电路原理_01电路元件与电路定律第一讲
电路分析基础第一章 电路模型和电路定律
+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
电路原理第一章
(2) 设电流参考方向如 (c) 并在c点画上接地符号 并在 点画上接地符号
q 4 I = = − = −2 A t 2
= = W W
ac
电位: 电位:
V V V
a
q
bc
=
8 + 12 4
= 5V
b
q
12 = 4
= 3V
c
= 0
(c为参考点 为参考点) 为参考点
U
ab
所以电压: 所以电压:
= V a − V b = 5 − 3 = 2V
dw ( t ) p (t) = dt
由: u ( t ) = d w ( t )
对于实际电路,根据它的电气特性, 对于实际电路,根据它的电气特性,由电路 元件来抽象出它的电路模型的过程称为电路 的建模。电路的建模时, 的建模。电路的建模时,常需要用到理想化 来化简电路; 来化简电路;另一方面还需注意电器部件在 不同工作条件下的电气特性不一定相同, 不同工作条件下的电气特性不一定相同,因 而相应的电路模型也会不同。 而相应的电路模型也会不同。
选择的参考方向不同, 选择的参考方向不同,则列出的电路方程也 不一样,得到方程的解也不尽相同, 不一样,得到方程的解也不尽相同,但这些 解应该是大小相等而只存在着符号的差异。 解应该是大小相等而只存在着符号的差异。 综合解的符号和参考方向, 综合解的符号和参考方向,这些不同的电路 方程的解所表示的实际电流或电压应该是完 全一致的。 全一致的。 习惯上,电阻、电容、 习惯上,电阻、电容、电感等元件支路上的 端电压和流经电流取为关联参考方向。 端电压和流经电流取为关联参考方向。
抽象的电路元件用来体现单纯的电性质: 抽象的电路元件用来体现单纯的电性质: 导线----导通电流 导线 导通电流 电源----提供电能 电源 提供电能 电阻----消耗电能 电阻 消耗电能 电容----以电场形式储存电能 电容 以电场形式储存电能 电感----以磁场形式储存电能 电感 以磁场形式储存电能 这样就可以用理想化的电路元件来表示实际物 理电器件的某一方面电磁特性, 理电器件的某一方面电磁特性,而以其组合在 电路模型中来综合表示该实际物理电器件及其 构成的电路。 构成的电路。
电路的基本原理(第一章)
参考方向 实际方向
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UIa 0
I
+ + “发出功率”
-
U_ b
(电源)
(2)当U和I参考方向选择不一致的前提下
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UI 0
I
+
-
+
U_
“发出功率” (电源)
中间环节:连接电源和负载的部分,其传输和分 配电能的作用。例如:输电线路
举例:(电子电路,即信号电路)
放 大 器
电源 (信号源) 中间环节
负载
电路的作用之二:传递和处理信号。
1.2 电路模型
I
电 池
灯 泡
+ E
_
+
RU
_
电源
负载
理想电路元件:在一定条件下,突出其主要电磁性能, 忽略次要因素,将实际电路元件理想化
对任何节点,在任一瞬间,流入节点的电流等于 由节点流出的电流。或者说,在任一瞬间,一个节
点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I I I I 0
1
3
2
4
克氏电流定律的依据:电流的连续性
克氏电流定律的扩展
电流定律还可以扩展到电路的任意封闭面。
例 I1 A
I
a
+
RO
+
U
E_
-
b
I=0
电路课件-第一章 电路模型与电路定理-PPT精选文档
重点:
1. 电压、电流的参考方向
2. 理想元件的电压、电流关系 (元件的VCR)
3. 基尔霍夫定律(KCL、KVL)
1.1 电路与电路模型
一 实际电路:由电工设备和电气器件按预期目的连接
构成的电流通路。
开关 灯泡
电 池
导线
1 0 B A S E - T w a ll p la t e
实际电路的功能
重视听课;抓概念、抓基础、抓规律;课后复习; 重视作业、作业要认真、规范(必须画电路图; 给出主要的求解步骤),重视实验。
考试: 平时成绩:30%(作业、考勤) 期末成绩:70%
第1章 电路模型和电路定律
1.1 电路和电路模型 1.2 电流和电压的参考方向 1.3 电功率和能量 1.4 电路元件 1.5 电阻元件 1.6 电压源和电流源 1.7 受控电源 1.8 基尔霍夫定律
电源
产生电流和电压
激励源(激励): 唤起原因的能量;
发送信息给终端
激励(源) 响应
用户,为继续处 理提供所必须的
输入
输出
信息。 响应:对一定刺激
在电路分析中电源或信号源都称为电源。
所引起的反应。
电路中各处的电压、电流是在电源的作用下产生的, 因此电源又被称为激励源(激励)。
由激励在电路中所产生的电压和电流称为响应。
(1) 能量的传输与转换
12k器
输电线路
变压器 配电线路 用户
主要应用于电力系统中,往往又称为强电电路。
实际电路的功能
(2)信息的传递、控制与处理。
电磁波信号
传送、转换、加工、处理
高放 中放 检波 低放
电子电路
调幅收音机原理框图
电子技术发展
电路原理 第1章 电路的基本概念与基本定律
1.2.3 电功率
1. 电功率的定义 电功率的定义 图1.11(a)所示方框为电路中的一部分a、b段,图中采用了关 联参考方向,设在dt时间内,由a点转移到b点的正电荷量为dq, ab间的电压为u,根据对式(13)的讨论可知,在转移过程中dq失去 的能量为
dω (t ) = u (t )dq (t )
I1 a b I3 I2 c
d
图1.4例1.1图
1.2.2 电压及其参考方向 电压及其参考方向 1. 电压的定义及单位
u=
dω dq
(1—3)
在电路中,电压的单位为伏特,简称伏(V),实用中还有千 伏(kV),毫伏(mV)和微伏(µV)等。 2. 用电位表示电压及正负电压的讨论 (1—4) (1)如果正电荷由a点移到b点,获得能量,由a点到b点为电 位升(电压升),即 u ab = u a − ub < 0 (2)如果电荷由a点移到b点, 失去能量, 则a点为高电位端 (正极), b点为低电位端(负极)由a点到点b为电位降(电压降), 即 u ab = u a − ub > 0 3.直流电压的测量 直流电压的测量 在直流电路中, 测量电压时, 应根据电压的实际极性将直流 电压表跨接在待测支路两端 。
电路模型与电路图 所谓电路模型,就是把实际电路的本质抽象出来所 构成的理想化了的电路。将电路模型用规定的理想元件 符号画在平面上形成的图形称作电路图。 图1.1就是一个 最简单的电路图。
+ US - RS RL
图1.1电路模型图
1.2 电路变量
电学中几个重要的物理量,如:电流 电压 电功率 电流、电压 电功率和 电流 电压、电功率 电能量等是研究电路过程中必然要涉及的电路变量。 电能量 1.2.1 电流及其参考方向 1. 电流的表达式及单位 dq i= (1—1) dt q (1—2) I= t 国际单位制(SI)中,电荷的单位是库仑(C),时间的单 位是秒(s),电流的单位是安培, 简称安(A), 实用中还有 毫安(mA)和微安(µA)等。
第1章(电路的基本概念与基本定律)
U与 I 的参考方向选择亦 为非关联参考方向。
电阻
而电压U’与电流 I 的参考方向为关联 参考方向。
电源
电功率
功率的概念:设电路任意两点间的电压为 U ,流入部分
电路的电流为 I, 则这部分电路消耗的功率为:
a
b
I
U
P U I
R
W
功率有无正负? 如果U I方向不一 致结果如何?
在 U、 I 正方向选择一致的前提下:
U=-IR
例题1
如图所示
I=0.28A E=3V + I =-0.28A
电动势为E=3V 方向由负极指向正极
U=2.8V U =-2.8V
电压为U=2.8V 由指向 电流为I=0.28A 由左流向右 R0 其参考方向为关联参考方向。
U 与 I 的参考方向选择亦 为关联参考方向。 而电压U 与电流 I 的参考方向为非关 联参考方向。
负载电阻两端 的电压为
为电源外特性关系式
U=IR
有载工作状态
一般常见电源的内阻都 很小当R0« 时, R 则 U E
a
E R0 b U
I
此时当电流(负载)变动 时,电源的端电压变化 不大。
R
有载工作状态(功率平衡式)
由 得:
U=E-IR0 UI=EI-I2R
I
0
a
E R0 U R
负载吸收的功率
转换成电能,是向电路提供能量的装置。
负载:指电动机、电灯等各类用电器,在电路中是接
收 电能的装置,可将其它形式的能量转换成电能。
中间环节:将电源和负载连成通路的输电导线、控
制电路通断的开关设备和保护电路的设备等。
总结高中物理电流和电路知识点
高中物理电流和电路知识点第1章电路元件与电路定律本章重点1.电压、电流和功率等物理量的意义;电压和电流的参考方向。
2.基本电路元件。
3.基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
学习指导电路原理所讨论的电路是将实际电路元件进行模型化处理后的电路模型。
电路模型由为数不多的理想电路元件构成,通常用电压、电流关系描述电路元件,称为元件特性。
描述元件之间连接关系的是基尔霍夫电压定律和电流定律。
元件特性和基尔霍夫两个定律构成了电路分析的基础。
电路分析就是在电路结构、元件特性已知的条件下,分析电路中的物理现象、电路的状态和性能,定量计算电路中响应与激励之间的关系等。
一、电路的基本概念和基本电路元件1.实际电路实际电路是电流可在其中流通的由导体连接的电器件的组合。
组成实际电路的器件种类繁多。
2.电路模型电路模型与实际电路有区别,它由为数不多的理想电路元件组成,可以反映实际电路的电磁性质。
理想电路元件包括电阻、电感、电容、电压源、电流源、受控源、耦合电感和理想变压器等。
电路理论中的电路一般是指电路模型。
3.基本物理量电压、电流是电路分析的基本物理量。
对于储能元件电感和电容,有时也用磁链和电荷来描述。
功率和能量也是电路中的重要物理量。
为了用数学表达式来描述电路元件特性、电路方程,首先要指定电压、电流的参考方向。
对一个二端元件或支路,电压、电流的参考方向有两种选择,即关联参考方向和非关联参考方向,如图1-1所示。
4.基本的无源元件最基本的理想电路元件是线性时不变二端电阻、电感和电容,这些电路元件符号及电压、电流参考方向如图1-2所示。
(a)(b)图1-1(a)u, i为关联参考方向;(b)u, i为非关联参考方向(a)(b)(c)图1-2(a)电阻元件;(b)电感元件;(c)电容元件图1-2中,各元件的电压、电流为关联参考方向。
在此参考方向下,电压与电流关系(时域)、功率和能量表示如下。
(1)电阻元件电压、电流特性为或吸收的功率为从- 到t时刻消耗的能量为(2)电感元件电压、电流特性为或吸收的功率为储存的磁场能量为(3)电容元件电压、电流特性为或吸收的功率为储存的电场能量为5.独立电源元件独立电源有理想电压源和理想电流源,它们是电路中的激励,其电路符号如图1-3所示。
电路知识点总结详细
电路知识点总结详细电路是指导电子元件在一定方式连接、并组成特定功能的组合,从而实现对电路输入的处理并输出所需的信号的方式。
电路涉及的知识点包括基本电路原理、电路分析和设计、电路元件、电路类型等内容。
本文将综合整理电路知识点,介绍电路的基本理论、分析方法和设计原则,希望对初学者和电子爱好者有所帮助。
第一部分:基本电路原理1. 电压、电流和电阻电压是指电荷在电路中流动所产生的电势差,通常用符号V表示,单位是伏特(V)。
电流是指电荷在单位时间内通过导体横截面的流动量,通常用符号I表示,单位是安培(A)。
电阻是指电路中阻碍电流通过的程度,通常用符号R表示,单位是欧姆(Ω)。
2. 电路定律(1)基尔霍夫定律基尔霍夫定律包括基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出,电路中节点的电流代数和为0。
基尔霍夫电压定律指出,电路中闭合回路中各段电压代数和为0。
(2)欧姆定律欧姆定律指出,电路中电压与电流成正比,电阻不变。
数学表达式为V=IR,其中V表示电压,I表示电流,R表示电阻。
(3)瞬态电路分析瞬态电路分析指的是分析电路在开关变换瞬间或特定激励下的电压和电流变化情况。
常用的瞬态电路分析方法包括叠加原理、Laplace变换法和状态方程法等。
第二部分:电路分析和设计1. 电路分析方法(1)毛戈尔-库克定律毛戈尔-库克定律是指在电路分析中,利用电压法和电流法进行分析时,基于基尔霍夫定律和欧姆定律所建立的分析方法。
(2)等效电路等效电路是指在电路分析中将复杂的电路简化为等效电路进行分析,例如电压源、电流源、电阻等效等。
(3)交流电路分析在交流电路中,电压和电流是随时间变化的,因此需要采用复数分析方法进行分析。
常用的交流电路分析技术包括复数法、瞬态响应分析、频域分析等。
2. 电路设计原则(1)电路的安全性电路设计应符合安全电压、电流及温度的要求,以确保操作人员和设备的安全。
(2)电路的可靠性电路设计应考虑元件的寿命、环境条件等因素,保证电路在长期工作中的稳定性和可靠性。
第01章 电路模型和电路定律
目 录
1.1 电路和电路模型
1.2 电流和电压的参考方向
1.3 功率和能量
1.4 电阻元件
1.5 电压源和电流源 1.6 受控源 1.7 基尔霍夫定律
电路 南京理工大学自动化学院
1.1 电路与电路模型
电路的概念:构成电流通路的一切设备总和
电路的组成
电源:产生电能或提供电信号 负载:消耗电能或取用电信号
电流源
理想电流源 若一个二端元件输出电流恒定则称为理想电流源 电路符号
.
Is
.
.
is ( t)
.
电路
南京理工大学自动化学院
1.5 电压源和电流源
理想电流源 基本性质 I is
+
U _ R
输出电流恒定,和外电路无关 其两端电压由外电路决定
电路
南京理工大学自动化学院
1.5 电压源和电流源
理想电流源 伏安曲线 I is
电路
南京理工大学自动化学院
1.6 受控源
受控源与独立源比较
受控电压源与独立电压源比较:输出电压类似 受控电流源与独立电流源比较:输出电流类似 独立源:可作为电路“激励”,产生“响应” 受控源:只能反映两条支路之间的耦合、变换、 放大等关系
电路
南京理工大学自动化学院
1.7 基尔霍夫定律
电路联接的两种约束
实际电流源
伏安曲线
i is +
.
u
Gsu
Rs (Gs) u _
.
0
is
i
电路
南京理工大学自动化学院
1.5 电压源和电流源
实际电流源
三种工作状态
.
is
电路原理第一章 电路元件和电路定律
i + U
关联参考方向
i +
U
非关联参考方向
返 回 上 页 下 页
例
i
+
A U B
电压电流参考方向如图中所标, 电压电流参考方向如图中所标,问:A、B 、 两部分电路电压电流参考方向关联否? 两部分电路电压电流参考方向关联否? 电压、电流参考方向非关联; 答: A 电压、电流参考方向非关联; B 电压、电流参考方向关联。 电压、电流参考方向关联。
•
信号是运载信息的工具 电路是对信号进行加工、处理或能量传递的具体结构 是对信号进行加工、 系统是信号通过的全部电路和设备的总和
第1章
重点: 重点:
电路元件和电路定律
(circuit elements) (circuit laws)
1. 电压、电流的参考方向 电压、 2. 电功率和能量 3. 电路元件特性 4. 基尔霍夫定律
(reference direction)
电路中的主要物理量有电压、电流、电荷、磁链、 电路中的主要物理量有电压、电流、电荷、磁链、能 量、电功率等。在线性电路分析中人们主要关心的物理量 电功率等。 是电流、电压和功率。 是电流、电压和功率。
1. 电流的参考方向 (current reference direction)
返 回 下 页
电路和电路模型( §1-1 电路和电路模型(model)
1. 实际电路 功能 由电工设备和电气器件按预期目的连 接构成的电流的通路。 接构成的电流的通路。 a 能量的传输、分配与转换; 能量的传输、分配与转换; b 信息的传递与处理。 信息的传递与处理。 共性 建立在同一电路理论基础上
解
(2) 以c点为电位参考点 点为电位参考点
清华考研_电路原理课件_第1章__电路元件和电路定律
Uab= ϕ a–ϕ b → ϕ b = ϕ a –Uab= –1.5 V
1.5 V Ubc= ϕ b–ϕ c → ϕ c = ϕ b –Ubc= –1.5–1.5 = –3 V
b
Uac= ϕ a–ϕ c = 0 –(–3)=3 V
1.5 V (2) 以b点为参考点,ϕ b=0
c
Uab= ϕ a–ϕ b → ϕ a = ϕ b +Uab= 1.5 V
2. 电压(voltage) 电场中某两点A、B间的电压(降)UAB 等于将点电荷q
从A点移至B点电场力所做的功WAB与该点电荷q的比值,即
uAB
=
dWAB dq
A
B
单位名称: 伏(特) 符号:V (Volt,伏特;1745 – 1827,Italian)
3. 电位(potential) 在分析电路问题时,常在电路中选一个点为参考点
• 用箭头表示:箭头的指向为电流的参考方向。 • 用双下标表示:如 iAB ,电流的参考方向由A指向B。
例
I 10V
A I1
10Ω
I2 B
电路中电流 I 的大小为1A, 其方向为从A流向B。 (此为电流的实际方向)
若参考方向如 I1 所示,则I1=1A
若参考方向如 I2 所示,则I2= -1A
因此,同一支路的电流可用两种方法表示。
电路模型
3. 集总参数电路 实际电路的尺寸必须远小于电路工作频率下的电磁波的波
长。
返回目录
1.2 电流、电压、电动势及其参考方向
一、电流、电压、电动势
1. 电流 带电质点有规律的运动形成电流。
电流的大小用电流强度表示。
电流强度:单位时间内通过导体横截面的电量。
第一章 电路的基本概念与基本定律
元件
想想 练练
电压、电位、 电动势有何异 同?
电功率大的用电器, 电功也一定大,这种说 法正确吗?为什么?
思考 回答
在电路分析中,引入参考方向的目的是什么? 应用参考方向时,你能说明“正、负”、“加、 减” 及“相同、相反”这几对词的不同之处吗? 电路分析中引入参考方向的目的是为分析和计算电路提 供方便和依据。应用参考方向时,“正、负”是指在参考方 向下,电压和电流的数值前面的正、负号,若参考方向下一 个电流为“-2A”,说明它的实际方向与参考方向相反,参考 方向下一个电压为“+20V”,说明其实际方向与参考方向一 致;“加、减”指参考方向下列写电路方程式时,各项前面 的正、负符号;“相同、相反”则是指电压、电流是否为关 联参考方向, “相同”是指电压、电流参考方向关联,“相 反”指的是电压、电流参考方向非关联。
1.2.2 电压、电位和电动势
a
电动势E 只存 在于电源内部 ,其大小反映 了电源力作功 的本领。其方 向规定由电源 “负极”指向 电源“正极” 。
S
I
R0
+
U
+ _
b E
RL
–
电压U是反映电 场力作功本领的 物理量,是产生 电流的根本原因 。电压的正方向 规定由“高”电 位指向“低”电 位。
电位V是相对于参考点的电压。参考点的 电位:Vb=0;a点电位: Va=E-IR0=IR
电压和电位的关系:Uab=Va-Vb
电动势和电位一样属于一种势能,它能够将低 电位的正电荷推向高电位,如同水路中的水泵能够 把低处的水抽到高处的作用一样。电动势在电路分 析中也是一个有方向的物理量,其方向规定由电源 负极指向电源正极,即电位升高的方向。
电压、电位和电动势的区别
《电路原理》第一章 电路模型和电路定律
uS
i
直流电压源 的伏安关系
例
+
i
uS R 外电路
uS i 0 R i 0 ( R )
i ( R 0)
uS 0 ,电压源不能短路!
返 回 上 页 下 页
电压源功率:
i
P uS i
电压、电流的参考方向非关联;
uSS u
_
i
uS
_
+
+
u
+
+
_
物理意义:外力克服电场力作功,电 源发出功率,发出功率, 起电源作用 电压、电流的参考方向关联;
2、电路模型
中间环节 S 开关 电 源 I
负 载
R0
+
RL
+ _
连接导线
US
U
–
负载
实体电路
电源
电路模型
用抽象的理想电路元件及其组合,近似地代替实际的 器件,从而构成了与实际电路相对应的电路模型。
• 理想电路元件
理想电路元件
组成电路模型的最小单元,是具有某种确定的电 磁性质并有精确定义的基本结构。 + R L C – IS
u
_
物理意义: 电场力做功,电源吸收功 率,吸收功率,充当负载 或发出负功
例
计算图示电路各元件的功率。
R 5
5V
_
i
_
2
P V uS i 10 1 10W 10
满足:P(发)=P(吸)
+
10V
uR
+
_ +
解
uR (10 5) 5V
i
uR
5 1A R 5
电路原理1
电路原理1电路原理是电子工程中的基础知识,它涉及到电流、电压、电阻等基本概念,是理解和设计电子设备的重要基础。
本文将介绍电路原理的基本概念和相关知识,帮助读者建立起对电路原理的全面理解。
首先,我们来介绍电路的基本组成。
电路由电源、负载和导线组成。
电源提供电流,负载消耗电流,导线连接电源和负载。
在电路中,电流沿着闭合回路流动,同时伴随着电压的变化。
电压是电荷在电路中流动时的能量变化,是电路中的重要参数之一。
在电路中,电阻是另一个重要的参数。
电阻是指电流在电路中受到阻碍的程度,它的大小决定了电路的阻抗。
电阻的单位是欧姆,通常用Ω来表示。
在电路中,电阻可以是固定的,也可以是可变的。
电路中的电阻可以通过串联和并联的方式进行连接,从而改变电路的总阻抗。
另外,电路中还存在着电容和电感。
电容是一种储存电荷的装置,它可以在电路中储存和释放能量。
电感是一种储存磁场能量的装置,它可以在电路中产生感应电动势。
电容和电感在电路中起着重要的作用,它们可以用来滤波、调节电压和电流等。
在电路分析中,基尔霍夫定律是非常重要的原理。
基尔霍夫定律包括基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出,电路中任意节点的电流代数和为零。
基尔霍夫电压定律指出,电路中任意闭合回路的电压代数和为零。
基尔霍夫定律可以帮助我们分析复杂的电路,找到电流和电压的关系,从而解决问题。
最后,我们来介绍一些常见的电路。
直流电路是电流方向不变的电路,它通常由直流电源和负载组成。
交流电路是电流方向周期性变化的电路,它通常由交流电源、变压器和负载组成。
数字电路是用数字信号进行信息处理的电路,它通常由逻辑门、触发器和寄存器组成。
这些电路在电子工程中应用广泛,是电子设备的重要组成部分。
总之,电路原理是电子工程中的基础知识,它涉及到电流、电压、电阻、电容和电感等基本概念。
通过对电路原理的学习,我们可以更好地理解和设计电子设备,为电子工程领域的发展做出贡献。
希望本文的介绍能够帮助读者建立起对电路原理的全面理解,进一步深入学习和应用电子工程知识。
第一章 电路的基本概念和基本定律
不能充分利用设备的能力
降低设备的使用寿命甚至损坏设备
2、电源开路
A
C
I
E
U0
R
R0
B
D
特征
I=0 U=U0=E P=0
3、电源短路
IS
R1
E
U
R2
R0
特 U=0
I=IS=E/ R0
征 P = 0 PE = P = R0IS2
电流过大,将烧毁电源
R0
R1
I
E
U R2
有 I 视电路而定
源
电
路
U=0
短接
P<0,L把磁场能转换为电能,放出功率。
储存的磁场能
WL=
1 2
Li 2
L为储能元件
3、电容元件 i
uC
库仑(C)
q C= u
q 法拉(F)
(伏)V
q
若C为大于零的常数,
则称为线性电容。
电容器的电容与极板的尺寸 及其间介质的介电常数有关。C
=
S d
S —极板面积(m2) d —板间距离 (m) —介电常数(F/m)
2) 传递与处理信号
发电机
升压 输电线 降压
变压器
变压器
电灯 电动机
话筒
扬声器 放
大
器
1 电源
2 中间环节
3 负载 信号源
负载
其它形式的能量电能
话筒把声音(信息)电信号
连接电源和负载,传输、分配电能 扬声器把电信号 声音(信
电能其它形式的能量
息)
电路的组成
发电机
升压 输电线 降压
变压器
变压器
一定值,而其两端电压U 是任意的, 由负载电阻和 IS确定,这样的电源称为 理想电流源或恒流源。
第1章 电路的基本概念与基本定理
第1章电路的基本概念与基本定理电路理论是电工与电子技术的基本理论。
本章着重介绍电流和电压的参考方向、基尔霍夫定律及电路等效原理等。
通过本章内容的学习可了解和掌握电路中的基本概念和定律,为后续分析复杂电路打下一个基础。
1.1电路的基本概念在高中,我们学过电压、电流、电动势、功率以及欧姆定律等电路的基本概念。
但高中所学的这些电路理论往往解决不了一些复杂电路。
本节将进一步讲解其有关知识。
1.1.1电路的组成人们在日常生活中广泛地使用着各种电器,如热水器、电扇等。
要用电首先要有电源,然后用导线、开关和用电设备或用电器连接起来,构成一个电流流通的闭合路径。
这个电流通过的路径就叫电路。
电路的形式是多种多样的,但从电路的本质来说,其组成都有电源、负载、中间环节三个最基本的部分。
其中电源的作用是为电路提供能量,如发电机利用机械能或核能转化为电能,蓄电池利用化学能转化为电能,光电池利用光能转化为电能等;负载则将电能转化为其他形式的能量加以利用,如电动机将电能转化为机械能,电炉将电能转化为热能等;中间环节用作电源和负载的联接体,包括导线、开关、控制线路中的保护设备等。
图1-1所示的手电筒电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
1.1.2 电路模型实际电路由各种作用不同的电路元件或器件所组成。
实际电路元件尽管外形和作用千差万别,种类繁多,但在电磁性质方面却可以归为几大类。
有的元件主要是提供电能的,如发电机、电池等;有的元件主要是消耗电能的,如各种电阻器、电灯、电炉等;有的元件主要是储存电场能量,如各种电容器;有的元件主要是储存磁场能量,如各种电感线圈。
为了便于对电路进行分析的计算,我们常把实际元件加以理想化,忽略其次要的因素用以反映它们主要物理性质的理想元件来代替。
这样由理想元件组成的电路就是实际电路的电路模型,简称电路。
手电筒电路的电路模型如图1-2所示。
用来表征上述物理性质的理想电路元件(今后理想两字常略去)分别称为恒压源U S 、恒流源I S 、电阻元件R 、电容元件C 、电感元件L 。
电路基础原理理解电路中的电路定律与电路定理
电路基础原理理解电路中的电路定律与电路定理电路基础原理:理解电路中的电路定律与电路定理在日常生活中,我们经常会遇到各种使用电力的设备和电路。
无论是手机、电视,还是家用电器,电路都是它们工作的基础。
而要理解电路的工作原理,就需要了解电路定律与电路定理。
一、欧姆定律:电流、电压、电阻的关系欧姆定律是最基本、最常用的电路定律之一,它描述了电流、电压和电阻之间的关系。
根据欧姆定律,电流(I)与电压(U)成正比,与电阻(R)成反比。
数学表达式为:I = U/R。
换言之,电压是电流通过电路时的驱动力,而电阻则是电流的阻碍。
当电压一定时,电流与电阻成反比,如果电阻增加,电流就会减小;反之,如果电阻减小,电流就会增加。
欧姆定律的理解对于设计和使用电路非常重要。
在实际应用中,我们可以根据欧姆定律来计算电阻、电流或电压的大小,以及预测电路中参数的变化情况。
二、基尔霍夫定律:电流和电压的守恒基尔霍夫定律包括基尔霍夫第一定律和基尔霍夫第二定律,它们描述了电路中电流和电压的守恒关系。
基尔霍夫第一定律,也称作电流守恒定律。
根据基尔霍夫第一定律,电流在任何一个节点(连接两个以上元件的点)处的总和为零。
这是因为电流在闭合回路中是连续不断的,不能凭空消失或产生。
基尔霍夫第二定律,也称作电压守恒定律。
根据基尔霍夫第二定律,电压在闭合回路中的所有元件的代数和等于零。
换言之,电压源提供的电压等于电阻元件消耗的电压。
基尔霍夫定律的应用可以帮助我们分析复杂的电路,并解决电路中的问题。
通过使用这些定律,我们可以在设计中保持电路的平衡,确保电流和电压分配得当。
三、戴维南定理与诺顿定理:简化电路分析戴维南定理和诺顿定理是电路分析中经常使用的方法,它们可以帮助我们简化电路,提取等效电源,更好地理解电路。
戴维南定理,又称作超戴维南定理,以实验物理学家弗雷德里克·戴维南的名字命名。
据戴维南定理,任何一个线性、无源电路都可以用一个等效电源和等效电阻来代替,这个等效电源与等效电阻分别是原电路最后两端电压和电流的比值。
电路原理知识总结
电路原理总结第一章 基本元件和定律1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。
电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。
2. 功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。
3. 全电路欧姆定律:U=E-RI4. 负载大小的意义:电路的电流越大,负载越大。
电路的电阻越大,负载越小。
5. 电路的断路与短路电路的断路处:I=0,U≠0电路的短路处:U=0,I≠0二. 基尔霍夫定律1. 几个概念:支路:是电路的一个分支。
结点:三条(或三条以上)支路的联接点称为结点。
回路:由支路构成的闭合路径称为回路。
网孔:电路中无其他支路穿过的回路称为网孔。
2. 基尔霍夫电流定律:(1) 定义:任一时刻,流入一个结点的电流的代数和为零。
或者说:流入的电流等于流出的电流。
(2) 表达式:i进总和=0或: i进=i出(3) 可以推广到一个闭合面。
3. 基尔霍夫电压定律(1) 定义:经过任何一个闭合的路径,电压的升等于电压的降。
或者说:在一个闭合的回路中,电压的代数和为零。
或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。
(2) 表达式:1或: 2或: 3(3) 基尔霍夫电压定律可以推广到一个非闭合回路三. 电位的概念(1) 定义:某点的电位等于该点到电路参考点的电压。
(2) 规定参考点的电位为零。
称为接地。
(3) 电压用符号U表示,电位用符号V表示(4) 两点间的电压等于两点的电位的差 。
(5) 注意电源的简化画法。
四. 理想电压源与理想电流源1. 理想电压源(1) 不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。
理想电压源的输出功率可达无穷大。
(2) 理想电压源不允许短路。
2. 理想电流源(1) 不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
U
(2) 用箭头表示:箭头指向为电压的参考方向
U
(3) 用双下标表示:如 UAB , 由A指向B的方向为电压 的参考方向。 U
AB
A
B
三、电位
取恒定电场中的任意一点(O点),设该点的电位为零, 称O点为参考点。则电场中一点A到O点的电压UAO称为A 点的电位,记为A 。单位 V(伏)。
a
b 设c点为电位参考点,则 c= 0
d
c
a= Uac, b=Ubc, d= Udc
Uab = a- b
返回首页
电路元件的功率 (power)
一、 电功率:单位时间内电场力所做的功。
dw dw dq ui p dq dt dt
功率的单位名称:瓦(特) 能量的单位名称:焦(耳)
符号(W) 符号(J)
二、功率的计算 1. u, i 取关联参考方向
返回首页
电压和电流的参考方向 (reference direction)
一、电流 (current) 1. 电流:带电质点的定向运动形成电流。 电流的大小用电流强度表示。
Δ q dq i (t ) lim Δ t 0 Δ t dt
def
单位名称:安(培)
符号:A (Ampere) mA A
10BASE-T wall plate
s
R
电 池
三、集总参数元件与集总参数电路 集总参数元件 每一个具有两个端钮的元件中有 确定的电流,端钮间有确定的电压。 集总参数电路 由集总参数元件构成的电路。
一个实际电路要能用集总参数电路近似,要 满足如下条件:即实际电路的尺寸必须远小于电 路工作频率下的电磁波的波长。
例 已知电磁波的传播速度 v=3×105 km/s
(1) 若电路的工作频率为 f=50 Hz,则 周期 波长 T = 1/f = 1/50 = 0.02 s
= 3×105 0.02=6000 km
一般电路尺寸远小于 ,视为集总参数电路。 (2) 若电路的工作频率为 f=50 MHz,则 周期 T = 1/f = 0.0210–6 s = 0.02 ns 波长 = 3×105 0.0210–6 = 6 m 此时一般电路尺寸均与 可比,所以电路视为分 布参数电路。
def
U AB
d WAB dq
单位名称:伏(特) 符号:V(Volt) mV V
2. 电压(降)的参考方向 + +
实际方向 实际方向
+
U
(参考方向)
+
U
(参考方向)
U>
0
+ U1
U<
0
例
10V
10
10V
U1 +
10
U1 = 10V
U1 = 10V
3. 电压参考方向的三种表示方式
(1) 用正负极性表示:由正极指向负极的方向为电压 的参考方向
2. 电流的参考方向 参考方向:任意选定的一个方向作为电流的参考方向。
i
参考方向
i>0 表示电流的参考方向与实际方向相同 i<0 表示电流的参考方向与实际方向相反
例 I1
10V
I1 = 1A 10
I1
10V I1 = -1A 10
电流参考方向的两种表示: 用箭头表示 用双下标表示 IAB A 3. 为什么要引入参考方向 ? (a) 复杂电路的某些支路 B I
2. u, i 取非关联参考方向
+
u – + u –
i
元件(支路)吸收功率
p=ui
或写为 p吸 = u i
i
元件(支路)发出功率 p=ui 或写为
p发 = u i
例 U = 5V, I = - 1A
例 U = 4V, I = - 2A
+
U
I
P吸= UI = 5(-1) = -5 W 或 P发 = -UI = -5(-1) = 5W
–
+
I U
P发= UI = 4(-2) = -8 W 或 P吸= -UI = -4(-2) = 8W
–
返回首页
二、电路模型 (circuit model) 几种基本的电路元件:
电阻元件:表示消耗电能的元件
电感元件:表示各种电感线圈产生磁场,储存电能的作用 电容元件:表示各种电容器产生电场,储存电能的作用 电源元件:表示各种将其它形式的能量转变成电能的元件
电路模型 电路模型是由理想电路元件构成的,能反映实际电路电 磁性质。 例 开关 灯泡 Ri US 导线
?
事先无法 T
i Im sin t
当
0 t T
2
, i0
电流实际方向与参考方向相同
当
T t T , i 0 2
电流实际方向与参考方向相反
二、电压 (voltage) 1. 电压 (voltage):电场中某两点A , B间的电压(降)UAB 等于 将单位正电荷q从A点移至B点电场力所做的功 WAB,,即
电路元件与电路定律
第一讲(总第一讲)
电路和电路模型 电压、电流的参考方向 电路元件的功率
电路和电路模型(model )
一、 电路 电工设备构成的整体,它为电流的流通提供路径。 电源(source):提供能量或信号. 负载(load):将电能转化为其它形式的能量,或对 信号进行处理. 导线(line)、开关(switch)等:将电源与负载接成通路.