晶振选型与应用知识

合集下载

晶振温差选型

晶振温差选型

晶振温差选型一、温度对晶振稳定性的影响晶振是一种具有高稳定性和精度的晶体谐振器,广泛应用于计算机、通信、电子医疗等领域。

但是,温度变化会对晶振的输出频率造成影响,因此,为了保证系统正常运行,需要选择温度系数小的晶振。

二、晶振的温度系数晶振的温度系数是指单位温度变化引起的频率变化率,通常用ppm表示,也就是说,±1℃温度变化对晶振频率的影响量。

一般常见的晶振温度系数在±10ppm左右,但也有部分低于±5ppm的高精度晶振。

三、晶振的温差性能晶振的温差性能是指晶振在温度变化时频率是否稳定的能力。

因为每个晶振都有一个温度范围,此范围内其频率变化量在±ppm以内,因此,为了确保系统能够正常运行,需要根据具体的需求选择适合的晶振。

四、选择晶振的注意事项1. 测定电路参数:在选择晶振之前,需要测定电路的参数,如负载容量、驱动电平等,以便选择适合的晶振。

2. 了解系统运作要求:不同的系统对晶振的稳定性、精度和频带范围有不同的要求,需要根据实际情况选择合适的晶振。

3. 选择温度系数小的晶振:温度系数小的晶振可以减少温度变化对系统运作的影响,更加稳定可靠。

4. 考虑温差范围:根据使用环境的温度范围选择适合的晶振,一般来说,要考虑到环境温度变化范围、温差对晶振的影响以及剩余裕度等因素,以确保系统的准确运作。

五、晶振选型流程1. 查找产品手册:首先,可以通过查找产品手册了解需要的基本参数,如频率、负载容量以及温度系数等。

2. 筛选合适的产品:查找到符合要求的产品后,需要通过筛选技术将产品的范围进一步缩小,以便找到最佳的选择。

3. 申请样品测试:在找到最佳的晶振之后,需要申请样品测试,以确保其性能和稳定性符合系统要求。

4. 生产批量生产:测试样品后,如果测试结果符合要求,则可以放心地进行批量生产。

六、结论晶振是一种非常重要的电子元器件,其稳定性和精度对整个系统的运作起着至关重要的作用。

晶振选型指南

晶振选型指南

恒温晶振、温补晶振选用指南晶体振荡器被广泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪,BP机、移动电话发射台,高档频率计数器、GPS、卫星通信、遥控移动设备等。

它有多种封装,特点是电气性能规范多种多样。

它有好几种不同的类型:电压控制晶体振荡器(VCXO)、温度补偿晶体振荡器(TCXO)、恒温晶体振荡器(OCXO),以及数字补偿晶体振荡器(MCXO或DTCXO),每种类型都有自己的独特性能。

如果您需要使您的设备即开即用,您就必须选用VCXO或温补晶振,如果要求稳定度在0.5ppm以上,则需选择数字温补晶振(MCXO)。

模拟温补晶振适用于稳定度要求在5ppm~0.5ppm之间的需求。

VCXO只适合于稳定度要求在5ppm以下的产品。

在不需要即开即用的环境下,如果需要信号稳定度超过0.1ppm 的,可选用OCXO。

频率稳定性的考虑晶体振荡器的主要特性之一是工作温度内的稳定性,它是决定振荡器价格的重要因素。

稳定性愈高或温度范围愈宽,器件的价格亦愈高。

工业级标准规定的-40~+75℃这个范围往往只是出于设计者们的习惯,倘若-30~+70℃已经够用,那么就不必去追求更宽的温度范围。

设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。

指标过高意味着花钱愈多。

晶体老化是造成频率变化的又一重要因素。

根据目标产品的预期寿命不同,有多种方法可以减弱这种影响。

晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年,这种现象才最为显著。

例如,使用10年以上的晶体,其老化速度大约是第一年的3倍。

采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如,可以在控制引脚上施加电压(即增加电压控制功能)等。

与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。

对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。

如何选取正确的晶振

如何选取正确的晶振

一个号的晶体振荡器可以被泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪,BP机、移动电话发射台,高档频率计数器、GPS、卫星通信、遥控移动设备等。

它具有多种封装类型,最主要的特点是电气性能规范多种多样。

它有以下几种不同的类型:电压控制晶体振荡器(VCXO)、温度补偿晶体振荡器(TCXO)、恒温晶体振荡器(OCXO),以及数字补偿晶体振荡器(MCXO或DTCXO),每种类型都有自己的独特性能。

如果你的设备需要即开即用,您就必须选用VCXO或温补晶振,如果你的要求稳定度在0.5ppm以上,凯越翔建议你选择数字温补晶振(MCXO)。

而模拟温补晶振则适用于稳定度要求在5ppm~0.5ppm之间的需求。

VCXO只适合于稳定度要求在5ppm以下的产品。

如果你的设备在不需要即开即用的环境下,如果需要信号稳定度超过0.1ppm的,可选用OCXO。

从频率稳定性方面考虑:晶体振荡器的主要特性之一是工作温度内的稳定性,它是决定振荡器价格的重要因素。

稳定性愈高或温度范围愈宽,器件的价格亦愈高。

工业级标准规定的-40~+75℃这个范围往往只是出于设计者们的习惯,倘若-30~+70℃已经够用,那么就不必去追求更宽的温度范围。

所以设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。

指标过高意味着花钱愈多。

晶体老化:造成频率变化的又一重要因素。

根据目标产品的预期寿命不同,有多种方法可以减弱这种影响。

晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年,这种现象才最为显著。

例如,使用10年以上的晶体,其老化速度大约是第一年的3倍。

采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如,可以在控制引脚上施加电压(即增加电压控制功能)等。

与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。

对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。

晶振怎么选?有哪些注意点?这里有详细说明!

晶振怎么选?有哪些注意点?这里有详细说明!

晶振怎么选?有哪些注意点?这里有详细说明!1.引言1.1 概述晶振是一种电子元件,广泛应用于电子设备中的时钟电路、计时器、通信系统等领域。

它主要用于产生稳定的时钟信号,确保电子设备的正常运行。

在电子设备中,晶振起到了至关重要的作用。

它能够提供稳定、准确的时钟信号,使得电子设备能够按照预定的时序工作。

通过晶振产生的时钟信号,我们可以精确地控制各个元器件的工作状态,从而保证整个电子系统的稳定性和可靠性。

在选择晶振的时候,需要考虑一些注意点。

首先,需要确定所需的频率范围。

不同的应用场景对晶振的频率要求是不同的,因此我们需要根据具体的需求来选择适合的频率范围。

其次,需要考虑晶振的稳定性和准确性。

晶振的稳定度和准确度决定了时钟信号的精度,对于一些对时间要求较高的应用场景,我们需要选择稳定性和准确度较高的晶振。

此外,还需要考虑晶振的尺寸和功耗。

不同的应用场景对晶振的尺寸和功耗要求也是不同的,我们需要根据具体的应用来选择适合的晶振类型。

总结起来,选择晶振时需要考虑频率范围、稳定性、准确性、尺寸和功耗等因素。

根据具体的应用需求,在这些因素中找到一个平衡点,选择合适的晶振,将有助于确保电子设备的正常运行和稳定性。

在进行晶振选择时,我们可以参考一些相关的技术规范和数据手册,以便更好地理解和评估不同晶振的性能指标,从而做出明智的决策。

1.2文章结构1.2 文章结构本文将按照以下结构进行叙述,以便读者更好地了解晶振的选择要点和注意事项。

第一部分是引言。

在引言中,我们将概述晶振的作用,并明确本文的目的。

第二部分是正文。

正文将分为两个小节,分别介绍晶振的作用以及晶振的选择要点。

在2.1小节中,我们将详细介绍晶振的作用。

晶振作为电子设备中的重要元件,其作用十分关键。

我们将从频率稳定性、时钟精确性以及电路可靠性等方面逐一进行讲解,以帮助读者充分了解晶振的重要性。

在2.2小节中,我们将重点介绍晶振的选择要点。

在选择晶振时,需要考虑多种因素,如频率稳定性、温度特性、功耗以及封装形式等。

晶振选型的参数

晶振选型的参数

晶振选型的参数1.、频率大小:频率越高一般价格越高。

但频率越高,频差越大,从综合角度考虑,一般工程师会选用频率低但稳定的晶振,自己做倍频电路。

总之频率的选择是根据需要选择,并不是频率越大就越好。

要看具体需求。

比如基站中一般用10MHz的恒温晶振(OCXO),因其有很好的频率稳定性,属于高端晶振。

至于范围,晶振的频率做的太高的话,就会失去意义,因为有其他更好的频率产品代替。

JFVNY的产品频率范围是:25kHz-1.3G,基本上所有应用中的晶振都可以在JFVNY产品种找到。

2.、频率稳定度:关键参数,JFVNY的高端晶振可以达到10-9级别。

指在规定的工作温度范围内,与标称频率允许的偏差,用PPm (百万分之一)表示。

一般来说,稳定度越高或温度范围越宽,价格越高。

对于频率稳定度要求±20ppm或以上的应用,可使用普通无补偿的晶体振荡器。

对于介于±1 至±20ppm 的稳定度,应该考虑温补晶振TCXO 。

对于低于±1ppm 的稳定度,应该考虑恒温晶振OCXO。

如果客户有十分特别的频稳要求,JFVNY可根据客户要求参数定做。

2、电源电压:常用的有1.8V、2.5V、3.3V、5V等,其中3.3V应用最广。

3、输出:根据需要采用不同输出。

(HCMOS,SINE,TTL,PECL,LVPECL,LVDS,LVHCMOS等)每种输出类型都有它的独特波形特性和用途。

应该关注三态或互补输出的要求。

对称性、上升和下降时间以及逻辑电平对某些应用来说也要作出规定,根据客户需要我们可以帮助客户选型。

5.、工作温度范围:工业级标准规定的-40~+85℃这个范围往往只是出于设计者们的习惯,倘若-20℃~+70℃已经够用,那么就不必去追求更宽的温度范围。

对于某些特殊场合如航天军用等,对温度有更苛刻的要求。

6.、相位噪声和抖动:相位噪声和抖动是对同一种现象的两种不同的定量方式,是对短期稳定度的真实度量。

晶振选型及注意事项

晶振选型及注意事项

晶振选型及注意事项
晶振是电子电路中常用的一种元器件,它可将电子信号转化为精
准的时钟信号,应用广泛。

晶振选型及注意事项如下:
1. 晶振的选型应根据电路工作需要来选择,选定频率范围,以
及其稳定性、精度等参数。

2. 晶振的稳定性是指在一定温度范围内,晶振频率的波动范围。

需考虑电路工作要求对频率稳定性的要求,选择适当的晶振稳定性。

3. 晶振精度是指频率与额定频率的偏差,通常用ppm(百万分之几)表示。

频率精度越高,价格越贵,选择时需要根据实际需求权衡。

4. 晶振的电容值、电压等参数需根据电路的具体工作要求进行
选择。

5. 在实际应用中,需考虑晶体的品牌、生产厂家、质量和可靠
性等问题,选择信誉度高、生产工艺设备先进的品牌和厂家的晶振。

6. 在使用晶振的过程中,为保证其稳定性和精度,通常需要采
用合适的电路保护与调谐措施,如添加合适的防护、降噪等电路。

总之,晶振选型需根据电路工作要求选择适当的频率、稳定性、
精度等参数,且需要选择信誉度高、生产工艺设备先进的品牌和厂家
的晶振,在实际应用中需注意晶振的保护和调谐。

晶振选型与应用知识

晶振选型与应用知识

石英晶振选型与应用知识石英晶体是压电晶体的一种,沿着特定的方向挤压或拉伸,它的两端会产生正负电荷,这种效应称为正压电效应;相反,对晶体施加电场导致晶体形变的效应,称为逆压电效应。

所以在石英晶片两面施加交变电场,晶片就会产生形变,而形变又会产生电场,这是一个周期转换的过程。

对于特定的晶片,这个周期是固定的,我们利用这个周期来产生稳定的基准时钟信号。

石英晶体元器件,是利用石英晶体的压电效应实现频率控制、稳定或选择的关键电子元器件。

包括石英晶体谐振器、石英晶体振荡器和石英晶体滤波器。

在石英晶片的两面镀上电极,经过装架、调频、封装等工序后制成石英晶体元件。

石英晶体元件与集成电路等其它电子元件组合成石英晶体器件。

本文主要介绍石英晶振:即所谓石英晶体谐振器(无源晶振)和石英晶体振荡器(有源晶振)的统称。

一般的概念中把晶振就等同于谐振器理解了,振荡器就是通常所指钟振。

石英晶振是一种用于稳定频率和选择频率的电子元件,已被广泛地使用在无线电话、载波通讯、广播电视、卫星通讯、仪器仪表等各种电子设备中.一、石英晶振的型号命名方法1.国产石英晶体谐振器的型号由三部分组成:–第一部分:表示外壳形状和材料,B表示玻璃壳,J表示金属壳,S表示塑料封型;–第二部分:表示晶片切型,与切型符号的第一个字母相同,A表示AT切型、B表示BT切型,–第三部分:表示主要性能及外形尺寸等,一般用数字表示,也有最后再加英文字母的。

JA5为金属壳AT切型晶振元件,BA3为玻壳AT切型晶振元件。

2石英晶体振荡器的型号命名有四部分组成:.–第一部分:主称用大写字母Z表示石英晶体振荡器;–第二部:类别用大写字母表示,其意义见下表:–第三部分:频率稳定度等级用大写字母表示,其意义见下表:–第四部分:序号用数字表示,以示产品结构性能参数的区别从型号上无法知道晶振元件的主要电特性,需查产品手册或相关资料才行。

二、石英晶振的结构特点1.石英晶体谐振器一般由外壳、晶片、支架(金属座)、外引线、引线等组成。

晶振选型及注意事项

晶振选型及注意事项

晶振选型及注意事项
晶振是电子元器件中的一种重要部件,广泛应用于电子产品中。

晶振选型及注意事项对于电子产品的性能和稳定性都有着至关重要
的影响。

以下是晶振选型及注意事项的相关内容:
一、晶振选型
1、频率范围:选择晶振的频率范围需要考虑到系统的需求,频率一般以MHz为单位,一般选择与系统主频相同的晶振。

2、精度:晶振的精度越高,系统的稳定性越好,但价格也越高,需要根据实际需求来选择。

3、尺寸:晶振的尺寸也需要与系统的尺寸相适应,一般来说,尺寸越小的晶振价格也越高。

4、供电电压:晶振的供电电压需要与系统的供电电压相适应,一般来说,晶振的工作电压在2.5V-5V之间。

5、温度特性:晶振的频率会受到温度的影响,一般来说,工作温度范围在-20℃~+70℃之间。

二、注意事项
1、防静电:晶振对静电非常敏感,需要在安装和使用过程中注意防静电。

2、防震动:晶振的震动会影响其性能,需要在使用时注意避免震动。

3、布局:晶振的布局需要注意与其他电路元件之间的干扰,尽量避免晶振与其他元件的干扰。

4、焊接:晶振的焊接需要注意温度和时间,过高或过长会影响晶振的性能。

5、保护:晶振需要进行保护,避免受到外界环境的影响,如湿度、灰尘等。

总之,晶振的选型及注意事项对于电子产品的性能和稳定性都有着至关重要的影响,需要在使用中认真注意。

epson晶振选型手册

epson晶振选型手册

Epson晶振选型手册引言概述:Epson晶振选型手册是一本提供关于Epson晶振选型的专业指导手册。

晶振作为一种重要的电子钟振装置,广泛应用于各类电子设备中,对于设备的稳定性和精准性起到关键作用。

本手册将从多个方面介绍Epson晶振的选型原则和方法,以帮助读者准确选型和应用。

正文内容:1. 晶振的基本原理1.1 晶振的作用与功能1.1.1 提供时钟信号1.1.2 稳定电子设备的工作频率1.1.3 控制和同步各设备之间的通信1.1.4 精确计时和定时功能1.2 晶振的工作原理1.2.1 晶体振荡原理1.2.2 纯谐振条件与频率稳定性1.2.3 晶振的构造与材料选择2. Epson晶振的特点与优势2.1 高稳定性和低功耗2.1.1 稳定性与频率偏移2.1.2 低功耗对电池寿命的影响2.2 宽温度范围和长寿命2.2.1 温度对晶振频率的影响2.2.2 长期使用的可靠性和稳定性2.3 大容量和小封装尺寸2.3.1 容量对数据传输速率的影响2.3.2 封装尺寸对电路板设计的要求3. Epson晶振选型原则3.1 需求分析和参数确定3.1.1 设备类型和用途3.1.2 工作频率和精度要求3.1.3 温度范围和环境影响3.2 选择适合的晶振类型3.2.1 晶振频率范围和精度等级3.2.2 温度补偿和温度响应特性3.2.3 封装尺寸和安装要求3.3 参考设计和测试验证3.3.1 参考电路设计3.3.2 振荡电路测试和频率测量3.3.3 选型结果评估和优化4. Epson晶振选型案例分析4.1 移动方式晶振选型4.1.1 高稳定性和小封装尺寸的需求4.1.2 多频段应用的选择考虑4.2 电子表计晶振选型4.2.1 长期使用和温度范围要求4.2.2 低功耗和电池寿命的平衡4.3 工业自动化控制晶振选型4.3.1 高频率和精度要求4.3.2 多通道同步和控制4.3.3 长寿命和可靠性的考虑5. Epson晶振应用注意事项5.1 环境温度和封装要求5.2 抗振动和抗干扰性能5.3 防静电措施和电源干扰5.4 长期使用和老化问题结语:本手册全面介绍了Epson晶振的选型原则和方法,包括晶振的基本原理、Epson晶振的特点与优势、选型原则、案例分析以及应用注意事项。

大普晶振的选型

大普晶振的选型

晶振的等级
DAPU
如何确定频率准确度
影响频率准确度的主要因素 出厂准确度 + 温度漂移 + 电压特性 + 负载特性 + 老化漂移
DAPU 案例:
假如一台仪器在实验室使用,采用10.00MHz作为基准时钟,对时钟提出的频率稳 定度为 10年内频率最大不超过0.5PPM,即为5Hz
选型推荐: 出厂准确度 :8E-8 温度稳定度:5E-9 @-30至70度 电压特性:2E-9 负载特性:2E-9 老化率:5E-8/year, 4E-7/10year 此时钟 10年频率漂移为 4.89Hz ,符合选型要求
波形的选择
波形的选择主要取决于设备时钟芯片的要求和现有晶振产品的限制:
波形
优点
缺点
产品类型
DAPU 削顶正弦波
HCMOS/TTL
谐波干扰小、 体积小
驱动能力强
驱动能力弱 谐波干扰大
SMD‐7050、5032、 3225
OSC\VCXO\OCXO、 TCXO
标准正弦波 谐波干扰极小 电路复杂
OCXO、TCXO
O54, 50x40x12.7
O55, 50x50x12.7
TCXO 行业主要标准尺寸
尺寸的选择
DAPU T10A, 12.7*12.7*6
T11A, 20.7*12.7*8
M11A 20*12.7*10
M21B 25*15*10
T3225 3.2*2.5*1.5
T53 5*3.2*1.5
T75 7*5*2
广东省大普通信技术有限公司
DAPU
DAPU Telecom
目录
1
晶振选型的要点
2 晶振的等级

《晶振片选择与应用》课件

《晶振片选择与应用》课件
3 晶振片的种类及分类
晶振片根据封装形式和频率范围等因素进行分类,如SMD封装、DIP封装和振荡频率范围 等。
晶振片的选择
频率
根据应用需求选择适 当的振荡频率,常见 的频率有8MHz、 16MHz等。
稳定性
选择具有较高稳定性 的晶振片以确保频率 的准确性和一致性。
温度特性
考虑晶振片在不同温 度下的频率变化情况, 选择适应温度范围广 的晶振片。源自晶振片测试与故障排除1
晶振片的测试方法
通过使用专业的测试仪器或示波器测量晶振片的频率和稳定性。
2
晶振片出现故障的原因及解决方案
晶振片故障的原因可能包括损坏、连接错误或环境干扰,可以通过更换晶振片或 改善布局来解决。
总结
1 晶振片的优缺点
晶振片具有稳定性高、准 确性强的优点,但也存在 尺寸限制和受环境影响的 缺点。
4 安防设备
晶振片被用于安防设备,如监控摄像头和报 警系统中的时钟和定时电路。
晶振片的布局与PC B设计
1 晶振片布局的原则
将晶振片远离干扰源,减少干扰对其稳定性 的影响,同时保持正常振荡信号的传输。
2 PC B设计时需要注意的问题
考虑晶振片引脚的布局、地线的设计和封装 形式等对PCB设计的影响。
尺寸和封装
根据设备空间和制造 要求选择适当尺寸和 封装形式的晶振片。
晶振片的应用
1 MCU
晶振片经常用于微控制器单元(MCU)中作 为时钟源,确保正常的运行和时序控制。
2 时钟电路
晶振片用于各种时钟电路,如时钟模块、计 时器和时序控制电路。
3 无线电设备
晶振片在无线电设备中起到精确计时和频率 调整的作用,如无线通信模块。
2 如何选择合适的晶振 3 晶振片在实际项目中

关于晶振及其典型应用的探讨

关于晶振及其典型应用的探讨

关于晶振及其典型应用的探讨一、晶振介绍石英晶振是石英晶体谐振器和石英晶体时钟振荡器的统称,它是一种用于稳定频率和选择频率的电子元件,可分无源晶振和有源晶振两种类型。

(1)无源晶振为Crystal(晶体)。

其必须借助外部的有源激励和振荡电路才能起振,振荡频率主要取决于晶体的切割方式,外部振荡电路也部分影响着振荡频率的精度。

振荡电路中包含两个Trim电容,由于电容的精度一般比较低,因此即便是完全相同的电路图,振荡频率的频偏也可能存在一定的差别。

(2)有源晶振Oscollator(振荡器)它是将振荡电路和晶体集成在一个封装内,加电即可输出时钟信号,频率精度较高,价格也略高。

常用的晶振的技术指标如下:(1)基准频率:晶振在完全理想条件下的振荡频率。

(2)工作电压:晶振的工作需要外部提供一定的电源电压,晶振输出的时钟信号上的噪声与电源再说紧密相关,因此在晶振器件资料上,对电源的质量有一定的要求。

(3)输出电平:晶振与晶体相比,最为突出的一点就是只要上电,就直接输出时钟信号。

时钟信号的电平也多种多样,支持的电平主要包括:TTL、CMOS、HCMOS、LVCOMS、LVPECL、LVDS等。

在选型中,应根据所需时钟电平的种类选择相应的晶振。

(4)工作温度范围:根据环境温度要求的不同,应选择对应的工作温度范围。

(5)频率精度:对应不同的工作温度范围,可选择不同的频率精度。

以±15ppm@-20~70℃为例,其含义是,在-20~70℃温度范围内,该晶振输出频率相对基准频率的偏差不会超过15ppm。

该参数是晶振的重要参数,包含了由于温度变化、电源电压波动、负载变化等因素引起的频率偏差。

(6)老化度:在恒定的外接条件下测量晶振频率,频率精度与时间之间的关系。

(7)启动时间:从上电到晶振输出频率的偏差达到规定的频率精度所需要的时间。

(8)时钟抖动(Jitter):在后面内容详细介绍。

(9)相位噪声:在后面内容详细介绍。

晶振的原理与应用

晶振的原理与应用

晶振的原理与应用1. 晶振的工作原理晶振是一种基于压电效应的电子元件,它能够将机械振动转化为电信号,或者将电信号转化为机械振动。

晶振常用于电子设备中,用于提供稳定的时钟信号或频率参考信号。

晶振的工作原理可以简单概括为以下几个步骤:1.施加电场:当正向电压施加到晶振的电极上时,会在晶振晶体的表面形成正向电场。

2.压电效应:由于晶振晶体的特殊结构,正向电场使得晶体产生机械振动,这种机械振动称为压电效应。

3.振荡回路:振动的晶振晶体连接在周期性放大电路(振荡回路)中,形成一个反馈回路。

4.反馈放大:振荡回路中的放大器会放大晶体的振动信号,并将其再次输入回晶体,从而维持振荡的稳定。

2. 晶振的应用晶振在电子设备中有广泛的应用,以下列举了几个典型的应用场景:2.1 时钟信号源晶振最常见的应用之一是作为电子设备的时钟信号源。

在计算机、手机、电视等设备中,晶振被用来提供稳定的时钟信号,确保设备的各个部件按照预定的时序工作。

晶振工作频率的稳定性和准确性非常重要,它直接影响着设备的正常运行。

2.2 频率参考信号晶振的频率稳定性和准确性是其另一个重要应用。

在无线通信、雷达、科学仪器等领域中,需要高精度的频率参考信号。

晶振可以提供非常稳定的频率信号,可以作为这些设备的参考源。

2.3 振荡器晶振也可以作为振荡器的核心部件。

振荡器将晶振的振动信号进一步放大,并将其作为设备的输出信号。

在无线电、声音处理等领域中,振荡器被广泛应用,用于产生特定频率的信号。

2.4 传感器由于晶振能够将机械振动转化为电信号,因此它也可以应用于传感器中。

将晶振与物理量传感器相结合,可以实现对压力、温度、湿度、加速度等物理量的测量。

晶振传感器通常具有高灵敏度和快速响应的特点。

3. 晶振的选择与使用注意事项晶振的选择和使用需要注意以下几个方面:3.1 工作频率选择适合应用场景的晶振频率非常重要。

根据需要提供的时钟信号或参考信号频率,选择合适的晶振频率。

晶振的关键参数及选型

晶振的关键参数及选型

SMD5032 (5mmX3.2mm)
10MHz~40MHz
常用,价格比 SM4025 稍贵
常用,价格比 SM6035 稍贵
谐振器
SMD6035 (6mmX3.5mm)
10MHz~80MHz
常用,价格比 SM7050 稍贵
谐振器 谐振器 谐振器
谐振器
谐振器 谐振器 谐振器 谐振器
SMD7050 (7mmX5mm)
32.000KHz~192.000KHz 1.000MHz~125.000MHz
常用,推荐 DT38
常用,价格较 低,推荐使用
SMD5032 (5mmX3.2mm)
700KHz~66.666MHz
常用,价格比 SMD7050 贵。
14PIN (20mmX18mm) 8PIN (11mmX11mm) SMD7050 (7mmX5mm)
SMD12.5X4.6
3.579MHz~27.000MHz
(12.5mmX4.6mm)
SMD8.0X3.8
(8.0mmX3.8mm)
UM-1 (H=8mm)
8,0MHz~125MHz
UM-5 (H=5.8mm)
AT26 (D2mmXL6mm)
3.579MHz~60.000MHz
AT38 (D3mmXL8mm)
高度不加 X;49SM-X)
X=3.5mm(默认)
X=2.5mm
X=2.2mm
SMD8.0X3.8
20.000KHz~165.00KHz
(8.0mmX3.8mm)
常用,价格较 便宜,性能好, 推荐使用。 常用,价格最 低
常用,价格较 低
常用,价格比 49US 稍高, 但生产方便, 推荐使用。

选用晶振原则和检测晶振好坏妙招

选用晶振原则和检测晶振好坏妙招

一、选用晶振原则
1、表面观看
看外壳标记文字是否清晰规范、外壳是否存在裂痕、引脚上是否已经焊过锡。如果从外表上发现了产品不完善,就不应拿来使用。
2、选择型号
应用晶振要看清外壳的型号标记,型号表明了晶振的多项性能,如果晶振型号选择不当,将导致应用错误。
3、选择负载电容
4、用万用表(R×10k挡)测晶振两端的电阻值,若为无穷大,说明晶振无短路或漏电;再将试电笔插入市电插孔内,用手指捏住晶振的任一引脚,将另一引脚碰触试电笔顶端的金属部分,若试电笔氖泡发红,说明晶振是好的,若氖泡不亮,则说明晶振损坏。
应用晶振选准了谐振频率后,还要特别注意晶振的负载电容属性,辨明它是低负载电容型还是高负载电容型。只有谐振频率、负载电容两项参数同时满足实际电路的需求,才算选择正确。如果有一项参数不符了,原则上应选用原型号晶振代换。在没有原型号时,可考虑用其他型号或其他类型的晶振来代换。
选用晶振和检测晶振是让很多采购和工程师困扰的事情。根据技术人员的分析,不管怎样,理论说再多,还是需要实践,在实际中一定要根据振荡电路的类型选用真正适合的晶振。
我们知道晶振的作用是构成振荡电路、产生电器工作需要的且频率稳定的振荡信号、用于控制电器正常工作等理论上的东西。松季电子告诉大家选用晶振原则和检测晶振好坏妙招。
二、检测晶振好坏妙招
1、贴近耳朵轻摇,有声音就一定是坏的(内部的晶体已经碎了,还能用的话频率也变了)。
2、用代换法或示波器测量。
3、用数字电容表(或数字万用表的电容档)测量其电容,一般损坏的晶振容量明显减小(不同的晶振其正常容量具有一定的范围,可测量好的得到,一般在几十到几百PF)。

26mhz贴片晶振波形

26mhz贴片晶振波形

26mhz贴片晶振波形26MHz贴片晶振波形晶振是一种能够产生稳定振荡信号的元件,被广泛应用于电子设备中。

本文将从26MHz贴片晶振的波形特征、应用领域和选型注意事项三个方面进行介绍。

一、波形特征26MHz贴片晶振的波形特征对于信号传输和设备正常工作至关重要。

通常情况下,晶振的波形应呈现出稳定的振荡信号,在频率和幅度上表现出一定的稳定性。

对于26MHz贴片晶振来说,其波形一般为正弦波形,频率为26MHz,振幅较小。

通过观察其波形,可以判断晶振的工作状态以及是否符合设定的频率要求。

二、应用领域26MHz贴片晶振在电子设备中具有广泛的应用,尤其是在高频通信领域和数字电路中。

在高频通信领域,晶振被用于产生稳定的时钟信号,用于同步数据传输和调整频率。

在数字电路中,晶振作为时钟源,用于控制各个部件的工作节奏,确保数据的准确传输和处理。

此外,晶振还被应用于无线通信、计算机硬件、仪器仪表等领域。

三、选型注意事项在选择26MHz贴片晶振时,需要注意以下几个方面。

首先,要根据所需的频率和精度要求选择合适的晶振型号。

不同的晶振型号具有不同的频率稳定性和精度,根据具体应用需求进行选择。

其次,要考虑晶振的工作温度范围,确保其能够适应设备的工作环境。

另外,还需注意晶振的振幅和功耗,以及与其他元件的兼容性和尺寸要求。

最后,为了确保设备的正常工作,建议选择品牌知名度高、质量可靠的产品,并遵循厂商提供的使用说明。

26MHz贴片晶振具有稳定的振荡波形特征,广泛应用于高频通信和数字电路领域。

在选型时,需要考虑频率要求、精度、工作温度范围等因素,并选择合适的产品。

合理应用晶振可以提高设备的性能和稳定性,为各个行业的发展提供有力支持。

晶振的作用

晶振的作用

晶振的作用引言晶振是一种常见的电子元件,它在许多电子设备中都有重要的作用。

本文将从原理、种类、应用等方面介绍晶振的作用,希望能给读者带来更深入的了解。

原理晶振的原理基于压电效应,通过在晶体材料上施加电场,引起晶体的形变以产生机械振动。

这种机械振动会以特定的频率进行周期性的变化,产生晶振的输出信号。

晶振的频率由材料的晶格结构和外部电路的参数决定。

种类根据晶体材料的不同,晶振可以分为以下几种主要类型:1. 石英晶振:石英晶振是一种常见的晶振类型,具有高稳定性和精确的频率。

常见的石英晶振有HC-49S和HC-49U等。

2. 陶瓷晶振:陶瓷晶振是一种经济实用的晶振类型,有着较高的频率精度和较低的功耗。

常见的陶瓷晶振有CSTCE系列和CTC系列等。

3. MEMS晶振:MEMS晶振是一种使用微机电系统技术制作的晶振,具有小尺寸、低功耗以及较高的抗震动能力。

这种晶振常用于移动设备等小型场合。

应用晶振在电子设备中具有广泛的应用,下面是晶振在不同领域的几个常见应用场景:通信设备无线通信设备中,晶振被用于产生系统所需的频率信号。

例如,在手机中,晶振用于产生CPU时钟信号、射频信号以及各种接口的时钟信号等。

数字电子设备在数字电子设备中,晶振被用于同步各种时钟信号,以确保各部分之间的数据传输准确无误,例如计算机、相机、音频设备等。

工业自动化在工业自动化领域,晶振常用于PLC(可编程逻辑控制器)、机器人控制器等设备中,用于控制和同步各个部分的运行状态。

医疗器械在医疗器械中,晶振常用于产生和控制不同的波形信号,例如心电图机、血压计等。

汽车电子在汽车电子领域,晶振被广泛应用于汽车电子控制器中,用于控制引擎、安全系统、车载娱乐系统等的时序和同步。

总结晶振作为一种重要的电子元件,在各个领域中发挥着关键的作用。

从原理上讲,晶振是通过压电效应产生机械振动并输出特定频率的信号。

根据晶体材料的不同,晶振可以分为石英晶振、陶瓷晶振和MEMS晶振等。

晶振片选择与应用课件

晶振片选择与应用课件

INFICON
3
晶振片应用问题7:晶片有缺陷 1.划痕 2.破损 3。穿孔
保留原包装盒, 切勿污染晶片, 寄回我处
3
INFICON
谢谢
INFICON
3
TINFICON
晶振片震荡频率受下列条件影响
■ 沉积在晶片上的质量 晶片的温度变化 ■材料的应力 ■材料的附着性
INFICON
质量可通过频率精确测量
质 量 = 密 度 X 面积 X 厚度
密度的准确性是影响厚度计算误差的原因之一
密度条件:
镀膜速度 材料结构 合金比例 成膜温度 应力影响
INFICON
1.尽量直接从包装盒导入探头内,尽量不要用镊子 等转接。 2。如果必须用镊子,要用非金属的,要夹边缘非 工作区域 3。坚决不能直接用手安装
INFICON
3
晶振片使用要点2。。。。温度 1.尽量保持温度的稳定
Frequency Change (H2)
Sensor Temperature (c)
250
Ti02 ■非常适合镀不导电材料 寿命平均比金延长200%---400% ■ 附着力极强,很难脱膜,重复利用率低
INFICON
双面金晶振片
具有普通金晶振片的特点。 ■ 加强电极,提高了应力适应能力 ■扩展了电极尺寸,保证了电极的接触,减少的因保养不良引起的应用问

13
INFICON
晶振片使用要点1。。。。无尘
INFICON
3
需更换的备件 INFICON
晶振片应用问题1:新晶片是否需要清洗后再安装 1.所有Inficon的晶片都在10,000超净间内生产包 装,所以新开包的晶片不需清洗
但下列情况需无水酒精清洗后烘干使用: 1安装过程中晶片掉在桌上或地上 2手等接触到晶片上 3开包却长时间放置后使用

晶振应用场景和指标要求

晶振应用场景和指标要求

晶振应用场景和指标要求
晶振是一种用于产生稳定的电子信号的电子元件,它在许多电
子设备中都有广泛的应用。

以下是晶振的一些应用场景和指标要求:
1. 应用场景:
通信设备,晶振被广泛应用于无线通信设备、移动电话、卫
星通信等领域,用于产生稳定的时钟信号。

计算设备,晶振被用于计算机、微处理器、微控制器等设备中,以确保各个部件之间的协调和同步。

消费电子,晶振也广泛应用于各种消费电子产品,如电视、
音响、数码相机等,用于时序控制和数据传输。

工业控制,在工业自动化领域,晶振被用于PLC(可编程逻
辑控制器)、传感器和执行器等设备中。

2. 指标要求:
频率稳定性,晶振的频率稳定性是其最重要的指标之一,通常用ppm(百万分之一)来衡量,要求频率稳定性高,以确保设备的正常运行。

温度特性,晶振的频率随温度变化的特性也是需要考虑的,一般要求温度特性尽可能小,以适应不同的工作环境。

相位噪声,对于一些高要求的应用场景,如通信设备,对晶振的相位噪声也有一定的要求,要求相位噪声尽可能低。

工作温度范围,晶振的工作温度范围也是一个重要的指标,一般要求能够适应广泛的工作温度范围,特别是在工业领域。

总的来说,晶振作为一种重要的电子元件,在各种电子设备中都有着广泛的应用,其频率稳定性、温度特性、相位噪声和工作温度范围等指标都是需要考虑的重要因素。

在不同的应用场景下,对晶振的要求也会有所不同,因此在选择晶振时需要根据具体的应用需求来进行综合考虑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石英晶振选型与应用知识石英晶体是压电晶体的一种,沿着特定的方向挤压或拉伸,它的两端会产生正负电荷,这种效应称为正压电效应;相反,对晶体施加电场导致晶体形变的效应,称为逆压电效应。

所以在石英晶片两面施加交变电场,晶片就会产生形变,而形变又会产生电场,这是一个周期转换的过程。

对于特定的晶片,这个周期是固定的,我们利用这个周期来产生稳定的基准时钟信号。

石英晶体元器件,是利用石英晶体的压电效应实现频率控制、稳定或选择的关键电子元器件。

包括石英晶体谐振器、石英晶体振荡器和石英晶体滤波器。

在石英晶片的两面镀上电极,经过装架、调频、封装等工序后制成石英晶体元件。

石英晶体元件与集成电路等其它电子元件组合成石英晶体器件。

本文主要介绍石英晶振:即所谓石英晶体谐振器(无源晶振)和石英晶体振荡器(有源晶振)的统称。

一般的概念中把晶振就等同于谐振器理解了,振荡器就是通常所指钟振。

石英晶振是一种用于稳定频率和选择频率的电子元件,已被广泛地使用在无线电话、载波通讯、广播电视、卫星通讯、仪器仪表等各种电子设备中.一、石英晶振的型号命名方法1.国产石英晶体谐振器的型号由三部分组成:–第一部分:表示外壳形状和材料,B表示玻璃壳,J表示金属壳,S表示塑料封型;–第二部分:表示晶片切型,与切型符号的第一个字母相同,A表示A T切型、B表示BT切型,–第三部分:表示主要性能及外形尺寸等,一般用数字表示,也有最后再加英文字母的。

JA5为金属壳A T切型晶振元件,BA3为玻壳A T切型晶振元件。

2石英晶体振荡器的型号命名有四部分组成:.–第一部分:主称用大写字母Z表示石英晶体振荡器;–第二部:类别用大写字母表示,其意义见下表:–第三部分:频率稳定度等级用大写字母表示,其意义见下表:–第四部分:序号用数字表示,以示产品结构性能参数的区别从型号上无法知道晶振元件的主要电特性,需查产品手册或相关资料才行。

二、石英晶振的结构特点1.石英晶体谐振器一般由外壳、晶片、支架(金属座)、外引线、引线等组成。

外壳材料有金属、玻璃、胶木、塑料等,外形有圆柱形、管形、长方形、正方形等多种。

晶片是从一块晶体上按一定的方位角切下的薄片,可以是圆形或正方形,矩形等。

按切割晶片的方位不同,可将晶片分为A T、BT、CT、DT、X、Y等多种切型。

不同切型的晶片其特性也不尽相同,尤其是频率温度特性相差较大。

晶片的两个对应表面上涂敷银层,由晶片支架固定并引出电极。

晶片支架分为焊线式和夹紧式两种。

通常,中、低频晶体振荡器采用焊线式晶片支架,而高频晶体振荡器采用夹紧式晶片支架。

石英晶体振荡器的工作原理基于晶片的压电效应(晶片两面加上不同极性的电压时,晶片的几何尺寸将压缩或伸张,此现象即为压电效应)。

当晶片两面加上交变电压时,晶片将随着交变信号的变化而产生机械振动。

当交变电压的频率与晶片的固有频率(只与晶片几何尺寸相关)相同时,机械振动最强,电路中的电流也最大,这即是晶体谐振特性。

2. 石英振荡器是在谐振器基础上已匹配好IC和电路。

在使用中只要输入额定直流电压就可以输出一定频率的谐振波,是有源振荡器,有时也称钟振。

石英晶体振荡器是目前精确度和稳定度最高的振荡器。

石英晶体振荡器是由品质因素极高的谐振器(石英晶体振子)和振荡电路组成。

晶体的品质、切割取向、晶体振子结构及电路形式等因素共同决定了振荡器的性能。

三、石英晶体谐振器和石英晶体振荡器的区别谐振器与振荡器的根本区别就在于有源与无源,也可以说是主动与被动。

1.石英晶体谐振器:无源晶体(Crystal)石英晶体要和分立的阻容元件协同工作才能产生振荡信号。

我们经常使用的2引脚或者3引脚的晶振即是这种晶体。

2.石英晶体振荡器:有源晶振(Oscillator):用石英晶体作振荡器时,通常要结合具体的振荡电路完成一个完整的振荡功能,这个完整的振荡电路就是有源电路,而其中所用的一块晶体就是无源晶体;如果把完整的带晶体的振荡电路(或者再加点其他控制功能电路)集成在一起,封装好,引出几个引脚(通常为四个引脚,贴片式封装)出来,这就是有源晶振(Oscillator)。

有源晶振是晶体经过深加工的产品。

振荡器比谐振器多了一个控制电路。

晶体谐振器有一些等效参数,不同的使用环境可能会有不同的要求,比如有些使用中对负载电容C0 / C1 有要求,选用时还要考虑环境温度、负载电容、频率精度甚至DLD 等要求,这就要求外围振荡电路的参数要加一些控制才能输出稳定的频率。

晶体振荡器就避免了这些麻烦,振荡电路已经由生产厂家做好,使用时只需要提供一个稳定的电源供电就可以有稳定输出了。

另外振荡器还有一些辅助功能的,比如,压控晶振(VCXO)、温补晶振(TCXO)、恒温晶振(OCXO)等,这些振荡器可以满足直接使用谐振器时难以做到的一些精密控制。

像OCXO 的频率精度可以做到E-9 量级。

其次,晶振是用晶体谐振器作成的,为了在别的部件上面,作为信号载波,或时序。

以符合所生产产品的要求。

四、石英晶振器主要特性参数1.石英晶体谐振器:无源晶体(Crystal) 主要特性参数:标称频率晶体元件规范指定的频率串联谐振频率(Fs) 等效电路中串联电路的谐振频率并联谐振频率(Fp) 等效电路中并联电路的谐振频率负载频率(FL) 晶体带负载时的频率负载电容(CL) 与谐振器联合决定工作频率的有效外界电容静电容(C0) 等效电路中与串联臂并联的电容动电容(C1) 等效电路中串联臂中的电容动态电感(L1) 等效电路中串联臂中的电感动态电阻(R1) 等效电路中串联臂中的电阻频率精度工作频率与标称频率的偏差等效电阻(ESR) 谐振器与规定的负载电容串联的总阻抗频率温度特性频率随温度变化的特性室温频率偏差谐振器在室温下频率的偏差频率/负载牵引系数(Ts) 负载电容对频率影响的能力老化率晶体频率随时间的漂移Q值晶体的品质因数激励功率(电平)谐振器工作时消耗的功率激励功率依赖性(DLD) 谐振器在不同激励功率下参数的特性温度频率偏差频率随温度变化与标称频率的偏差工作温度范围谐振器规定的工作温度范围泛音晶体的机械谐波寄生响应晶体除主响应(主频率)外的其他频率的响应2.石英晶体振荡器:有源晶振(Oscillator):主要特性参数:标称频率晶体元件规范指定的频率频率温度特性振荡频率随温度变化而改变的特性长期频率稳定度振荡器长时间工作频率的稳定性短期频率稳定度振荡器短时间工作频率的稳定性温度频率偏差振荡频率随温度的偏差室温频率偏差在室温时振荡频率的偏差起振时间振荡输出达到规定值的时间上升时间(方波输出)方波输出时波形从10%到90%所需的时间下降时间(方波输出)方波输出时波形从90%到10%所需的时间占空比(方波输出) 方波输出时正脉冲宽度占周期的百分比频率精度振荡频率相对标称频率的精确程度消耗电流振荡器工作时消耗的电流相位噪声信号中相位的随机变化量最大电压(方波输出)振荡器输出电压最大值最小电压(方波输出)振荡器输出电压最小值基准温度初始精度振荡器在规定基准温度下的振荡频率的精度频率—电压允差根据输入电压的最大,最小和标称值来确定频率—负载允差根据负载的最大,最小和标称负载来确定谐波与副谐波失真谐波和副谐波响应的程度杂波响应规定带宽内与杂波输出有关的非谐波响应耐过压能力振荡器经受120%规定电源电压的最大的过压能力峰-峰值(Vpp)输出电压最大与最小的差值负性阻抗晶体串联电阻,使振荡器从振到不振时的阻值五、石英元器件的分类及选型(一) 石英元器件的分类(二) 石英元器件的选型1.石英晶体谐振器根据其外型结构不同可分为HC-49U、HC-49U/S、HC-49U/S•SMD、UM-1、UM-5及柱状晶体等。

HC-49U适用于具有宽阔空间的电子产品如通信设备、电视机、电话机、电子玩具中。

HC-49U/S适用于空间高度受到限制的各类薄型、小型电子设备及产品中。

HC-49U/S•SMD为准表面贴装型产品,适用于各类超薄型、小型电脑及电子设备中。

柱状石英晶体谐振器适用于空间狭小的稳频计时电子产品如计时器、电子钟、计算器等。

UM系列产品主要应用于移动通讯产品中,如BP机、移动手机等。

石英晶体谐振器主要用于频率控制和频率选择电路。

2.石英晶体振荡器分非温度补偿式晶体振荡器、温度补偿晶体振荡器(TCXO)、电压控制晶体振荡器(VCXO)、恒温控制式晶体振荡器(OCXO)和数字化/μp补偿式晶体振荡器(DCXO/MCXO)等几种类型。

其中,无温度补偿式晶体振荡器是最简单的一种,在日本工业标准(JIS)中,称其为标准封装晶体振荡器(SPXO)。

a..温度补偿晶体振荡器(TCXO)TCXO是通过附加的温度补偿电路使由周围温度变化产生的振荡频率变化量削减的一种石英晶体振荡器。

TCXO的温度补偿方式目前在TCXO中,对石英晶体振子频率温度漂移的补偿方法主要有直接补偿和间接补偿两种类型:(1)直接补偿型直接补偿型TCXO是由热敏电阻和阻容元件组成的温度补偿电路,在振荡器中与石英晶体振子串联而成的。

在温度变化时,热敏电阻的阻值和晶体等效串联电容容值相应变化,从而抵消或削减振荡频率的温度漂移。

该补偿方式电路简单,成本较低,节省印制电路板(PCB)尺寸和空间,适用于小型和低压小电流场合。

但当要求晶体振荡器精度小于±1pmm时,直接补偿方式并不适宜。

(2)间接补偿型间接补偿型又分模拟式和数字式两种类型。

模拟式间接温度补偿是利用热敏电阻等温度传感元件组成温度-电压变换电路,并将该电压施加到一支与晶体振子相串接的变容二极管上,通过晶体振子串联电容量的变化,对晶体振子的非线性频率漂移进行补偿。

该补偿方式能实现±0.5ppm的高精度,但在3V以下的低电压情况下受到限制。

数字化间接温度补偿是在模拟式补偿电路中的温度—电压变换电路之后再加一级模/数(A/D)变换器,将模拟量转换成数字量。

该法可实现自动温度补偿,使晶体振荡器频率稳定度非常高,但具体的补偿电路比较复杂,成本也较高,只适用于基地站和广播电台等要求高精度化的情况。

高精度、低功耗和小型化,仍然是TCXO的研究课题。

在小型化与片式化方面,面临不少困难,其中主要的有两点:一是小型化会使石英晶体振子的频率可变幅度变小,温度补偿更加困难;二是片式封装后在其回流焊接作业中,由于焊接温度远高于TCXO的最大允许温度,会使晶体振子的频率发生变化,若不采限局部散热降温措施,难以将TCXO的频率变化量控制在±0.5×10-6以下。

但是,TCXO的技术水平的提高并没进入到极限,创新的内容和潜力仍较大。

b.电压控制晶体振荡器(VCXO)电压控制晶体振荡器(VCXO),是通过施加外部控制电压使振荡频率可变或是可以调制的石英晶体振荡器。

相关文档
最新文档