2015年高中数学同步检测:2.2.2《直线与平面平行的性质》(人教A版必修2)]
高中数学人教A版必修二同步辅导与检测2.2.1直线与平面平行、平面与平面平行的判定
证法二:连接AQ并延长交BC于K,连接EK. 在△AQD和△BQK中,由△AQD∽△BQK,得 QK= BQ .
AQ QD
∵正方形ABCD和正方形ABEF有公共边AB,
∴其对角线AE=BD. 又AP=DQ, ∴PE=BQ.
QD AP AQ AP = ,因此 = . ∴ BQ PE QK PE
∴PQ∥EK.又PQ⊄平面BEC,EK⊂平面BEC,
答案:D
2.α、β是两个不重合的平面,在下列条件中,可判 定平面α与平面β平行的是( )
A.a∥α,a∥β B.△ABC⊂α,△A1B1C1⊂β,且△ABC∽△A1B1C1 C.α内无数条直线都与β平行 D.l、m是两条相交直线,且l∥α,m∥α,l∥β,相交;三角形相似只 是要对应边成比例;α内无数条直线但不是任何一条直线, 故A,B,C不能判断α∥β,选D.
平面与平面平行判定定理的应用 如图,在正方体ABCDA1B1C1D1中,M、E、F、 N分别是A1B1、B1C1、C1D1、D1A1的中点. 求证:(1)E、F、B、D四点共面; (2)平面MAN∥平面EFDB. 证明:(1)连接B1D1, ∵E,F分别是边B1C1,C1D1的中点, ∴EF∥B1D1,而BD∥B1D1,∴BD∥EF, ∴E、F、B、D四点共面.
点、直线、平面之间的位置关系
2.2 直线、平面平行的判定及其性质
2.2.1 直线与平面平行、平面与平面平行的判定
1.理解直线与平面平行、平面与平面平行的判定
定理的含义.
2.能运用直线与平面平行的判定定理、平面与平面
平行的判定定理证明一些空间线面关系的简单问题.
3.了解空间与平面相互转换的数学思想.
证明:假设直线a与平面α不平行,∵a⊄α,
人教A版必修2第二章2.2.3《直线与平面平行的性质》精选题高频考点(含答案)-1
人教A 版必修2第二章2.2.3《直线与平面平行的性质》精选题高频考点(含答案)-1学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在长方体1111ABCD A B C D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是( )A .平行B .相交C .异面D .平行或异面 2.如图所示,在四棱锥P ABCD -中,M N ,分别为AC PC ,上的点,且MN ∥平面PAD ,则( )A .MN PD PB .MN PA ∥C .MN AD P D .以上均有可能 3.如图,P 为平行四边形ABCD 所在平面外一点,E 为AD 上一点,且13AE ED =,F 为PC 上一点,当//PA 平面EBF 时,PF FC=( )A .23B .14C .13D .12 4.如图所示,在长方体1111ABCD A B C D -中,121AB BC AA ,===,则1BC 与平面11BB D D 所成角的正弦值为( )A.3 BC.5 D.5 5.在正方体1111ABCD A B C D -中,E 为棱CD 上一点,且2CE DE =,F 为棱1AA 的中点,且平面BEF 与1DD 交于点G ,与1AC 交于点H ,则( )A .115DG DD =B .113AH HC = C .114DG DD = D .138AH HC = 6.如图,1111ABCD A B C D -是正方体,E 为棱1BB 上的动点(不含端点),平面11AC E 与底面ABCD 的交线为l ,则l 与AC 的位置关系是( )A .异面B .平行C .相交D .与E 点位置有关 7.已知m ,n 是不同的直线,α,β是不重合的平面,下列命题中正确的有( ) ①若m α⊥,m β⊥,则//αβ②若//m α,m β⊂,n αβ=I ,则//m n③若//m α,//m β,则//αβ④若αβ⊥,m α⊂,n β⊂,则m n ⊥A .①②B .①③C .②④D .③④ 8.已知//,a b αα⊂,则直线a 与直线b 的位置关系是( )A .平行B .相交或异面C .异面D .平行或异面 9.已知棱长为3的正方体1111ABCD A B C D -,点E 是棱AB 的中点,12CF FC =u u u r u u u u r ,动点P 在正方形11AA DD (包括边界)内运动,且1PB P 面DEF ,则PC 的长度范围为( )A .B .5⎡⎢⎣C .5⎡⎢⎣D .5⎡⎢⎣10.如图,各棱长均为a 的正三棱柱111ABC A B C -,M 、N 分别为线段1A B 、1B C 上的动点,且MN ∥平面11ACC A ,M ,N 中点S 111ABC A B C -的体积为( )A B C .3 D .11.点E ,F 分别是棱长为1的正方体1111ABCD A B C D -中棱BC ,1CC 的中点,动点P 在正方形11BCC B (包括边界)内运动,且1PA ∥面AEF ,则1PA 的长度范围为( )A .1,2⎡⎢⎣⎦B .42⎡⎢⎣⎦C .342⎡⎤⎢⎥⎣⎦D .31,2⎡⎤⎢⎥⎣⎦12.如图,在正四棱锥S -ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P在线段MN 上运动时,下列四个结论:①EP ⊥AC ;②EP ∥BD ;③EP ∥平面SBD ;④EP ⊥平面SAC ,其中恒成立的为( )A .①③B .③④C .①②D .②③④13.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面交线的位置关系是( )A .异面B .相交C .不能确定D .平行 14.如图所示,a P α,A 是α的另一侧的点,B C D a ∈,,,线段AB AC AD ,,分别交α于点EFG ,,,若445BD CF AF ===,,,则EG =( )A .169B .209C .94D .5415.如图,已知四棱锥P ABCD -的底面是平行四边形,AC 交BD 于点O ,E 为AD 中点,F 在PA 上,AP AF λ=,//PC 平面BEF ,则λ的值为( )A .1B .32C .2D .3 16.给出下列关于互不相同的直线,,l m n 和平面,,αβγ的三个命题:①若l 与m 为异面直线,,l m αβ⊂⊂,则//αβ;②若//,,l m αβαβ⊂⊂,则//l m ;③若,,,//l m n l αββγγαγ===I I I ,则//m n .其中正确的个数为( )A .0B .1C .2D .317.如图,P 为平行四边形ABCD 所在平面外一点,E 为AD 的中点,F 为PC 上一点,当P A ∥平面EBF 时,PF FC=( )A .23B .14C .13D .12 18.如果直线m//直线n ,且m//平面α,那么n 与α的位置关系是() A .相交 B .n//α C .n ⊂α D .n//α或n ⊂α 19.若直线a 平行于平面α,则下列结论错误的是( )A .直线a 上的点到平面α的距离相等B .直线a 平行于平面α内的所有直线C .平面α内有无数条直线与直线a 平行D .平面α内存在无数条直线与直线a 所成的角为90o20.已知l ,m 为两条不同直线,α,β为两个不同平面.则下列命题正确的是( ) A .若l αP ,m α⊂,则l m PB .若l αP ,m αP ,则l m PC .若l α⊂,m β⊂,αβ∥,则l m PD .若l αP ,l β∥,m αβ=I ,则l m P二、填空题21.如图,正方体1111ABCD A B C D -中, AB =点E 为11A D 的中点,点F 在11C D 上,若//EF 平面1ACB ,则EF =________.22.在正方体1111ABCD A B C D -中,E 为棱CD 上一点,且2CE DE =,F 为棱1AA 的中点,且平面BEF 与1DD 交于点G ,与1AC 交于点H ,则1DG DD =______,1AH HC =______. 23.如图所示,a ∥α,A 是α的另一侧的点,B 、C 、D ∈a ,线段AB 、AC 、AD 交α于E 、F 、G ,若BD =4,CF =4,AF =5,则EG =________.24.如图,E 是棱长为1正方体1111ABCD A B C D -的棱11C D 上的一点,且1//BD 平面1B CE ,则线段CE 的长度为___________.25.如图所示,四面体ABCD 被一平面所截,截面EFGH 是一个矩形.则直线CD 与平面EFGH 的关系是______.26.如图在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中正确的有______.(填上所有正确命题的序号)AC BD ⊥①,AC BD =②,//AC ③截面PQMN ,④异面直线PM 与BD 所成的角为45o .27.在三棱锥S ABC -中,ABC ∆是边长为4的正三角形,10SA SB SC ===,平面DEFH 分别与AB ,BC ,SC ,SA 交于D ,E ,F ,H 且D ,E 分别是AB ,BC 的中点,如果直线SB P 平面DEFH ,那么四边形DEFH 的面积为______.28.已知l 、m 是两条直线,α是平面,若要得到“l ∥α”,则需要在条件“m ⊂α,l ∥m ”中另外添加的一个条件是______.29.如图,DC ⊥平面ABC ,EB ∥DC ,EB =2DC ,P ,Q 分别为AE ,AB 的中点.则直线DP 与平面ABC 的位置关系是________.30.正方体1111ABCD A B C D -中,2AB =,点E 为AD 的中点,点F 在1CC 上,若//EF 平面1AB C ,则EF =_____.31.如图所示,在三棱柱111ABC A B C -中,过11A B C ,,的平面与平面ABC 的交线为l ,则l 与直线11A C 的位置关系为________.32.如图所示,长方体1111ABCD A B C D -的底面ABCD 是正方形,其侧面展开图是边长为8的正方形,E F ,分别是侧棱11AA CC ,上的动点,且8AE CF +=,P 在棱1AA 上,且2AP =,若EF P 平面PBD ,则CF =________.33.如图所示,在三棱柱111ABC A B C 中,E F G H ,,,分别是1111AB AC A B A C ,,,的中点,则与平面BCHG 平行的平面为________.34.如图(1)所示,已知正方形ABCD 中,E F ,分别是AB ,CD 的中点,将ADE V 沿DE 折起,如图(2)所示,则BF 与平面ADE 的位置关系是________.35.已知A 、B 、C 、D 四点不共面,且AB ∥平面α,CD ∥α,AC ∩α=E ,AD ∩α=F ,BD ∩α=H ,BC ∩α=G ,则四边形EFHG 是_______四边形.36.如图,棱长为2的正方体1111ABCD A B C D -中,M 是棱AA 1的中点,过C ,M ,D 1作正方体的截面,则截面的面积是________.37.如图所示,在长方体1111ABCD A B C D -中,111BB B D =,点E 是棱1CC 上的一个动点,若平面1BED 交棱1AA 于点F ,给出下列命题:.① 四棱锥11B BED F -的体积恒为定值;②存在点E ,使得1B D ⊥平面1BD E ;③存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值;④存在无数个点E ,在棱AD 上均有相应的点G ,使得CG P 平面1EBD ,也存在无数个点E ,对棱AD 上任意的点G , 直线CG 与平面1EBD 均相交.其中真命题的是____________.(填出所有正确答案的序号)38.已正知方体ABCD-A 1B 1C 1D 1的棱长为2,点P 是平面AA 1D 1D 的中心,点Q 是B 1D 1上一点,且PQ ∥平面AB 1D ,则线段PQ 长为______.39.设,a b 是平面M 外两条直线,且//a M ,那么//a b 是//b M 的________条件.40. 已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AA 1D 1D 的中心,点Q 是平面A 1B 1C 1D 1的对角线B 1D 1上一点,且PQ ∥平面AA 1B 1B ,则线段PQ 的长为________.三、解答题41.如图,四棱锥P ABCD -中,底面ABCD 为矩形,侧面PAD 为正三角形,2AD =,3AB =,平面PAD ⊥平面ABCD ,E 为棱PB 上一点(不与P 、B 重合),平面ADE 交棱PC 于点F .(1)求证:AD EF P ;(2)若二面角––B AC E ,求点B 到平面AEC 的距离. 42.如图,在四棱锥P ABCD -中,底面ABCD 是梯形,且//BC AD ,2AD BC =,点Q 是线段AD 的中点,过BQ 的平面BQMN 交平面PCD 于MN ,且PQ AB ⊥,AP PD =,且120APD ∠=︒,24BD AB ==,30ADB ∠=︒.(1)求证://BQ MN ;(2)求直线PA 与平面PCD 所成角的余弦值.43.如图所示的一块木料中,棱BC 平行于面A C ''.(1)要经过面A C ''内的一点P 和棱BC 将木料锯开,在木料表面应该怎样画线? (2)所画的线与平面AC 是什么位置关系?44.如图,已知E ,F 分别是正方体1111ABCD A B C D -的棱1AA ,1CC 上的点,且1AE C F =.求证:四边形1EBFD 是平行四边形.45.如图所示,P 是平行四边形ABCD 所在平面外一点,E 是PD 的中点、若M 是CD 上异于C ,D 的点,连接PM 交CE 于点G ,连接BM 交AC 于点H ,连接GH ,求证:GH //PB .46.已知如图,斜三棱柱ABC -A 1B 1C 1中,点D 、D 1分别为AC 、A 1C 1上的点. (1)当1111A D D C 等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值.47.如图所示,已知三棱柱ABC-A'B'C'中,D 是BC 的中点,D'是B'C'的中点,设平面A'D'B∩平面ABC=a ,平面ADC'∩平面A'B'C'=b ,判断直线a ,b 的位置关系,并证明.48.如图,四棱锥P ABCD -的底面ABCD 为直角梯形,//AD BC ,且112BC AD ==,BC DC ⊥,60BAD ∠=︒,平面PAD ⊥底面ABCD ,E 为AD 的中点,PAD ∆为等边三角形,M 是棱PC 上的一点,设PM k MC=(M 与C 不重合).(1)当1k =时,求三棱锥M BCE -的体积;(2)若//PA 平面BME ,求k 的值.49.如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且::AE EB AH HD m ==,::CF FB CG GD n ==.(1)证明:E ,F ,G ,H 四点共面.(2)m ,n 满足什么条件时,四边形EFGH 是平行四边形?50.如图,在四校锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面MAC ,PA PD ==4AB =.求证:M 为PB 的中点.参考答案1.A2.B3.B4.D5.D6.B7.A8.D9.B10.D11.B12.A13.D14.B15.D16.B17.D18.D19.B20.D21.222.163823.20 92425.平行26.①③④27.10 28.lα⊄29.平行3031.平行. 32.2. 33.平面1A EF 34.平行35.平行【答案】9 237.①②③④3839.充分不必要40.241.(1)证明见解析;(2.42.(1)证明见解析(243.(1)见解析(2)直线EF与平面AC平行直线,BE CF与平面AC相交. 44.证明见解析45.证明见解析46.(1)1;(2)1.47.直线a,b的位置关系是平行,证明见试题解析.48.(1)14;(2)1.49.(1)见解析(2)当m n时,四边形EFGH是平行四边形. 50.证明见解析。
金版学案高中数学(人教A版,必修二)同步辅导与检测课件:2.2.2《直线与平面平行的性质 》
金品质•高追求 我们让你更放心!
返回
◆数学•必修2•(配人教A版)◆
解析:∵A∉a,∴A、a可确定一个平面,设为β. ∵B∈a,∴B∈β. 又A∈β,∴AB⊂β. 同理AC⊂β,AD⊂β. ∵点A与直线a在α的异侧, ∴β与α相交. ∴平面ABD与平面α相交,设交线为EG.
∵BD∥α,BD⊂平面BAD,而平面BAD∩α=EG, ∴BD∥EG.∴△AEG∽△ABD.
又∵BB1⊂平面BB1E1E, 平面BB1E1E∩平面DD1C1C=EE1,
∴BB1∥EE1.
金品质•高追求 我们让你更放心!
返回
◆数学•必修2•(配人教A版)◆
线面平行性质的综合应用 已知E,F,G,H为空间四边形ABCD的边AB, BC,CD,DA上的点,且EH∥FG.求证:EH∥BD.
证明:EH⊄平面BCD FG⊂平面BCD
解析:∵PA∥平面EFGH,PA⊂平面PAB,平面
PAB∩平面EFGH=EH,
∴PA∥EH, 同理,PA∥FG,BC∥EF,BC∥HG;
金品质•高追求 我们让你更放心!
返回
◆数学•必修2•(配人教A版)◆
∴BECF=AABE, EF=AEA·BBC; FAGP=CCFA=BBAE, FG=BEB·AAP.
②若a∥α,b⊂α,则a∥b;
③若a∥b,b⊂α,则a∥α;
④若a∥b,b∥α,则a∥α.
A.0
B.1
C.2
D.4
解析:①②③④都不正确. 答案:A
金品质•高追求 我们让你更放心!
返回
◆数学•必修2•(配人教A版)◆
金品质•高追求 我们让你更放心!
返回
◆数学•必修2•(配人教A版)◆
1.直线和平面平行的性质定理揭示了线面平行中蕴 涵着线线平行,通过线面平行可得线线平行,也给出了作 平行线的重要方法.
人教版高中数学必修二 学案:2.2直线平面平行的判定及其性质
a ⊄α ⎫a ∥b ⎭2.2 直线、平面平行的判定及其性质2.2.1&2.2.2 直线与平面平行的判定、平面与平面平行的判定预习课本 P54~57,思考并完成以下问题1.线面平行的判定定理是什么?2.判定线面平行的方法有哪些?3.面面平行的判定定理是什么?4.判定面面平行的方法有哪些?[新知初探]1.直线与平面平行的判定定理表示图形 文字符号直线与平面平行的判定定理平面外一条直线与此平面内一直线平行,则该直线与此平面平行⎪b ⊂ α⎬⇒ a ∥α⎪[点睛] 用该定理判断直线 a 和平面 α 平行时,必须同时具备三个条件:(1)直线 a 在平面 α 外,即 a ⊄α; (2)直线 b 在平面 α 内,即 b ⊂ α; (3)两直线 a ,b 平行,即 a ∥b .2.平面与平面平行的判定⎭表示位置图形文字符号平面与平面平行的判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂βb⊂βa∩b=Pa∥αb∥α⎫⎪⎬⇒α∥β⎪[点睛](1)平面与平面平行的判定定理中的平行于一个平面内的“两条相交直线”是必不可少的.(2)面面平行的判定定理充分体现了等价转化思想,即把面面平行转化为线面平行.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若直线l上有两点到平面α的距离相等,则l∥平面α()(2)若直线l与平面α平行,则l与平面α内的任意一条直线平行()(3)两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行()答案:(1)×(2)×(3)×2.能保证直线a与平面α平行的条件是()A.b⊂α,a∥bB.b⊂α,c∥α,a∥b,a∥cC.b⊂α,A,B∈a,C,D∈b,且AC∥BDD.aα,b⊂α,a∥b解析:选D由线面平行的判定定理可知,D正确.3.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是()A.一定平行C.平行或相交B.一定相交D.以上判断都不对解析:选C可借助于长方体判断两平面对应平行或相交.直线与平面平行的判定[典例]如图,在正方体ABCD-A1B1C1D1中,E,F,G分别是BC,CC1,BB1的中点,求证:EF∥平面AD1G.QN , = , = .∴M ,N ,Q 分别是△ABC 的边 BC ,AC ,AB 的中点,且 = =2,[证明] 连接 BC 1,则由 E ,F 分别是 BC ,CC 1 的中点,知 EF ∥BC 1. 又 AB 綊 A 1B 1 綊 D 1C 1,所以四边形 ABC 1D 1 是平行四边形, 所以 BC 1∥AD 1,所以 EF ∥AD 1.又 EF ⊄平面 AD 1G ,AD 1⊂ 平面 AD 1G , 所以 EF ∥平面 AD 1G.利用直线和平面平行的判定定理证明线面平行的关键是在平面内找一条直线与已知直线平行,常利用平行四边形、三角形中位线、平行公理等.[活学活用]已知有公共边 AB 的两个全等的矩形 ABCD 和 ABEF 不同在一个平面内,P ,Q 分别是对角线 AE ,BD 上的点,且 AP =DQ .求证:PQ ∥平面 CBE.证明:如图,作 PM ∥AB 交 BE 于点 M ,作 QN ∥AB 交 BC 于点 N ,连接 MN ,则 PM ∥PM EP QN BQAB EA CD BD∵EA =BD ,AP =DQ ,∴EP =BQ .又∵AB =CD ,∴PM 綊 QN ,∴四边形 PMNQ 是平行四边形,∴PQ ∥MN .又∵PQ ⊄平面 CBE ,MN ⊂ 平面 CBE ,∴PQ ∥平面 CBE.平面与平面平行的判定[典例] 已知,点 P 是△ABC 所在平面外一点,点 A ′,B ′,C △′分别是 PBC ,△P AC ,△P AB 的重心.(1)求证:平面 A ′B ′C ′∥平面 ABC.(2)求 A ′B ′∶AB 的值.[解] (1)证明:如图,连接 P A ′,并延长交 BC 于点 M ,连接 PB ′,并延长交 AC 于点 N ,连接 PC ′,并延长交 AB 于点 Q ,连接 MN ,NQ .∵A ′,B ′,C △′分别是 PBC ,△P AC ,△P AB 的重心,P A ′ PB ′ A ′M B ′N∴A ′B ′∥MN .同理可得 B ′C ′∥NQ .∵A ′B ′∥MN ,MN ⊂ 平面 ABC ,A ′B ′⊄平面 ABC ,∴A ′B ′∥平面 ABC.同理可证 B ′C ′∥平面 ABC.即 A ′B ′= MN .∵M ,N 分别是 BC ,AC 的中点,∴MN = AB.∴A ′B ′= MN = × AB = AB ,(2)由(1)知 A ′B ′∥MN ,且 == , ∴A ′B ′1 1=,即 A ′B ′∶AB 的值为 .又∵A ′B ′∩B ′C ′=B ′,A ′B ′⊂ 平面 A ′B ′C ′,B ′C ′⊂ 平面 A ′B ′C ′,∴平面 A ′B ′C ′∥平面 ABC.A ′B ′ P A ′ 2MN PM 323122 2 1 13 3 2 3AB 33两个平面平行的判定定理是确定面面平行的重要方法.解答问题时一定要寻求好判定定理所需要的条件,特别是相交的条件,即与已知平面平行的两条直线必须相交,才能确定面面平行.[活学活用]如图,在三棱柱 ABC-A 1B 1C 1 中,E ,F ,G ,H 分别 是 AB ,AC ,A 1B 1,A 1C 1 的中点. 求证:(1)B ,C ,H ,G 四点共面;(2)平面 EFA 1∥平面 BCHG. 证明:(1)∵GH 是 △A 1B 1C 1 的中位线, ∴GH ∥B 1C 1.又 B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面.(2)∵E ,F 分别为 AB ,AC 的中点,∴EF ∥BC.∵EF ⊄平面 BCHG ,BC ⊂ 平面 BCHG ,∴EF ∥平面 BCHG.∵A 1G 綊 EB ,∴四边形 A 1EBG 是平行四边形, ∴A 1E ∥GB.∵A 1E ⊄平面 BCHG ,GB ⊂ 平面 BCHG , ∴A 1E ∥平面 BCHG.∵A 1E ∩EF =E ,∴平面 EFA 1∥平面 BCHG.平行中探索存在性问题[典例] 在三棱柱 ABC-A 1B 1C 1 中,D ,E 分别是线段 BC ,CC 1 的中所以MD綊AC,OE綊AC,点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.[解]如图,取线段AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点.由已知,O为AC1的中点.连接MD,OE,则MD,OE分别为△ABC,△ACC1的中位线,1122因此MD綊OE.连接OM,从而四边形MDEO为平行四边形,则DE∥MO.因为直线DE平面A1MC,MO平面A1MC,所以直线DE∥平面A1MC.即线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.平行中探索存在性问题的判定是高考的常考内容,多出现在解答题中.证明线面平行的关键是找线线平行,注意利用所给几何体中隐含的线线位置关系,当题目中有中点时,一般考虑先探索中点,再用中位线定理找平行关系.[活学活用]如图所示,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为CC1,C1D1,DD1,CD的中点.N为BC的中点.试在E,F,G,H四个点中找两个点,使这两个点与点N确定一个平面α,且平面α∥平面BB1D1D.解:由面面平行的判定定理,若使平面α∥平面BB1D1D,只需在平面α内有两条相交直线平行于平面BB1D1D,或在平面α内有两条相交直线平行于平面BB1D1D内的两条相交直线即可.连接HN,HF,NF,易知HN∥BD,HF∥DD1,所以平面NHF∥平面BB1D1D,即在E,F,G,H四个点中,由H,F两点与点N确定的平面α满足条件.层级一学业水平达标1.下列选项中,一定能得出直线m与平面α平行的是()A.直线m在平面α外B.直线m与平面α内的两条直线平行C.平面α外的直线m与平面内的一条直线平行D.直线m与平面α内的一条直线平行解析:选C选项A不符合题意,因为直线m在平面α外也包括直线与平面相交;选项βB与D不符合题意,因为缺少条件m⊄α;选项C中,由直线与平面平行的判定定理,知直线m与平面α平行,故选项C符合题意.2.已知α,是两个不重合的平面,下列选项中,一定能得出平面α与平面β平行的是() A.平面α内有一条直线与平面β平行B.平面α内有两条直线与平面β平行C.平面α内有一条直线与平面β内的一条直线平行D.平面α与平面β不相交解析:选D选项A、C不正确,因为两个平面可能相交;选项B不正确,因为平面α内的这两条直线必须相交才能得到平面α与平面β平行;选项D正确,因为两个平面的位置关系只有相交与平行两种.故选D.3.在三棱锥A-BCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=2∶5,则直线AC与平面DEF的位置关系是()A.平行C.直线AC在平面DEF内B.相交D.不能确定解析:选A∵AE∶EB=CF∶FB=2∶5,∴EF∥AC.又EF⊂平面DEF,AC⊄平面DEF,∴AC∥平面DEF.4.已知a,b,c,d是四条直线,α,β是两个不重合的平面,若a∥b∥c∥d,a⊂α,b ⊂α,c⊂β,d⊂β,则α与β的位置关系是()A.平行C.平行或相交B.相交D.以上都不对解析:选C根据图1和图2可知α与β平行或相交.5.如图,下列正三棱柱ABC-A1B1C1中,若M,N,P分别为其所在棱的中点,则不能得出AB∥平面MNP的是()解析:选C在图A、B中,易知AB∥A1B1∥MN,所以AB∥平面MNP;在图D中,易知AB∥PN,所以AB∥平面MNP.故选C.6.已知l,m是两条直线,α是平面,若要得到“l∥α”,则需要在条件“m⊂α,l∥m”中另外添加的一个条件是________.解析:根据直线与平面平行的判定定理,知需要添加的一个条件是“l⊄α”.答案:l⊄α7.已知A,B两点是平面α外两点,则过A,B与α平行的平面有________个.解析:当A,B两点在平面α异侧时,不存在这样的平面.当A,B两点在平面同侧时,若直线AB∥α,则存在一个,否则不存在.答案:0或18.如图,在五面体FE-ABCD中,四边形CDEF为矩形,M,N分别是BF,BC的中点,则MN与平面ADE的位置关系是________.解析:∵M,N分别是BF,BC的中点,∴MN∥CF.又四边形CDEF为矩形,∴CF∥DE,∴MN∥DE.又MN⊄平面ADE,DE平面ADE,∴MN∥平面ADE.答案:平行9.如图所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD.E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使点P∉平面ABCD.求证:平面P AB∥平面EFG.证明:∵PE=EC,PF=FD,∴EF∥CD,又∵CD∥AB,∴EF∥AB.又EF⊄平面P AB,∴EF∥平面P AB.同理可证EG∥平面P AB.又∵EF∩EG=E,∴平面P AB∥平面EFG.10.已知正方形ABCD,如图(1)E,F分别是AB,CD的中点,将△ADE沿DE折起,如图(2)所示,求证:BF∥平面ADE.证明:∵E,F分别为AB,CD的中点,∴EB=FD.又∵EB∥FD,∴四边形EBFD为平行四边形,∴BF∥ED.∵DE平面ADE,而BF⊄平面ADE,∴BF∥平面ADE.层级二应试能力达标1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交解析:选B若在平面α内存在与直线l平行的直线,因l⊄α,故l∥α,这与题意矛盾.2.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G解析:选A画出相应的截面如图所示,即可得答案.3.已知P是正方体ABCD-A1B1C1D1的棱DD1上任意一点(不是端点),则在正方体的12条棱中,与平面ABP平行的有()A.3个C.9个B.6个D.12个解析:选A因为棱AB在平面ABP内,所以只要与棱AB平行的棱都满足题意,即A1B1,D1C1,DC.4.A,B是直线l外的两点,过A,B且和l平行的平面有()A.0个C.无数个B.1个D.以上都有可能解析:选D若AB与l平行,则和l平行的平面有无数个;若AB与l相交,则和l平行的平面没有;若AB与l异面,则和l平行的平面有一个.5.已知三棱柱ABC-A1B1C1,D,E,F分别是棱AA1,BB1,CC1的中点,则平面DEF与平面ABC的位置关系是________.解析:∵D ,E ,F 分别是棱 AA 1,BB 1,CC 1 的中点, ∴在平行四边形 AA 1B 1B 与平行四边形 BB 1C 1C 中,DE ∥AB ,EF ∥BC ,∴DE ∥平面 ABC ,EF ∥平面 ABC.又 DE ∩EF =E ,∴平面 DEF ∥平面 ABC.答案:平行6.如图是一几何体的平面展开图,其中 ABCD 为正方形,E ,F ,G ,H 分别为 P A ,PD ,PC ,PB 的中点.在此几何体中,给出下面四个结论:①平面 EFGH ∥平面 ABCD ;②直线 P A ∥平面 BDG ;③直线EF ∥平面 PBC ;④直线 EF ∥平面 BDG.其中正确的序号是________.解析:作出立体图形,可知平面 EFGH ∥平面 ABCD ;P A ∥平面 BDG ;EF ∥HG ,所以 EF ∥平面 PBC ;直线 EF 与平面 BDG 不平行.答案:①②③7.如图所示,在正方体 ABCD-A 1B 1C 1D 1 中,S 是 B 1D 1 的中点,E ,F , G 分别是 BC ,DC 和 SC 的中点.求证:平面 EFG ∥平面 BDD 1B 1.证明:如图所示,连接 SB ,SD ,∵F ,G 分别是 DC ,SC 的中点,∴FG ∥SD .又∵SD ⊂ 平面 BDD 1B 1,FG ⊄平面 BDD 1B 1, ∴FG ∥平面 BDD 1B 1.同理可证 EG ∥平面 BDD 1B 1, 又∵EG ⊂ 平面 EFG ,FG ⊂ 平面 EFG ,EG ∩FG =G , ∴平面 EFG ∥平面 BDD 1B 1.8.如图,已知底面是平行四边形的四棱锥 P-ABCD ,点 E 在 PD 上,且PE ∶ED =2∶1,在棱 PC 上是否存在一点 F ,使 BF ∥平面 AEC ?若存在,请证明你的结论,并说出点 F 的位置;若不存在,请说明理由.解:当 F 是棱 PC 的中点时,BF ∥平面 AEC.证明如下:取 PE 的中点M ,连接 FM ,则 FM ∥CE.因为 FM ⊄平面 AEC ,EC ⊂ 平面 AEC ,所以 FM ∥平面 AEC.由EM=PE=ED,得E为MD的中点,连接BM,BD,12设BD∩AC=O,则O为BD的中点.连接OE,则BM∥OE.因为BM平面AEC,OE⊂平面AEC,所以BM∥平面AEC.又因为FM⊂平面BFM,BM⊂平面BFM,FM∩BM=M,所以平面BFM∥平面AEC,所以平面BFM内的任何直线与平面AEC均没有公共点.又BF⊂平面BFM,所以BF与平面AEC没有公共点,所以BF∥平面AEC.2.2.3&2.2.4直线与平面平行的性质、平面与平面平行的性质预习课本P58~61,思考并完成以下问题1.线面平行的性质定理是什么?2.面面平行的性质定理是什么?3.面面平行还有哪些性质?[新知初探]1.直线与平面平行的性质(1)文字语言:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.(2)图形语言:(3)符号语言:α∩β=b ⎭β∩γ=b ⎭a ∥α⎫⎪a ⊂ β ⎬⇒ a ∥b .⎪[点睛] 定理中有三个条件:①直线 a 和平面 α 平行,即 a ∥α;②直线 a 在平面 β 内,即a ⊂ β;③平面 α,β 相交,即 α∩β=b .三个条件缺一不可.2.平面与平面平行的性质(1)文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(2)图形语言:(3)符号语言:α∥β⎫⎪α∩γ=a ⎬⇒ a ∥b .⎪[点睛] (1)已知两个平面平行,虽然一个平面内的任何直线都平行于另一个平面,但是这两个平面内的所有直线并不一定相互平行,它们可能是平行直线,也可能是异面直线,但不可能是相交直线.(2)该定理提供了证明线线平行的另一种方法,应用时要紧扣与两个平行平面都相交的第三个平面.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若直线 a ∥平面 α,直线 a ∥直线 b ,则直线 b ∥平面 α( )(2)若直线 a ∥平面 α,则直线 a 与平面 α 内任意一条直线都无公共点( )(3)若 α∥β,则平面 α 内有无数条互相平行的直线平行于平面 β( )答案:(1)× (2)√ (3)√2.梯形 ABCD 中,AB ∥CD ,AB ⊂ 平面 α,CD 平面 α,则直线 CD 与平面 α 内的直线的位置关系只能是()A .平行C .平行或相交B .平行或异面D .异面或相交解析:选 B 由题意,CD ∥α,则平面 α 内的直线与 CD 可能平行,也可能异面.3.过正方体 ABCD-A 1B 1C 1D 1 的顶点 A 1,C 1,B 的平面与底面 ABCD 所在的平面的交线为l ,则 l 与 A 1C 1 的位置关系是________.解析:由于平面ABCD∥平面A1B1C1D1,平面A1B1C1D1∩平面A1C1B=A1C1,平面ABCD∩平面A1C1B=l,所以l∥A1C1.答案:平行线面平行性质的应用[典例]如图,P是平行四边形ABCD所在平面外的一点,M是PC的中点,在DM上取一点G,过点G和AP作平面,交平面BDM于GH.求证:AP∥GH.[证明]如图,连接AC,交BD于点O,连接MO.∵四边形ABCD是平行四边形,∴点O是AC的中点.又∵点M是PC的中点,∴AP∥OM.又∵AP平面BDM,OM⊂平面BDM,∴AP∥平面BDM.∵平面P AHG∩平面BDM=GH,AP⊂平面P AHG,∴AP∥GH.线面平行的性质和判定经常交替使用,也就是通过线线平行得到线面平行,再通过线面平行得线线平行.利用线面平行的性质定理解题的具体步骤:(1)确定(或寻找)一条直线平行于一个平面;(2)确定(或寻找)过这条直线且与这个平行平面相交的平面;(3)确定交线;(4)由性质定理得出线线平行的结论.[活学活用]如图所示,已知两条异面直线AB与CD,平面MNPQ与AB,CD都平行,且点M,N,P,Q依次在线段AC,BC,BD,AD上,求证:四边形MNPQ是平行四边形.证明:∵AB∥平面MNPQ,且过AB的平面ABC交平面MNPQ于MN,∴AB∥MN.又过AB的平面ABD交平面MNPQ于PQ,∴AB∥PQ,∴MN∥PQ.同理可证NP∥MQ.∴四边形MNPQ为平行四边形.面面平行性质的应用α,M ,N 分别在线段 AB ,CD 上,且 =.求证:MN ∥α. 连接 NP ,DE ,则 = .∵AM CN AP CN = ,∴=.[典例] 如图所示,已知三棱柱 ABC-A ′B ′C ′中,D 是 BC 的中点,D ′是B ′C ′的中点,设平面 A ′D ′B ∩平面 ABC =a ,平面 ADC ′∩平面 A ′B ′C ′=b ,判断直线 a ,b 的位置关系,并证明.[解] 直线 a ,b 的位置关系是平行.∵平面 ABC ∥平面 A ′B ′C ′,平面 A ′D ′B ∩平面 ABC =a , 平面 A ′D ′B ∩平面 A ′B ′C ′=A ′D ′, ∴A ′D ′∥a ,同理可得 AD ∥b .又 D 是 BC 的中点,D ′是 B ′C ′的中点,∴DD ′綊 BB ′,而 BB ′綊 AA ′,∴DD ′綊 AA ′, ∴四边形 AA ′D ′D 为平行四边形, ∴A ′D ′∥AD ,因此 a ∥b .利用面面平行的性质定理判断两直线平行的步骤(1)先找两个平面,使这两个平面分别经过这两条直线中的一条;(2)判定这两个平面平行(此条件有时题目会直接给出); (3)再找一个平面,使这两条直线都在这个平面上; (4)由定理得出结论.[活学活用]如图,平面 α∥平面 β,AB ,CD 是两异面直线,且 A ,C ∈β,B ,C ∈AM CNMB ND证明:如图,过点A 作 AE ∥CD ,AE ∩α=E ,连接 BE ,在平面 ABE 内作MP ∥BE ,MP 交 AE 于 P ,AM APMB PEMB ND PE ND ∵平面 α∥平面 β,平面 ACDE ∩α=ED ,平面 ACDE ∩β=AC ,∴AC ∥ED ,∴PN ∥ED.∵PN ⊄α,ED ⊂ α,∴PN ∥α.∵PM ∥BE ,PM ⊄α,BE ⊂ α,∴PM ∥α.又PM∩PN=P,∴平面PMN∥平面α.∵MN⊂平面PMN,∴MN∥α.平行关系的综合应用[典例]在正方体ABCD-A1B1C1D1中,如图.(1)求证:平面AB1D1∥平面C1BD;(2)试找出体对角线A1C与平面AB1D1和平面C1BD的证明:A1E=EF=FC.[证明](1)因为在正方体ABCD-A1B1C1D1中,AD綊B1C1,所以四边形AB1C1D是平行四边形,所以AB1∥C1D.又因为C1D⊂平面C1BD,AB1平面C1BD.所以AB1∥平面C1BD.同理B1D1∥平面C1BD.又因为AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,所以平面AB1D1∥平面C1BD.(2)如图,连接A1C1交B1D1于点O1,连接AO1与A1C交于点E.又因为AO1⊂平面AB1D1,所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点;连接AC交BD于O,连接C1O与A1C交于点F,则点F就是A1C交点E,F,并与平面C1BD的交点.下面证明A1E=EF=FC.因为平面A1C1C∩平面AB1D1=EO1,平面A1C1C∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO1∥C1F.在△A1C1F中,O1是A1C1的中点,所以E是A1F的中点,即A1E=EF;同理可证OF∥AE,所以F是CE的中点,即CF=FE,所以A1E=EF=FC.(1)在遇到线面平行时,常需作出过已知直线与已知平面相交的辅助平面,以便运用线面平行的性质.(2)要灵活应用线线平行、线面平行和面面平行的相互联系、相互转化.在解决立体几何中的平行问题时,一般都要用到平行关系的转化.转化思想是解决这类问题的最有效的方法.=MB1NBPB NBl l [活学活用]如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN.求证:MN∥平面AA1B1B.证明:如图,作MP∥BB1交BC于点P,连接NP,∵MP∥BB1,∴CM CP.MB1PB∵BD=B1C,DN=CM,∴B1M=BN,∴∴CM DN=,CP DN=,∴NP∥CD∥AB.∵NP⊄平面AA1B1B,AB⊂平面AA1B1B,∴NP∥平面AA1B1B.∵MP∥BB1,MP⊄平面AA1B1B,BB1⊂平面AA1B1B,∴MP∥平面AA1B1B.又∵MP⊂平面MNP,NP⊂平面MNP,MP∩NP=P,∴平面MNP∥平面AA1B1B.∵MN⊂平面MNP,∴MN∥平面AA1B1B.层级一学业水平达标1.若直线l∥平面α,则过l作一组平面与α相交,记所得的交线分别为a,b,c,…,那么这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点解析:选A因为直线l∥平面α,所以根据直线与平面平行的性质知l∥a,∥b,∥c,…,所以a∥b∥c∥…,故选A.2.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH∥平面SCD,则()α∥c ⎫⎪ α∥γ⎫⎪α∥c⎫⎪a∥γ⎫⎪⎭⎭B .24 或 解析:选 B由 α∥β 得 AB ∥CD.分两种情况:若点 P 在 α,β 的同侧,则 = ,∴PB= ,∴BD = ;若点 P 在 α,β 之间,则有 = ,∴PB =16,∴BD =24.A .GH ∥SAB .GH ∥SDC .GH ∥SCD .以上均有可能解析:选 B因为 GH ∥平面 SCD ,GH ⊂ 平面 SBD ,平面 SBD ∩平面 SCD =SD ,所以 GH∥SD ,显然 GH 与 SA ,SC 均不平行,故选 B.3.在空间四边形 ABCD 中,E ,F ,G ,H 分别是 AB ,BC ,CD ,DA 上的点,当 BD ∥平面 EFGH 时,下列结论中正确的是()A .E ,F ,G ,H 一定是各边的中点B .G ,H 一定是 CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且 DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且 BF ∶FC =DG ∶GC解析:选 D 由于 BD ∥平面 EFGH ,由线面平行的性质定理,有 BD ∥EH ,BD ∥FG ,则 AE ∶EB =AH ∶HD ,且 BF ∶FC =DG ∶GC.4.已知 a ,b ,c 为三条不重合的直线,α,β,γ 为三个不重合的平面,现给出四个命题:①③⎬⇒ α∥β; β∥c ⎪⎭⎬⇒ a ∥α; a ∥c ⎪ ②④ ⎬⇒ α∥β; β∥γ⎪⎭⎬⇒ a ∥β.β∥γ⎪其中正确的命题是()A .①②③C .②B .①④D .①③④解析:选 C ①α 与 β 有可能相交;②正确;③有可能 a ⊂ α;④有可能 a ⊂ β.故选 C. 5.已知平面 α∥平面 β,P 是 α,β 外一点,过点 P 的直线 m 与 α,β 分别交于 A ,C 两点,过点 P 的直线 n 与 α,β 分别交于 B ,D 两点,且 P A =6,AC =9,PD =8,则 BD 的长为( )A .16C .14D .2024 5P A PBPC PD16 24 P A PB5 5 PC PD6.如图,在正方体 ABCD-A 1B 1C 1D 1 中,AB =2,点 E 为 AD 的中点,点 F 在 CD 上.若 EF ∥平面 AB 1C ,则线段 EF 的长度等于________.EF = AC = 2.BD 上的点,且 = ,求证:MN ∥平面 SBC.证明:在 AB 上取一点 P ,使AP =AM,连接 MP ,NP ,则 MP ∥SB.又 AM DN AP DN = ,∴ = ,∴NP ∥AD .解析:∵在正方体 ABCD-A 1B 1C 1D 1 中,AB =2,∴AC =2 2.又 E 为 AD 的中点,EF ∥平 面 AB 1C ,EF ⊂ 平面 ADC ,平面 ADC ∩平面 AB 1C =AC ,∴EF ∥AC ,∴F 为 DC 的中点,∴ 12答案: 27.过三棱柱 ABC-A 1B 1C 1 的任意两条棱的中点作直线,其中与平面 ABB 1A 1 平行的直线共 有________条.解析:记 AC ,BC ,A 1C 1,B 1C 1 的中点分别为 E ,F ,E 1,F 1,则直线 EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1 均与平面 ABB 1A 1 平行,故符合题意的直线共有 6 条.答案:68.已知 a ,b 表示两条直线,α,β,γ 表示三个不重合的平面,给出下列命题: ①若 α∩γ=a ,β∩γ=b ,且 a ∥b ,则 α∥β;②若 a ,b 相交且都在 α,β 外,a ∥α,b ∥β,则 α∥β;③若 a ∥α,a ∥β,则 α∥β;④若 a ⊂ α,a ∥β,α∩β=b ,则 a ∥b .其中正确命题的序号是________.解析:①错误,α 与 β 也可能相交;②正确,设 a ,b 确定的平面为 γ,依题意,得 γ∥α,γ∥β,故 α∥β;③错误,α 与 β 也可能相交;④正确,由线面平行的性质定理可知.答案:②④9.如图,S 是平行四边形 ABCD 所在平面外一点,M ,N 分别是 SA ,AM DNSM NBBP SM∵SB ⊂ 平面 SBC ,MP ⊄平面 SBC ,∴MP ∥平面 SBC.SM NB BP NB ∵AD ∥BC ,∴NP ∥BC.又 BC ⊂ 平面 SBC ,NP ⊄平面 SBC ,∴NP ∥平面 SBC.又 MP ∩NP =P ,∴平面 MNP ∥平面 SBC ,而 MN ⊂ 平面 MNP ,∴MN ∥平面 SBC.10.如图所示,四边形 ABCD 是矩形,P ∉平面 ABCD ,过 BC 作平BCFE 交 AP 于点 E ,交 DP 于点 F ,求证:四边形 BCFE 为梯形.面证明:∵四边形 ABCD 是矩形,∴BC ∥AD .∵AD ⊂ 平面 APD ,BC 平面 APD ,∴BC ∥平面 APD.又平面 BCFE ∩平面 APD =EF ,∴BC ∥EF ,∴AD ∥EF.又 E ,F 是△APD 边上的点,∴EF ≠AD ,∴EF ≠BC.∴四边形 BCFE 是梯形.层级二 应试能力达标1.已知平面 α,β,直线 a ,b ,c ,若 a ⊂ α,b ⊂ α,c ⊂ α,a ∥b ∥c ,且 a ∥β,b ∥β,c∥β,则平面 α 与 β 的位置关系是()A .平行C .平行或相交B .相交D .以上都不对解析:选 C 由题意可知,平面 α 内不一定有两条相交直线与平面 β 平行,所以平面 α与 β 有可能平行,也有可能相交.2.已知直线 a ∥平面 α,直线 b ⊂ 平面 α,则()A .a ∥bC .a 与 b 相交B .a 与 b 异面D .a 与 b 无公共点解析:选 D 由题意可知直线 a 与平面 α 无公共点,所以 a 与 b 平行或异面,所以两者无公共点.3.已知平面 α∥平面 β,a ⊂ α,b ⊂ β,则直线 a ,b 的位置关系是()A .平行C .异面B .相交D .平行或异面解析:选 D ∵平面 α∥平面 β,∴平面 α 与平面 β 没有公共点.∵a ⊂ α,b ⊂ β,∴直线a ,b 没有公共点,∴直线 a ,b 的位置关系是平行或异面.4.如图所示,P 是三角形 ABC 所在平面外一点,平面 α∥平面 ABC ,α 分别交线段 P A ,PB ,PC 于 A ′,B ′,C ′,若 P A ′∶AA ′=2∶3,则 △A ′B ′C ′与△ABC 面积的比为()A .2∶5C .4∶9B .3∶8D .4∶25解析:选 D∵平面 α∥平面 ABC ,平面 P AB ∩α=A ′B ′,平面 P AB ∩平面 ABC =AB ,∴A ′B ′∥AB.又∵P A ′∶AA ′=2∶3,∴A ′B ′∶AB =P A ′∶P A =2∶5.同理 B ′C ′∶BC =A ′C ′∶AC =2∶5.∴ △A ′B ′C △′与 ABC 相似,∴△S A ′B ′C ′∶△S ABC =4∶25. 5.如图,四边形 ABDC 是梯形,AB ∥CD ,且 AB ∥平面 α,M 是 AC 的中点,BD 与平面 αAC的中点,∴MN是梯形ABDC的中位线,故MN=(AB+CD)=5.(2)由(1)易知PQ=D1C=m.同理,EH=FG=n,∴m=n,∴AE∶EB=m∶n.22交于点N,AB=4,CD=6,则MN=________.解析:∵AB∥平面α,AB⊂平面ABDC,平面ABDC∩平面α=MN,∴AB∥MN.又M是12答案:56.如图,四边形ABCD是空间四边形,E,F,G,H分别是四边上的点,它们共面,且A C∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,则当四边形EFGH是菱形时,AE∶EB=________.解析:∵AC∥平面EFGH,∴EF∥AC,HG∥AC,∴EF=HG=BE AE BE AEAB AB AB AB答案:m∶n7.如图,在棱长为a的正方体ABCD-A1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.(1)求证:PQ∥平面DCC1D1;(2)求PQ的长;(3)求证:EF∥平面BB1D1D.解:(1)证明:如图所示.连接AC,CD1,∵P,Q分别是AD1,AC的中点,∴PQ∥CD1.又PQ平面DCC1D1,CD1⊂平面DCC1D1,∴PQ∥平面DCC1D1.12a.(3)证明:取B1C1的中点E1,连接EE1,FE1,则有FE1∥B1D1,EE1∥BB1,又FE1∩EE1=E1,B1D1∩BB1=B1,∴平面EE1F∥平面BB1D1D.又EF⊂平面EE1F,所以EF∥平面BB1D1D.8.如图,在三棱柱ABC-A1B1C1中,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB=2,若MB∥平面AEF,试判断点M在何位置.解:若MB∥平面AEF,过F,B,M作平面FBMN交AE于N,连接所以 MN ∥EC ,MN = EC =1,MN ,NF.因为 BF ∥平面 AA 1C 1C ,BF ⊂ 平面 FBMN ,平面 FBMN ∩平面 AA 1C 1C =MN ,所以 BF ∥MN .又 MB ∥平面 AEF ,MB ⊂ 平面 FBMN ,平面 FBMN ∩平面 AEF =FN ,所以 MB ∥FN ,所以 BFNM 是平行四边形,所以 MN ∥BF ,MN =BF =1.而 EC ∥FB ,EC =2FB =2,12故 MN 是△ACE 的中位线.所以 M 是 AC 的中点时,MB ∥平面 AEF.。
人教版高中数学必修二同步练习:直线与平面平行、平面与平面平行的性质
直线与平面平行、平面与平面平行的性质基础巩固1.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a 平行的直线()A.至少有一条B.至多有一条C.有且只有一条 D.没有解析:设n条直线交于点P,则P∉a,由直线a与点P确定的平面β与平面α必定有一条交线,设为直线b,由直线与平面平行的性质定理知a∥b,故n条直线中至多有一条直线与a平行.答案:B2.设a,b是两条直线,α,β是两个平面,若a∥α,a⊂β,α∩β=b,则α内与b相交的直线与a的位置关系是()A.平行 B.相交C.异面 D.平行或异面解析:条件即为线面平行的性质定理,所以a∥b,又a与α无公共点,故选C.答案:C3.两个平行平面与另两个平行平面相交所得四条直线的位置关系是()A.两两相互平行B.两两相交于同一点C.两两相交但不一定交于同一点D.两两相互平行或交于同一点解析:根据面面平行的性质,知四条交线两两相互平行,故选A.答案:A图14.如图1,在多面体ABC-DEFG中,平面ABC∥平面DEFG,EF∥DG,且AB=DE,DG=2EF,则()A.BF∥平面ACGDB.CF∥平面ABEDC.BC∥FGD.平面ABED∥平面CGF解析:取DG的中点为M,连接AM,FM,如图2所示.图2则由已知条件易证四边形DEFM是平行四边形,∴DE綊FM.∵平面ABC∥平面DEFG,平面ABC∩平面ADEB=AB,平面DEFG∩平面ADEB=DE,∴AB∥DE,∴AB∥FM.又AB=DE,∴AB=FM,∴四边形ABFM 是平行四边形,即BF∥AM.又BF⊄平面ACGD,∴BF∥平面ACGD.故选A.答案:A5.如图3①,在直角梯形ABCD中,AB∥CD,∠BAD=90°,点E为线段AB上异于A,B的点,点F为线段CD上异于C,D的点,且EF∥DA,沿EF 将面EBCF折起,如图3②,则下列结论正确的是()。
高中数学:2.2《直线、平面平行的判定及其性质》同步测试(新人教A版必修2)
AC 平面ACD
PE //AC,
AC//平面MNP
即平面MNP与平面ACD的交线//AC .
第 13 题. 如图,线段 AB , CD 所在直线是异面直
线,E ,F ,G ,H 分别是线段 AC ,CB ,BD ,
DA 的中点.
(1) 求证: EFGH 共面且 AB ∥面 EFGH ,
CD ∥面 EFGH ;
.
答案: 4∶25
第 20 题. 如图,在四棱锥 P ABCD 中, ABCD 是平行四边形, M , N 分别是 AB , PC
的中点.
求证: MN // 平面 PAD .
P
N
D
C
A
M
B
答案:证明:如图,取 CD 的中点 E ,连接 NE , ME ∵ M , N 分别是 AB , PC 的中点, ∴ NE//PD , ME//AD , 可证明 NE// 平面 PAD , ME// 平面 PAD . 又 NE ME E , ∴平面 MNE// 平面 PAD , 又 MN 平面 MNE ,∴ MN // 平面 PAD .
点,且 EFGH 为菱形,若 AC// 平面 EFGH , BD// 平面 EFGH , AC m , BD n ,
则 AE:BE
.
答案: m∶n .
第 18 题. 如图,空间四边形 ABCD 的对棱 AD 、 BC 成 60þ 的角,且 AD BC a ,平行于 AD 与 BC 的截面分别交 AB 、 AC 、 CD 、 BD 于 E 、 F 、 G 、 H . (1)求证:四边形 EGFH 为平行四边形; (2) E 在 AB 的何处时截面 EGFH 的面积最大?最大面积是多少?
答案:证明:连结 AF 并延长交 BC 于 M .连结 PM ,
人教A版高中数学必修2《2.2直线、平面平行的判定及其性质 习题2.2》_8
2.
3. (3)直线与平面平行的性质定理
(4)平面与平面平行的性质定理
(5)线线平行,线与面平行与面与面平行的联系
(1)展示同学所写的有代表性作业,让学生对所展示的作业
的初步印象进行点评,学生自由表达
(老师引导学生发现所展示作业的优缺点)
(1)让学生提出自己的疑点和难点,其他同学帮助解决,老
师引导点拨,让学生们在交流讨论中发现造成疑点和难点的关
键,从而找到解决问题的有效途径和方法。
(2)对习题2.2 中老师发现学生问题较多而学生又没有提出
来的问题进行针对性指导。
引
的
问题,
自
中
学
学习习惯。
引
数
分
题,
语
题。
数学抽象、
观想象、
推
素养。
2.2 直线与平面,平面与平面平行的判定与性质小结
条理清晰,
突出重点,
便于学生理
解和掌握。
最新【人教A版】高中数学同步辅导与检测:必修2-第二章2.2-2.2.3直线与平面平行的性质
第二章点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.3 直线与平面平行的性质A级基础巩固一、选择题1.已知直线l∥平面α,P∈α,那么过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内解析:如图所示,因为l∥平面α,P∈α,所以直线l与点P确定一个平面β,α∩β=m,所以P∈m,所以l∥m且m是唯一的.答案:B2.如果l∥平面α,则l平行于α内()A.全部直线B.唯一确定的直线C.任一直线D.过l的平面与α的交线解析:利用线面平行的性质定理知,选D.答案:D3.若两个平面与第三个平面相交有两条交线且两条交线互相平行,则这两个平面()A.有公共点B.没有公共点C.平行D.平行或相交答案:D4.如图所示,长方体ABCD-A1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是()A.平行B.相交C.异面D.平行和异面解析:因为E,F分别是AA1,BB1的中点,所以EF∥AB.又AB⊄平面EFGH,EF⊂平面EFGH,所以AB∥平面EFGH.又AB⊂平面ABCD,平面ABCD∩平面EFGH=GH,所以AB∥GH.答案:A5.如图所示,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则()A.MN∥PDB.MN∥PAC.MN∥ADD.以上均有可能解析:因为MN∥平面PAD,MN⊂平面PAC,平面PAD∩平面PAC=PA,所以MN∥PA.答案:B二、填空题6.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EH∥FG.则EH与BD的位置关系是______.解析:因为EH∥FG,FG⊂平面BCD,EH⊄平面BCD,所以EH∥平面BCD.因为EH⊂平面ABD,平面ABD∩平面BCD=BD,所以EH∥BD.答案:平行7.如图所示,正方体ABCD-A1B1C1D1中,AB=2,点E为AD 的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.解析:由于在正方体ABCD-A1B1C1D1中,AB=2,所以AC=2 2.又E为AD的中点,EF∥平面AB1C,EF⊂平面ADC,平面ADC∩平面AB1C=AC,所以EF∥AC,所以F为DC的中点,所以EF=12AC= 2.答案:28.如图,ABCDA1B1C1D1是正方体,若过A,C,B1三点的平面与底面A1B1C1D1的交线为l,则l与AC的关系是________.解析:因为AC∥面A1B1C1D1,根据线面平行的性质知l∥AC.答案:平行三、解答题9.如图,AB,CD为异面直线,且AB∥α,CD∥α,AC,BD 分别交α于M,N两点,求证AM∶MC=BN∶ND.证明:连接AD交α于点P,连接MP,NP,因为CD∥α,面ACD∩α=MP,所以CD ∥MP ,所以AM MC =APPD .同理可得NP ∥AB ,AP PD =BNND ,所以AM MC =BN ND.10.如图所示,四面体A -BCD 被一平面所截,截面EFGH 是一个矩形.(1)求证:CD ∥平面EFGH ; (2)求异面直线AB 、CD 所成的角. (1)证明:因为截面EFGH 是矩形, 所以EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD .所以EF ⊂平面ACD ,平面ACD ∩平面BCD =CD ,所以EF ∥CD . 又EF ⊂平面EFGH ,CD ⊄平面EFGH , 所以CD ∥平面EFGH .(2)解:由(1)知CD ∥EF ,同理AB ∥FG ,由异面直线所成角的定义知,∠EFG 即为所求.故AB 、CD 所成的角为90°.B 级 能力提升1.下列命题中,正确的命题是()A.若直线a上有无数个点不在平面α内,则a∥αB.若a∥α,则直线a与平面α内任意一条直线都平行C.若a⊂α,则a与α有无数个公共点D.若a⊄α,则a与α没有公共点解析:对于A,直线a与平面α有可能相交,所以A错;对于B,平面α内的直线和直线a可能平行,也可能异面,所以B错;对于D,因为直线a与平面α可能相交,此时有一个公共点,所以D错.答案:C2.对于平面M与平面N,有下列条件:①M、N都垂直于平面Q;②M、N都平行于平面Q;③M内不共线的三点到N的距离相等;④l,m为两条平行直线,且l∥M,m∥N;⑤l,m是异面直线,且l∥M,m∥M;l∥N,m∥N,则可判定平面M与平面N平行的条件是________(填正确结论的序号).解析:由面面平行的判定定理及性质定理知,只有②⑤能判定M∥N.答案:②⑤3.如图所示,已知P是▱ABCD所在平面外一点,M,N分别是AB,PC的中点,平面PBC∩平面PAD=l.(1)求证:l∥BC.(2)问:MN与平面PAD是否平行?试证明你的结论.证明:(1)因为BC∥AD,BC⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD.又BC⊂平面PBC,平面PBC∩平面PAD=l,所以l∥BC.(2)平行.如图所示,取PD的中点E,连接AE,NE.因为N是PC的中点,所以EN綊12CD.因为M为▱ABCD边AB的中点,所以AM綊12CD.所以EN綊AM,所以四边形AMNE为平行四边形,所以MN∥AE.又MN⊄平面PAD,AE⊂平面PAD,所以MN∥平面PAD.。
人教A版高中数学必修二 2.2直线、平面平行的判定及其性质(习题课)课件(22张ppt)
方 1.平行问题的转化关系 法
与
技
巧
2.在解决线面、面面平行的判定时,一般遵循从“低
失 维”到“高维”的转化,即从“线线平行”到“线面 误 平行”,再到“面面平行”;而在应用性质定理时, 与 其顺序恰好相反,但也要注意,转化的方向总是由题 防 目的具体条件而定,决不可过于“模式化”.
方 法 三 如 图 , 在 平 面 ABEF 内 , 过 点 P 作 PM∥BE,交 AB 于点 M,连接 QM.
∵PM⊄平面 BCE,BE⊂平面 BCE
∴PM∥平面 BCE, ∵PM∥BE,∴APEP=AMMB, 又 AE=BD,AP=DQ,∴PE=BQ, ∴APEP=DBQQ,∴AMMB=DQQB, ∴MQ∥AD,又 AD∥BC,∴MQ∥BC,
(5)若 //,m,n,则 m//n; 错误
(6)若 //,l,则 l//;
正确
要点梳理:6.面面平行的性质定理
图形 性质
条件
α∥β, α∩γ=a, β∩γ=b
结论
a∥b
空间中各种平行关系相互转化关系的示意图
判定定理 性质
二.基础自测、巩固知识
1.平面α与圆台的上、下底面分别相交于直线m、n, 则m、n的位置关系是( )
《 2.2 直线、平面平行的判定及其性质 》
一.小题前锋,知识再现
已 知 l、 m 是 不 同 的 直 线 , 、 是 不 重 合 的 平 面 , 给出下列命题: (1) 若 l , 则 l / / ; (2)若 l / /, l / /m ,则 m / / ; (3) 若 l / / , m , 则 l / / m ; (4)若 m , n , m / /n,则 / / ; (5)若 / / , m , n ,则 m / /n; (6)若 / / ,l ,则 l / / . 其中真命题有
高中数学必修二人教A版练习:2.2.3直线与平面平行的性质含解析.doc
2.2.3 直线与平面平行的性质【选题明细表】1.若一条直线和一个平面平行,夹在直线和平面间的两条线段相等,那么这两条线段所在直线的位置关系是( D )(A)平行(B)相交(C)异面(D)平行、相交或异面2.已知两条相交直线a,b,a∥平面α,则b与α的位置关系是( D )(A)b⊂平面α(B)b∥α或b⊂α(C)b∥平面α(D)b与平面α相交或b∥平面α解析:b与a相交,可确定一个平面,记为β,若β与α平行,则b∥α;若β与α不平行,则b与α相交.3.(2018·北京西城期末)设α,β是两个不同的平面,l是一条直线,若l∥α,l∥β,α∩β=m,则( A )(A)l与m平行(B)l与m相交(C)l与m异面(D)l与m垂直解析:如图所示,α,β是两个不同的平面,l是一条直线,当l∥α,l∥β,且α∩β=m时,l∥m.故选A.4.如图,四棱锥P ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( B )(A)MN∥PD(B)MN∥PA(C)MN∥AD(D)以上均有可能解析:因为MN∥平面PAD,平面PAC∩平面PAD=PA,MN⊂平面PAC,所以MN∥PA.5.如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.则四边形BCFE的形状为.解析:因为BC∥平面PAD,平面BCFE∩平面PAD=EF,所以EF∥BC,又EF≠AD,AD=BC,所以四边形BCFE为梯形.答案:梯形6.证明:如果一条直线和两个相交的平面都平行,那么这条直线与这两个平面的交线平行.证明:已知:直线a∥平面α,直线a∥平面β,且α∩β=b.求证:a∥b.如图,经过直线a作平面γ,δ,使γ∩α=c,δ∩β=d.由题意可知a∥α,a⊂γ,γ∩α=c,所以a∥c,同理a∥d,所以c∥d,又因为d⊂β,a⊄β,所以c⊄β,因此c∥β.又c⊂α,α∩β=b,所以c∥b.因为a∥c,由基本性质4知a∥b.7.(2018·合肥二模)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( C )(A)0条(B)1条(C)2条(D)1条或2条解析:如图所示,四边形EFGH为平行四边形,则EF∥GH.因为EF⊄平面BCD,GH⊂平面BCD,所以EF∥平面BCD.因为EF⊂平面ACD,平面BCD∩平面ACD=CD,所以EF∥CD,所以CD∥平面EFGH.同理AB∥平面EFGH.故选C.8.在三棱锥S ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,点D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为( A )(A) (B)(C)45 (D)45解析:取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF∥DE,HF=DE,所以四边形DEFH为平行四边形.又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,所以四边形DEFH为矩形, 其面积S=HF·HD=(AC)·(SB)=.9.如图,四边形ABCD是空间四边形,E,F,G,H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,则当四边形EFGH是菱形时,AE∶EB= .解析:因为AC∥平面EFGH,所以EF∥AC,HG∥AC.所以EF=HG=·m.同理,EH=FG=·n.因为四边形EFGH是菱形,所以·m=·n,所以AE∶EB=m∶n.答案:m∶n10.如图,在长方体ABCD A1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:如图,连接AC,A1C1,在长方体ABCD A1B1C1D1中,AA1∥CC1,且AA1=CC1,所以四边形ACC1A1是平行四边形.所以AC∥A1C1.因为AC⊄平面A1BC1,A1C1⊂平面A1BC1,所以AC∥平面A1BC1.因为AC⊂平面PAC,平面A1BC1∩平面PAC=MN,所以AC∥MN.因为MN⊄平面ABCD,AC⊂平面ABCD,所以MN∥平面ABCD.11.在空间四边形ABCD中,AC,BD为其对角线,E,F,G,H分别为AC,BC,BD,AD上的点,若四边形EFGH为平行四边形,求证:AB∥平面EFGH.证明:因为四边形EFGH为平行四边形,所以EF∥GH. 因为GH⊂平面ABD,EF⊄平面ABD,所以EF∥平面ABD.因为EF⊂平面ABC,平面ABC∩平面ABD=AB,所以EF∥AB.因为AB⊄平面EFGH,EF⊂平面EFGH,所以AB∥平面EFGH.。
高中数学人教A版必修二教案:2.2.2直线与平面平行的性质
无公共点.
线与平面平行可得到直线与直
又因为 , b ,所 线平行,这给出了一种作平行
以 a∥b.
线的重要方法.
3.定理 一条直线与一个
平面平行,则过这条直线的任
一平面与此平面的交线与该直
线平行.
简证为:线面平行则线线
平行.
符号表示:
a P
a
a
Pb
a I b
典例剖析
例2 如 图所示的一 块林料中,棱 BC 平行平面 A′C′.
∴ EG AF BD 5 4 20 .
AC
9
9
--------------------------------------------------------
----------------------------------------------------------------------------
(1)知,EF∥BC,因此
EF PBC
EF 平平AC平平
EF
P显然都与平面 AC 相交.
例 3 已知平面外的两条平
----------------------------------------------------------------------------
第二课时 直线与平面平行的性质
(一)教学目标
1.知识与技能
掌握直线与平面平行的性质定理及其应用.
2.过程与方法
学生通过观察与类比,借助实物模型性质及其应用.
1.线线平行
性质定理
行
线面平
构建
知识系统 学生归纳后教师总结完善
思维的严
2.在学习性质定时注意事项
谨性.
课后作业
2.2 第二课时 习案
高中数学 2.2.2直线与平面平行的性质课件 新人教A版必修2
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
(图片来自网络)
1 费曼学习法--实操步骤 获取并理解
2 根据参考复述
费
3 仅靠大脑复述
曼
4 循环强化
学
5 反思总结
习
6 实践检验
法
费曼学习法--
实操
第一步 获取并理解你要学习的内容
(一) 理 解 并 获 取
1.知识获取并非多多益善,少而精效果反而可能更好,建议入门时选择一个概念或 知识点尝试就好,熟练使用后,再逐渐增加,但也不建议一次性数量过多(根据自 己实际情况,参考学霸的建议进行筛选); 2.注意用心体会“理解”的含义。很多同学由于学习内容多,时间紧迫,所以更 加急于求成,匆匆扫一眼书本,就以为理解了,结果一合上书就什么都不记得了。 想要理解,建议至少把书翻三遍。
1第一遍知道大概说了什么就行;
2第二遍知道哪块是重点;
3第三遍可以做出一些判断。
高效学习逻辑 思维
事实知识(know--what):知道是什么的知识, 主要叙述事实方面的知识; 原理知识(know--why):知道为什么的知识, 主 要是自然原理和规律方面的知识; 技能知识(know--how):知道怎么做的知识, 主要是对某些事物的技能和能力; 人力知识(know--who):知道是谁的知识, 主 要是谁知道以及谁知道如何做某些事的能力;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学·必修2(人教A版)
2.2 直线、平面平行的判定及其性质
2.2.2 直线与平面平行的性质
基础达标
1.直线a∥平面α,平面α内有n条直线交于一点,那么这n条直线中与直线a平行的( )
A.至少有一条 B.至多有一条
C.有且只有一条 D.不可能有
解析:直线a与n条直线的交点可确定一个平面,该平面与平面α的交线与a平行,故至多有一条直线与a平行.
答案:B
2.下面给出四个结论,其中正确结论的个数是( )
①若a∥α,b∥α,则a∥b;
②若a∥α,b⊂α,则a∥b;
③若a∥b,b⊂α,则a∥α;
④若a∥b,b∥α,则a∥α.
A.0个 B.1个 C.2个 D.4个
解析:①②③④都不正确.
答案:A
3.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )
A.AC⊥BD
B.A C∥截面PQMN
C.AC=BD
D.异面直线PM与BD所成的角为45°
答案:C
4.a∥β,b∥β,则直线a与b的位置关系:①平行;②垂直不相交;③垂直相交;
④不垂直且不相交.其中可能成立的有________.
答案:①②③④
5.三条异面直线a,b,c两两异面,它们所成的角都相等且存在一个平面与这三条直线都平行,则a与b所成的角的度数为( )
A.30° B.45° C.60° D.90°
解析:与a,b,c都平行的平面记为α,如图所示,作a′∥a,b′∥b,c′∥c,则a′,b′,c′所成的角都相等,即为60°.
答案:C
6.已知直线a,b,平面α,且a∥b,a∥α,a,b都在平面α外,求证:b∥α.
证明:过a作平面β,使它与平面α相交,交线为c,
∵a∥α,a⊂β,a⊄α,α∩β=c,∴a∥c.
∵a∥b,∴b∥c.
又∵c⊂α,b⊄α,∴b∥α.
巩固提升
7.E,H分别是空间四边形ABCD的边AB,AD的中点,平面α过EH分别交BC,CD于F,G.求证:EH∥FG.
证明:连接EH.
∵E,H分别是AB,AD的中点,
∴EH∥BD.
又BD⊂平面BCD,
EH⊄平面BCD,
∴EH∥平面BCD.
又EH⊂平面α,平面α∩平面BCD=FG,
∴EH∥FG.
8.如图所示,一平面与空间四边形ABCD的对角线AC,BD都平行,且交空间四边形的边AB,BC,CD,DA分别于E,F,G,H.
(1)求证:EFGH为平行四边形;
解析:证明:∵BD∥平面EFGH,BD⊂平面ABD,平面ABD∩平面EFGH=EH,
∴BD∥EH,同理BD∥FG.
∴EH∥FG,同理EF∥HG.
∴四边形EFGH为平行四边形.
(2)若AC=BD,四边形EFGH能否为菱形?
解析:四边形EFGH为菱形.
(3)在什么情况下,四边形EFGH为矩形?
解析:当AC⊥BD时,四边形EFGH为矩形.
(4)在什么情况下,四边形EFGH为正方形?
解析:当AC⊥BD,AC=BD,且E,F,G,H分别是AB,BC,CD,AD的中点时,四边形EFGH为正方形.。