2016-2017年河北省邯郸市曲周一中高二上学期期中数学试卷及答案(理科)
河北省曲周县第一中学2016-2017学年高二下学期第一次月考数学(理)试题
高二年级二月份月考数学(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、在数学归纳法证明:“1211(1,)1n n a a a a a n N a ++-++++=≠∈-”时,验证当1n =时,等式的左边为A .1B .1a -C .1a +D . 21a -2、已知三次函数()3221(41)(1527)23f x x m x m m x =--+--+在(,)x ∈-∞+∞上是增函数,则m 的取值范围为A .2m <或4m >B .42m -<<-C .24m <<D .以上都不对3、设()()sin ()cos f x ax b x cx d x =+++,若()cos f x x x '=,则,,,a b c d 的值分别为A .1,1,0,0B .1,0,1,0C .0,1,0,1D .1,0,0,14、已知抛物线2y ax bx c =++通过点(1,1)P ,且在点(2,1)Q -处的切线平行于直线3y x =-,则抛物线的方程为A .23119y x x =-+B .23119y x x =++C .23119y x x =--D .23119y x x =--+ 5、数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-≤<⎪⎩,若167a =,则2017a 的值为 A .67 B .57 C . 37D .176、已知,a b 是不相等的正数,x y==,x y 的关系是 A .x y > B .y x > C .x > D .不确定7、复数2()12m i z m R i-=∈- 不可能在A .第一象限B .第二象限C .第三象限D .第四象限8、定义,,,A B B A C D D A **** 的运算分别对应下图中的(1)(2)(3)(4),那么,图中(A )(B )可能是下列( )的运算的结果A .,B D A D ** B .,B D AC ** C .,B C AD ** D .,C D A D **9、用反证法证明命题“,a b N ∈,如果ab 可被5整除,那么,a b 至少有1个能被5整除”,则假设的内容是A .,a b 都能被5整除B .,a b 都不能被5整除C .a 不能被5整除D .,a b 有1个不能5整除10、下列说法正确的是A .函数y x =有极大值,但无极小值B .函数y x =有极小值,但无极大值C .函数y x =既有极大值又有极小值D .函数y x =无极值11、对于两个复数11,22αβ=+=--,有下列四个结论:①1αβ=;②1αβ=;③1αβ=;④221αβ+=,其中正确的个数为A .1B .2C .3D .412、设()f x 在[],a b 上连续,则()f x 在[],a b 上平均值是A .()()2f a f b +B .()b a f x dx ⎰C .()12b a f x dx ⎰D .()1b af x dx b a -⎰第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13、若复数222log (33)log (3)z x x i x =--+-为实数,则x 的值为14、用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用的火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是15、函数()326(0)f x ax ax b a =-+>在区间上的最大值为3,最小值为-29,则,a b 的值分别为16、由24y x =与直线24y x =-所围成图形的面积为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17、求过点(1,2)且与曲线y =相切的直线方程.18、设复数cos sin (cos sin )z i θθθθ=-+,当θ为何值时,z 取得最大值,并求此最大值.19、已知,,a b c 均为实数,且2222,2,2236a x y b y z c z x πππ=-+=-+=-+,求证:,,a b c 中至少有一个大于0.20、已知函数()3231f x ax x x =+-+在R 上是减函数,求a 的取值范围.21、若0(1,2,3,,)i x i n >=,观察下列不等式:121231212311111()()4,()()9x x x x x x x x x x ++≥++++≥, 请你猜测1231231111(()()n n x x x x x x x x ++++++++满足的不等式,并用数学归纳法加以证明.22、已知函数()()21ln ,,(0)2f x xg x ax bx a ==+≠. (1)若2b =,且函数()()()h x f x g x =-存在单调递减区间,求的取值范围;(2)当3,2a b ==时,求函数()()()h x f x g x =-的取值范围.。
河北省高二上学期期中数学试卷(理科)(I)卷
河北省高二上学期期中数学试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)在空间直角坐标系O﹣xyz中,点A(1,2,3)关于z轴的对称点为()A . (﹣1,﹣2,3)B . (﹣1,2,3)C . (﹣1,﹣2,﹣3)D . (1,2,﹣3)2. (2分)双曲线的渐近线方程为()A .B .C .D .3. (2分)(2013·湖南理) (2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB 的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A . 2B . 1C .D .4. (2分) (2016高二上·临沂期中) 设实数x,y满足约束条件,目标函数z=x﹣y的取值范围为()A . [﹣,﹣2]B . [﹣,0]C . [0,4]D . [﹣,4]5. (2分) (2016高二上·屯溪期中) 过直线x+y=9和2x﹣y=18的交点且与直线3x﹣2y+8=0平行的直线的方程为()A . 3x﹣2y=0B . 3x﹣2y+9=0C . 3x﹣2y+18=0D . 3x﹣2y﹣27=06. (2分)已知圆O的方程为 x2+y2=9,若抛物线C过点A(﹣1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为()A . ﹣ =1(x≠0)B . + =1(x≠0)C . ﹣ =1(y≠0)D . + =1(y≠0)7. (2分)(2018·呼和浩特模拟) 已知是双曲线的上、下两个焦点,过的直线与双曲线的上下两支分别交于点,若为等边三角形,则双曲线的渐近线方程为()A .B .C .D .8. (2分)由直线y=x+1上的点向圆x2﹣6x+y2+8=0引切线,则切线长的最小值为()A . 1B . 2C .D . 39. (2分)(2017·武邑模拟) 已知双曲线x2+ =1的焦点到渐近线的距离为2,则双曲线的渐近线方程为()A . y=± xB . y=± xC . y=±2xD . y=± x10. (2分)关于曲线C:x4+y2=1,给出下列四个命题:①曲线C关于原点对称;②曲线C关于直线y=x对称③曲线C围成的面积大于π④曲线C围成的面积小于π上述命题中,真命题的序号为()A . ①②③B . ①②④C . ①④D . ①③11. (2分) (2016高二下·赣州期末) 设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A . 1﹣ln2B .C . 1+ln2D .12. (2分)(2016·湖南模拟) 已知A,B分别为椭圆的左、右顶点,不同两点P,Q 在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当取最小值时,椭圆C的离心率为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2018·肇庆模拟) 平面向量,,若,则=________.14. (1分)已知直线y=kx+2k+1,则直线恒经过的定点________15. (1分)已知圆C:(x-a)2+(y-2)2=4(a>0)及直线 :x-y+3=0,当直线被C截得弦长为时,则a=________16. (1分) (2018高二上·成都月考) 设分别是双曲线的左右焦点,点,则双曲线的离心率为________.三、解答题 (共6题;共55分)17. (10分)已知直线l过点P(2,3),且被两条平行直线l1:3x+4y﹣7=0,l2:3x+4y+8=0截得的线段长为d.(1)求d得最小值;并求直线的方程;(2)当直线l与x轴平行,试求d的值.18. (10分)(2013·湖北理) 假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0 .(1)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P (μ﹣3σ<X≤μ+3σ)=0.9974.)(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?19. (10分)(2016·花垣模拟) 已知⊙O的方程为x2+y2=10.(1)求直线:x=1被⊙O截的弦AB的长;(2)求过点(﹣3,1)且与⊙O相切的直线方程.20. (5分)如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为4-,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.21. (10分) (2018高二上·阳高期末) 已知椭圆的左、右焦点分别为,椭圆过点,直线交轴于,且,为坐标原点.(1)求椭圆的方程;(2)设是椭圆的上顶点,过点分别作直线交椭圆于两点,设这两条直线的斜率分别为,且,证明:直线过定点.22. (10分) (2018高二下·普宁月考) 已知焦点在轴上的椭圆,短轴的一个端点与两个焦点构成等腰直角三角形,且椭圆过点 .(1)求椭圆的标准方程;(2)设依次为椭圆的上下顶点,动点满足,且直线与椭圆另一个不同于的交点为 .求证:为定值,并求出这个定值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、。
河北省邯郸市高二上学期期中数学试卷(理科)
河北省邯郸市高二上学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设a,b,c为三角形ABC三边,a≠1,b<c,若logc+ba+logc﹣ba=2logc+balog c﹣ba,则三角形ABC的形状为()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 无法确定2. (2分)命题“存在x∈(0,+∞),使得lnx>x﹣2”的否定是()A . 对任意x∈(0,+∞),都有lnx<x﹣2B . 对任意x∈(0,+∞),都有lnx≤x﹣2C . 存在x∈(0,+∞),使得lnx<x﹣2D . 存在x∈(0,+∞),使得lnx≤x﹣23. (2分)数列中,则()A . 3.4B . 3.6C . 3.8D . 44. (2分) (2019高二上·菏泽期中) 己知数列满足,则()A . 4B .C .D .5. (2分) (2019高一下·佛山期末) 已知,下列不等式中必成立的一个是()A .B .C .D .6. (2分) (2018高一上·辽宁期中) 在同一坐标系中,二次函数与指数函数的图象只可能是()A .B .C .D .7. (2分)等差数列中的是函数的极值点,则= ()A . 2B . 3C . 4D . 58. (2分) (2015高三上·巴彦期中) 设变量x,y满足约束条件,则目标函数z=x+6y的最大值为()A . 3B . 4C . 18D . 409. (2分) (2019高二上·湖北期中) 已知数列中,则()A .B .C . 100D . -10010. (2分)在等比数列中,已知其前项和,则的值为()A .B . 1C .D . 211. (2分)(2019·萍乡模拟) 已知,给出下列四个命题::,;:,;:,;:,;其中真命题是()A . 和B . 和C . 和D . 和12. (2分) (2018高一下·安庆期末) 设数列是等差数列,若,则等于()A . 14B . 21C . 28D . 35二、填空题 (共4题;共5分)13. (1分) (2016高三上·金山期中) 在△ABC中,角A,B,C所对的边分别为a,b,c,sin2A+sin2B+sin2C=2sinAsinBsinC,且a=2,则△ABC的外接圆半径R=________.14. (1分) (2017高二下·临淄期末) 的最大值是________.15. (1分)若存在x∈[2,3],使不等式≥1成立,则实数a的最小值为________16. (2分) (2016高二上·开鲁期中) 已知等差数列{an}的前n项和为Sn ,若a1=﹣9,且﹣S1=1,则{an}的公差是________,Sn的最小值为________三、解答题 (共6题;共55分)17. (5分) (2016高一下·天全期中) 在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=.(Ⅰ)若△ABC的面积等于,求a,b;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.18. (10分) (2018高二上·梅河口期末) 已知命题对数(且 )有意义,关于实数的不等式 .(1)若命题为真,求实数的取值范围.(2)若命题是的充分条件,求实数的取值范围.19. (10分) (2015高三上·唐山期末) 已知数列{an}是公差不为0的等差数列,数列{bn}是等比数列,且b1=a1=1,b2=a3 , b3=a9(1)求数列{an}的通项公式;(2)求数列{an•bn}的前n项和Sn .20. (15分) (2016高一上·辽宁期中) 已知函数f(x)=x2﹣4x+a+3,a∈R.(1)若函数y=f(x)的图象与x轴无交点,求a的取值范围;(2)若函数y=f(x)在[﹣1,1]上存在零点,求a的取值范围;(3)设函数g(x)=bx+5﹣2b,b∈R.当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.21. (5分) (2016高三上·崇礼期中) △ABC中,内角A,B,C的对边分别为a,b,c,2sin2 =sinC+1.(Ⅰ)求角C的大小;(Ⅱ)若a= ,c=1,求△ABC的面积.22. (10分)(2020·东莞模拟) 已知等差数列的前n项和为,,.(1)求的通项公式;(2)设,求的前2n项的和.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、第11 页共11 页。
河北省高二上学期期中数学试卷(理科)(I)卷(考试)
河北省高二上学期期中数学试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2016高一下·揭阳期中) 在△ABC中,若,则△ABC是()A . 直角三角形B . 等腰三角形C . 等腰或直角三角形D . 钝角三角形2. (2分) (2016高二上·郴州期中) 已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,则∠A=()A . 30°B . 45°C . 60°D . 75°3. (2分) (2016高一下·沙市期中) 已知a、b、c是△ABC中A、B、C的对边,且a=1,b=5,c=2 ,则△ABC的面积S=()A .B . 2C . 3D . 44. (2分)在中,角的对边分别为,若,则的值为()A .B .C .D .5. (2分) (2016高二上·临泉期中) 在△AB C,已知acosA=bcosB,则△ABC的形状是()A . 等腰三角形B . 直角三角形C . 等腰直角三角形D . 等腰三角形或直角三角形6. (2分) (文科)若为等差数列,是其前n项的和,且,则()A .B .C .D .7. (2分)(2016·北京理) 已知x,y∈R,且x>y>0,则()A . ﹣>0B . sinx﹣siny>0C . ()x﹣()y<0D . lnx+lny>08. (2分)已知等差数列{an}的公差为2,若a1 , a3 , a4成等比数列,则a2=()A . -4B . -6C . -8D . -109. (2分)的一个必要不充分条件是()A . -<x<3B . -<x<0C . -3<x<D . -1<x<610. (2分)(2017·来宾模拟) 下列说法正确的是()A . 命题“∀x∈R,2x>0”的否定是“∃x0∈R,2 <0”B . 命题“若sinx=siny,则x=y”的逆否命题为真命题C . 若命题p,¬q都是真命题,则命题“p∧q”为真命题D . 命题“若△ABC为锐角三角形,则有sinA>cosB”是真命题11. (2分)(2017·新课标Ⅰ卷文) △ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,则C=()A .B .C .D .12. (2分) (2018高一下·应县期末) 已知钝角三角形的面积是,若,,则()A . 5B .C . 2D . 1二、填空题 (共4题;共5分)13. (2分) (2017高二上·嘉兴月考) 数列满足,,其前项和为,则________; ________.14. (1分)已知,在函数Y=2sin x与y=2cos x的图像的交点中。
河北省邯郸市数学高二上学期理数期中考试试卷
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1 .
20. (10分)(2019高三上·汉中月考) 的内角A,B,C的对边分别为a,b,c,已知 , , .
(1) 求 ;
(2) 若 不是直角三角形,求 的面积。
21. (10分)(2020·海南模拟)已知函数 的图象关于直线 对称,且图象上相邻两个对称中心的距离为 .
10. (2分)(2020高一下·郧县月考)在海岸A处,发现北偏东 方向,距离A为 海里的B处有一艘走私船,在A处北偏西 方向,距离A为2海里的C处有我方一艘辑私艇奉命以 海里/小时的速度追截走私船,B在C的正东方向,此时走私船正以10海里/小时的速度从B处向北偏东 方向逃窜,问辑私艇沿( )方向追击,才能最快追上走私船.
A . [1,2]
B . [0,2]
C . [1,3]
D . [0,1]
8. (2分) 设等比数列 的前n项和为 , 若 , 则下列式子中数值不能确定的是( )
A .
B .
C .
D .
9. (2分) 设 是公差不为0的等差数列 的前n项和,且 成等比数列,则 ( )
A . 4
B . 6
C . 8
D . 10
A .
B .
C . 2Dຫໍສະໝຸດ .二、 填空题 (共4题;共4分)
13. (1分)(2017·大连模拟)已知△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a﹣b)(sinA+sinB)=(c﹣b)sinC,则角A等于________.
14. (1分)(2019高一下·余姚月考)已知数列 的通项公式为 ,前n项和为 ,若对任意正整数 ,不等式 恒成立,则实数m的取值范围是________.
河北省邯郸市高二上学期期中数学试卷(理科)
河北省邯郸市高二上学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)(2017·息县模拟) 已知双曲线﹣ =1(a>0,b>0)的左、右两个焦点分别为F1、F2 ,以线段F1F2为直径的圆与双曲线的渐近线在第一象限的交点为M,若|MF1|﹣|MF2|=2b,该双曲线的离心率为e,则e2=()A . 2B .C .D .2. (2分) (2017高二上·宁城期末) 如图,在正方体ABCD﹣A1B1C1D1中,P是侧面BB1C1C内一动点,若P 到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是()A . 直线B . 圆C . 双曲线D . 抛物线3. (2分)椭圆的长轴为,短轴为,将椭圆沿y轴折成一个二面角,使得点在平面上的射影恰好为椭圆的右焦点,则该二面角的大小为().A . 75°B . 60°C . 45°D . 30°4. (2分) (2016高二上·佛山期中) 某企业开展职工技能比赛,并从参赛职工中选1人参加该行业全国技能大赛.经过6轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两人的平均成绩分别是,,则下列说法正确的是()A . >,乙比甲成绩稳定,应该选乙参加比赛B . >,甲比乙成绩稳定,应该选甲参加比赛C . <,甲比乙成绩稳定,应该选甲参加比赛D . <,乙比甲成绩稳定,应该选乙参加比赛5. (2分) (2016高二上·佛山期中) 某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如表所示:x16171819y50344131由表可得回归直线方程 = x+ 中的 =﹣4,据此模型预测零售价为20元时,每天的销售量为()A . 26个B . 27个C . 28个D . 29个6. (2分) (2016高二上·佛山期中) 古代“五行”学说认为:物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金.从五种物质中随机抽取两种,则抽取的两种物质不相克的概率是()A .B .C .D .7. (2分) (2016高二上·佛山期中) 已知α,β是两个相交平面,若点A既不在α内,也不在β内,则过点A且与α,β都平行的直线的条数为()A . 0B . 1C . 2D . 38. (2分) (2016高二上·鞍山期中) 直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 ,则异面直线BA1与AC1所成的角等于()A . 30°B . 45°C . 60°D . 90°9. (2分) (2016高二上·佛山期中) 已知两条直线x+a2y+6=0和(a﹣2)x+3ay+2a=0互相平行,则a等于()A . 0或3或﹣1B . 0或3C . 3或﹣1D . 0或﹣110. (2分) (2016高二上·佛山期中) 一条光线沿直线2x﹣y+2=0入射到直线x+y﹣5=0后反射,则反射光线所在的直线方程为()A . 2x+y﹣6=0B . x+2y﹣9=0C . x﹣y+3=0D . x﹣2y+7=011. (2分) (2017高三上·惠州开学考) 如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为()A . 8+8 +4B . 8+8 +2C . 2+2 +D . + +12. (2分)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=,则球O的表面积等于()A . 4πB . 3πC . 2πD . π二、填空题 (共4题;共4分)13. (1分) (2016高二下·绵阳期中) 已知直线的极坐标方程为ρsin(θ+ )= ,求点A(4,)到这条直线的距离________.14. (1分) (2017高一上·济南月考) 设平面平面,、,、,直线与CD交于点,且点位于平面,之间,,,,则 ________.15. (1分) (2016高二上·佛山期中) 如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为________.16. (1分) (2016高二上·佛山期中) 在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,﹣1)的距离之和最小的点的坐标是________三、解答题:解答应写出文字说明,证明过程或演算步骤. (共6题;共45分)17. (10分)(2020·安阳模拟) 以直角坐标系xOy的原点为极坐标系的极点,x轴的正半轴为极轴.已知曲线的极坐标方程为,P是上一动点,,Q的轨迹为 .(1)求曲线的极坐标方程,并化为直角坐标方程,(2)若点,直线l的参数方程为(t为参数),直线l与曲线的交点为A,B,当取最小值时,求直线l的普通方程.18. (10分)(2020·苏州模拟) 在平面直角坐标系xOy中,点P(x0 , y0)在曲线y=x2(x>0)上.已知A(0,-1),,n∈N*.记直线APn的斜率为kn .(1)若k1=2,求P1的坐标;(2)若k1为偶数,求证:kn为偶数.19. (5分) (2016高二上·佛山期中) 已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.20. (10分) (2016高二上·佛山期中) 如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=BD.(1)求证:CD⊥平面PAB;(2)求点D到平面PBC的距离.21. (5分) (2016高二上·佛山期中) 如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(Ⅰ)证明:CD⊥AE;(Ⅱ)证明:PD⊥平面ABE;(Ⅲ)求二面角A﹣PD﹣C的正切值.22. (5分) (2016高二上·佛山期中) 正方形ABCD一条边AB所在方程为x+3y﹣5=0,另一边CD所在直线方程为x+3y+7=0,(Ⅰ)求正方形中心G所在的直线方程;(Ⅱ)设正方形中心G(x0 , y0),当正方形仅有两个顶点在第一象限时,求x0的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题:解答应写出文字说明,证明过程或演算步骤. (共6题;共45分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、。
河北省邯郸市曲周一中2016-2017学年高二上学期期中数学试卷(理科) Word版含解析
2016-2017学年河北省邯郸市曲周一中高二(上)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.设命题p:对∀x∈R+,e x>lnx,则¬p为()A.∃x0∈R+,e<lnx0B.∀x∈R+,e^x<lnxC.∃x0∈R+,e≤lnx0D.∀x∈R+,e^x≤lnx3.数列{a n}足a1=2,a2=1,并且,则数列{a n}的第100项为()A.B. C. D.=﹣1,则x2015=()4.在数列{x n}中,若x1=1,x n+1A.﹣1 B.C.D.15.若a,b,c∈R,且a>b,则下列不等式正确的个数是()①<②a2>b2③ac4>bc4④>.A.1 B.2 C.3 D.46.若不等式f(x)=ax2﹣x﹣c>0的解集{x|﹣2<x<1},则函数y=f(﹣x)的图象为()A.B.C.D.7.等差数列f(x)中,已知a1=﹣12,S13=0,使得a n>0的最小正整数n为()A.7 B.8 C.9 D.108.设变量x,y满足约束条件则目标函数z=3x+y的最大值为()A.7 B.8 C.9 D.149.设公差不为零的等差数列{a n}的前n项和为S n,若a4=2(a2+a3),则=()A.B.C.7 D.1410.设等比数列{a n}中,前n项之和为S n,已知S3=8,S6=7,则a7+a8+a9=()A.B.C.D.11.下列四个命题:①“等边三角形的三个内角均为60°”的逆命题;②“若k>0,则方程x2+2x﹣k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“若•=•,则⊥”的否命题,其中真命题的个数是()A.0 B.1 C.2 D.312.在△ABC中,是角A、B、C成等差数列的()A.充分非必要条件 B.充要条件C.充分不必要条件 D.必要不充分条件二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在△ABC中,已知A,B,C成等差数列,且b=,则=.14.若直线+=1(a>0,b>0)过点(2,1),则3a+b的最小值为.15.不等式x>的解集为.16.已知S n是等差数列{a n}的前n项和,且S6>S7>S5,给出下列五个命题:①d <1;②S 11>0;③S 12<0;④数列{S n }中的最大项为S 11;⑤|a 6|>|a 7|.其中正确命题有 .三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量=(a , b )与=(cosA ,sinB )平行. (Ⅰ)求A ;(Ⅱ)若a=,b=2,求△ABC 的面积.18.设p :实数x 满足x 2﹣4ax +3a 2<0,其中a >0,命题q :实数x 满足.(1)若a=1,且p ∨q 为真,求实数x 的取值范围;(2)若¬p 是¬q 的必要不充分要条件,求实数a 的取值范围.19.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q (q ≠0),且b 2+S 2=12,.(1)求{a n }与{b n }的通项公式;(2)证明:++…+.20.已知函数f (x )=mx 2﹣mx ﹣1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围;(2)若对于x ∈[1,3],f (x )<5﹣m 恒成立,求实数m 的取值范围.21.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知bcosC +bsinC ﹣a ﹣c=0. (Ⅰ)求B ; (Ⅱ)若b=,求2a +c 的取值范围.22.已知数列{a n }的前n 项和为S n ,且满足S n =2a n ﹣2. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设函数f (x )=()x ,数列{b n }满足条件b 1=2,f (b n +1)=,(n∈N*),若c n=,求数列{c n}的前n项和T n.2016-2017学年河北省邯郸市曲周一中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【考点】三角形的形状判断.【分析】利用正弦定理将sin2A+sin2B<sin2C,转化为a2+b2<c2,再结合余弦定理作出判断即可.【解答】解:∵在△ABC中,sin2A+sin2B<sin2C,由正弦定理===2R得,a2+b2<c2,又由余弦定理得:cosC=<0,0<C<π,∴<C<π.故△ABC为钝角三角形.故选A.2.设命题p:对∀x∈R+,e x>lnx,则¬p为()A.∃x0∈R+,e<lnx0B.∀x∈R+,e^x<lnxC.∃x0∈R+,e≤lnx0D.∀x∈R+,e^x≤lnx【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题p :对∀x ∈R +,e x >lnx ,则¬p 为:∃x 0∈R +,e ≤lnx 0.故选:C .3.数列{a n }足a 1=2,a 2=1,并且,则数列{a n }的第100项为( )A .B .C .D .【考点】数列递推式.【分析】先由得,进而得为等差数列,再求出其通项公式即可求出数列{a n }的通项公式,进而求的结论.【解答】解:由得,故为等差数列,且首项为,公差为1﹣=.故, ∴,,故选D .4.在数列{x n }中,若x 1=1,x n +1=﹣1,则x 2015=( )A .﹣1B .C .D .1【考点】数列递推式.【分析】由x n +1+1=,(x n +1+1)(x n +1)=1,令b n =x n +1,则有 b n •b n +1=1,则b n 与b n +1互为倒数关系,而由 x 1=1,则b 1=2,则 b 2=,同理 b 3=2,b 4=,…,b 2015=2,则x 2015=1.【解答】解:由 x n +1=﹣1,整理得:x n +1+1=,即有 (x n +1+1)(x n +1)=1,令b n=x n+1,则有b n•b n=1,+1互为倒数关系,而由x1=1,则b1=2,则b2=,则b n与b n+1同理b3=2,b4=,…,因此b2015=2,∴x2015+1=2,故x2015=1,故选:D.5.若a,b,c∈R,且a>b,则下列不等式正确的个数是()①<②a2>b2③ac4>bc4④>.A.1 B.2 C.3 D.4【考点】不等式的基本性质.【分析】利用不等式的性质,对4个结论分别进行判断,即可得出结论.【解答】解:①a=1,b=﹣1,<不成立;②a=1,b=﹣1,a2>b2不成立;③c=0,ac4>bc4不成立;④由于c2+1>0,a>b,所以>成立.故选:A.6.若不等式f(x)=ax2﹣x﹣c>0的解集{x|﹣2<x<1},则函数y=f(﹣x)的图象为()A.B.C.D.【考点】函数的图象.【分析】由已知,求出a,c,确定f(x),再求出y=f(﹣x)的解析式,确定图象.【解答】解:由已知得,﹣2,1是方程ax2﹣x﹣c=0的两根,分别代入,解得a=﹣1,c=﹣2.∴f(x)=﹣x2﹣x+2.从而函数y=f(﹣x)=﹣x2+﹣x+2=﹣(x﹣2)(x+1)它的图象是开口向下的抛物线,与x轴交与(﹣1,0)(2,0)两点.故选B.7.等差数列f(x)中,已知a1=﹣12,S13=0,使得a n>0的最小正整数n为()A.7 B.8 C.9 D.10【考点】等差数列的性质.【分析】根据已知条件求得a13=12,再利用等差数列的性质可得a7=0,再由等差数列为递增的等差数列,可得使得a n>0的最小正整数n为8.【解答】解:∵等差数列f(x)中,已知a1=﹣12,S13=0,∴=0,∴a13=12.由等差数列的性质可得2a7=a1+a13=0,故a7=0.再由题意可得,此等差数列为递增的等差数列,故使得a n>0的最小正整数n为8,故选B.8.设变量x,y满足约束条件则目标函数z=3x+y的最大值为()A.7 B.8 C.9 D.14【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,解得,即A(2,3),代入目标函数z=3x+y得z=3×2+3=9.即目标函数z=3x+y的最大值为9.故选:C.9.设公差不为零的等差数列{a n}的前n项和为S n,若a4=2(a2+a3),则=()A.B.C.7 D.14【考点】等差数列的通项公式.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:∵a4=2(a2+a3),∴a4=2(a1+a4),则===7.故选:C.10.设等比数列{a n}中,前n项之和为S n,已知S3=8,S6=7,则a7+a8+a9=()A.B.C.D.【考点】等比数列的前n项和.【分析】由S6减S3得到a4+a5+a6的值,然后利用等差比数列的性质找出a4+a5+a6的和与a1+a2+a3的和即与S3的关系,由S3的值即可求出公比q的值,然后再利用等比数列的性质求出a7+a8+a9的值.【解答】解:a4+a5+a6=S6﹣S3=7﹣8=﹣1,a4+a5+a6=a1q3+a2q3+a3q3=(a1+a2+a3)q3,所以q3=,则a7+a8+a9=a4q3+a5q3+a6q3=.故选B.11.下列四个命题:①“等边三角形的三个内角均为60°”的逆命题;②“若k>0,则方程x2+2x﹣k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“若•=•,则⊥”的否命题,其中真命题的个数是()A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①利用逆命题的意义即可得出,再利用等边三角形的定义即可得出;②利用逆否命题的定义即可得出,再利用一元二次方程的是否有实数根与判别式的关系即可得出;③利用否命题的意义即可得出,进而判断出真假④根据向量垂直数量积为判定.【解答】解:对于①“等边三角形的三个内角均为60°”的逆命题是“三个内角均为60的三角形是等边三角形”是真命题;对于②,∵方程x2+2x﹣k=0无实根时△=4+4k<0,即k<﹣1”,∴原命题的逆否命题“若方程x2+2x﹣k=0无实根,则k<0”是真命题;对于③“全等三角形的面积相等”的否命题是“不全等三角形的面积不相等”,故错;对于④“若•=•,则⊥”的否命题是“若•≠•,则不垂直”是真命题,故选:D.12.在△ABC中,是角A、B、C成等差数列的()A.充分非必要条件 B.充要条件C.充分不必要条件 D.必要不充分条件【考点】等差数列的性质;充要条件.【分析】根据三角函数的同角三角函数关系,两角和的余弦公式等,我们可以对进行恒等变形,进而得到角A、B、C成等差数列与的等价关系,再由充要条件的定义即可得到答案.【解答】解:在△ABC中,⇒2sinA•sinC﹣sin2A=2cosA•cosC+cos2A⇒2sinA•sinC﹣2cosA•cosC=cos2A+sin2A=1⇒﹣2cos(A+C)=1⇒cos(A+C)=﹣⇒A+C==2B⇒角A、B、C成等差数列当角A、B、C成等差数列⇒A+C==2B,角A有可能取90°,故不成立故是角A、B、C成等差数列的充分不必要条件.故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在△ABC中,已知A,B,C成等差数列,且b=,则=.【考点】正弦定理.【分析】由等差中项的性质列出方程,结合内角和定理求出B,由条件和正弦定理求出答案.【解答】解:因为A,B,C成等差数列,所以2B=A+C,又A+B+C=π,则B=,由b=得==,由正弦定理得,==,故答案为:.14.若直线+=1(a>0,b>0)过点(2,1),则3a+b的最小值为7+2.【考点】基本不等式;直线的一般式方程.()【分析】由直线过点可得正数ab满足=1,整体代入可得3a+b=(3a+b)=7++,由基本不等式可得.【解答】解:∵直线过点(2,1),∴=1,故3a+b=(3a+b)()=7++≥7+2=7+2,当且仅当=即b=a时取等号,结合=1可解得a=且b=+1,故答案为:7+2.15.不等式x>的解集为(﹣1,0)∪(1,+∞).【考点】其他不等式的解法.【分析】不等式即即>0,可得①,或②.分别求得①和②的解集,再取并集,即得所求.【解答】解:不等式x>,即>0,∴①,或②.解①求得x>1,解②求得﹣1<x<0,故答案为:(﹣1,0)∪(1,+∞).16.已知S n是等差数列{a n}的前n项和,且S6>S7>S5,给出下列五个命题:①d<1;②S11>0;③S12<0;④数列{S n}中的最大项为S11;⑤|a6|>|a7|.其中正确命题有①②⑤.【考点】等差数列的前n项和.【分析】先由条件确定第六项和第七项的正负,进而确定公差的正负,再将S11,S12由第六项和第七项的正负判定.【解答】解:∵S6>S7>S5,∴a6>a6+a7>0,∴a7<0<a6,∴a1>0,公差d=a7﹣a6<0,∴①正确,∴等差数列{a n}是递减数列,∴④错误,∵S11=11a1+55d=11(a1+5d)>0,S12=12a1+66d=6(a1+a12)=6(a6+a7)>0,∴②⑤正确,③错误,故答案为:①②⑤.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.【考点】余弦定理的应用;平面向量共线(平行)的坐标表示.【分析】(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解A;(Ⅱ)利用A,以及a=,b=2,通过余弦定理求出c,然后求解△ABC的面积.【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB ≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.18.设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∨q为真,求实数x的取值范围;(2)若¬p是¬q的必要不充分要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】(1)分别求出关于p,q的x的范围,根据且p∨q为真,即可求出x 的范围,(2)根据¬p是¬q的必要不充分要条件,得到关于a的不等式组,解出即可.【解答】解:(1)化简p:x∈(a,3a),化简q:x∈[﹣2,9]∩((﹣∞﹣4)∪(2,+∞))=(2,9]…,∵a=1,∴p:x∈(1,3)依题意有p∨q为真,∴x∈(1,3)∪(2,9]…(2)若¬p是¬q的必要不充分要条件,则¬q⇒¬p且逆命题不成立,即p⊂q.∴(a,3a)⊂(2,9],即2≤a<3a≤9…∴a∈[2,3]…19.在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q(q≠0),且b2+S2=12,.(1)求{a n}与{b n}的通项公式;(2)证明:++…+.【考点】数列与不等式的综合;数列的求和.【分析】(1)利用等差数列的求和公式及等比数列的通项公式表示已知条件,然后解方程可求等比数列的公比q,等差数列的公差d,即可求解;(2)利用裂项法求和,即可得到结论.【解答】(1)解:设{a n}的公差为d,∵b2+S2=12,∴q+6+d=12,q=解得q=3或q=﹣4(舍),d=3故a n=3n,b n=3n﹣1;(2)证明:S n=,∴∴++…+==∵∴∴++…+.20.已知函数f(x)=mx2﹣mx﹣1.(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;(2)若对于x∈[1,3],f(x)<5﹣m恒成立,求实数m的取值范围.【考点】函数恒成立问题;二次函数的性质.【分析】(1)若f(x)<0恒成立,则m=0或,分别求出m的范围后,综合讨论结果,可得答案.(2)若对于x∈[1,3],f(x)<5﹣m恒成立,则m(x﹣)2+m﹣6<0,x ∈[1,3]恒成立,结合二次函数的图象和性质分类讨论,综合讨论结果,可得答案.【解答】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<5﹣m恒成立,即m(x﹣)2+m﹣6<0,x∈[1,3]恒成立.令g(x)=m(x﹣)2+m﹣6,x∈[1,3]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得m<.所以0<m<当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m<0.综上所述,m<﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+bsinC﹣a﹣c=0.(Ⅰ)求B;(Ⅱ)若b=,求2a+c的取值范围.【考点】正弦定理;余弦定理.【分析】(1)已知等式利用正弦定理化简,整理后求出sin(B﹣)的值,根据B为三角形内角,确定出B的度数即可;(2)由b,sinB的值,利用正弦定理求出2R的值,2a+c利用正弦定理化简,把2R的值代入并利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域确定出范围即可.【解答】解:(1)由正弦定理知:sinBcosC+sinBsinC﹣sinA﹣sinC=0,把sinA=sin(B+C)=sinBcosC+cosBsinC代入上式得:sinBsinC﹣cosBsinC﹣sinC=0,∵sinC≠0,∴sinB﹣cosB﹣1=0,即sin(B﹣)=,∵B为三角形内角,∴B=;(2)由(1)得:2R===2,∴2a+c=2R(2sinA+sinC)=4sinA+2sin(﹣A)=5sinA+cosA=2sin(A+θ),其中sinθ=,cosθ=,∵A∈(0,),即有A+θ=处取得最大值2.∴2sin(A+θ)∈(,2],则2a+c的范围为(,2].22.已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设函数f (x )=()x ,数列{b n }满足条件b 1=2,f (b n +1)=,(n ∈N *),若c n =,求数列{c n }的前n 项和T n .【考点】数列的求和;数列递推式.【分析】(Ⅰ)由当n=1,a 1=2,当n ≥2时,S n ﹣1=2a n ﹣1﹣2,a n =S n ﹣S n ﹣1=2a n ﹣2a n﹣1,可知a n =2a n ﹣1,数列{a n }是以2为首项,2为公比的等比数列,数列{a n }的通项公式a n =2n ;(Ⅱ)f (b n +1)=,(n ∈N *),代入即可求得b n +1=b n +3,b 1=f (﹣1)=2,数列{b n }是以2为首项,3为公差的等差数列,c n ==,利用“错位相减法”即可求得,数列{c n }的前n 项和T n . 【解答】解:(Ⅰ)当n=1,a 1=2a 1﹣2,即a 1=2, 当n ≥2时,S n ﹣1=2a n ﹣1﹣2,a n =S n ﹣S n ﹣1=2a n ﹣2﹣(2a n ﹣1﹣2)=2a n ﹣2a n ﹣1, ∴a n =2a n ﹣1,∴数列{a n }是以2为首项,2为公比的等比数列, ∴a n =2×2n ﹣1=2n ,数列{a n }的通项公式a n =2n ;(Ⅱ∵)f (x )=()x ,f (b n +1)=,(n ∈N *),∴=,∴=,即b n +1=b n +3,∴b n +1﹣b n =3, b 1=f (﹣1)=2,∴数列{b n }是以2为首项,3为公差的等差数列,∴b n=3n﹣1,c n==,∴T n=+++…++,T n=+++…++,两式相减得:T n=1++++…+﹣,=1+×﹣,=1+(1﹣)﹣,∴T n=2+3(1﹣)﹣,=2+3•﹣,∴T n=5•.2017年1月18日。
河北省高二上学期期中考试数学试题(解析版)
一、单选题1的倾斜角是( )30y --=A .B .C .D .30°60︒120︒150︒【答案】B【分析】根据直线一般方程得直线的斜率,结合直线倾斜角与斜率得关系可得倾斜角的大小.【详解】得直线的斜率30y --=k =又直线的倾斜角为,且,所以α[)0,180α∈︒︒tan α=60α=︒故选:B. 2.已知向量,且,那么( )(1,2,1),(3,,)a b x y =-= //a b ||b =A .B .C .D .6918【答案】A【分析】根据题意,设,即,,,2,,分析可得、的值,进而由向量模b ka = (3x )(1y k =-1)x y 的计算公式计算可得答案.【详解】根据题意,向量,2,,,,,且, (1a =- 1)(3b = x )y //a b 则设,即,,,2,,b ka = (3x )(1y k =-1)则有,则,,3k =-6x =-3y =-则,,,故(3b = 6-3)-||b = 故选:A .3.已知空间四边形的每条边和对角线的长都等于1,点E ,F 分别是,的中点,则ABCD BC AD 的值为( ) AE AF ⋅A .1B .C .D 1214【答案】C【分析】先得到该空间四边形及其对角线构成的几何体为正四面体,再根据空间向量的基本定理得到,利用空间向量的数量积运算法则计算出答案. 1122AE AB AC =+ 【详解】此空间四边形及其对角线构成的几何体为正四面体,棱长为1,因为点E ,F 分别是,的中点,BC AD 所以, 1122AE AB AC =+ 所以 11112222AE AF AB AC AF AB AF AC AF ⎛⎫⋅=+⋅=⋅+⋅ ⎪⎝⎭. 111111111cos 60cos 60222222224AB AF AC AF =⋅︒+⋅︒=⨯⨯+⨯⨯=故选:C4.已知抛物线的焦点为,准线为,点在上,过点作准线的垂线,垂足为2:4D y x =F l P D P l A ,若,则( )PA AF =PF =A .2B .C .D .4【答案】D【分析】画出图像,利用抛物线的定义求解即可.【详解】由题知,准线,设与轴的交点为,点在上,()1,0F :1l x =-x C P D 由抛物线的定义及已知得,则为等边三角形, PA AF PF ==PAF △解法1:因为轴,所以直线斜率,,3APF π∠=AP A x PF k =):1PF y x =-由解得,舍去, 241)y x y x ⎧=⎪⎨=-⎪⎩(3,P 1,3P ⎛ ⎝所以. 3142P p PF x =+=+=解法2:在中,,则.Rt ACF A 2,60CF AFC ∠== 4AF =解法3:过作于点,则为的中点,因为,则.F FB AP ⊥B B AP 2AB =4AP =故选:D.5.如图,在正四棱柱中,是底面的中心,分别是的中点,1111ABCD A B C D -O ABCD ,E F 11,BB DD 则下列结论正确的是( )A .//1AO EF B .1A O EF ⊥C .//平面1AO 1EFB D .平面1A O ⊥1EFB 【答案】B【分析】建立空间直角坐标系,利用空间位置关系的向量证明,逐项分析、判断作答.【详解】在正四棱柱中,以点D 为原点建立如图所示的空间直角坐标系,1111ABCD A B C D -令,是底面的中心,分别是的中点,12,2(0,0)AB a DD b a b ==>>O ABCD ,E F 11,BB DD 则,,11(,,0),(2,0,2),(2,2,),(2,2,2),(0,0,)O a a A a b E a a b B a a b F b 1(,,2)OA a a b =- ,1(2,2,0),(0,0,)FE a a EB b == 对于A ,显然与不共线,即与不平行,A 不正确;1OA FE 1AO EF 对于B ,因,则,即,B 正确;12()2020OA FE a a a a b ⋅=⋅+-⋅+⋅= 1OA FE ⊥ 1A O EF ⊥对于C ,设平面的法向量为,则,令,得, 1EFB (,,)n x y z = 12200n EF ax ay n EB bz ⎧⋅=+=⎪⎨⋅==⎪⎩ 1x =(1,1,0)n =- ,因此与不垂直,即不平行于平面,C 不正确;120OA n a ⋅=> 1OA n 1AO 1EFB 对于D ,由选项C 知,与不共线,即不垂直于平面,D 不正确.1OA n 1AO 1EFB 故选:B6.若实数满足,则的最大值为( ) ,x y 2220x y x ++=1y x -A. B CD .212【答案】B【分析】设,当直线与圆相切时取得最值,然后可建立方1y k x =-0kx y k --=()2211x y ++=1y x -程求解.【详解】由可得,其表示的是圆心在,半径为的圆, 2220x y x ++=()2211x y ++=()1,0-1设,其表示的是点与点连线的斜率, 1y k x =-(),x y ()1,0由可得, 1y k x =-0kx y k --=当直线与圆相切时取得最值, 0kx y k --=()2211x y ++=1y x-,解得k =所以 1y x -故选:B7.某班为了了解学生每周购买零食的支出情况,利用分层随机抽样抽取了一个15人的样本统计如下: 学生数 平均支出(元) 方差男生 9 406 女生 635 4据此估计该班学生每周购买零食的支出的总体方差为( )A .10 B .11.2 C .23D .11.5【答案】B【分析】由均值和方差公式直接计算.【详解】全班学生每周购买零食的平均费用为, ()94063538115x ⨯⨯+⨯==方差. ()()22296640384353811.21515s ⎡⎤⎡⎤=⨯+-+⨯+-=⎣⎦⎣⎦故选:B.8.2021年4月12日,四川省三星堆遗址考古发据3号坑出土一件完整的圆口方尊,这是经科学考古发据出土的首件完整圆口方尊(图1).北京冬奥会火种台“承天载物”的设计理念正是来源于此,它的基座沉稳,象征“地载万物”,顶部舒展开翩,寓意迎接纯洁的奥林匹克火种,一种圆口方尊的上部(图2)外形近似为双曲线的一部分绕着虚轴所在的直线旋转形成的曲面,该曲面的高为50cm ,上口直径为cm ,下口直径为25cm ,最小横截面的直径为20cm ,则该双曲线的离心率1003为( )A .B .2C .D . 7473135【答案】D【分析】设双曲线的标准方程为,利用已知条件确定的值,即可求解 ()222210,0x y a b a b -=>>,a b 【详解】设双曲线的标准方程为, ()222210,0x y a b a b-=>>则由题意最小横截面的直径为20cm ,可知,10a =设点, ()5025,,,50,032A t B t t ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭则 ()22225025006251,1,900400t b tb --=-=解得,32,24t b ==所以, 135e ===故选:D二、多选题9.从装有2个红球和2个黑球的口袋中任取2个小球,则下列结论正确的是( )A .“至少有一个红球”和“至少有一个黑球”是互斥事件B .“恰有一个黑球”和“都是黑球”是互斥事件C .“恰有一个红球”和“都是红球”是对立事件D .“至少一个黑球”和“都是红球”是对立事件【答案】BD【分析】利用对立事件、互斥事件的定义直接求解.【详解】解:从装有2个红球和2个黑球的口袋中任取2个小球,可能结果有:二个红球,一个红球一个黑球,二个黑球;对于,“至少一个红球”和“至少有一个黑球”能同时发生,不是互斥事件,故错误; A A 对于,“恰有一个黑球”和“都是黑球”不能同时发生,是互斥事件,故正确;B B 对于,“恰有一个红球”和“都是红球”不能同时发生,但是可以同时都不发生,是互斥事件,C 但不是对立事件,故错误;C 对于,“至少一个黑球”和“都是红球”不能同时发生,但是一定有一个要发生,是对立事件,D 故正确.D 故选:.BD 10.若曲线C 的方程为,则( ) ()2222102x y m m m +=>-A .当时,曲线C 表示椭圆,离心率为 m =12B .当时,曲线C 表示双曲线,渐近线方程为m =y =C .当时,曲线C 表示圆,半径为1 1m =D .当曲线C 表示椭圆时,焦距的最大值为4【答案】BC【分析】根据方程研究曲线的性质,由方程确定曲线形状,然后求出椭圆的得离心率,得焦,,a b c 距判断AD ,双曲线方程中只要把常数1改为0,化简即可得渐近线方程,判断B ,由圆的标准方程判断C .【详解】选项A ,时,曲线方程为,表示椭圆,其中,,则m 2211322x y +=232a=212b =,离心率为,A 错; 2221c a b =-=c e a ===选项B ,时曲线方程为表示双曲线,渐近线方程为,即,B m 2213x y -=2203x y -=y =正确;选项C ,时,曲线方程为,表示圆,半径为1,C 正确;1m =221x y +=选项D ,曲线C 表示椭圆时,或,22222002m m m m ⎧->⎪>⎨⎪≠-⎩201m <<212m <<时,,,,201m <<222a m =-22b m =222222(0,2)c a b m =-=-∈时,,,,212m <<22a m =222b m =-222222(0,2)c a b m =-=-∈所以,即,无最大值.D 错.2(0,2)c ∈c∈故选:BC .11.如图,在平行六面体中,以顶点A为端点的三条棱长均为6,且它们彼此的1111ABCD A B C D -夹角都是60°,下列说法中不正确的是( )A .1AC =B .平面BD ⊥1ACCC .向量与的夹角是60°1B C 1AA D .直线与AC1BD 【答案】AC【分析】根据题意,利用空间向量的线性运算和数量积运算,对选项中的命题分析,判断正误即可.【详解】解:对于, 111:A AC AB BC CC AB AD AA =++=++∴22221111222AC AB AD AA AB AD AD AA AD AA =+++⋅+⋅+⋅, 363636266cos60266cos60266cos60216=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒=所以错误;1||AC A 对于:B 11()()AC BD AB AD AA AD AB ⋅=++⋅- ,所以,即, 22110AB AD AB AD AB AD AA AD AA AB =⋅-+⋅+⋅--⋅= 10AC DB ⋅= 1AC DB ⊥,所以,即,因为2222()()0AC BD AB AD AD AB AD AB AD AB ⋅=+⋅-==--= 0AC BD ⋅= AC BD ⊥,平面,所以平面,选项正确;1AC AC A ⋂=1,AC AC ⊂1ACC BD ⊥1ACC B 对于:向量与 的夹角是,所以向量与的夹角也是,选项C 1B C 1BB 18060120︒-︒=︒1B C 1AA 120︒C错误;对于,11:D BD AD AA AB =+- AC AB AD =+ 所以,()2222211111222BD AD AA AB AD AA AB AD AA AD AB AA AB =+-=+++⋅-⋅-⋅1||BD ∴=同理,可得||AC = ,11()()18183636181836AC BD AD AA AB AB AD ⋅=+-⋅+=+-++-=所以,所以选项正确.111cos ||||AC BD BD AC AC BD ⋅<⋅>==⋅ D 故选:AC .12.已知的左,右焦点分别为,,长轴长为4,点在椭圆C ()2222:10x y C a ba b+=>>1F 2F )P 外,点Q 在椭圆C 上,则下列说法中正确的有( )A .椭圆C 的离心率的取值范围是⎫⎪⎪⎭B .已知,当椭圆C时,的最大值为3 ()0,2E -QE C .存在点Q 使得120QF QF ⋅= D .的最小值为11212QF QF QFQF +⋅【答案】ACD【分析】易得,再根据点在椭圆C 外,可得,从而可求得的范围,再根=2a )P 22114b +>2b 据离心率公式即可判断A ;根据离心率求出椭圆方程,设点,根据两点的距离公式结合椭(),Q x y 圆的有界性即可判断B ;当点Q 位于椭圆的上下顶点时取得最大值,结合余弦定理判断12F QF ∠是否大于等于即可判断C ;根据12F QF ∠90︒结合基本不等式即可判断D. ()1212121212111114QF QF QF QF QF QF QF QF QF QF ⎛⎫+=+=++ ⎪ ⎪⋅⎝⎭【详解】解:根据题意可知,=2a 则椭圆方程为, 22214x y b+=因为点在椭圆C 外, )P 所以,所以, 22114b+>22b <所以,22102b a <<则离心率,故A 正确;c ea ⎫==⎪⎪⎭对于B ,当椭圆C2c c a ==所以, 21c b ==所以椭圆方程为,2214x y+=设点,(),Q x y 则, )11QE y ==-≤≤当时,,故B 错误;23y =max QE =对于C ,当点Q 位于椭圆的上下顶点时取得最大值, 12F QF ∠此时,1212,2QF QF a F F c ===, 2222222212121222122442cos 102222QF QF F F a c b a b F QF QF QF a a +---∠====-<即当点Q 位于椭圆的上下顶点时为钝角, 12F QF ∠所以存在点Q 使得为直角, 12F QF ∠所以存在点Q 使得,故C 正确;120QF QF ⋅= 对于D ,, 1224QF QF a +==则 ()1212121212111114QF QF QF QF QF QF QF QF QF QF ⎛⎫+=+=++ ⎪ ⎪⋅⎝⎭, 12211122144QF QF QF QF ⎛⎛⎫ =++≥+ ⎪ ⎪ ⎝⎭⎝当且仅当,即时,取等号, 1221QF QF QF QF =122QF QF ==所以的最小值为1,故D 正确.1212QF QF QF QF +⋅故选:ACD.三、填空题13.某校高二年级共有学生1000人,其中男生480人,按性别进行分层,用分层随机抽样的方法从高二全体学生中抽出一个容量为100的样本,若样本按比例分配,则女生应抽取的人数为___________. 【答案】52【分析】利用分层抽样的性质直接求解. 【详解】解:由分层抽样的性质得: 女生应该抽取:.1000480100521000-⨯=故答案为:52.14.已知两直线,.若直线与,不能构成三1:240l x y -+=2:4350l x y ++=3:260l ax y +-=1l 2l 角形,求实数__________. =a 【答案】或或1-832-【分析】分别讨论或或过与的交点时,即可求解.31l l ∥32l l ∥3l 1l 2l 【详解】由题意可得,①当时,不能构成三角形,此时:,解得:;31l l ∥()212a ⨯-=⨯1a =-②当时,不能构成三角形,此时:,解得:;32l l ∥342a ⨯=⨯83a =③当过与的交点时,不能构成三角形,此时:3l 1l 2l 联立与,得,解得,1l 2l 2+4=04+3+5=0x y x y -⎧⎨⎩=2=1x y -⎧⎨⎩所以与过点,将代入得:,解得; 1l 2l ()2,1-()2,1-3l (2)2160a ⨯-+⨯-=2a =-综上:当或或时,不能构成三角形.1a =-832-故答案为:或或.1-832-15.已知圆,圆.动圆与外切,与内切,则动圆的221:(1)1C x y -+=222:(1)25C x y ++=M 1C 2C M 圆心的轨迹方程为___________.【答案】22198x y +=【分析】根据题意得到动圆圆心到两个定圆圆心的距离之和为常数,且大于两个定点的距离,故轨迹为椭圆,根据条件计算得到答案.【详解】圆的圆心为,半径为1,221:(1)1C x y -+=1(1,0)C 圆的圆心为,半径为5,222:(1)25C x y ++=2(1,0)C -设动圆圆心为,半径为, (,)M x y r 则,, 1||1MC r =+2||5MC r =-于是,1212||||6||2MC MC C C +=>=动圆圆心的轨迹是以,为焦点,长轴长为6的椭圆,∴M 1(1,0)C 2(1,0)C -,,, 3a ∴==1c 2228b a c =-=的轨迹方程为,M ∴22198x y +=故答案为:22198x y +=16.如图,已知抛物线:的焦点为,过且斜率为1的直线交于,两E ()220y px p =>F F E A B 点,线段的中点为,其垂直平分线交轴于点,轴于点.若四边形的面AB M x C MN y ⊥N CMNF积等于7,则的方程为________.E【答案】24y x =【分析】作出辅助线,根据直线的斜率表达出梯形的上底和下底以及高,列出方程,求AB CMNF 出,得到抛物线方程.2p =【详解】易知,直线的方程为,四边形为梯形,且.,02p F ⎛⎫⎪⎝⎭AB 2p y x =-CMNF FC NM ∥设,,,则, ()11,A x y ()22,B x y 00(,)M x y 1212221212122122AB y y y y p k y y x x y y p p --====-+-所以,所以. 122y y p +=0y p =作轴于点,则.MK x ⊥K MK p =因为直线的斜率为1,所以为等腰直角三角形,故,所以AB FMC A FK MK KC p ===,, 32pMN OF FK =+=2FC p =所以四边形的面积为, CMNF 132722p p p ⎛⎫⨯+⨯=⎪⎝⎭解得,2p =故抛物线的方程为.E 24y x =故答案为:24y x =四、解答题17.已知直线:与直线:,. 1l ()280m x my ++-=2l 40mx y +-=m ∈R (1)若,求m 的值;12l l ⊥(2)若点在直线上,直线l 过点P ,且在两坐标轴上的截距之和为0,求直线l 的方程. ()1,P m 2l 【答案】(1)或0; 3-(2)或. 20x y -=10x y -+=【分析】(1)根据两直线垂直得到方程,求出m 的值;(2)先将点代入中求出,再分截距为0和截距不为0两种情况进行求解. ()1,P m 2l =2m 【详解】(1)由题意得:,解得:或0, ()20m m m ++=3m =-经检验,均满足要求,所以或0;3m =-(2)将点代入中,,解得:, ()1,P m 2l 40m m +-==2m 因为直线l 过点P ,且在两坐标轴上的截距之和为0,当两截距均为0时,设直线l 为,代入,可得, =y kx ()1,2P =2k 此时直线l 为;20x y -=当两截距不为0时,设直线l 为,代入,可得, 1x yn n+=-()1,2P 1n =-故此时直线l 为;10x y -+=综上:直线l 的方程为或.20x y -=10x y -+=18.在某社区举办的《“环保我参与”有奖问答比赛》活动中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是,甲、丙两个家庭都回答错误的概率是34,乙、丙两个家庭都回答正确的概率是.若各家庭回答是否正确互不影响.11214(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中恰有2个家庭回答正确这道题的概率.【答案】(1);3283、(2). 1532【分析】(1)记“甲家庭回答正确这道题”,“乙家庭回答正确这道题”,“丙家庭回答正确这道题”分别为事件,根据独立事件概率的求法列方程组计算即可;,,A B C (2)由(1)结合题意可知所求事件为,其概率利用互斥事件与独立事件的概ABC ABC ABC ++率求法计算即可.【详解】(1)记“甲家庭回答正确这道题”,“乙家庭回答正确这道题”,“丙家庭回答正确=A =B =C 这道题”,由于相互独立,所以和相互独立,,,A B C A C 则,解得,()()()()()()()()()()()3=41==11=121==4P A P AC P A P C P A P C P BC P B P C ⋅--⎧⎪⎪⎪⎨⎪⎪⎪⎩()()3=82=3P B P C ⎧⎪⎪⎨⎪⎪⎩所以乙、丙两个家庭各自回答正确这道题的概率分别为.32,83(2)因为相互独立,且相互互斥, ,,A B C ,,ABC ABC ABC 所以()()()()P ABC ABC ABC P ABC P ABC P ABC ++=++()()()()()()()()()P A P B P C P A P B P C P A P B P C =++, 3333232151114834834833223⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以恰有2个家庭回答正确这道题的概率为. 153219.已知圆心为C 的圆经过两点,且圆心C 在直线上 ()()1,1,2,2A B -:10l x y -+=(1)求圆C 的标准方程.(2)若直线PQ 的端点P 的坐标是,端点Q 在圆C 上运动,求线段PQ 的中点M 的轨迹方程()5,6【答案】(1) ()()222325x y +++=(2) ()()2225122x y ⎛⎫-+-= ⎪⎝⎭【分析】(1)先求得线段的垂直平分线的方程,通过联立垂直平分线的方程和直线的方程求AB l 得圆心的坐标,进而求得半径,从而求得圆的标准方程.C (2)设出点的坐标,求得点的坐标,将点的坐标代入圆的方程,化简求得点的轨迹M Q Q C M 方程.【详解】(1)线段的中点的坐标为,AB D 31,22⎛⎫- ⎪⎝⎭直线的斜率为, AB 21321--=--所以线段的垂直平分线的斜率为,AB 13所以线段的垂直平分线的方程为,AB 1131,12323y x y x ⎛⎫⎛⎫--=-=- ⎪ ⎪⎝⎭⎝⎭由解得,所以, 11310y x x y ⎧=-⎪⎨⎪-+=⎩3,2x y =-=-()3,2C --,5=所以圆的标准方程为.C ()()222325x y +++=(2)设,由于是线段的中点,, (),M x y M PQ ()5,6P 所以,()25,26Q x y --将点的坐标代入原的方程得, Q C ()()2222532625x y -++-+=整理得点的轨迹方程为:. M ()()2225122x y ⎛⎫-+-= ⎪⎝⎭20.某校对年高一上学期期中数学考试成绩(单位:分)进行分析,随机抽取名学生,将2021100分数按照,,,,,分成组,制成了如图所示[)30,50[)50,70[)70,90[)90,110[)110,130[]130,1506的频率分布直方图:(1)估计该校高一期中数学考试成绩的平均分; (2)估计该校高一期中数学考试成绩的第百分位数;80(3)为了进一步了解学生对数学学习的情况,由频率分布直方图,成绩在和的两组[)50,70[)70,90中,用按比例分配的分层随机抽样的方法抽取名学生,再从这名学生中随机抽取.名学生进552行问卷调查,求抽取的这名学生至少有人成绩在内的概率. 21[)50,70【答案】(1)分; 93(2)分; 115(3). 710【分析】先利用频率之和为,计算出,进而求出平均值即可;()110.01a =利用百分位数的运算方法,求出成绩的第百分位数;()280利用分层抽样取样方法,算出需在分数段内抽人,分别记为,,需在分()3[)50,7021A 2A [)70,90数段内抽人,分别记为,,,写出样本空间和符合条件样本点数,即可求出相应概率. 31B 2B 3B 【详解】(1)解:由, 0.005200.005200.0075200.0220200.0025201a ⨯+⨯+⨯+⨯+⨯+⨯=得. 0.01a =数学成绩在:频率, [)30,500.0050200.1⨯=频率,[)50,700.0050200.1⨯=频率, [)70,900.0075200.15⨯=频率,[)90,1100.0200200.4⨯=频率,[)110,1300.0100200.2⨯=频率,[]130,1500.00252000.5⨯=样本平均值为:, 400.1600.1800.151000.41200.21400.0593⨯+⨯+⨯+⨯+⨯+⨯=可以估计样本数据中数学成绩均值为分,93据此可以估计该校高一下学期期中数学考试成绩估计分.93(2)解:由知样本数据中数学考试成绩在分以下所占比例为, ()11100.10.10.150.40.75+++=在分以下所占比例为1300.750.20.95+=因此,第百分位数一定位于内,由,80[)110,1300.80.75110201150.950.75-+⨯=-可以估计样本数据的第百分位数约为分,80115据此可以估计该校高一下学期期中数学考试成绩第百分位数约为分. 80115(3)解:由题意可知,分数段的人数为 (人),[)50,701000.110⨯=分数段的人数为 (人).[)70,901000.1515⨯=用按比例分配的分层随机抽样的方法抽取名学生,则需在分数段内抽人,分别记为,5[)50,7021A ,需在分数段内抽人,分别记为,,,2A [)70,9031B 2B 3B 设“从样本中任取人,至少有人在分数段内”为事件,21[)50,70A 则样本空间共包含个样本点 {}12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B Ω=10而的对立事件包含个样本点 A {}121323,,A B B B B B B =3所以,所以,即抽取的这名学生至少有人在内的概率为()310P A =()()7110P A P A =-=21[)50,70. 71021.如图,直三棱柱中,是边长为的正三角形,为的中点.111ABC A B C -ABC 2O AB(1)证明:平面;CO ⊥11ABB A(2)若直线与平面与平面夹角的余弦1B C 11ABB A 11A BC 1ABC 值.【答案】(1)证明见解析;(2). 57【分析】(1)利用线面垂直的判定定理证明即可;(2)连接,由(1)知⊥平面,又直线与平面1OB CO 11ABB A 1B C 11ABB A ,可得,以为坐标原点建立空间直角坐标系,求出平面的法向量,利用二面角的坐标公12BB =O 式计算大小可得答案.【详解】(1)是正三角形,为的中点,ABC O AB .CO AB ∴⊥又是直三棱柱,111ABC A B C - 平面ABC ,1AA ∴⊥. 1AA CO ∴⊥又,1AB AA A ⋂=平面.CO ∴⊥11ABB A (2)连接,由(1)知平面, 1OB CO ⊥11ABB A ∴直线与平面所成的角为, 1B C 11ABB A 1CB O ∠1tan CB O ∴∠=是边长为2的正三角形,则ABC A CO =.1OB ∴=在直角中,, 1B BO A 1OB =1OB =.12BB ∴=建立如图所示坐标系,则,,,,.()1,0,0B ()1,0,0A -()11,2,0A -()11,2,0B (10,C ,,设平面的法向量为,则,即()12,2,0BA ∴=- (11,BC =- 11A BC (),,m x y z = 11·0·0m BA m BC ⎧=⎪⎨=⎪⎩,解得平面的法向量为.22020x y x y -+=⎧⎪⎨-++=⎪⎩11ABC )1m =- ,,设平面的法向量为,则,即()2,0,0AB = ()11,2,3AC = 1ABC (),,n x y z = 1·0·0n AB n AC ⎧=⎪⎨=⎪⎩ ,解得平面的法向量为. 20230x x y z =⎧⎨++=⎩1ABC ()0,2n = 设平面与平面夹角为,则11A BC 1ABC θ.5cos 7m n m n θ⋅==⋅平面与平面夹角的余弦值为.11A BC 1ABC 5722.已知椭圆C :的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段22221x y a b +=()0a b >>RS ,C. (1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,,且总存在实数,使得(2,0)P R λ∈,问:l 是否过一定点?若过定点,求出该定点的坐标;若不过定点,试说明PA PB PF PA PB λ⎛⎫⎪=+ ⎪⎝⎭理由.【答案】(1);2212x y +=(2)l 恒过定点. ()1,0【分析】(1)线段RS 为通径时最短,再根据的关系即可求解;,,a b c (2)联立直线AB 的方程与椭圆方程,利用根与系数的关系表示出,整理式子即得结0PA PB k k +=果.【详解】(1)由线段RS,22b a=又,所以,解得 c a =22212a b a -=222,1,a b ⎧=⎨=⎩所以C 的标准方程为.2212x y +=(2)由, PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭可知PF 平分,∴.APB ∠0PA PB k k +=设直线AB 的方程为,,,x my t =+()11,A my t y +()22,B my t y +由得, 2222x my t x y =+⎧⎨+=⎩()2222220m y mty t +++-=,即,()22820m t ∆=-+>222m t >-∴,,12222mt y y m -+=+212222t y y m -=+∴, 1212022PA PBy y k k my t my t +=+=+-+-∴,∴,()()1212220my y t y y +-+=()()222220m t t mt ---⋅=整理得,∴当时,上式恒为0, ()410m t -=1t =即直线l 恒过定点.()1,0Q 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、定点定值、弦长、斜率、三角形的面积等问题.。
河北省邯郸市2016-2017学年高二上学期期末考试理数试题 Word版含答案
邯郸市2016~2017学年度第一学期期末教学质量检测高二数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.考试时间120分钟,满分150分.3.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置.4.全部答案在答题卡上完成,答在本试卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.不等式2230x x -->的解集为( ) A .{|2x x <或3}x > B .{|1x x <-或3}x > C .{|1x x <-或3}2x >D .{|1x x <或3}2x >2.曲线22y x x =-在点(1,1)处的切线方程为( )A .20x y -+=B .320x y -+=C .320x y --=D .320x y --=3.双曲线22143x y -=的一个焦点到渐近线的距离为( )A .1BC . 24.在空间直角坐标系中,A ,B ,C 三点到坐标分别为(2,1,1)A -,(3,4,)B λ,(2,7,1)C ,若AB CB ⊥,则λ=( )A .3B .1 C.3± D .-35.在ABC ∆中,若222a b c +<,则ABC ∆的形状是( )A .钝角三角形B .直角三角形 C.锐角三角形 D .不能确定 6.在等差数列{}n a 中,23a =,5710a a +=,则110a a +=( )A .9B .9.5 C.10 D .117.命题“0x R ∃∈,使得020xx e >”的否定是( ) A .0x R ∃∈,使得020xx e ≤ B .0x R ∀∈,使得020xx e ≤ C.0x R ∀∈,使得020x x e >D .0x R ∃∈,使得020x x e >8.在正方体1111ABCD A B C D -中,E ,F 分别为1CC 和1BB 的中点,则异面直线AE 与1D F 所成角的余弦值为( )A .0 B.199.在平面直角坐标系中,已知顶点(0,A、B ,直线PA 与直线PB 的斜率之积为-2,则动点P 的轨迹方程为( )A .2212y x +=B .2212y x +=(0x ≠)C.2212y x -=D .2212y x +=(0y ≠)10.已知实数x ,y 满足1,21,,y y x x y m ≤⎧⎪≥-⎨⎪+≥⎩如果目标函数z y x =-的最小值为-2,则实数m 等于( )A .0B .-2 C.-4 D .111.如图,动直线l :y b =与抛物线24y x =交于点A ,与椭圆2213x y +=交于抛物线右侧的点B ,F 为抛物线的焦点,则||||||AF BF AB ++的最大值为( )A .. C.2 D .12.设函数()(sin cos )xf x e x x =-(02016x π≤≤),则函数()f x 的各极大值之和为( )A .20172(1)1e e e πππ--B .1009(1)1e e e πππ-- C.10082(1)1e e e πππ--D .20162(1)1e e eπππ-- 第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题5分,共20分.13.“3x >”是“1x >”的 条件. 14.11111324352022S =++++=⨯⨯⨯⨯ .15.设0a >,0b >是a 与b 的等比中项,log log 3a b x y ==,则11x y+的最小值为 .16.如图,过椭圆22221x y a b+=(1a b >>)上顶点和右顶点分别作圆221x y +=的两条切线的斜率之积为,则椭圆的离心率的取值范围是 .三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分10分)已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,cos sin 0c A A b a --=. (Ⅰ)求C ;(Ⅱ)若1c =,求ABC ∆的面积的最大值. 18. (本小题满分12分)数列{}n a 的前n 项和记为n S ,12a =,12n n a S +=+(*n N ∈). (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}n na 的前n 项和n T . 19. (本小题满分12分)如图四棱锥E ABCD -中,四边形ABCD 为平行四边形,BCE ∆为等边三角形,ABE ∆是以A ∠为直角的等腰直角三角形,且AC BC =.(Ⅰ)证明:平面ABE ⊥平面BCE ; (Ⅱ)求二面角A DE C --的余弦值. 20. (本小题满分12分)某化工厂拟建一个下部为圆柱,上部为半球的容器(如图,圆柱高为h ,半径为r ,不计厚度,单位:米),按计划容积为72π立方米,且2h r ≥,假设其建造费用仅与表面积有关(圆柱底部不计),已知圆柱部分每平方米的费用为2千元,半球部分每平方米4千元,设该容器的建造费用为y 千元.(Ⅰ)求y 关于r 的函数关系,并求其定义域; (Ⅱ)求建造费用最小时的r . 21. (本小题满分12分)在平面直角坐标系xOy 中,已知圆M :2249(+14x y +=)的圆心为M ,圆N :221(1)4x y -+=的圆心为N ,一动圆与圆M 内切,与圆N 外切. (Ⅰ)求动圆圆心P 的轨迹方程;(Ⅱ)过点(1,0)的直线l 与曲线P 交于A ,B 两点,若2OA OB ⋅=-,求直线l 的方程.22. (本小题满分12分) 已知函数2()(1)x x f x x e=--, (Ⅰ)求函数的单调区间;(Ⅱ)若函数()f x 有两个零点1x ,2x ,证明122x x +>.高二数学(理科)参考答案及评分标准一、选择题1-5:CDCCA 6-10:BBDBC 11、12:DD二、填空题13.充分/充分不必要 14.325462 16.0⎛ ⎝三、解答题17.(本小题满分10分) 解:(Ⅰ)由正弦定理,得cos sin 0sin cos sin sin sin c A A b a C A C A B A --=⇔+=+…………………………1分sin cos sin sin()sin C A C A C A A ⇔+=++………………………………………………………2分1cos 1sin(30)2C C C ⇔-=⇔-︒=………………………………………………………………4分303060C C ⇔-︒=︒⇔=︒.………………………………………………………………………………5分 (Ⅱ)三角形的面积1sin 2S ab C ==,……………………………………………………………6分由余弦定理,得222212cos a b ab C a b ab =+-=+-,…………………………………………………8分又222a b ab +≥,所以1ab <,当且仅当a b =时等号成立. 所以,ABC ∆面积的最大值为.…………………………………………………………………………10分 18.(本小题满分12分)解:(Ⅰ)由12a =,12n n a S +=+(*n N ∈),① 12n n a S -=+(2n ≥),②……………………………………………………………………………………2分 ①-②,得1122n n n na a a a ++=⇒=(2n ≥).………………………………………………………………4分 又由2124a S =+=,得212a a =.………………………………………………………………………………5分 所以12n na a +=(n 1),数列{}n a 是以2为首项,2为公比的等比数列,故2n n a =.……………………6分(Ⅱ)由(Ⅰ),得231222332n n T n =⨯+⨯+⨯++⨯ ,③2n T = 23411223322n n +⨯+⨯+⨯++⨯ ,④…………………………………………………………8分 ③-④,得23122322n n n T n +-=++++- .………………………………………………………………10分 所以12(1)2n n T n +=+-.………………………………………………………………………………………12分19.(本小题满分12分)解:(Ⅰ)设O 为BE 的中点,连接AO 与CO , 则AO BE ,CO BE ⊥.……………………………………………………………………………………1分设2AC BC ==,则1AO =,CO =,222AO CO AC ⇒+=,………………………………………………………………………………………3分90AOC ∠=︒,所以AO CO ⊥,故平面ABE ⊥平面BCE .………………………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知AO ,BE ,CO 两两互相垂直.OE 的方向为x 轴正方向,OE 为单位长,以O 为坐标原点,建立如图所示空间直角坐标系O xyz -,则(0,0,1)A ,(1,0,0)E,C ,(1,0,0)B -,OD OC CD OC BA =+=+=,所以D =,AD = ,(1,0,1)AE =-,(EC =-,(1,0,1)CD =,…………………………………………………………………………8分设(,,)n x y z =是平面ADE 的法向量,则0,0,n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩即|0,|0,x x z +=-=所以(n =,设m 是平面DEC 的法向量,则|0,|0,m EC m CD ⋅=⋅= 同理可取m =,………………………………10分则1cos ,||||7n m n m n m ⋅<>==⋅,所以二面角A DE C --的余弦值为17.…………………………………12分 20.(本小题满分12分)解:(Ⅰ)由容积为72π立方米,得322723r r h πππ==.…………………………………………………2分272223r h r r =-≥,解得03r <≤,…………………………………………………………………………4分又圆柱的侧面积为22r π,所以建造费用2288163r y r ππ=+,定义域为(]0,3.…………………………………………………………6分(Ⅱ)23218(27)'16'3233r r y r r ππ⎛⎫-=+= ⎪⎝⎭,………………………………………………………………8分又03r <≤,所以'0y ≤,所以建造费用2288163r y r ππ=+,在定义域(]0,3上单调递减,所以当3r =时建造费用最小.……………………………………………………………………………………………………12分21.(本小题满分12分)解:(Ⅰ)设动圆P 的半径为r ,则71|,|22PM r PN r =-=+. 两式相加,得|||4||PM PN MN +=>,……………………………………………………………………2分由椭圆定义知,点P 的轨迹是以M 、N 为焦点,焦距为2,实轴长为4的椭圆,其方程为22143x y +=.……………………………………………………………………………………………………4分(Ⅱ)当直线的斜率不存在时,直线l 的方程为1x =,则31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,524OA OB ⋅=-≠- .……………………………………………………………………………………………6分当直线的斜率存在时,设直线l 的方程为(1)y k x =-,设11(,)A x y ,22(,)B x y ,联立22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩消去y ,得2222(34)84120k x k x k +-+-=,则有2122834k x x k +=+,21224(3)34k x x k-=+,……………………8分 212121212(1)(1)OA OB x x y y x x k x x ⋅=+=+--2221212(1)()k x x k x x k =+-++2251234k k--=+.…10分 由已知,得22512234k k--=-+,解得k =故直线l的方程为1)y x =-.……………………………………………………………………………12分22.(本小题满分12分) 解:(Ⅰ)11'()2(1)(1)2x x x f x x x e e -⎛⎫=--=-+ ⎪⎝⎭,……………………………………………………2分'()01f x x =⇒=,当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以函数()f x 在(,1)-∞上单调递11 增.…………………………………………………………………………4分 (Ⅱ)1(1)0f e=-<,(0=1f ),不妨设12x x <,又由(Ⅰ)可知101x <<,21x >. 221x -<,又函数()f x 在(,1)-∞上单调递减,所以121222x x x x +>⇔>-等价于12()(2)f x f x <-,即120()(2)f x f x =<-.………………………………………………………………………………………6分 又2222222(2)(1)x x f x x e ---=--,而22222()(1)0x x f x x e=--=, 所以222222222222222(2)(2)x x x x x x x x x e x e f x e e e e -------=-=,………………………………………………………8分设2()(2)x x g x xe x e -=--,则2'()(1)()x x g x x e e -=--.…………………………………………………10分 当(1,)x ∈+∞时'()0g x >,而(1)0g =,故当1x >时,()0g x >. 而2220x x e e ->恒成立,所以当1x >时,222222222222222(2)(2)0x x x x x x x x x e x e f x e e e e -------=-=>, 故222x x +>.…………………………………………………………………………………………………12分。
邯郸市2016-2017学年高二数学上学期期中试题
高二上学期期中考试数学试题一、选择题(每题5分,共60分)1、若,,,a b cRab ∈>且,则下列不等式正确的个数是( )①ba 11< ②22b a > ③44bc ac > ④1122+>+c bc aA .1B .2C .3D .42、已知{}n a 是由正数组成的等比数列,n S 表示{}n a 的前n 项的和.若13a =,24144a a =,则10S 的值是( )A .511B .1023C .1533D .30693、在A B C ∆中,角,,A BC 所对的边分别为,,a b c ,若a ,2b =,s i n c o s B +,则角A 的大小为( ) A .60 B .30 C .150 D .30或1504、设公差不为零的等差数列{}na 的前n 项和为nS ,若)(2324a a a +=,则47S S 等于( )A .47 B .514C .7D .145、不等式x x 1>的解集为( )A.)1,0()1,( --∞ B 。
),1()0,1(+∞- C 。
),1()1,(+∞--∞ D.)1,1(-6、已知数列{}na 是等差数列,若91130a a +<,1011a a ⋅<,且数列{}na 的前n 项和nS 有最大值,那么nS 取得最小正值时n 等于( ) A .20 B .17 C .19 D .217、设变量x ,y 满足约束条件2020280-≤⎧⎪-≤⎨⎪+-≤⎩x x y x y ,则目标函数z=3x+y 的最大值为( )A.7 B 。
8 C.9 D.148、在A B C ∆中,内角,,A BC 的对边分别是,,a b c ,若2c a =,1s i n s i n s i n 2b B a A a C-=,则s i n B 为( )A .74 B . C .73D .9、如图,从地面上C ,D 两点望山顶A ,测得它们的仰角分别为45°和30°,已知CD =100米,点C 位于BD 上,则山高AB 等于( ) A .米 B .米 C .米 D . 100米10、数列{}na 满足11=a ,对任意的*n ∈N 都有n a a a n n ++=+11,则=+++201621111a a a ( ) A 、20152016B 、40322017C 、40342017D 、2016201711、在ABC ∆中,已知C B A ,,成等差数列,且3=b ,则=++++cb a CB A sin sin sin ()A .2B .21 C .3 D .3312、对一切实数x ,不等式x 2+a |x|+1≥0恒成立,则实数a 的取值范围是( ). A .(-∞,-2] B .[-2,2] C .[-2,+∞) D .[0,+∞)二、填空题(每题5分,共20分) 13、在数列{}na 中,1112,1n n n a a a a +-==+,则2015a =14、若直线()0,01>>=+b a b ya x 过点(2,1),则3a+b 的最小值为 .15、设等比数列{}na 的前n 项和为nS ,若105:1:2S S =,则155:S S = .16、已知ABC ∆的三个内角C B A 、、所对的边分别为c b a 、、,则下列命题中正确的有_________.(填上你认为所有正确的命题序号)①若C B A c b a cos :cos :cos ::=,则ABC ∆是正三角形;②若C B A c b a sin :sin :sin ::=,则ABC ∆是正三角形;③若C cB b A a tan tan tan ==,则ABC ∆是正三角形;④若C ab c b a sin 32222=++,则ABC ∆是正三角形.三、解答题 17、(10分)解关于错误!未找到引用源。
河北省邯郸市魏县第一中学、曲周县第一中学高二数学上
河北省邯郸市魏县第一中学、曲周县第一中学2015-2016学年高二数学上学期期中联考试题 理一.选择题:本题12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求,将正确答案填涂在答题卡上。
1、“22ab >”是 “22log log a b >”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2、若不等式20ax bx c -+>的解集是1(,2)2-,则以下结论中:①0a >;②0b <;③0c >;④0a b c ++>;⑤0a b c -+>,正确是 ( )A . ①②⑤B .①③⑤C . ②③⑤D . ③④⑤ 3、已知{}n a 为等差数列,且74321,0,a a a -=-=则公差d =( ) A .-2 B .12-C .12D .24、设等比数列}{n a 的公比21=q ,前n 项和为n S ,则=33a S ( ) A .5 B .7 C .8 D .155、已知等差数列{}n a 中,12031581=++a a a ,则1092a a -的值是( ) A .20B .22C .24D .-86、已知数列-1, 1a ,2a ,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a -的值为( ) A.错误!未找到引用源。
B. - 错误!未找到引用源。
C.错误!未找到引用源。
或- 错误!未找到引用源。
D.错误!未找到引用源。
7、在各项均为正数的等比数列{}n a 中,1a 和19a 是方程016102=+-x x 的两根,向量)2,1(),,(10==n x a m ,若n m ⊥,则=x ( )A.1B.1-C.2D.2-8、已知双曲线221y x m-=的虚轴长是实轴长的2倍,则实数m 的值是( ) A .4 B .14 C .14- D .4- 9、已知双曲线22221x y a b-=的一个焦点与抛物线2410y x =的焦点重合,且双曲线的离心率等于103,则双曲线的方程为()A.2219yx-= B.221x y-=C.22199x y-= D.2219xy-=10、抛物线22xy=上两点),(11yxA、),(22yxB关于直线mxy+=对称,且2121-=⋅xx,则m等于()A.23B.2 C.25D.311、已知椭圆22221(0)x ya ba b+=>>的左焦点为F,右顶点为A,点B在椭圆上,且BF x⊥轴,直线AB交y轴于点P,若PBAP2=,则椭圆的离心率是( )A.3B.22C.13D.1212、如图,直线y=m与抛物线y2=4x交于点A,与圆(x-1)2+y2=4的实线部分交于点B,F为抛物线的焦点,则三角形ABF的周长的取值范围是( )A.(2,4)B.(4,6)C.[2,4]D.[4,6]第Ⅱ卷非选择题(共90分)二.填空题:本题4小题,每小题5分,共20分,将答案填在答题卡上相应位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年河北省邯郸市曲周一中高二(上)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.(5分)设命题p:对∀x∈R+,e x>lnx,则¬p为()A.∃x0∈R+,e<lnx0B.∀x∈R+,e^x<lnxC.∃x0∈R+,e≤lnx0D.∀x∈R+,e^x≤lnx3.(5分)数列{a n}足a1=2,a2=1,并且,则数列{a n}的第100项为()A.B. C. D.4.(5分)在数列{x n}中,若x1=1,x n+1=﹣1,则x2015=()A.﹣1 B.C.D.15.(5分)若a,b,c∈R,且a>b,则下列不等式正确的个数是()①<②a2>b2③ac4>bc4④>.A.1 B.2 C.3 D.46.(5分)若不等式f(x)=ax2﹣x﹣c>0的解集{x|﹣2<x<1},则函数y=f(﹣x)的图象为()A.B.C.D.7.(5分)等差数列f(x)中,已知a1=﹣12,S13=0,使得a n>0的最小正整数n 为()A.7 B.8 C.9 D.108.(5分)若实数x,y满足条件,则z=3x+y的最大值为()A.7 B.8 C.9 D.149.(5分)设公差不为零的等差数列{a n}的前n项和为S n,若a4=2(a2+a3),则=()A.B.C.7 D.1410.(5分)设等比数列{a n}中,前n项之和为S n,已知S3=8,S6=7,则a7+a8+a9=()A.B.C.D.11.(5分)下列四个命题:①“等边三角形的三个内角均为60°”的逆命题;②“若k>0,则方程x2+2x﹣k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“若•=•,则⊥”的否命题,其中真命题的个数是()A.0 B.1 C.2 D.312.(5分)在△ABC中,是角A、B、C成等差数列的()A.充分非必要条件 B.充要条件C.充分不必要条件 D.必要不充分条件二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,已知A,B,C成等差数列,且b=,则=.14.(5分)若直线+=1(a>0,b>0)过点(2,1),则3a+b的最小值为.15.(5分)不等式x>的解集为.16.(5分)已知S n是等差数列{a n}的前n项和,且S6>S7>S5,给出下列五个命题:①d<1;②S11>0;③S12<0;④数列{S n}中的最大项为S11;⑤|a6|>|a7|.其中正确命题有.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.(10分)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.18.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∨q为真,求实数x的取值范围;(2)若¬p是¬q的必要不充分要条件,求实数a的取值范围.19.(12分)在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q(q≠0),且b2+S2=12,.(1)求{a n}与{b n}的通项公式;(2)证明:++…+.20.(12分)已知函数f(x)=mx2﹣mx﹣1.(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;(2)若对于x∈[1,3],f(x)<5﹣m恒成立,求实数m的取值范围.21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+bsinC ﹣a﹣c=0.(Ⅰ)求B;(Ⅱ)若b=,求2a+c的取值范围.22.(12分)已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设函数f(x)=()x,数列{b n}满足条件b1=2,f(b n+1)=,(n∈N*),若c n=,求数列{c n}的前n项和T n.2016-2017学年河北省邯郸市曲周一中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【解答】解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cosC=∴∴△ABC是钝角三角形故选:C.2.(5分)设命题p:对∀x∈R+,e x>lnx,则¬p为()A.∃x0∈R+,e<lnx0B.∀x∈R+,e^x<lnxC.∃x0∈R+,e≤lnx0D.∀x∈R+,e^x≤lnx【解答】解:因为全称命题的否定是特称命题,所以命题p:对∀x∈R+,e x>lnx,则¬p为:∃x0∈R+,e≤lnx0.故选:C.3.(5分)数列{a n}足a1=2,a2=1,并且,则数列{a n}的第100项为()A.B. C. D.【解答】解:由得,故为等差数列,且首项为,公差为1﹣=.故,∴,,故选:D.4.(5分)在数列{x n}中,若x1=1,x n+1=﹣1,则x2015=()A.﹣1 B.C.D.1【解答】解:由x n=﹣1,整理得:x n+1+1=,即有(x n+1+1)(x n+1)+1=1,令b n=x n+1,则有b n•b n+1=1,互为倒数关系,而由x1=1,则b1=2,则b2=,则b n与b n+1同理b3=2,b4=,…,因此b2015=2,∴x2015+1=2,故x2015=1,故选:D.5.(5分)若a,b,c∈R,且a>b,则下列不等式正确的个数是()①<②a2>b2③ac4>bc4④>.A.1 B.2 C.3 D.4【解答】解:①a=1,b=﹣1,<不成立;②a=1,b=﹣1,a2>b2不成立;③c=0,ac4>bc4不成立;④由于c2+1>0,a>b,所以>成立.故选:A.6.(5分)若不等式f(x)=ax2﹣x﹣c>0的解集{x|﹣2<x<1},则函数y=f(﹣x)的图象为()A.B.C.D.【解答】解:由已知得,﹣2,1是方程ax2﹣x﹣c=0的两根,分别代入,解得a=﹣1,c=﹣2.∴f(x)=﹣x2﹣x+2.从而函数y=f(﹣x)=﹣x2+﹣x+2=﹣(x﹣2)(x+1)它的图象是开口向下的抛物线,与x轴交与(﹣1,0)(2,0)两点.故选:B.7.(5分)等差数列f(x)中,已知a1=﹣12,S13=0,使得a n>0的最小正整数n 为()A.7 B.8 C.9 D.10【解答】解:∵等差数列f(x)中,已知a1=﹣12,S13=0,∴=0,∴a13=12.由等差数列的性质可得2a7=a1+a13=0,故a7=0.再由题意可得,此等差数列为递增的等差数列,故使得a n>0的最小正整数n为8,故选:B.8.(5分)若实数x,y满足条件,则z=3x+y的最大值为()A.7 B.8 C.9 D.14【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,解得,即A(2,3),代入目标函数z=3x+y得z=3×2+3=9.即目标函数z=3x+y的最大值为9.故选:C.9.(5分)设公差不为零的等差数列{a n}的前n项和为S n,若a4=2(a2+a3),则=()A.B.C.7 D.14【解答】解:∵a4=2(a2+a3),∴a4=2(a1+a4),则===7.故选:C.10.(5分)设等比数列{a n}中,前n项之和为S n,已知S3=8,S6=7,则a7+a8+a9=()A.B.C.D.【解答】解:a4+a5+a6=S6﹣S3=7﹣8=﹣1,a4+a5+a6=a1q3+a2q3+a3q3=(a1+a2+a3)q3,所以q3=,则a7+a8+a9=a4q3+a5q3+a6q3=.故选:B.11.(5分)下列四个命题:①“等边三角形的三个内角均为60°”的逆命题;②“若k>0,则方程x2+2x﹣k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“若•=•,则⊥”的否命题,其中真命题的个数是()A.0 B.1 C.2 D.3【解答】解:对于①“等边三角形的三个内角均为60°”的逆命题是“三个内角均为60的三角形是等边三角形”是真命题;对于②,∵方程x2+2x﹣k=0无实根时△=4+4k<0,即k<﹣1”,∴原命题的逆否命题“若方程x2+2x﹣k=0无实根,则k<0”是真命题;对于③“全等三角形的面积相等”的否命题是“不全等三角形的面积不相等”,故错;对于④“若•=•,则⊥”的否命题是“若•≠•,则不垂直”是真命题,故选:D.12.(5分)在△ABC中,是角A、B、C成等差数列的()A.充分非必要条件 B.充要条件C.充分不必要条件 D.必要不充分条件【解答】解:在△ABC中,⇒2sinA•sinC﹣sin2A=2cosA•cosC+cos2A⇒2sinA•sinC﹣2cosA•cosC=cos2A+sin2A=1⇒﹣2cos(A+C)=1⇒cos(A+C)=﹣⇒A+C==2B⇒角A、B、C成等差数列当角A、B、C成等差数列⇒A+C==2B,角A有可能取90°,故不成立故是角A、B、C成等差数列的充分不必要条件.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,已知A,B,C成等差数列,且b=,则=.【解答】解:因为A,B,C成等差数列,所以2B=A+C,又A+B+C=π,则B=,由b=得==,由正弦定理得,==,故答案为:.14.(5分)若直线+=1(a>0,b>0)过点(2,1),则3a+b的最小值为7+2.【解答】解:∵直线过点(2,1),∴=1,故3a+b=(3a+b)()=7++≥7+2=7+2,当且仅当=即b=a时取等号,结合=1可解得a=且b=+1,故答案为:7+2.15.(5分)不等式x>的解集为(﹣1,0)∪(1,+∞).【解答】解:不等式x>,即>0,∴①,或②.解①求得x>1,解②求得﹣1<x<0,故答案为:(﹣1,0)∪(1,+∞).16.(5分)已知S n是等差数列{a n}的前n项和,且S6>S7>S5,给出下列五个命题:①d<1;②S11>0;③S12<0;④数列{S n}中的最大项为S11;⑤|a6|>|a7|.其中正确命题有①②⑤.【解答】解:∵S6>S7>S5,∴a6>a6+a7>0,∴a7<0<a6,∴a1>0,公差d=a7﹣a6<0,∴①正确,∴等差数列{a n}是递减数列,∴④错误,∵S11=11a1+55d=11(a1+5d)>0,S12=12a1+66d=6(a1+a12)=6(a6+a7)>0,∴②⑤正确,③错误,故答案为:①②⑤.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.(10分)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB ≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.18.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∨q为真,求实数x的取值范围;(2)若¬p是¬q的必要不充分要条件,求实数a的取值范围.【解答】解:(1)化简p:x∈(a,3a),(1分)化简q:x∈[﹣2,9]∩((﹣∞﹣4)∪(2,+∞))=(2,9]…(3分),∵a=1,∴p:x∈(1,3)依题意有p∨q为真,∴x∈(1,3)∪(2,9]…(5分)(2)若¬p是¬q的必要不充分要条件,则¬q⇒¬p且逆命题不成立,即p⊂q.(7分)∴(a,3a)⊂(2,9],即2≤a<3a≤9…(9分)∴a∈[2,3]…(10分)19.(12分)在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q(q≠0),且b2+S2=12,.(1)求{a n}与{b n}的通项公式;(2)证明:++…+.【解答】(1)解:设{a n}的公差为d,∵b2+S2=12,∴q+6+d=12,q=解得q=3或q=﹣4(舍),d=3故a n=3n,b n=3n﹣1;(2)证明:S n=,∴∴++…+==∵∴∴++…+.20.(12分)已知函数f(x)=mx2﹣mx﹣1.(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;(2)若对于x∈[1,3],f(x)<5﹣m恒成立,求实数m的取值范围.【解答】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)要x∈[1,3],f(x)<5﹣m恒成立,即m(x﹣)2+m﹣6<0,x∈[1,3]恒成立.令g(x)=m(x﹣)2+m﹣6,x∈[1,3]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得m<.所以0<m<当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m<0.综上所述,m<﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+bsinC ﹣a﹣c=0.(Ⅰ)求B;(Ⅱ)若b=,求2a+c的取值范围.【解答】解:(1)由正弦定理知:sinBcosC+sinBsinC﹣sinA﹣sinC=0,把sinA=sin(B+C)=sinBcosC+cosBsinC代入上式得:sinBsinC﹣cosBsinC﹣sinC=0,∵sinC≠0,∴sinB﹣cosB﹣1=0,即sin(B﹣)=,∵B为三角形内角,∴B=;(2)由(1)得:2R===2,∴2a+c=2R(2sinA+sinC)=4sinA+2sin(﹣A)=5sinA+cosA=2sin(A+θ),其中sinθ=,cosθ=,∵A∈(0,),即有A+θ=处取得最大值2.∴2sin(A+θ)∈(,2],则2a+c的范围为(,2].22.(12分)已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设函数f(x)=()x,数列{b n}满足条件b1=2,f(b n+1)=,(n∈N*),若c n=,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)当n=1,a1=2a1﹣2,即a1=2,当n≥2时,S n=2a n﹣1﹣2,﹣1a n=S n﹣S n﹣1=2a n﹣2﹣(2a n﹣1﹣2)=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴数列{a n}是以2为首项,2为公比的等比数列,∴a n=2×2n﹣1=2n,数列{a n}的通项公式a n=2n;)=,(n∈N*),(Ⅱ∵)f(x)=()x,f(b n+1∴=,=b n+3,∴=,即b n+1﹣b n=3,∴b n+1b1=f(﹣1)=2,∴数列{b n}是以2为首项,3为公差的等差数列,∴b n=3n﹣1,c n==,∴T n=+++…++,T n=+++…++,两式相减得:T n=1++++…+﹣,=1+×﹣,=1+(1﹣)﹣,∴T n =2+3(1﹣)﹣,=2+3•﹣,∴T n =5•.。