2sin α+ cos α 2 s in α- 3cos α= .15. 函数 y=Asin(ωx+φ)( A >0,ω>0,|φ|<π ) ,在同一个周期内,当 x= π时, y 有最大值 2,3当 x=0 时,y 有最小值-2,则这个函数的解析式为.三、解答题(本大题共 6 小题,满分 75 分,解答须写出文字说明、证明过程或演算步骤)16.(本小题满分 12 分)某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的 学生中抽出 60 名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1) 求第四小组的频率,并补全这个频率分布直方图; (2) 估计这次考试的及格率(60 分及以上为及格)和平均分.-α 17.(本小题满分 12 分)已知函数 f (x ) = 2sin 1 x + 2 3 cos 1x .2 2(1) 求函数 f (x ) 的最小正周期及值域; (2) 求函数 f (x ) 的单调递增区间.18.(本小题满分 12 分)已知|a |=3,|b |=2,a 与 b 的夹角为 60°,c =3a +5b ,d =m a -3b .(1) 当 m 为何值时,c 与 d 垂直? (2) 当 m 为何值时,c 与 d 共线?19.(本小题满分 12 分)设函数 f (x )=a ·b ,其中向量 a =(m ,cos2x ),b =(1+sin2x,1),x ∈R ,且⎡π ⎤ 函数 y =f (x )的图象经过点 ⎢⎣ 4 , 2⎥⎦. (1) 求实数 m 的值;(2) 求函数 f (x )的最小值及此时x 值的集合.20.(本小题满分 13 分)已知π < α< π,且sin(π-α) = 4;25sin(2π+α) tan(π-α) cos(-π-α)(1) 求 sin(3π 2 π) cos( 2+α)的值;(2) 求 sin 2α- cos 2α 5π 的值.tan(α- )421.(本小题满分 14 分)某班数学兴趣小组有男生三名,分别记为 a 1 , a 2 , a 3 ,女生两名,分别记为b 1 , b 2 ,现从中任选 2 名学生去参加校数学竞赛.(1) 写出这种选法的样本空间; (2) 求参赛学生中恰有一名男生的概率; (3) 求参赛学生中至少有一名男生的概率.) 数学参考答案及评分标准一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。
辽宁省大连市2023-2024学年高一下学期7月期末考试数学试题(含答案)
大连市2023~2024学年度第二学期期末考试高一数学注意事项:1.请在答题纸上作答,在试卷上作答无效;2、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知复数满足,则( )A B. C.D.2. 已知,则的值为( )A.B. 3C. D. 3. 已知圆锥的底面半径是1,则圆锥的侧面积是( )A. B.C.D. 4. 下列四个函数中,以为最小正周期,且为奇函数的是( )A. B. C. D. 5. 将函数图象上所有点向右平移个单位,得到函数的图象,则图象的一条对称轴为( )A. B. C. D. 6. 设,是两个不重合平面,,是两条不重合直线,则( )A. 若,,则 B. 若,,则C. 若,,,则 D. 若,,,则7. 已知平面直角坐标系内点,为原点,线段绕原点按逆时针方向旋且长度变为原来的一半,得到线段,若点的纵坐标为,则( ).的z ()1i 1z -=z =i1i+1i 211i 22+tan 2α=sin cos sin cos αααα+-1313-3-π4π2πππsin 22y x ⎛⎫=-⎪⎝⎭πcos 22y x ⎛⎫=+⎪⎝⎭()tan 2πy x =+()sin 2πy x =-()sin2f x x =π8()g x ()g x π8x =-π8x =3π16x =5π16x =αβm l //l αm α⊂//m l //m ααβ⊥m β⊥m α⊥l β⊥//m l //αβαβ⊥//m αl //βm l⊥A O OA (0π)αα<<OA 'A '513cos α=A.B.C.D.8. 已知中,,,为所在平面内一点,,则的最小值为( )A B. C. 0 D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知复数,,则下列说法正确是( )A. 若,则的共轭复数为B. 若为纯虚数,则C. 若,则D. 10. 已知角的顶点与坐标原点重合,角的始边落在轴的正半轴上,如果是角终边上不同于坐标原点的任意一点,记,当角的终边不在轴上时,称为角的正割,记作.则下列说法正确的是( )A. B. 函数的最小正周期为,其图象的对称轴为C. (其中和的取值使各项都有意义)D. 在锐角中,角,,的对边分别为,,,则11. 如图,正三棱台上、下底面边长分别为1和3,侧棱长为2,则下列说法正确的是( ).的的ABC V 4AB =3AC =2AB AC +=P ABC V 8AP AB ⋅=PA PC ⋅ 5-14-741z 2z 132i z =+1z 32i -()()()11i m m m -++∈R 1m =12z z =12z z =1212z z z z =ααx (),P x y αr =αy rxαsec απsec23=()sec f x x =2πππ(Z)2x k k =+∈()sec sec sec 1tan tan αβαβαβ+=-αβABC V A B C a b c sec sec b c a B C=+111ABC A B C -A.B. 若过点的平面与平面平行,则平面C. 若点在棱上,则的最小值为D.第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共15分.其中第14题第一空2分,第二空3分.)12. 已知向量,,若,则实数____.13. 已知函数在上单调递增,则的最大值为____.14. 已知矩形中,,,将沿折至,得到三棱锥,则该三棱锥体积的最大值为____;该三棱锥外接球的表面积为____.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知,角,,的对边分别为,,.(1)求角的大小;(2)若,,求的面积.16. 如图,在直三棱柱中,,.(1)求证:平面平面;(2)求证:.17. 如图,某沿海地区计划铺设一条电缆联通,两地,地位于岸边东西方向的直线上,地1C α11ABB A αP 1BB AP CP +()3,a x = ()1,1b =- a b ⊥x =()π2sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭π0,4⎡⎤⎢⎥⎣⎦ωABCD 4AB =3AD =ACD V AC ACD '△D ABC '-ABC V A B C a b c cos sin B b A =B 7b =13a c +=ABC V 111ABC A B C -1AB BB =AB BC ⊥1A BC ⊥11ABB A 11AC A B ⊥M N M AB N位于海上一个灯塔处,在地用测角器测得的大小,设,已知.在地正东方向的点处,用测角器测得.在直线上选一点,设,且,先沿线段在地下铺设电缆,再沿线段在水下铺设电缆.已知地下、水下的电缆铺设费用分别为3万元,6万元.(1)求,两点间的距离;(2)设铺设电缆总费用为.①求的表达式;②求铺设电缆总费用的最小值,并确定此时的长度.18. 如图,在四棱锥中,底面为菱形,,,为的中点.(1)证明:平面;(2)若,.①求二面角的余弦值;②求直线与平面所成角的正弦值.19. 已知函数,,若对于任意实数,,,都能构成三角形的三条边长,则称函数为上的“完美三角形函数”.(1)试判断函数是否为上的“完美三角形函数”,并说明理由;(2)设向量,,若函数为上的“完美三角形函数”,求实数的取值范围;M NMB ∠0NMB ∠α=05tan 12α=M 7km 5P π4NPB ∠=AB Q NQB ∠α=0π2αα<≤MQ QN /km /km M N ()f α()fαMQ P ABCD -ABCD 60∠= BAD PA PD ⊥E PC //PA BDE PA PB ==2PD =P AD B --BC ABP ()y f x =x D ∈a b c ∈,,D ()f a ()f b ()f c ()y f x =D ()215cos sin 4f x x x =++R ()2sin 2cos m k x x = ,()cos 2cos n x k x = ,()21g x m n k =⋅-+ π0,4⎡⎤⎢⎥⎣⎦k(3)已知函数为(为常数)上的“完美三角形函数”.函数的图象上,是否存在不同的三个点,满足,?若存在,求的值;若不存在,说明理由.()πsin 26h x x ⎛⎫=+⎪⎝⎭π,6θ⎡⎤⎢⎥⎣⎦θ()h x ()()()111123,A x h x i =,,1322x x x +=()()()132h x h x x +=()13cos x x -大连市2023~2024学年度第二学期期末考试高一数学答案第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】D二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】ABD【10题答案】【答案】AC【11题答案】【答案】BC第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共15分.其中第14题第一空2分,第二空3分.)【12题答案】【答案】3【13题答案】【答案】【14题答案】【答案】①.②. 四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)【15题答案】【答案】(1); (2).【16题答案】【答案】(1)证明略 (2)证明略【17题答案】【答案】(1); (2)①;②万元,.【18题答案】【答案】(1)证明略 (2)①;②【19题答案】【答案】(1)是,理由略(2)(3)不存在,理由略.2324525ππ3B =13km 5()()032cos 36π(5sin 2fααααα-=+<≤365+12513122⎛⎫ ⎪ ⎪⎝⎭。
高一下学期期末考试数学试卷
高一下学期期末考试数学试卷一、选择题(共10小题 每小题4分 共40分).在每小题列出的四个选项中 选出符合题目要求的一项.1.设向量 则( )A .11B .9C .7D .52.sin330°=( )A. B. –C. D. –3.在复平面内 复数z 对应的点Z 如图所示 则复数( )A .2+iB .2﹣iC .1+2iD .1﹣2i4.某圆锥的母线长为5cm 底面半径长为3cm 则该圆锥的体积为( ) A .12πcm 3 B .15πcm 3C .36πcm 3D .45πcm 35.函数f (x )=cos 22x ﹣sin 22x 的最小正周期是( ) A.B .πC .2πD .4π6.若sinα=0.4 则符合条件的角α有() A .1个B .2个C .3个D .4个7.函数f (x )=A sin (ωx +φ)(其中A >0 ω>0 0<φ<π)的图像的一部分如图所示 则此函数的解析式是( )()3,2a =()1,4b =-r a b ×=1212z =π23π3π,22a æöÎ-ç÷èøA.B.CD.8.向量与的夹角为( )A .30°B .40°C .60°D .90°9.在△ABC 中 内角A 和B 所对的边分别为a 和b 则a >b 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知单位向量 满足若非零向量 其中 则的最大值为( )A. B.C.D.二、填空题(每题3分 满分25分 将答案填在答题纸上)11.设复数则|z |= .12.已知半径为r 的球的表面积为36πcm 2 那么半径为2r 的球的表面积为 cm 2.13.在锐角△ABC 中 角A B C 所对的边分别为a b c .若则A = .14.已知向量 满足 那么 .15.设函数f (x )=sinπx g (x )=x 2﹣x +1 有以下四个结论. ①函数y =f (x )+g (x )是周期函数;②函数y =f (x )﹣g (x )的图像是轴对称图形; ③函数y =f (x )•g (x )的图像关于坐标原点对称;④函数存在最大值.其中 所有正确结论的序号是 .()3sin 42ππf x x æö=+ç÷èø3()3s 4πin π4f x x æö=+ç÷èø()3sin 84ππf x x æö=+ç÷èø3()3s 4πin π8f x x æö=+ç÷èøcos500)n 5(,si a °°= ()cos10,sin10b °°= 1e 2e 1212e e ×=- 12a xe ye =+ x y ÎR x a4323212i3i z +=-1sin 2a B b=a b 5a = 4b = ()a b b +^ a b -= ()()f x yg x =三、解答题:共6小题 共85分.解答应写出文字说明 演算步骤或证明过程.16.已知. (Ⅰ)求tan θ的值; (Ⅱ)求sin2θ的值.17.如图 在四棱柱ABCD ﹣A 1B 1C 1D 1中 BB 1⊥平面ABCD AD ∥BC ∠BAD =90° AC ⊥BD 且AB =AD =2 AA 1=1.(Ⅰ)求三棱锥B 1﹣ABD 的体积; (Ⅱ)求证:BC ∥平面ADD 1A 1; (Ⅲ)求证:AC ⊥B 1D .18.在中.(1)求的面积;(2)求的值.19.已知函数同时满足下列三个条件中的二个:①f (0)=2;②最大值为2;③最小正周期为π. (Ⅰ)求出所有可能的函数f (x ) 并说明理由;πtan 34q æö+=-ç÷èøABC 4AB =3AC =1cos 4C =-ABC BA BC ×()()cos 0f x x x m w w w =++>(Ⅱ)从符合题意的函数中选择一个求其单调增区间.20.如图在正方体ABCD﹣A1B1C1D1中AA1=2 E为AA1的中点O为BD1的中点.(Ⅰ)求证:平面A1BD1⊥平面ABB1A1;(Ⅱ)求证:EO∥平面ABCD;(Ⅲ)设P为正方体ABCD﹣A1B1C1D1棱上一点给出满足条件P的个数并说明理由.21.设函数f(x)的定义域为R.若存在常数T A(T>0 A>0)使得对于任意x∈R f(x+T)=Af(x)成立则称函数f(x)具有性质P.(Ⅰ)判断函数y=x和y=cos x具有性质P?(结论不要求证明)(Ⅱ)若函数f(x)具有性质P且其对应的T=π A=2.已知当x∈(0 π]时f(x)=sin x求函数f(x)在区间[﹣π 0]上的最大值;(Ⅲ)若函数g(x)具有性质P且直线x=m为其图像的一条对称轴证明:g(x)为周期函数.OP=参考答案一、选择题(共10小题每小题4分共40分).1.D解析向量则=﹣3+8=5.故选:D.2.B解析sin330°=sin(270°+60°)=﹣cos60°=﹣.故选:B.3.B解析由图可知点Z对应的复数z=2+i则故选:B.4.A解析圆锥的母线长l=5cm 底面半径长r=3cm所以圆锥的高h===4(cm)所以该圆锥的体积为V=πr2h=π×32×4=12π(cm)3.故选:A.5.A解析因为f(x)=cos22x﹣sin22x=cos4x所以f(x)的最小正周期T==故选:A.6.C解析利用正弦函数y=sin x的图象和函数y=0.4的图象所以这两个函数的图象有3个交点如图所示:故满足条件的角有3个.故选:C.7.C解析由图象得函数f(x)的最小正周期为T=4(6﹣2)=16 所以;由图象的最高点为(2 3)得A=3 且f(2)=3即由0<φ<π 解得φ=.故选:C.8.B解析根据题意设两个向量的夹角为θ向量与则||=1 ||=1 •=cos50°cos10°+sin50°sin10°=cos40°则cosθ==cos40°又由0°≤θ≤180°故两个向量的夹角为40°故选:B.9.C解析在三角形中若a>b由正弦定理得sin A>sin B.若sin A>sin B则正弦定理得a>b所以a>b是sin A>sin B的充要条件.故选:C.10.D解析因为单位向量满足•=﹣所以<>=设=(1 0)=(﹣)所以=x+y=x(1 0)+y(﹣=(x﹣y)所以||==所以==当x=0时=0 当x≠0时=令t=则1﹣t+t2=(t﹣)2+≥所以≤所以的最大值为.故选:D.二、填空题(每题3分满分25分将答案填在答题纸上)11.解析因为z====所以|z|==故答案为:.12.144π解析由题意4πr2=36π 解得r=3那么半径为2r的球的表面积为4π×62=144πcm2故答案为:144π.13.解析因为所以由正弦定理可得sin A sin B=sin B 因为sin B≠0 所以sin A=又A为锐角所以A=.故答案为:.14.解析∵向量满足∴(+)•=+=+16=0 ∴=﹣16∴====故答案为:.15.②④解析对于①:因为函数f(x)=sinπx是周期函数但是g(x)=x2﹣x+1不是周期函数所以y=f(x)+g(x)不是周期函数故①不正确;对于②:因为函数f(x)=sinπx对称轴为x=+k k∈Z所以x=是f(x)的一条对称轴因为g(x)=x2﹣x+1=(x﹣)2+对称轴为x=所以y=f(x)﹣g(x)的对称轴为x=故②正确;对于③:因为函数f(x)=sinπx是关于原点对称但是g(x)=x2﹣x+1不关于原点对称所以y=f(x)•g(x)不是关于原点对称故③不正确;对于④:y==f(x)=sinπx当x=时f(x)max=1因为g(x)=x2﹣x+1=(x﹣)2+则g(x)min=g()=所以y=有最大值为故④正确.故答案为:②④.三、解答题:共6小题共85分.解答应写出文字说明演算步骤或证明过程.16.解:(Ⅰ)∵=∴tanθ=2.(Ⅱ)sin2θ====.17.解:(Ⅰ).(Ⅱ)证明:因为AD∥BC BC⊄平面ADD1A1AD⊂平面ADD1A1所以BC∥平面ADD1A1.(Ⅲ)证明:因为BB1⊥底面ABCD AC⊂底面ABCD所以BB1⊥AC.又因为AC⊥BD BB1∩BD=B所以AC ⊥平面BB 1D .又因为B 1D ⊂平面BB 1D 所以AC ⊥B 1D . 18.解:(Ⅰ)在△ABC 中 由余弦定理可知:cos C ===﹣ 解得:BC =2或BC =﹣(舍)又∵cos C =﹣ 0<C <π ∴sin C =∴S △ABC =×BC ×AC ×sin C =×2×3×=;(Ⅱ)在△ABC 中 由正弦定理可得:= 则sin B ===∵BC <AC <AB ∴∠B 为锐角 ∴cos B >0 ∴cos B =∴•=||•||•cos B =4×3×=.19.解:(I );若选①② 则 无解 f (x )不存在;若选①③ 则 解得m =1 ω=2 ;若选②③ 则 解得m =0 ω=2.(II )若 令所以增区间为.若 其增区间与相同为.20.解:(Ⅰ)证明:在正方体ABCD ﹣A 1B 1C 1D 1中 ∵A 1D 1⊥平面ABB 1A 1 A 1D 1⊂平面A 1BD 1∴平面A1BD1⊥平面ABB1A1.(Ⅱ)证明:连接BD AC设BD∩AC=G连接0G.∵ABCD﹣A1B1C1D1为正方体∴AE∥DD1且AE=DD1且G是BD的中点又因为O是BD1的中点∴OG∥DD1且OG=DD1∴OG∥AE且OG=AE即四边形AGOE是平行四边形所以OE∥AG又∵EO⊄平面ABCD AG⊂平面ABCD所以EO∥平面ABCD.(Ⅲ)解:满足条件OP=的点P有12个.理由如下:因为ABCD﹣A1B1C1D1为正方体AA1=2所以AC=2.所以OE=AG=AC=.在正方体ABCD﹣A1B1C1D1中因为AA1⊥平面ABCD AG⊂平面ABCD所以AA1⊥AG又因为EO∥AG所以AA1⊥OE则点O到棱AA1的距离为所以在棱AA1上有且只有一个点(即中点E)到点O的距离等于同理正方体ABCD﹣A1B1C1D1每条棱的中点到点的距离都等于所以在正方体ABCD﹣A1B1C1D1棱上使得OP=的点P有12个.21.解:(Ⅰ)函数y=x不具有性质P;函数y=cos x具有性质P.(Ⅱ)设x∈(﹣π 0] 则x+π∈(0 π].由题意得f(x+π)=2f(x)=sin(x+π)所以当f(x)=﹣sin x x∈(﹣π 0]由f(﹣π+π)=2f(﹣π)f(0+π)=2f(0)得f(﹣π)=f(π)=0.所以当x∈[﹣π 0]时f(x)=﹣sin x.故当x=时f(x)在区间[﹣π 0]上有最大值.(Ⅲ)证明:当g(x)=0 x∈R时结论显然成立;下面考虑g(x)不恒等于0的情况即存在x0使得g(x0)≠0由于直线x=m为函数g(x)图象的一条对称轴所以g(2m﹣x0)=g(x0)≠0 由题意存在T0A0(T0>0 A0>0)使得g(x+T0)=A0g(x0)成立所以g(2m﹣x0)=A0g(2m﹣x0﹣T0)即g(2m﹣x0﹣T0)=g(x0)由直线x=m是函数g(x)图像的一条对称轴得g(2m﹣x0﹣T0)=g(x0+T0)又因为g(x0+T0)=A0g(x0)g(x0)≠0所以g(x0)=A0g(x0)即A0=1故对于任意x∈R g(x+T0)=g(x)成立其中T0>0.综上g(x)为周期函数.高一下学期期末考试数学试卷一、选择题10小题每小题4分共40分。
高一数学期末试题及答案
高一数学期末试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x2. 函数y = 2x + 3的斜率是:A. 2B. 3C. 1/2D. 1/33. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}4. 圆的方程为(x-2)^2 + (y-3)^2 = 9,则圆心坐标是:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)5. 函数f(x) = |x|的图象是:A. 直线B. 抛物线C. V形D. U形6. 等差数列{an}的首项a1 = 3,公差d = 2,则a5的值是:A. 11B. 13C. 15D. 177. 向量a = (3, -4)与向量b = (-2, 5)的点积是:A. 13B. -13C. 3D. -38. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π9. 函数f(x) = x^2 - 4x + 3的顶点坐标是:A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)10. 抛物线y = x^2 - 6x + 9的顶点坐标是:A. (3, 0)B. (-3, 0)C. (3, 9)D. (-3, 9)二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1 = 2,公比q = 3,则b3的值是________。
12. 函数y = 3x - 2与x轴的交点坐标是________。
13. 圆心在原点,半径为5的圆的方程是________。
14. 向量a = (1, 2)与向量b = (-2, 4)的向量积是________。
15. 函数f(x) = x^3 - 3x^2 + 2x + 1的极值点是________。
2023-2024学年四川省内江市高一下学期期末考试数学试题(含解析)
2023-2024学年四川省内江市高一下学期期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.某高中生创新能力大赛中8位选手的面试得分分别为90,86,93,91,89,95,92,94,其中位数和极差分别为( )A. 90,8B. 91.5,9C. 91,9D. 91.5,82.若复数z 满足z =i1−2i ,则z 的虚部为( )A. i5B. −25C. −i5D. −153.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄的分布饼状图、90后从事互联网行业者的岗位分布条形图,则下列结论中不一定正确的是( )A. 互联网行业从事技术岗位的人数中,90后比80后多B. 90后互联网行业者中从事技术岗位的人数超过整个从事互联网行业者总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业从业人员中90后占一半以上4.已知函数g (x )=2sin 2x ,函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|<π2)的部分图象如图所示,要得到f (x )的图象,只需将函数g (x )的图象( )A. 向左平移π6个单位B. 向右平移π6个单位C. 向右平移π3个单位D. 向左平移π3个单位5.内江三元塔位于四川省内江市三元村三元山上,是一座具有千年历史的古塔.它始建于唐代,明末倒毁,后在清嘉庆九年(公元1804年)得以重建,历时三年竣工.三元塔的修建寓意着“天开文运,连中三元”,象征着文运昌盛和崇文重教的精神.内江某中学数学兴趣小组准备运用解三角形知识测量塔高时,选取了两个测量基点C与D与塔底B在同一水平面,并测得CD=202米,∠BCD=15∘,∠BDC=120∘,在点C处测得塔顶A的仰角为60∘,则塔高AB=( )A. 106米B. 103米C. 203米D. 60米6.在平行四边形ABCD中,E是对角线AC上靠近点C的三等分点,点F在BE上,若AF=x AB+49AD,则x= ( )A. 45B. 23C. 79D. 587.暑假即将来临,某校为开展学生的社会实践活动,从甲、乙、丙、丁、戊5人中随机选3人去参加“敬老院志愿服务”活动,则乙和丙两人中只有1人入选的概率为( )A. 12B. 23C. 34D. 358.已知向量a,向量b的模长均为2,且|a−b|=|a|.若向量m=a−2c,n=c−b,且m⊥n,则|c|的最大值是( )A. 72+3 B. 52+3 C. 7+32D. 94二、多选题:本题共3小题,共15分。
2023-2024学年广东省部分学校高一(下)期末数学试卷+答案解析
2023-2024学年广东省部分学校高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数,则()A. B. C. D.12.已知圆锥的表面积为,它的侧面展开图是个半圆,则此圆锥的体积为()A.3B.C.9D.3.已知正方体的棱长为2,E,F分别是BC和CD的中点.则两条平行线EF和间的距离为()A. B. C. D.4.端午节吃粽子是我国的一个民俗,记事件“甲端午节吃甜粽子”,记事件“乙端午节吃咸粽子”,且,事件A与事件B相互独立,则()A. B. C. D.5.菏泽市博物馆里,有一条深埋600多年的元代沉船,对于研究元代的发展提供了不可多得的实物资料.沉船出土了丰富的元代瓷器,其中的白地褐彩龙风纹罐如图的高约为36cm,把该瓷器看作两个相同的圆台拼接而成如图,圆台的上底直径约为20cm,下底直径约为40cm,忽略其壁厚,则该瓷器的容积约为()A. B. C. D.6.人脸识别就是利用计算机检测样本之间的相似度,余弦距离是检测相似度的常用方法.假设二维空间中有两个点,,O为坐标原点,定义余弦相似度为,余弦距离为已知,,若P,Q的余弦距离为则()A. B. C. D.7.在棱长为1的正方体中,,E是线段含端点上的一动点,则①;②面;③三棱锥的体积为定值;④OE与所成的最大角为上述命题中正确的个数是()A.1B.2C.3D.48.已知正方体的棱长为2,M 是棱的中点,空间中的动点P 满足,且,则动点P 的轨迹长度为()A.B.3C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.下列有关复数的说法正确的是()A.若,则B.C.D.若,则的取值范围为10.已知点,,则下列结论正确的是()A.与向量垂直的向量坐标可以是B.与向量平行的向量坐标可以是C.向量在方向上的投影向量坐标为D.对,向量与向量所成角均为锐角11.在正方体中,,E 是棱的中点,则下列结论正确的是()A.若F 是线段的中点,则异面直线EF 与AB 所成角的余弦值是B.若F 为线段上的动点,则的最小值为C.若F 为线段上的动点,则平面ABF 与平面CDF 夹角的余弦值的取值范围为D.若F 为线段上的动点,且与平面ABCD 交于点G ,则三棱锥的体积为三、填空题:本题共3小题,每小题5分,共15分。
高一下学期期末数学试卷及答案
高一下学期期末数学试卷及答案不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。
下面为您推荐高一下学期期末数学试卷及答案。
【试题一】一、选择题:(共15个小题,每小题4分,共60分.在每个小题给出的四个选项中,只有一项是符合要求的)1.已知全集U=R,A=,B={x|lnx0},则AB=()A.{x|﹣1x2}B.{x|﹣1x2}C.{x|x﹣1或x2}D.{x|02.已知,那么cos=()A.B.C.D.3.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A.B.C.1D.24.△ABC中,AB=2,AC=3,B=60,则cosC=()A.B.C.D.5.已知△ABC是边长为1的等边三角形,则(﹣2)(3﹣4)=()A.﹣B.﹣C.﹣6﹣D.﹣6+6.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.277.已知角是第二象限角,且|cos|=﹣cos,则角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5B.4C.3D.29.对任意一个确定的二面角﹣l﹣,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是()A.a∥a且b∥B.a∥a且bC.a且bD.a且b10.定义22矩阵=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到函数g(x),则函数g(x)解析式为()A.g(x)=﹣2cos2xB.g(x)=﹣2sin2xC.D.11.已知一个几何体的三视图如图所示,则该几何体的体积为()A.7B.7C.7D.812.若sin(+)=,是第三象限的角,则=()A.B.C.2D.﹣213.已知,记数列{an}的前n项和为Sn,则使Sn0的n的最小值为()A.10B.11C.12D.1314.(1+tan18)(1+tan27)的值是()A.B.C.2D.2(tan18+tan27)15.数列{an}满足:且{an}是递增数列,则实数a的范围是()A.B.C.(1,3)D.(2,3)二、填空题(共5小题,每小题4分,共20分,将答案填在答题纸上)16.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C 三点共线,则k=.17.已知向量、满足||=1,||=1,与的夹角为60,则|+2|=.18.在△ABC中,BD为ABC的平分线,AB=3,BC=2,AC=,则sinABD等于.19.在四棱锥S﹣ABCD中,SA面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为.20.设数列{an}的通项为an=2n﹣7(nN*),则|a1|+|a2|++|a15|=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)21.已知平面向量=(1,x),=(2x+3,﹣x)(xR).(1)若∥,求|﹣|(2)若与夹角为锐角,求x的取值范围.22.(文科)已知{an}是单调递增的等差数列,首项a1=3,前n 项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.(Ⅰ)求{an}和{bn}的通项公式.(Ⅱ)令Cn=nbn(nN+),求{cn}的前n项和Tn.23.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB ﹣sin(A﹣B)sinB+cos(A+C)=﹣.(Ⅰ)求cosA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.24.已知如图:四边形ABCD是矩形,BC平面ABE,且AE=2,EB=BC=2,点F为CE上一点,且BF平面ACE.(1)求证:AE∥平面BFD;(2)求三棱锥A﹣DBE的体积;(3)求二面角D﹣BE﹣A的大小.25.如图,函数f(x)=Asin(x+)(其中A0,0,||)的图象与坐标轴的三个交点为P,Q,R,且P(1,0),Q(m,0)(m0),PQR=,M为QR的中点,|PM|=.(Ⅰ)求m的值及f(x)的解析式;(Ⅱ)设PRQ=,求tan.26.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.(Ⅰ)求证:{lgan}是等差数列;(Ⅱ)设Tn是数列{}的前n项和,求Tn;(Ⅲ)求使Tn(m2﹣5m)对所有的nN*恒成立的整数m的取值集合.2021-2021学年河北省衡水市冀州中学高一(下)期末数学试卷(理科)参考答案与试题解析一、选择题:(共15个小题,每小题4分,共60分.在每个小题给出的四个选项中,只有一项是符合要求的)1.已知全集U=R,A=,B={x|lnx0},则AB=()A.{x|﹣1x2}B.{x|﹣1x2}C.{x|x﹣1或x2}D.{x|0【考点】并集及其运算.【分析】求出A与B中不等式的解集,分别确定出A与B,找出两集合的并集即可.【解答】解:由A中不等式变形得:0,即(x+1)(x﹣2)0,且x﹣20,解得:﹣1x2,即A={x|﹣1x2},由B中不等式变形得:lnx0=ln1,得到0则AB={x|﹣1x2},故选:B.2.已知,那么cos=()A.B.C.D.【考点】诱导公式的作用.【分析】已知等式中的角变形后,利用诱导公式化简,即可求出cos的值.【解答】解:sin(+)=sin(2++)=sin(+)=cos=.故选C.3.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足=+,则的值为()A.B.C.1D.2【考点】平面向量的基本定理及其意义.【分析】如图所示,由于=+,可得:PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.即可得出.【解答】解:如图所示,∵=+,PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.=1.故选:C.4.△ABC中,AB=2,AC=3,B=60,则cosC=()A.B.C.D.【考点】正弦定理.【分析】由已知及正弦定理可得sinC==,又AB【解答】解:∵AB=2,AC=3,B=60,由正弦定理可得:sinC===,又∵ABcosC==.故选:D.5.已知△ABC是边长为1的等边三角形,则(﹣2)(3﹣4)=()A.﹣B.﹣C.﹣6﹣D.﹣6+【考点】平面向量数量积的运算.【分析】将式子展开计算.【解答】解:(﹣2)(3﹣4)=3﹣4﹣6+8=311cos120﹣411cos60﹣612+811cos60=﹣﹣2﹣6+4=﹣.故选:B.6.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.27【考点】等差数列的性质.【分析】观察下标间的关系,知应用等差数列的性质求得.【解答】解:由等差数列性质知S3、S6﹣S3、S9﹣S6成等差数列,即9,27,S9﹣S6成等差,S9﹣S6=45a7+a8+a9=45故选B.7.已知角是第二象限角,且|cos|=﹣cos,则角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】三角函数值的符号.【分析】根据的范围判断出的范围,再由含有绝对值的式子得到角的余弦值的符号,根据一全正二正弦三正切四余弦再进一步判断的范围.【解答】解:由是第二象限角知,是第一或第三象限角.又∵|cos|=﹣cos,cos0,是第三象限角.故选C.8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5B.4C.3D.2【考点】等差数列的通项公式.【分析】写出数列的第一、三、五、七、九项的和即5a1+(2d+4d+6d+8d),写出数列的第二、四、六、八、十项的和即5a1+(d+3d+5d+7d+9d),都用首项和公差表示,两式相减,得到结果.【解答】解:,故选C.9.对任意一个确定的二面角﹣l﹣,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是()A.a∥a且b∥B.a∥a且bC.a且bD.a且b【考点】异面直线及其所成的角.【分析】作辅助线,利用二面角的定义和线线角的定义证明两角互补即可.【解答】解:如图,若a且b,过A分别作直线a、b的平行线,交两平面、分别为C、B设平面ABC与棱l交点为O,连接BO、CO,易知四边形ABOC为平面四边形,可得BOC与BAC互补∵﹣l﹣是大小确定的一个二面角,而BOC就是它的平面角,BOC是定值,BAC也是定值,即a,b所成的角为定值.故选D10.定义22矩阵=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到函数g(x),则函数g(x)解析式为()A.g(x)=﹣2cos2xB.g(x)=﹣2sin2xC.D.【考点】函数y=Asin(x+)的图象变换;三角函数中的恒等变换应用.【分析】利用三角恒等变换化简函数f(x)的解析式,再利用函数y=Asin(x+)的图象变换规律,求得函数g(x)解析式.【解答】解:由题意可得f(x)==cos2x﹣sin2x﹣cos(+2x)=cos2x+sin2x=2cos(2x﹣),则f(x)的图象向右平移个单位得到函数g(x)=2cos[2(x﹣)﹣]=2cos(2x﹣)=﹣2cos2x,故选:A.11.已知一个几何体的三视图如图所示,则该几何体的体积为()A.7B.7C.7D.8【考点】由三视图求面积、体积.【分析】根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的部分,结合图中数据即可求出它的体积.【解答】解:根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的部分,如图所示;所以该几何体的体积为V=V正方体﹣﹣=23﹣122﹣122=7.故选:A.12.若sin(+)=,是第三象限的角,则=()A.B.C.2D.﹣2【考点】运用诱导公式化简求值.【分析】已知等式利用诱导公式化简求出sin的值,根据为第三象限角,利用同角三角函数间基本关系求出cos的值,原式利用诱导公式化简,整理后将各自的值代入计算即可求出值.【解答】解:∵sin(+)=﹣sin=,即sin=﹣,是第三象限的角,cos=﹣,则原式====﹣,故选:B.13.已知,记数列{an}的前n项和为Sn,则使Sn0的n的最小值为()A.10B.11C.12D.13【考点】数列的求和.【分析】由,可得a1+a10=a2+a9==a5+a6=0,a110,则有S90,S10=0,S110可求【解答】解:由,可得a1+a10=a2+a9==a5+a6=0,a110S90,S10=0,S110使Sn0的n的最小值为11故选:B14.(1+tan18)(1+tan27)的值是()A.B.C.2D.2(tan18+tan27)【考点】两角和与差的正切函数.【分析】要求的式子即1+tan18+tan27+tan18tan27,再把tan18+tan27=tan45(1﹣tan18tan27)代入,化简可得结果.【解答】解:(1+tan18)(1+tan27)=1+tan18+tan27+tan18tan27=1+tan45(1﹣tan18tan27)+tan18tan27=2,故选C.15.数列{an}满足:且{an}是递增数列,则实数a的范围是()A.B.C.(1,3)D.(2,3)【考点】数列的函数特性;分段函数的解析式求法及其图象的作法;函数单调性的判断与证明.【分析】根据题意,首先可得an通项公式,这是一个类似与分段函数的通项,结合分段函数的单调性的判断方法,可得;解可得答案.【解答】解:根据题意,an=f(n)=;要使{an}是递增数列,必有;解可得,2故选D.二、填空题(共5小题,每小题4分,共20分,将答案填在答题纸上)16.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C 三点共线,则k=.【考点】平面向量共线(平行)的坐标表示;三点共线.【分析】利用三点共线得到以三点中的一点为起点,另两点为终点的两个向量平行,利用向量平行的坐标形式的充要条件列出方程求出k.【解答】解:向量,又A、B、C三点共线故(4﹣k,﹣7)=(﹣2k,﹣2)k=故答案为17.已知向量、满足||=1,||=1,与的夹角为60,则|+2|=.【考点】平面向量数量积的运算.【分析】根据条件进行数量积的计算便可得出,从而便可求出,这样即可求出的值.【解答】解:根据条件,;;.故答案为:.18.在△ABC中,BD为ABC的平分线,AB=3,BC=2,AC=,则sinABD等于.【考点】正弦定理.【分析】利用余弦定理求得cosABC=cos2的值,可得的值.【解答】解:∵△ABC中,BD为ABC的平分线,AB=3,BC=2,AC=,设ABD=,则ABC=2,由余弦定理可得cos2===,2=,=,故答案为:.19.在四棱锥S﹣ABCD中,SA面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为17.【考点】球内接多面体.【分析】如图所示,连接AC,BD相交于点O1.取SC的中点,连接OO1.利用三角形的中位线定理可得OO1∥SA.由于SA底面ABCD,可得OO1底面ABCD.可得点O是四棱锥S﹣ABCD外接球的球心,SC是外接球的直径.【解答】解:如图所示连接AC,BD相交于点O1.取SC的中点,连接OO1.则OO1∥SA.∵SA底面ABCD,OO1底面ABCD.可得点O是四棱锥S﹣ABCD外接球的球心.因此SC是外接球的直径.∵SC2=SA2+AC2=9+8=17,4R2=17,四棱锥P﹣ABCD外接球的表面积为4R2=17=17.故答案为:1720.设数列{an}的通项为an=2n﹣7(nN*),则|a1|+|a2|++|a15|=153.【考点】等差数列的前n项和.【分析】先根据数列的通项公式大于等于0列出关于n的不等式,求出不等式的解集即可得到数列的前三项为负数,利用负数的绝对值等于它的相反数,求出前三项的绝对值,正数的绝对值等于本身把第四项及后面的各项化简,然后利用等差数列的前n项和的公式即可求出所求式子的值.【解答】解:由an=2n﹣70,解得n,所以数列的前3项为负数,则|a1|+|a2|++|a15|=5+3+1+1+3+5++23=9+121+2=153.故答案为:153三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)21.已知平面向量=(1,x),=(2x+3,﹣x)(xR).(1)若∥,求|﹣|(2)若与夹角为锐角,求x的取值范围.【考点】平面向量数量积的运算;平面向量共线(平行)的坐标表示.【分析】(1)根据向量平行与坐标的关系列方程解出x,得出的坐标,再计算的坐标,再计算||;(2)令得出x的范围,再去掉同向的情况即可.【解答】解:(1)∵,﹣x﹣x(2x+3)=0,解得x=0或x=﹣2.当x=0时,=(1,0),=(3,0),=(﹣2,0),||=2.当x=﹣2时,=(1,﹣2),=(﹣1,2),=(2,﹣4),||=2.综上,||=2或2.(2)∵与夹角为锐角,,2x+3﹣x20,解得﹣1又当x=0时,,x的取值范围是(﹣1,0)(0,3).22.(文科)已知{an}是单调递增的等差数列,首项a1=3,前n 项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.(Ⅰ)求{an}和{bn}的通项公式.(Ⅱ)令Cn=nbn(nN+),求{cn}的前n项和Tn.【考点】等差数列与等比数列的综合;数列的求和.【分析】(Ⅰ)设公差为d,公比为q,则a2b2=(3+d)q=12①,S3+b2=3a2+b2=3(3+d)+q=20②联立①②结合d0可求d,q,利用等差数列,等比数列的通项公式可求an,bn(Ⅱ)由(I)可得,bn=2n﹣1,cn=n2n﹣1,考虑利用错位相减求解数列的和即可【解答】解:(Ⅰ)设公差为d,公比为q,则a2b2=(3+d)q=12①S3+b2=3a2+b2=3(3+d)+q=20②联立①②可得,(3d+7)(d﹣3)=0∵{an}是单调递增的等差数列,d0.则d=3,q=2,an=3+(n﹣1)3=3n,bn=2n﹣1(Ⅱ)bn=2n﹣1,cn=n2n﹣1,Tn=c1+c2++cnTn=120+221+322++n2n﹣12Tn=121+222++(n﹣1)2n﹣1+n2n两式相减可得,﹣Tn=120+121+122++12n﹣1﹣n2n﹣Tn==2n﹣1﹣n2nTn=(n﹣1)2n+123.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB ﹣sin(A﹣B)sinB+cos(A+C)=﹣.(Ⅰ)求cosA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.【考点】两角和与差的余弦函数;向量数乘的运算及其几何意义;二倍角的正弦;二倍角的余弦;余弦定理.【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B 的值,利用余弦定理求出c的大小.【解答】解:(Ⅰ)由可得,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知ab,即AB,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.24.已知如图:四边形ABCD是矩形,BC平面ABE,且AE=2,EB=BC=2,点F为CE上一点,且BF平面ACE.(1)求证:AE∥平面BFD;(2)求三棱锥A﹣DBE的体积;(3)求二面角D﹣BE﹣A的大小.【考点】二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)连接AC交BD于G,连结GF,则G为AC的中点,推导出BFCE,FG为△ACE的中位线,由此能证明AE∥平面BFD.(2)推导出BFAE,BCAE,AD平面ABE,从而AEBE,由V A ﹣DBE=VD﹣ABE,能求出三棱锥A﹣DBE的体积.(3)由AEBE,ADBE,得到DEA是二面角D﹣BE﹣A的平面角,由此能求出二面角D﹣BE﹣A的大小.【解答】证明:(1)连接AC交BD于G,连结GF,∵ABCD是矩形,G为AC的中点,1分由BF平面ACE得:BFCE,由EB=BC知:点F为CE中点,2分FG为△ACE的中位线,FG∥AE,3分∵AE平面BFD,FG平面BFD,AE∥平面BFD.4分解:(2)由BF平面ACE得:BFAE,由BC平面ABE及BC∥AD,得:BCAE,AD平面ABE,∵BCBF=F,AE平面BCE,则AEBE,6分V A﹣DBE=VD﹣ABE=,即三棱锥A﹣DBE的体积为.8分(3)由(2)知:AEBE,ADBE,BE平面ADE,则BEDE,DEA是二面角D﹣BE﹣A的平面角,10分在Rt△ADE中,DE==4,AD=DE,则DEA=30,二面角D﹣BE﹣A的大小为30.12分.25.如图,函数f(x)=Asin(x+)(其中A0,0,||)的图象与坐标轴的三个交点为P,Q,R,且P(1,0),Q(m,0)(m0),PQR=,M为QR的中点,|PM|=.(Ⅰ)求m的值及f(x)的解析式;(Ⅱ)设PRQ=,求tan.【考点】由y=Asin(x+)的部分图象确定其解析式;同角三角函数间的基本关系.【分析】(Ⅰ)由已知可得=,从而解得m的值,由图象可求T,由周期公式可求,把p(1,0)代入f(x),结合||,即可求得的值,把R(0,﹣4)代入f(x)=Asin(x﹣),即可解得A的值,从而可求f(x)的解析式.(Ⅱ)由ORP=﹣,tanORP=,根据tan(﹣)=即可解得tan的值.【解答】解:(Ⅰ)∵PQR=,OQ=OR,∵Q(m,0),R(0,﹣m),又M为QR的中点,M(,﹣),又|PM|=,=,m2﹣2m﹣8=0,m=4,m=﹣2(舍去),R(0,4),Q(4,0),=3,T=6,=6,,把p(1,0)代入f(x)=Asin(x+),Asin(+)=0,∵||,=﹣.把R(0,﹣4)代入f(x)=Asin(x﹣),Asin(﹣)=﹣4,A=.f(x)的解析式为f(x)=sin(x﹣).所以m的值为4,f(x)的解析式为f(x)=sin(x﹣).(Ⅱ)在△OPR中,ORP=﹣,tanORP=,tan(﹣)=,=,解得tan=.26.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.(Ⅰ)求证:{lgan}是等差数列;(Ⅱ)设Tn是数列{}的前n项和,求Tn;(Ⅲ)求使Tn(m2﹣5m)对所有的nN*恒成立的整数m的取值集合.【考点】数列的求和;等差关系的确定.【分析】(I)根据等差数列的定义即可证明{lgan}是等差数列;(Ⅱ)求出{}的通项公式,利用裂项法即可求Tn;(Ⅲ)直接解不等式即可得到结论.【解答】解:(I)∵a1=10,an+1=9Sn+10.当n=1时,a2=9a1+10=100,故,当n1时,an+1=9Sn+10①,an+2=9Sn+1+10②,两式相减得an+2﹣an+1=9an+1,即an+2=10an+1,即,即{an}是首项a1=10,公比q=10的等比数列,则数列{an}的通项公式;则lgan=lg10n=n,则lgan﹣lgan﹣1=n﹣(n﹣1)=1,为常数,即{lgan}是等差数列;(Ⅱ)∵lgan=n,则=(﹣),则Tn=3(1﹣++﹣)=3(1﹣)=3﹣,(Ⅲ)∵Tn=3﹣T1=,要使Tn(m2﹣5m)对所有的nN*恒成立,则(m2﹣5m)对所有的nN*恒成立,解得﹣1故整数m的取值集合{0,1,2,3,4,5}.【试题二】一、选择题(共12小题,每小题5分,满分60分)1.点P从(﹣1,0)出发,沿单位圆x2+y2=1顺时针方向运动弧长到达Q,则Q点坐标()A.(﹣,)B.(﹣,﹣)C.(﹣,﹣)D.(﹣,)2.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件抽到的不是一等品的概率为()A.0.7B.0.65C.0.35D.0.33.已知,为单位向量,其夹角为60,则(2﹣)=()A.﹣1B.0C.1D.24.sin(﹣15)=()A.B.C.D.5.已知向量=(﹣2,1),=(3,0),则在方向上的正射影的数量为()A.﹣B.C.﹣2D.26.在△ABC中,a=1,b=x,A=30,则使△ABC有两解的x的范围是()A.B.(1,+)C.D.(1,2)7.如图的程序框图,如果输入三个实数a,b,c,要求输出这三个数中的数,那么在空白的判断框中,应该填入下面四个选项中的()A.cxB.xaC.cbD.bc8.△ABC中,角A,B,C所对的边分别为a,b,c若A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形9.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且,,,则与()A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直10.设函数,且其图象关于直线x=0对称,则()A.y=f(x)的最小正周期为,且在上为增函数B.y=f(x)的最小正周期为,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数11.设O点在△ABC内部,且有,则△ABC的面积与△AOC的面积的比为()A.2B.C.3D.12.已知在等边△ABC中,AB=3,O为中心,过O的直线与△ABC 的边分别交于点M、N,则+的值是()A.B.2C.D.二、填空题(共4小题,每小题5分,满分20分)13.高一某班有学生56人,现将所有同学随机编号,用系统抽样的方法抽取一个容量为8的样本,则需要将全班同学分成组.14.已知tan=2,tan=3,且、都是锐角,则tan=.15.有一解三角形的题目因纸张破损,有一条件不清,具体如下:在△ABC中,已知a=,2cos2=(﹣1)cosB,c=,求角A,若该题的答案是A=60,请将条件补充完整.16.在△ABC中,ACB为钝角,AC=BC=1,且x+y=1,函数的最小值为,则的最小值为.三、解答题(共6小题,满分70分)17.已知函数f(x)=Asin(x+)(A0,0),xR的值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(﹣)的值.18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.19.如图,已知=(2,1),=(1,7),=(5,1),设Z是直线OP 上的一动点.(1)求使取最小值时的;(2)对(1)中求出的点Z,求cosAZB的值.20.学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.(1)在给出的样本频率分布表中,求A,B,C,D的值;(2)估计成绩在120分以上(含120分)学生的比例;(3)为了帮助成绩差的学生提高数学成绩,学校决定成立二帮一小组,即从成绩在[135,150]的学生中选两位同学,共同帮助成绩在[60,75)中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为140分,求甲、乙两同学恰好被安排在同一小组的概率.样本频率分布表:分组频数频率[60,75)20.04[75,90)30.06[90,105)140.28[105,120)150.30[120,135)AB[135,150]40.08合计CD21.某休闲农庄有一块长方形鱼塘ABCD,AB=50米,BC=25米,为了便于游客休闲散步,该农庄决定在鱼塘内建三条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E 在边BC上,点F在边AD上,且EOF=90.(1)设BOE=,试将△OEF的周长l表示成的函数关系式,并求出此函数的定义域;(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.22.在平面直角坐标系中,O为坐标原点,已知向量=(﹣1,2),又点A(8,0),B(n,t),C(ksin,t).(1)若,且||=||,求向量;(2)若向量与向量共线,常数k0,求f()=tsin的值域;(3)当(2)问中f()的值4时,求.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.点P从(﹣1,0)出发,沿单位圆x2+y2=1顺时针方向运动弧长到达Q,则Q点坐标()A.(﹣,)B.(﹣,﹣)C.(﹣,﹣)D.(﹣,)【考点】弧长公式.【分析】画出图形,结合图形,求出xOQ的大小,即得Q点的坐标.【解答】解:如图所示,;点P从(﹣1,0)出发,沿单位圆x2+y2=1顺时针方向运动弧长到达Q,则POQ=﹣2=,xOQ=,cos=﹣,sin=,Q点的坐标为(﹣,);故选:A.2.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件抽到的不是一等品的概率为()A.0.7B.0.65C.0.35D.0.3【考点】互斥事件的概率加法公式.【分析】根据对立事件的概率和为1,结合题意,即可求出结果来.【解答】解:根据对立事件的概率和为1,得;∵事件A={抽到一等品},且P(A)=0.65,事件抽到的不是一等品的概率为P=1﹣P(A)=1﹣0.65=0.35.故选:C.3.已知,为单位向量,其夹角为60,则(2﹣)=()A.﹣1B.0C.1D.2【考点】平面向量数量积的运算.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)的值.【解答】解:由题意可得,=11cos60=,=1,(2﹣)=2﹣=0,故选:B.4.sin(﹣15)=()A.B.C.D.【考点】三角函数的化简求值;运用诱导公式化简求值.【分析】利用两角差的正弦公式,结合特殊角的三角函数,即可得出答案.【解答】解:sin(﹣15)=sin(30﹣45)=sin30cos45﹣cos30sin45=﹣=.故选:D.5.已知向量=(﹣2,1),=(3,0),则在方向上的正射影的数量为()A.﹣B.C.﹣2D.2【考点】平面向量数量积的运算.【分析】根据向量数量积的关系进行化简,结合向量投影的定义进行求解即可.【解答】解:∵向量=(﹣2,1),=(3,0),在方向上的正射影为||cos,===﹣2,故选:C6.在△ABC中,a=1,b=x,A=30,则使△ABC有两解的x的范围是()A.B.(1,+)C.D.(1,2)【考点】正弦定理.【分析】根据题意画出图形,由题意得到三角形有两解的条件为b=xa,bsinA【解答】解:结合图形可知,三角形有两解的条件为b=xa,bsinA b=x1,xsin301,则使△ABC有两解的x的范围是1故选:D.7.如图的程序框图,如果输入三个实数a,b,c,要求输出这三个数中的数,那么在空白的判断框中,应该填入下面四个选项中的()A.cxB.xaC.cbD.bc【考点】程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择数,因此根据第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,而且条件成立时,保存值的变量X=C.【解答】解:由流程图可知:第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,∵条件成立时,保存值的变量X=C故选A.8.△ABC中,角A,B,C所对的边分别为a,b,c若A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形【考点】三角形的形状判断.【分析】由已知结合正弦定理可得sinC【解答】解:∵由正弦定理可得,sinCsin(A+B)sinAcosB+sinBcosAsinAcosB0又sinA0cosB0即B为钝角故选:A9.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且,,,则与()A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【考点】平行向量与共线向量.【分析】根据向量的定必分点性质可分别表示出,,,然后三者相加即可得到答案.【解答】解:由定比分点的向量式得:,,,以上三式相加得,故选A10.设函数,且其图象关于直线x=0对称,则()A.y=f(x)的最小正周期为,且在上为增函数B.y=f(x)的最小正周期为,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数【考点】两角和与差的正弦函数.【分析】将函数解析式提取2,利用两角和与差的余弦函数公式及特殊角的三角函数值化为一个角的余弦函数,找出的值,代入周期公式,求出函数的最小正周期,再由函数图象关于直线x=0对称,将x=0代入函数解析式中的角度中,并令结果等于k(kZ),再由的范围,求出的度数,代入确定出函数解析式,利用余弦函数的单调递减区间确定出函数的得到递减区间为[k,k+](kZ),可得出(0,)[k,k+](kZ),即可得到函数在(0,)上为减函数,进而得到正确的选项.【解答】解:f(x)=cos(2x+)+sin(2x+)=2[cos(2x+)+sin(2x+)]=2cos(2x+﹣),∵=2,T==,又函数图象关于直线x=0对称,﹣=k(kZ),即=k+(kZ),又||,=,f(x)=2cos2x,令2k2x2k+(kZ),解得:kxk+(kZ),函数的递减区间为[k,k+](kZ),又(0,)[k,k+](kZ),函数在(0,)上为减函数,则y=f(x)的最小正周期为,且在(0,)上为减函数.故选B11.设O点在△ABC内部,且有,则△ABC的面积与△AOC的面积的比为()A.2B.C.3D.【考点】向量在几何中的应用.【分析】根据,变形得,利用向量加法的平行四边形法则可得2=﹣4,从而确定点O的位置,进而求得△ABC的面积与△AOC的面积的比.【解答】解:分别取AC、BC的中点D、E,∵,,即2=﹣4,O是DE的一个三等分点,=3,故选C.12.已知在等边△ABC中,AB=3,O为中心,过O的直线与△ABC 的边分别交于点M、N,则+的值是()A.B.2C.D.【考点】解三角形的实际应用.【分析】如图所示,设AOM=.由点O是正△ABC的中心,AC=3.可得AD═ACsin60,AO=AD.在△AMO中,由正弦定理可得:OM==,同理在△ANO中,可得:ON=.代入即可得出.【解答】解:如图所示,设AOM=.∵点O是正△ABC的中心,AC=3.AD═ACsin60=,AO=AD=.在△AMO中,由正弦定理可得:=,OM==,同理在△ANO中,由正弦定理可得:ON=.=+==2sin.∵,由过O的直线交AB于M,交AC于N,可得,因此当时,取得值2.故选:B.二、填空题(共4小题,每小题5分,满分20分)13.高一某班有学生56人,现将所有同学随机编号,用系统抽样的方法抽取一个容量为8的样本,则需要将全班同学分成8组.【考点】系统抽样方法.【分析】根据系统抽样进行求解即可.【解答】解:高一某班有学生56人,系统抽样的方法抽取一个容量为8的样本,则568=7,即样本间隔为7,每7人一组,共需要分成8组,故答案为:814.已知tan=2,tan=3,且、都是锐角,则tan=1+.【考点】两角和与差的正切函数;半角的三角函数.【分析】先利用正切的两角和公式求得tan(+)的值,进而求得+,的值,利用二倍角的正切函数公式即可计算得解.【解答】解:tan(+)===﹣1,∵、都是锐角,+=,可得:=,tan0,∵tan(+)=﹣1=,整理可得:tan2﹣2tan﹣1=0,解得:tan=1+,或1﹣(舍去).故答案为:1+.15.有一解三角形的题目因纸张破损,有一条件不清,具体如下:在△ABC中,已知a=,2cos2=(﹣1)cosB,c=,求角A,若该题的答案是A=60,请将条件补充完整.【考点】余弦定理.【分析】利用诱导公式、二倍角公式求得B,再利用两角和的正弦公式求得sin75的值,再利用正弦定理求得c的值.【解答】解:在△ABC中,∵已知a=,2cos2=(﹣1)cosB,1+cos(A+C)=(﹣1)cosB,即1﹣cosB=(﹣1)cosB,cosB=,B=.若A=60,则C=180﹣A﹣B=75,sin75=sin(45+30)=sin45cos30+cos45sin30=,则由正弦定理可得=,求得c=,故答案为:.16.在△ABC中,ACB为钝角,AC=BC=1,且x+y=1,函数的最小值为,则的最小值为.【考点】向量加减混合运算及其几何意义.【分析】在△ABC中,ACB为钝角,AC=BC=1,函数f(m)的最小值为.利用数量积的性质可得ACB,进而再利用数量积的性质和二次函数的单调性即可得出.【解答】解:在△ABC中,ACB为钝角,AC=BC=1,函数f(m)的最小值为.函数==,化为4m2﹣8mcosACB+10恒成立.当且仅当m==cosACB时等号成立,代入得到,.===x2+(1﹣x)2﹣x(1﹣x)=,当且仅当x==y时,取得最小值,的最小值为.故答案为:.三、解答题(共6小题,满分70分)17.已知函数f(x)=Asin(x+)(A0,0),xR的值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(﹣)的值.【考点】由y=Asin(x+)的部分图象确定其解析式;两角和与差的余弦函数.【分析】(1)根据题意求出A,图象经过点,代入方程求出,然后求f(x)的解析式;(2),且,,求出,然后求出sin,sin,利用两角差的余弦函数求f(﹣)的值.【解答】解:(1)依题意有A=1,则f(x)=sin(x+),将点代入得,而0,,,故.(2)依题意有,而,,.18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【考点】解三角形.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA正弦定理得,∵A锐角,sinA0,,又∵C锐角,(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.19.如图,已知=(2,1),=(1,7),=(5,1),设Z是直线OP 上的一动点.。
2023-2024学年湖南省长沙市长郡中学高一下学期期末考试数学试题(含答案)
2023-2024学年湖南省长沙市长郡中学高一下学期期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数z 的模为10,虚部为−8,则复数z 的实部为A. −6B. 6C. ±6D. 362.掷两枚质地均匀的骰子,设A =“第一枚出现奇数点”,B =“第二枚出现偶数点”,则A 与B 的关系为( )A. 互斥B. 互为对立C. 相互独立D. 相等3.如图,一个水平放置的平面图形的斜二测直观图是直角梯形O′A′B′C′,且O′A′ // B′C′,O′A′=2B′C′=2,A′B′=1,则该平面图形的高为A.2 B. 1 C. 22 D. 24.已知一组样本数据:8,9,9,11,12,13,15,16,17,18,18,20,则这组样本数据的第70百分位数与中位数之和是A. 29B. 30C. 31D. 325.已知M 是四面体OABC 的棱BC 的中点,点N 在线段OM 上,点P 在线段AN 上,且MN =12ON,AP =34AN ,以OA ,OB ,OC 为基底,则OP 可以表示为( )A. OP =12OA +14OB +14OC B. OP =12OA +13OB +13OC C. OP =14OA +13OB +13OCD. OP =14OA +14OB +14OC6.已知非零向量a ,b 满足|a +b |=|a−2b |,且b 在a 上的投影向量为23a ,则|a ||b |( )A. 12B.32C. 2D.37.如图所示,在三棱柱ABCA 1B 1C 1中,若点E ,F 分别满足AE =23AB ,AF =23AC ,三棱柱高为3,△ABC面积为3 3,则几何体B 1C 1BCFE 的体积为A.8 33B. 33C.10 33 D.11 338.有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p ,录用到能力中等的人的概率为q ,则(p,q)=( )A. (16,16)B. (12,16)C. (12,14)D. (12,13)二、多选题:本题共3小题,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学下册期末考试试题(数学)150分满分:审核人:罗娟梅曾巧志出题人:孔鑫辉2009-07-0750分)小题,每小题5分,共计一、选择题(本题共10224?2)?(x?1)?(y:C的直线方程为()的圆心且斜率为1、经过圆10?3?1?0x?yx3?0?y?3?0x?y?x?y? D、B、、、CA o、半径为1cm,中心角为150)的弧长为(2??5225cmcmcmcm、、B、A、D C663312??tanA?cosA△中,3、已知,则)ABC(5512512?? D、B、C、A、1313131322220?y?1?4x?2:Cx?y?2x?2y?2?0C:x?y4、两个圆)与的位置关系是(21、外离D C、相交A、外切B、内切?21?cos(x?)y?2)是5、函数(4??的偶函数BA、最小正周期为、最小正周期为的奇函数??、最小正周期为的偶函数C、最小正周期为D的奇函数22??10??ba|b|?25?a|?b|2,1a?()6、已知向量,则,,551025、CA、、DB、12????????tan)tan()?tan(2的值为(,那么,7、已知)259731???D、B、C、A、981245.u.c.o.m w.w.w..s.22CCCC1)y?(x?1)(0?y?1x?的方程为(=1,圆8、已知圆与圆:关于直线)+ 对称,则圆221122222)(y?2)?x(?2)(y?2)(x=1 A、+ + B、=122222)(y?2)(x?2)((x?2)y?=1=1 C、D、++?)xf(2y?的单调递增区的两个相邻交点的距离等于,的图像与直线、已知函数则9,???0)(?xcos?(fx)?3sinx)y?f(x )(间是????1155 、B A、????Z],?,kk[k??Z],kk[???,k12121212????2 D、C、????Z[k??,k],k[??,kZ?],k?k3636baa?b?0?baba4b|?3a||?|1的圆的公,,,,10、设向量满足:,,以的模为边长构成三角形,则它的边与半径为w.w.w.k.s.5) ( 共点个数最多为5364 D 、、、A B C 、分)20分,共计5小题,每小题4二、填空题(本题共.b,7)(k?(1,3)c?b)?c?a(3,1)(a k= ,,∥,则,若.11、已知向量x?y?61?相切的圆的方程是12、以点(2,为圆心且与直线).?W13、右图是一个算法的流程图,最后输出的.??3xtantan2xy??x?。
、若14 的最大值为,则函数24分)小题,共计80三、解答题:(本题共6.s.5.u.c.o.m w.w.w.12(本小题满分分)15、),求:0,2)(3,-3、C(0已知三角形的顶点是A(-5,)、B 所在的直线方程;CD边上的中线的长及CD(1)AB 的面积。
△ABC(2)分)(本小题满分1216、??R?2,x?xx?sinx?f3cos已知)xf(;(1)求函数的最小正周期x)xf(的值.)求函数(2的最大值,并指出此时)xf((3)求函数的对称轴和对称中心。
.s.5.u.c.o.m w.w.w.17、(本小题满分14分)???),b?(1,?2sina?(sin2).,cos已知向量?b/a/tan的值;,求(1)若.s.5.u.c.o.m w.w.w.???,???||b|,0|a求的值。
(2)若分)18、(本小题满分14????????0,0A?0,R),?Asin(xx??f(x))的图象与x已知函数轴的交点中,相邻两个交点之间的距离(其中2??2M(,?2).,且图象上一个最低点为为32f(x)的解析式;(1)求??][,x?)(xf,求. )当(2 的值域21219、(本小题满分14分)xoy2222C:(x?3)?(y?1)?4C:(x?4)?(y?5)?4.和圆中,已知圆在平面直角坐标系2123C(4,0)A ll,(1过点且被圆截得的弦长为)若直线,的方程;求直线1.s.5.u.c.o.m w.w.w.ll,它们(的无穷多对和互相垂直的直线PP2)设为平面上的点,满足:存在过点12l l CCCC 截得的弦长相交,且直线和圆分别与圆被圆与直线被圆截得的弦长212211相等,试求所有满足条件的点的坐标。
P20、(本小题满分14分)?x2?)?cosxsin2(x?1.f(x)?4sin已知函数24??2???],x)在区间[?y?f(的取值范围;1)设>0为常数,若上是增函数,求(32??1222?m?m1?0},x)]x?mf()A?{x|?x??},B?{x|[f(?B恒成立,求实数)设集合(2m若A的取值范围236s.5.u.c.o.m w.w.w.广东梅县东山中学2008-2009学年度高一第二学期数学期末答案510选择题:一、(本题共有小题,每题分,共计分)5010987654321题目A D C C A CB BC B 答案二、填空题:(本题共有4小题,每题5分,共计20分)2522?1)2)?(y?(x?513、11、22 12、14、—8 2三、解答题:(本题共有6小题,共计80分)15、(本小题满分12分)3)??1,D(DAB分的坐标为:…… 2解:⑴的中点22533??2???2?0CD????1由两点距离公式得:分 4…??22.s.5.u.c.o.m w.w.w.??y?2x?0?CD 方程为:由直线两点式可得3?1?0??227x?2y?4?0整理得:…… 6分xy??12x?5y?10?0AC⑵所在直线方程为:,整理得:…… 7分?526?15?1031ACB29??d…的距离为: 9点分到直线29254?AC?25?4?29…… 10分13131S??29?29?……12分ABC?2292310??15x?8y3ABAB到方程为距离为,C另法:k.s.5.u.c.o.m w.w.w.7331 73AB,面积一样算出为长度为2、(本小题满分12分)16??????x?2cos?3x?2f?x2sin?sinx…… 2分解:??3???2?2??T)(xf⑴函数……4的最小正周期是分1????1?sinxf(x)??取得最大值当⑵, 时, 3??最大值为4 . ……………6分??????kxx???2?2k(k?). ……此时,即8分Z632s.5.u.c.o.mw.w.w.k????kx(k?)xf()……10)分Z 的对称轴为3(6????,k?2(k?)……12对称中心为Z 分??3?????????,0k?x?k)(?k,一律零分;Z的形式;对称中心学生容易写成评分说明:此处对称轴一定要写成??36??.Z?k分。
另外,没写,一个扣1 分)、(本小题满分1417 解:???b/a/,?2sin2sin?cos分……,所以2⑴因为1???.tan?cos4sin?分于是……,故4422???5,)?(cos??sin2sin|?|b|a|分……6⑵由知,2??5.4sin1?2sin2??所以??4)??2(1?cos22sin?2……8分从而, 5.u.c.o.m .s.w.w.w.??1?sin2??cos2即,?2??sin(2)??……于是10分. 24???9??????2?0?又由……11分,知,444??5???2……12分,所以44??7???213分……或.44.s.5.u.c.o.m w.w.w.??3??.??14分……因此,或42 14分)18、(本小题满分?22)M(,?2分…得A=2. 解(1)由最低点为3????22T??2????T……4由x轴上相邻的两个交点之间的距离为得= ,即,?T222分?22),M(?由点在图像上可得:3??42??1)?即2sin(2?sin(???)??2,……6分33??4??Z??,?k?2k故23?11????2?k6w.w.w.k.s.5.u.c.o.m7……分 ????,?),?(0,?分9……又62?)x2sin(2?x(f故)?10……分6s.5.u.c.o.m w.w.w.??x,],[?)2(212???7][?2x?,?……11分663?????x2xf(x)2;,即……12=取得最大值当时,分662???7?2x?x?f(x)?1,,即……13当取得最小值时,??,21?)xf(.w.w.k.s.5.u.c.o.m 的值域为……分26614分故19、(本小题满分14分)l……1分解:(1)当直线的斜率不存在时,不满足条件y?k(x?4)kx?y?4k?0l…,即设直线2的方程为:分32C l22,到直线由垂径定理得:圆心的距离1??(d?4)12|?3k?1?4k|?1,……3结合点到直线距离公式,得:分21k?72?k??0,or,?7k?0,k24k……化简得:4分2470y?(x???4)y l,求直线或的方程为:24y?07x?24y?28?0……或即5分ll)n(m,的方程分别为:w、坐标为,直线(2) 设点P121(x?m)),y?n??y?n?k(x?m,k11x?y?n?m?0kx?y?n?km?0,?……6即:分kklClC截得的弦长相等,两圆半径相等。
因为直线被圆被圆截得的弦长与直线lCl C,的距离相等。
8分由垂径定理得:圆心到直线故211241m|n??5?|?|?km?1?nk|?3kk有:与直线……?2121u.c.o.m .s.5.w.w.w. 121?k1?2k5??3,或(m?n?8)k?m?n??(2m?n)k?mn得:…10分k关于的方程有无穷多解,m-n+8=02?m?0?n??或,有:…………12分??m+n-5=03?0?m?n??13315 ……解之得:点P坐标为14或分。
)?,()?(,2222 分)(本小题满分1420、?)x1?cos(?2解:⑴1?2x)?4sin??cosxxf(k.s.5.u.c.o.m w.w.w.22.x?2sinx2sinsin2sin?x(1?x)?……分2??2??]?,2sin?f(x)[x在是增函数,32????2],[?],?[????2232.??32??(0,?]??,……4分?432u.c.o.m .s.5.w.w.w.122[?m?m?)]f(x1?mf(x))(2222sinx?2msinx?m?m?1?0…5分=??12?t],x?[t?sinx,因为1] ,则,设[26322t?2mt?m?m?1?0…上式化为6分1?t,1]上恒成立[. 由题意,上式在2s.5.u.c.o.m w.w.w.k2212mt?m??)f(t?tm?…7,记分这是一条开口向上抛物线,1??m??2分……则8?1?0f()??2?1?1m???29或……分??0???1?m?分或10......?0f(1)?.s.5.u.c.o.m w.w.w.?31或m?m??分. 解得:14 (2)。