实数优秀课件2
合集下载
人教版《实数》优秀课件初中数学ppt
品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
人教版七年级数学下册 (平方根)实数课件教学(第2课时)
(2)因为6>4,所以 6 > 2,所以
61 >
21 =1.5.
2
2
归纳 比较数的大小,先估计其算术平方根的近似值
例3 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积 为300cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正 在发愁.你能帮小丽算出她能用这块纸片裁出符合要求的纸片吗?
能否用两个面积为 1 dm2 的小正方形拼成一个面积为 2 dm2 的 大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的 4 个直角 三角形拼在一起,就得到一个面积为 2 dm2 的大正方形.
你知道这个大正方形的边长是多少吗?
解:设大正方形的边长为 x dm,则 x2 = 2.
由算术平方根的意义可知
直线平行.
3.互如相果平两行 条直线都与第三条直线平行,那么这两 条直线也
.
[检测]
1.在同一平面内,不是重合( 的两)条直线的位置关C系
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
2.下列说法正确D的是 ( ) A.不相交的两条线段是平行线
B.不相交的两条直线是平行线
C.不相交的两条射线是平行线
按键顺序:
a=
注意:不同的计算器的按键方式可能有所差别
例4 用计算器求下列各式的值: 3136=
2=
利用计算器计算下表中的算术平方根,并将计算结果填在表中,你 发现了什么规律?你能说出其中的道理吗?
… 0.062 5 0.625 6.25
62.5
… 0.25 0 6 2.5
7.906
625
第 五
相交线与平行线
实数 (2) —初中数学课件PPT
其总长大约为6700000m.将6700000用科学记
数法表示为( B )
A.6.7×105 B.6.7×106
C.0.67×107 D.67×108
6.(2017•益阳)目前,世界上能制造出的最
小晶体管的长度只有0.000 000 04m,将
0.000 000 04用科学记数法表示为( B )
A.4×108 B.4×10﹣8
C.0.4×108 D.﹣4×108
数学
首页
末页
课堂精讲
考点2 科学记数法
7.(2017•凉山州)2017年端午节全国景区 接待游客总人数8260万人,这个数用科学记数 法可表示为 8.2考点3 实数的大小比较、数轴、估计无理数的 大小
8.(2017•济南)在实数0,﹣2, ,3中,最 大的是( D ) A.0 B.﹣2 C. D.3
数学
首页
末页
广东中考
26.(2017广东)计算: |﹣7|﹣(1﹣π)0+( )﹣1.
解:原式=7﹣1+3=9.
数学
首页
末页
谢谢!
数学
首页
末页
第一章 数与式
第1节 实 数
课前预习 考点梳理 课堂精讲 广东中考
数学
首页
末页
课前预习
1.(2017湘潭)2 017的倒数是(A)
A. B.-
C.2 017 D.-2 017
2.(2017连云港)2的绝对值是(B)
A.-2 B.2 C.-
D.
数学
首页
末页
课前预习
3.(2017广元)- 的相反数是(D)
(2)用式子表示a的绝对值. a
0 -a
不论有理数a取何值,它的绝对值总是非负数. 即|a|≥0.
14.3 实数 - 第2课时课件(共16张PPT)
14.3 实数第2课时
第十四章 实数
学习目标
1.认识无理数存在的普遍性.2.知道实数与数轴上的点一一对应.3.理解实数绝对值、相反数、倒数的意义.
学习重难点
理解实数与数轴上的点一一对应.
难点
重点
能在数轴上找到无理数对应的点.
复习回顾
1.什么是相反数?2.什么是绝对值?3.什么是倒数?
实数
参照有理数的有关概念,谈谈实数的下列概念:1.实数的绝对值.2.互为相反数的实数.3.一个实数的倒数.
谈一谈
一个正实数的绝对值是它本身.一个负实数的绝对值是它的相反数.0的绝对值是0.
实数
有理数
无理数
实数
正实数
负实数
0
实数分类:
正有理数
负有理数
0
正无理数
负无理数
随堂练习
1.在数轴上,到原点距离为 的点所表示的数是 .
有理数
无理数
绝对值相等,符号不同的两数叫做相反数,其中一个是另一个的相反数.
数轴上表示数a的点到原点的距离叫做数a的绝对值,用︱a︱表示.
如果两个数的积是1,则这两个数互为倒数 .
问题引入
我们知道,任意一个有理数都可以用数轴上的一个点来表示.那么,无理下列各数填入相应横线上:正实数: .负实数: .有理数: .无理数: .
拓展提升
归纳小结
实数性质
实数与数轴上的点一一对应
思考二:
事实上,每个有理数或无理数都可以用数轴上的点来表示;反过来,数轴上的点表示的数是有理数或无理数.
实数和数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.
任意一个实数都有绝对值、相反数和倒数(0没有倒数),它们和有理数的绝对值、相反数和倒数的意义是一样的.
第十四章 实数
学习目标
1.认识无理数存在的普遍性.2.知道实数与数轴上的点一一对应.3.理解实数绝对值、相反数、倒数的意义.
学习重难点
理解实数与数轴上的点一一对应.
难点
重点
能在数轴上找到无理数对应的点.
复习回顾
1.什么是相反数?2.什么是绝对值?3.什么是倒数?
实数
参照有理数的有关概念,谈谈实数的下列概念:1.实数的绝对值.2.互为相反数的实数.3.一个实数的倒数.
谈一谈
一个正实数的绝对值是它本身.一个负实数的绝对值是它的相反数.0的绝对值是0.
实数
有理数
无理数
实数
正实数
负实数
0
实数分类:
正有理数
负有理数
0
正无理数
负无理数
随堂练习
1.在数轴上,到原点距离为 的点所表示的数是 .
有理数
无理数
绝对值相等,符号不同的两数叫做相反数,其中一个是另一个的相反数.
数轴上表示数a的点到原点的距离叫做数a的绝对值,用︱a︱表示.
如果两个数的积是1,则这两个数互为倒数 .
问题引入
我们知道,任意一个有理数都可以用数轴上的一个点来表示.那么,无理下列各数填入相应横线上:正实数: .负实数: .有理数: .无理数: .
拓展提升
归纳小结
实数性质
实数与数轴上的点一一对应
思考二:
事实上,每个有理数或无理数都可以用数轴上的点来表示;反过来,数轴上的点表示的数是有理数或无理数.
实数和数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.
任意一个实数都有绝对值、相反数和倒数(0没有倒数),它们和有理数的绝对值、相反数和倒数的意义是一样的.
2024八年级数学上册第十四章实数14.3实数第2课时实数的性质习题课件新版冀教版
原式=1+6+9-3=13.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
利用实数的性质解新定义问题
14. [新考法·阅读定义法]对于任何实数 a ,可用[ a ]表示不超
过 a 的最大整数,如[4]=4,[ ]=1,现对72进行如下
操作:
72
第一次
[ ]=8
第二次
[ ]=2
第三次
位于原点的两侧,且与原点的距离相等,则点 B 表示的数
是
-
.
返回
1
2
3
4
5
6
7
8
9
10
11
ቤተ መጻሕፍቲ ባይዱ
12
13
14
15
16
知识点2 实数的性质
3. [2023·武汉]实数3的相反数是(
)
B.
A. 3
C. -
D
D. -3
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
4.
实数- 的绝对值是(
13
14
15
16
6. 求下列各数的相反数、绝对值和倒数.
(1) ;
(2)-π;
(3)
−
.
【解】(1) =4,所以 的相反数为-4,绝对值
为4,倒数为 .
(2)-π的相反数是π,绝对值是π,倒数是- .
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
利用实数的性质解新定义问题
14. [新考法·阅读定义法]对于任何实数 a ,可用[ a ]表示不超
过 a 的最大整数,如[4]=4,[ ]=1,现对72进行如下
操作:
72
第一次
[ ]=8
第二次
[ ]=2
第三次
位于原点的两侧,且与原点的距离相等,则点 B 表示的数
是
-
.
返回
1
2
3
4
5
6
7
8
9
10
11
ቤተ መጻሕፍቲ ባይዱ
12
13
14
15
16
知识点2 实数的性质
3. [2023·武汉]实数3的相反数是(
)
B.
A. 3
C. -
D
D. -3
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
4.
实数- 的绝对值是(
13
14
15
16
6. 求下列各数的相反数、绝对值和倒数.
(1) ;
(2)-π;
(3)
−
.
【解】(1) =4,所以 的相反数为-4,绝对值
为4,倒数为 .
(2)-π的相反数是π,绝对值是π,倒数是- .
《实数的基本概念》课件 (2)
六、近似数与有效数字: 近似数与有效数字:
3、精确度 、 整数
个位
整数带单位的数 带什么单位就叫精确到哪一位。 小数带单位的数 一位小数消掉一个最高位。 小数 分位
科学记数法表示的数还原后数到的末位为止。
(1)、当把一个实数精确到十位、百位、千位、 万位等时,先用科学记数法表示,再根据指定 的精确度四舍五入取近似值。 (2)、保留的有效数字的个数比准确数的整数 部分的位数少时也如此。 例如:用科学记数法表示下列各数并要求保留 例如:用科学记数法表示下列各数并要求保留 两位有效数字: 两位有效数字: (1) 12033.4 (2)0.0000102 练习
1、写出一个无理数,使它与 2 的积是有理 、写出一个无理数, 数:________ 下列说法中, 2、下列说法中,错误的个数是 ( c )
①无理数都是无限小数;②无理数都是开方开不尽的数; 无理数都是无限小数; 无理数都是开方开不尽的数; 带根号的都是无理数; 无限小数都是无理数。 ③带根号的都是无理数;④无限小数都是无理数。
1 互为倒数,则满 4、(2006年杭州)已知a与 2 a −2 足条件的实数a的个数是( c )
A.0
B.1
C.2
D.3
五、绝对值: 绝对值: 一个数a 一个数a的绝对值就是数轴上 表示数a的点与原点的距离。 表示数a的点与原点的距离。 1)一个正数的绝对值是它 本身, 本身,一个负数的绝对 值是它的相反数, 值是它的相反数,零 的绝对值是零。 的绝对值是零。
c d 0 b a
3、用作图的方法在数轴上找出表示的点B数是_, 3 体现了________的思想方法. ________的思想方法 体现了________的思想方法. 数形结合
二、实数的基本概念 三.相反数 只有符号不同的两个数,其中一个 只有符号不同的两个数, 是另一个的相反数。 是另一个的相反数。 1)数a的相反数是-a (a是任意一个实数); 的相反数是是任意一个实数); 2)0的相反数是0. 的相反数是0. 3)若a、b互为相反数 <====> a+b=0. -4 4
实数ppt课件
原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称
。
02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。
浙教版数学七上3.2 实数 课件(共16张PPT)
3.2 实数
教学目标
1. 理解无理数和实数的概念,并能按要求 对实数进行分类;
2.会求实数的相反数、倒数与绝对值; 3.理解实数与数轴的一一对应关系.
教学难点
1.无理数、实数的意义,在数轴上表示实数. 2.无理数与有理数的本质区别,实数与数轴 上的点的一一对应关系.
新课引入
如图,依次连结2×2方格四条边的中
1.4,1.5 ,22 , 0 ,π , 2 , 2
7
实数与数轴上的点一一对应. 在数轴上表示的两个实数,右边的数总比 左边的数大.
例2:把下列实数表示在数轴上,并比
较它们的大小(用“<”号连接).
1.5 , 22, 0 , π , ,2 2
7
巩固练习
1.在下列实数中
22 ,16, 1 ,,0.3• ,0.101001,2 ,5,
(1)的相反数是
绝对值是 ___
___
.
;倒数是
1
___
;
(2)绝对值等于 7的数是 ___7_;
判断以下说法是否正确?
(1)两个无理数的和还是无理数;
(2)两个无理数的差还是无理数.
3.利用如图4×4方格,作出面积为8平方 单位的正方形,然后在数轴上表示实数8 和 - 8.
课堂小结
数学你是广阔无垠的知识海洋, 我是你怀中的一滴小水珠. 数学你是无边无际的知识宇宙, 我是你身旁的一颗小恒星, 数学就像一座又一座金字塔, 把我们带入一个又一个精彩的世界!
点A,B,C,D,得到一个阴影正方形.设
每一方格的边长为1个单位,则阴影正方
形的面积是多少?
Cቤተ መጻሕፍቲ ባይዱ
阴影正方形的边长是多少?
应怎样表示?
教学目标
1. 理解无理数和实数的概念,并能按要求 对实数进行分类;
2.会求实数的相反数、倒数与绝对值; 3.理解实数与数轴的一一对应关系.
教学难点
1.无理数、实数的意义,在数轴上表示实数. 2.无理数与有理数的本质区别,实数与数轴 上的点的一一对应关系.
新课引入
如图,依次连结2×2方格四条边的中
1.4,1.5 ,22 , 0 ,π , 2 , 2
7
实数与数轴上的点一一对应. 在数轴上表示的两个实数,右边的数总比 左边的数大.
例2:把下列实数表示在数轴上,并比
较它们的大小(用“<”号连接).
1.5 , 22, 0 , π , ,2 2
7
巩固练习
1.在下列实数中
22 ,16, 1 ,,0.3• ,0.101001,2 ,5,
(1)的相反数是
绝对值是 ___
___
.
;倒数是
1
___
;
(2)绝对值等于 7的数是 ___7_;
判断以下说法是否正确?
(1)两个无理数的和还是无理数;
(2)两个无理数的差还是无理数.
3.利用如图4×4方格,作出面积为8平方 单位的正方形,然后在数轴上表示实数8 和 - 8.
课堂小结
数学你是广阔无垠的知识海洋, 我是你怀中的一滴小水珠. 数学你是无边无际的知识宇宙, 我是你身旁的一颗小恒星, 数学就像一座又一座金字塔, 把我们带入一个又一个精彩的世界!
点A,B,C,D,得到一个阴影正方形.设
每一方格的边长为1个单位,则阴影正方
形的面积是多少?
Cቤተ መጻሕፍቲ ባይዱ
阴影正方形的边长是多少?
应怎样表示?
《实数》ppt课件
指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
《实数》课件精品 (公开课)2022年数学PPT
情境引入2
两位同学背靠背,规定向前为正,
一人向前走3步,记作
,
一人向后走3步 ,记作
.
对照数轴,说出-3与+3两数的相同点和不同点. 你还能说出具备这些特征的成对的数吗?
一 相反数
探究一 相反数的概念
活动1:观察下列一组数+1和-1,+2.5和-2.5, +4和-4,并把它们在数轴上表示出来.
思考: 1)上述各对数之间有什么特点? 2)请写出一组具有上述特点的数 3)你能得出相反数的概念吗? 4)表示各对数的点在数轴上有什么位置关系?
9 35
64
π
•
0.6
3 4
3 9
0.13
(1)有理数: {
9
64
•
0.6
3
4
3 0.13
π (2)无理数: { 3 5
3 9
(3)整数: { 9
(4)负数: { 3
4
(5)分数: {
•
0.6
(6)实数: {
64 3
3 9
3 0.13
4
3
}
}
} } }
}
5. 比较 3 7 与6的大小.
解: ∵37 >36 ∴ 3 7 > 6.
二 多重符号的化简 问题1:a的相反数是什么?
a 的相反数是-a , a可表示任意有理数. 问题2:如何求一个数的相反数?
在这个数前加一个“-”号.
问题3:若把 a分别换成+5,-7,0时,这些数的相 反数怎样表示?
a = +5, a = -7, a = 0,
- a = -(+5) - a = -(-7) -a = 0
思考 由此你可以得到什么结论? 有理数都可以化成有限小数或无限循环
《实数》优秀ppt课件
反之也成立.
用你发现的规律填空:
已知, 3 216=6,则3 216000=_6_0__, 3 0.216=_0_._6_ 已知, 31331=11,则31.331=_1_._1_, 3 1331000=_1_1_0_
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
根据立方根的意义填空
1.因为23=8,所以8的立方根是___2____.
2.因为0.53=0.125,所以0.125的立方根____0._5___.
3.因为(
2 3
)3=
8 27
,所以
8 27
2
的立方根是___3 ____.
4.因为(-2)3=-8,所以-8的立方根是____-_2__.
5.因为(-0.5)3=-0.125,所以-0.125的立方根是_-_0_.5__.
即:若x3=a,则x是a的一个立方根(三次方根).
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
立方根的数学符号表示
类似于平方根,一个数a的立方根,用符号“3 a ”
表示,读作:“三次根号a ”,其中a叫做被开方数,3
叫做 根指数.
不能省略
请
观 根指数 赏 动 三次根号
《实数》优秀实用课件(PPT优秀课件 )
立方根的概念
通过上节课的学习,我们知道:
平方根 一般地,如果有一个数的平方等于a,那么 的概念 这个数叫作a的平方根,也叫作二次方根.
即:若x2=a,则x是a的一个平方根(二次方根)
你能类比以上思路给立方根下个定义么?
立方根 的概念
一般地,如果有一个数的立方等于a,那么 这个数叫作a的立方根,也叫作三次方根.
用你发现的规律填空:
已知, 3 216=6,则3 216000=_6_0__, 3 0.216=_0_._6_ 已知, 31331=11,则31.331=_1_._1_, 3 1331000=_1_1_0_
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
根据立方根的意义填空
1.因为23=8,所以8的立方根是___2____.
2.因为0.53=0.125,所以0.125的立方根____0._5___.
3.因为(
2 3
)3=
8 27
,所以
8 27
2
的立方根是___3 ____.
4.因为(-2)3=-8,所以-8的立方根是____-_2__.
5.因为(-0.5)3=-0.125,所以-0.125的立方根是_-_0_.5__.
即:若x3=a,则x是a的一个立方根(三次方根).
《实数》优秀实用课件(PPT优秀课件 )
《实数》优秀实用课件(PPT优秀课件 )
立方根的数学符号表示
类似于平方根,一个数a的立方根,用符号“3 a ”
表示,读作:“三次根号a ”,其中a叫做被开方数,3
叫做 根指数.
不能省略
请
观 根指数 赏 动 三次根号
《实数》优秀实用课件(PPT优秀课件 )
立方根的概念
通过上节课的学习,我们知道:
平方根 一般地,如果有一个数的平方等于a,那么 的概念 这个数叫作a的平方根,也叫作二次方根.
即:若x2=a,则x是a的一个平方根(二次方根)
你能类比以上思路给立方根下个定义么?
立方根 的概念
一般地,如果有一个数的立方等于a,那么 这个数叫作a的立方根,也叫作三次方根.
第二章《实数》复习PPT课件
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
14
填空
1
(1) 3 的倒数是 3 ;
(2) 3 -2的绝对值是 2 - 3;
Hale Waihona Puke (3)若 x 1, y 2,且xy>0,x+y=
3或- 3 。
(4) 点A在数轴上表示的数 3 为 5,
点B在数轴上对应的数 为5,
则A,B两点的距离为
45
计算
1)3 216
64 2)3
125
3) 25 64
4) 32 42
25 , 0.373773777 3
无理数集合: 3 9 , 7 , , 2 , 5 , 0.373773777 3
有理数集合:
1 , 5 , 16 , 3 8 ,
4
2
4 9
,
0,
25 ,…
整数集合: 16 , 3 8 , 0 , 25 ,
…
自然数集合:
0 , 25 ,
…
例2、 3222323
化里 简面 绝的 对数 值的 要符 看号 它
是负数
是正数
是负数
等于它的相反数
等于本身
32 2 2 3 2 3
2 2 3
3 2
原 2 式 2 3 2 3 ( 3 2 )
22 3 2 3 3 2
22 2 2 3 3 3
4 2 3
必须掌握 在数轴上找出无理数
在数轴上找出 2
相关练习
判断正误: ①-a一定是负数( ) ②在实数中,如果一个数不是正数,则一定是负数( ) ③开方开不尽的实数叫无理数( ) ④无理数都是无限小数( ) ⑤带根号的数是无理数( ) ⑥没有最小的实数( ) ⑦最小的整数是零( ) ⑧任何实数的平方都是非负数( )
演讲人:XXXXXX 时 间:XX年XX月XX日
14
填空
1
(1) 3 的倒数是 3 ;
(2) 3 -2的绝对值是 2 - 3;
Hale Waihona Puke (3)若 x 1, y 2,且xy>0,x+y=
3或- 3 。
(4) 点A在数轴上表示的数 3 为 5,
点B在数轴上对应的数 为5,
则A,B两点的距离为
45
计算
1)3 216
64 2)3
125
3) 25 64
4) 32 42
25 , 0.373773777 3
无理数集合: 3 9 , 7 , , 2 , 5 , 0.373773777 3
有理数集合:
1 , 5 , 16 , 3 8 ,
4
2
4 9
,
0,
25 ,…
整数集合: 16 , 3 8 , 0 , 25 ,
…
自然数集合:
0 , 25 ,
…
例2、 3222323
化里 简面 绝的 对数 值的 要符 看号 它
是负数
是正数
是负数
等于它的相反数
等于本身
32 2 2 3 2 3
2 2 3
3 2
原 2 式 2 3 2 3 ( 3 2 )
22 3 2 3 3 2
22 2 2 3 3 3
4 2 3
必须掌握 在数轴上找出无理数
在数轴上找出 2
相关练习
判断正误: ①-a一定是负数( ) ②在实数中,如果一个数不是正数,则一定是负数( ) ③开方开不尽的实数叫无理数( ) ④无理数都是无限小数( ) ⑤带根号的数是无理数( ) ⑥没有最小的实数( ) ⑦最小的整数是零( ) ⑧任何实数的平方都是非负数( )
实数课件PPT
在工程学中的应用
测量和计算
01
在工程学中,实数被广泛应用于测量和计算,如长度、面积、
体积、角度等。
电路分析
02
在电路分析中,电压、电流、电阻等都是实数,通过实数的运
算可以分析电路的工作状态和性能。
建筑设计
03
在建筑设计中,实数被用于描述建筑物的尺寸、比例和位置等
。
在经济学中的应用
1 2
成本和收益计算
实数的表示方法可以根据需要进行转换,但不同的表示方 法可能会影响我们对实数的理解和应用。因此,在数学学 习和研究中,我们需要掌握各种实数的表示方法,以便更 好地理解和应用实数。
实数的性质
实数的性质包括有序性、连续性和完备性等。有序性是指实数可以按照大小关系 进行排列,连续性是指实数在数轴上没有间隙,完备性则是指实数具有完备的代 数性质和几何性质。
04
CATALOGUE
实数与数轴
数轴的定义
数轴
一条直线,每一个点对应 一个实数,每一个实数对 应数轴上的一个点。
定义方式
在数轴上,原点表示0,正 方向表示正数,负方向表 示负数。
单位长度
数轴上相邻两个点之间的 距离都相等,这个距离称 为单位长度。
数轴上的表示方法
整数
在数轴上,每一个整数都可以找 到一个唯一的点与之对应。
实数在实际生活中的应用
在物理学中的应用
描述物体运动轨迹
在物理学中,实数被广泛应用于描述物体的运动轨迹,如速度、 加速度和位移等。
计算物理量
物理量如力、能量、动量等都可以用实数表示,通过实数的运算可 以得出物理规律和公式。
电磁波的频率和振幅
在电磁波的描述中,频率和振幅都是实数,它们决定了电磁波的性 质和传播特性。
实数ppt课件人教版
实数与复数的关系和转换
实数与复数的关系
实数是特殊的复数,即虚部为0的复数。实 数在复数域中占据了原点附近的区域。
实数与复数的转换
在数学表达上,任何实数都可以视为复数, 只需将其虚部设为0即可。同样地,任何复 数也可以视为实数的扩展,只需将其虚部消 去即可。
THANKS FOR WATCHING
感谢您的观看
绝对值和符号
根据实数的绝对值大小和正负符号,可以将实数分为正数、负数、零和绝对值相 等但符号不同的数等。
03 实数的运算
加法运算
总结词
加法运算的基本性质
详细描述
实数的加法运算满足交换律和结合律,即a+b=b+a和(a+b)+c=a+(b+c)。加法运算还有负数和零的加法性质, 即a+(-a)=0和a+0=a。
过极限来描述。
实数的收敛性和极限理论是数学 分析的基础,它们在解决各种数
学问题中发挥着重要的作用。
实数的其他性质和定理
实数具有完备性,这意味着实数集合 具有一些特殊的性质,使得实数集合 在加法、减法、乘法和除法等运算下 是封闭的。
实数还具有一些其他的性质和定理, 例如实数的有序性、阿基米德性质等 等,这些性质和定理在数学分析和实 数理论中有着广泛的应用。
实数的表示方法
十进制表示法
实数可以用小数或分数形式表示,如 2.5、1/3等。
分数形式表示法
实数可以用分数形式表示,如2/3、 3/4等。
实数的性质和运算,可以确定任意两个实数之间
的大小关系。
实数的四则运算
实数可以进行加、减、乘、除四 则运算,运算规则与有理数相同
实数ppt课件人教版
相关主题