2018年广东省东莞市寮步宏伟中学中考数学一模试卷

合集下载

(汇总3份试卷)2018年东莞市中考数学一模数学试题及答案

(汇总3份试卷)2018年东莞市中考数学一模数学试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .3【答案】B 【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B .【点睛】此题考查由三视图判断几何体,解题关键在于识别图形2.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.5【答案】B 【解析】解:∵∠ACB =90°,∠ABC =60°,∴∠A =10°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =10°, ∴∠A =∠ABD ,∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =1. 故选B .3.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C 3D .3【答案】D 【解析】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.4.下列计算或化简正确的是( )A .234265=B 842=C 2(3)3-=-D 2733= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B 822=,故B 错误;C 2(3)3-=,故C 错误;D 27327393=÷==,正确. 故选D .5.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =- B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.6.如图,在△ABC 中,∠C=90°,点D 在AC 上,DE ∥AB ,若∠CDE=165°,则∠B 的度数为( )A.15°B.55°C.65°D.75°【答案】D【解析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.7.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个【答案】C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.8.2-的相反数是A.2-B.2 C.12D.12-【答案】B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.9.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC 的度数为()A.125°B.75°C.65°D.55°【答案】D【解析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .二、填空题(本题包括8个小题)11.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG =﹣,﹣2),OH =,12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).【答案】①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC 与OD 垂直;②∵3cos301tan45sin60⨯+⋅=+= ∴OE 与OF 不垂直.③∵()1202+-⨯=, ∴OG 与OH 垂直.④∵()02210π⨯+⨯-=,∴OM 与ON 垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.13______________.【答案】-1-1.故答案为:-1.14.若点(a,1)与(﹣2,b)关于原点对称,则b a=_______.【答案】12.【解析】∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴b a=12-=12.故答案为12.考点:关于原点对称的点的坐标.15.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.【答案】85【解析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.16x<<x的值是_____.【答案】3,1【解析】直接得出23,15,进而得出答案.【详解】解:∵23,15,∴x<<x的值是:3,1.故答案为:3,1.【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.17.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.【答案】7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 18.在平面直角坐标系中,将点A (﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.【答案】(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A (-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题(本题包括8个小题)19.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p 取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x 1+x 2=5、x 1x 2=6-p 2-p ,结合x 12+x 22-x 1x 2=3p 2+1,即可求出p 值. 详解:(1)证明:原方程可变形为x 2-5x+6-p 2-p=1.∵△=(-5)2-4(6-p 2-p )=25-24+4p 2+4p=4p 2+4p+1=(2p+1)2≥1,∴无论p 取何值此方程总有两个实数根;(2)∵原方程的两根为x 1、x 2,∴x 1+x 2=5,x 1x 2=6-p 2-p .又∵x 12+x 22-x 1x 2=3p 2+1,∴(x 1+x 2)2-3x 1x 2=3p 2+1,∴52-3(6-p 2-p )=3p 2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.20.在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.【答案】(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+3或7﹣3【解析】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC 是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,AB ABABD ABD BD BD'=⎧⎪∠=∠⎨='⎪⎩∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,AD AD D B D C AB AC=⎧⎪=⎨⎪=''⎩'∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠ABC﹣∠DBC=90°﹣12α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣12α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣12α﹣β+90°﹣12α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴3,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=73;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣12α﹣[β﹣(90°﹣12α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴3,∴3故答案为:373【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21.观察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D 落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=2,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.【答案】(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AMCF DC,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴MD AM,CF DC设DC=x,∵∠ACB=45°,2,∴AM=CM=1,MD=1-x,∴11x CF x -=, ∴CF=-x 2+x=-(x-12)2+14, ∴当x=12时有最大值,CF 最大值为14. 点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质. 22.某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?【答案】(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】(1)设文学书的单价为x 元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购进m 本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m 的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x 元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x =40,经检验,x =40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m 本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m 为整数,∴m 的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.如图,二次函数232(0)2y ax x a =-+≠的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).求抛物线与直线AC 的函数解析式;若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.【答案】(1)122y x =+(1)S=﹣m 1﹣4m+4(﹣4<m <0)(3)(﹣3,1)、(3412-,﹣1)、(3412-+,﹣1) 【解析】(1)把点A 的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A ,C 两点的坐标,可求得直线AC 的函数解析式;(1)先过点D 作DH ⊥x 轴于点H ,运用割补法即可得到:四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,据此列式计算化简就可求得S 关于m 的函数关系;(3)由于AC 确定,可分AC 是平行四边形的边和对角线两种情况讨论,得到点E 与点C 的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E 的坐标.【详解】(1)∵A (﹣4,0)在二次函数y=ax 1﹣32x+1(a≠0)的图象上, ∴0=16a+6+1,解得a=﹣12, ∴抛物线的函数解析式为y=﹣12x 1﹣32x+1; ∴点C 的坐标为(0,1),设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=, 解得1{22k b ==,∴直线AC 的函数解析式为:122y x =+;(1)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣12m 1﹣32m+1),过点D 作DH ⊥x 轴于点H ,则DH=﹣12m 1﹣32m+1,AH=m+4,HO=﹣m ,∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=12(m+4)×(﹣12m 1﹣32m+1)+12(﹣12m 1﹣32m+1+1)×(﹣m ),化简,得S=﹣m 1﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=1,∴y E =±1.当y E =1时,解方程﹣12x 1﹣32x+1=1得,x 1=0,x 1=﹣3,∴点E 的坐标为(﹣3,1);当y E =﹣1时,解方程﹣12x 1﹣32x+1=﹣1得,x 1,x 1,∴点E 的坐标为(32-,﹣1)或(32-,﹣1);②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =1,∴点E 的坐标为(﹣3,1).综上所述,满足条件的点E 的坐标为(﹣3,1)、,﹣1)、,﹣1).24.解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.【答案】x≥3 5【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:()3172323x xxx x⎧--<⎪⎨--≤⎪⎩①②,由①得,x>﹣2;由②得,x≥35,故此不等式组的解集为:x≥35.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C 的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使3,请说明你的理由.【答案】(1)275(2)证明见解析(3)F在直径BC下方的圆弧上,且23BF BC=【解析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得CD CEBA BC=,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=3CD=3CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且23BF BC=.【详解】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴CE EFBE CE=,∵BE=15,CE=9,即:9159EF=,解得:EF=275;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴CF CDBF BA=,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴CF CEBF BC=,∴CD CEBA BC=,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD ,∴BC=3CD=3CE ,在Rt △BCE 中,tan ∠CBE=13CE BC =, ∴∠CBE=30°,故CF 为60°,∴F 在直径BC 下方的圆弧上,且23BF BC =.【点睛】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.26.为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长602米,坡角(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 3:1,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?【答案】(1)(30103)-m (2)(30213)+米【解析】分析:(1)由三角函数的定义,即可求得AM 与AF 的长,又由坡度的定义,即可求得NF 的长,继而求得平台MN 的长;(2)在RT △BMK 中,求得BK=MK=50米,从而求得 EM=84米;在RT △HEM 中,求得283HE =,继而求得28350HG =+米.详解:(1)∵MF ∥BC ,∴∠AMF=∠ABC=45°,∵斜坡AB 长1002米,M 是AB 的中点,∴AM=502(米),∴AF=MF=AM•cos ∠AMF=2502502⨯=(米), 在RT ANF 中,∵斜坡AN 的坡比为3∶1,∴31AF NF =, ∴5033NF ==, ∴MN=MF-NF=50-503=150503-.(2)在RT △BMK 中,BM=502,∴BK=MK=50(米),EM=BG+BK=34+50=84(米)在RT △HEM 中,∠HME=30°,∴3tan30HE EM =︒=, ∴384283HE == ∴28350HG HE EG HE MK =+=+=(米)答:休闲平台DE 150503-GH 高为()28350米. 点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似【答案】B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.2.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0D.k≥﹣1且k≠0【答案】C【解析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.3.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8 C.5x+4y=-3 D.3x-4y=-8【解析】试题分析:将x 与y 的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x ﹣4y=﹣1.故选D .点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 4.抛物线223y x =(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 【答案】A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A .【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .5.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等【答案】C【解析】图中,线段GH 和EF 将大平行四边形ABCD 分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.6.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )A .小亮骑自行车的平均速度是12 km/hB .妈妈比小亮提前0.5 h 到达姥姥家C .妈妈在距家12 km 处追上小亮D .9:30妈妈追上小亮【答案】D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A 、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h ),故正确;B 、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时), ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C 、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km ,∴妈妈在距家12km 出追上小亮,故正确;D 、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D .【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.7.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,D E ,则E 为BC 的中点,已知50BAC ∠=,则C ∠=( )A.55B.60C.65D.70【答案】C【解析】连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,∵AB是直径,∴∠AEB=90°,即AE⊥BC,∵EB=EC,∴AB=AC,∴∠C=∠B,∵∠BAC=50°,∴∠C=12(180°-50°)=65°,故选:C.【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.8.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.3 【答案】D【解析】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.9.在平面直角坐标系中,点(2,3)所在的象限是()A.第一象限B.第二象限 C.第三象限D.第四象限【答案】A【解析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限.故答案为:A【点睛】考核知识点:点的坐标与象限的关系.10.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1【答案】C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.二、填空题(本题包括8个小题)11.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.。

2018年广东省东莞市五校中考数学一模试卷(有答案)

2018年广东省东莞市五校中考数学一模试卷(有答案)

2018年广东省东莞市塘厦中学等五校中考数学一模试卷一.选择题(本大题10小题,每小题3分,共30分)1.(3分)已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1062.(3分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|3.(3分)数据21、12、18、16、20、21的众数和中位数分别是()A.21和19 B.21和17 C.20和19 D.20和184.(3分)下列交通标志是轴对称图形的是()A.B.C.D.5.(3分)下列运算结果正确的是()A.5x﹣x=5 B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=06.(3分)在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.7.(3分)下列长度的三条线段能组成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,48.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115° D.120°9.(3分)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.10.(3分)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠C=∠E;②△ADE∽△FDB;③∠AFE=∠AFC;④FD=FB.其中正确的结论是()A.①③B.②③C.①④D.②④二.填空题(本大题6小题,每小题4分,共24分)11.(4分)一个多边形的每一个外角为30°,那么这个多边形的边数为.12.(4分)因式分解:9x2﹣4=.13.(4分)方程x2+2x﹣1=0配方得到(x+m)2=2,则m=.14.(4分)在一个不透明的布袋中装有5个红球,2个白球,3个黄球,它们除了颜色外其余都相同,从袋中任意摸出一个球,是黄球的概率为.15.(4分)不等式组的解集为.16.(4分)把正方形ABCD沿对边中点所在直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM=.三、解答题(一)(本大题共3题,每小题6分,共18分)17.(6分)(1)计算:()﹣1﹣6cos30°﹣()0+(2)解方程:4x2+x﹣3=0.18.(6分)先化简,再求值:,其中a=3.19.(6分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°.(1)请在图中用尺规作图的方法作出AC的垂直平分线交BC于点D,交AC于点E (不写作法,保留作图痕迹).(2)在(1)的条件下,连接AD,求证:△ABC∽△EDA.四、解答题(二)(本大题共3题,每小题7分,共21分)20.(7分)企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为人,请补全条形统计图;(2)统计的捐款金额的中位数是元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?21.(7分)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?22.(7分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,(1)求点C到直线AB的距离;(2)求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)五、解答题(三)(本大题共3题,每小题9分,共27分)23.(9分)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A 的坐标为(2,3),BE⊥x轴,垂足为E.(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.24.(9分)如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF 的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求的长度;(3)若DE=4,AE=8,求线段EG的长.25.(9分)如图,在正方形ABCD中,AB=4,点E在对角线AC上,连接BE、DE,(1)如图1,作EM⊥AB交AB于点M,当AE=时,求BE的长;(2)如图2,作EG⊥BE交CD于点G,求证:BE=EG;(3)如图3,作EF⊥BC交BC于点F,设BF=x,△BEF的面积为y.当x取何值时,y取得最大值,最大值是多少?当△BEF的面积取得最大值时,在直线EF取点P,连接BP、PC,使得∠BPC=45°,求EP的长度.2018年广东省东莞市塘厦中学等五校中考数学一模试卷参考答案与试题解析一.选择题(本大题10小题,每小题3分,共30分)1.(3分)已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×106【解答】解:316 000 000用科学记数法可表示为3.16×108,故选:C.2.(3分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选:D.3.(3分)数据21、12、18、16、20、21的众数和中位数分别是()A.21和19 B.21和17 C.20和19 D.20和18【解答】解:在这一组数据中21是出现次数最多的,故众数是21;数据按从小到大排列:12、16、18、20、21、21,中位数是(18+20)÷2=19,故中位数为19.故选:A.4.(3分)下列交通标志是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.5.(3分)下列运算结果正确的是()A.5x﹣x=5 B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=0【解答】解:A、5x﹣x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、﹣n2﹣n2=﹣2n2,正确;D、a2b与ab2不是同类项,不能合并,错误;故选:C.6.(3分)在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.【解答】解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.7.(3分)下列长度的三条线段能组成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,4【解答】解:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选:D.8.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115° D.120°【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选:B.9.(3分)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选:D.10.(3分)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠C=∠E;②△ADE∽△FDB;③∠AFE=∠AFC;④FD=FB.其中正确的结论是()A.①③B.②③C.①④D.②④【解答】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∠AFE=∠C∴∠AFC=∠C,∴∠AFE=∠AFC;由∠B=∠E,∠ADE=∠FDB,可知△ADE∽△FDB;无法得到∠C=∠E;FD=FB.综上可知:②③正确.故选:B.二.填空题(本大题6小题,每小题4分,共24分)11.(4分)一个多边形的每一个外角为30°,那么这个多边形的边数为12.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.12.(4分)因式分解:9x2﹣4=(3x﹣2)(3x+2).【解答】解:9x2﹣4=(3x﹣2)(3x+2).故答案为:(3x﹣2)(3x+2).13.(4分)方程x2+2x﹣1=0配方得到(x+m)2=2,则m=1.【解答】解:x2+2x﹣1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,则m=1;故答案为:1.14.(4分)在一个不透明的布袋中装有5个红球,2个白球,3个黄球,它们除了颜色外其余都相同,从袋中任意摸出一个球,是黄球的概率为.【解答】解:∵不透明的布袋中装有5个红球,2个白球,3个黄球,共有10个球,∴从袋中任意摸出一个球,是黄球的概率为;故答案为:.15.(4分)不等式组的解集为2<x≤3.【解答】解:,解不等式①,得x>2.解不等式②,得x≤3,故不等式组的解集为2<x≤3.故答案为2<x≤3.16.(4分)把正方形ABCD沿对边中点所在直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM=.【解答】解:由翻折的性质可知:BM=MC=1,AB=BF=2.在Rt△BFM中,由勾股定理可知:MF==.故答案为:.三、解答题(一)(本大题共3题,每小题6分,共18分)17.(6分)(1)计算:()﹣1﹣6cos30°﹣()0+(2)解方程:4x2+x﹣3=0.【解答】解:(1)原式=2﹣6×﹣1+3=1;(2)分解因式得:(4x﹣3)(x+1)=0,解得:x=或x=﹣1.18.(6分)先化简,再求值:,其中a=3.【解答】解:当a=3时,原式=÷=•==.19.(6分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°.(1)请在图中用尺规作图的方法作出AC的垂直平分线交BC于点D,交AC于点E (不写作法,保留作图痕迹).(2)在(1)的条件下,连接AD,求证:△ABC∽△EDA.【解答】(1)解:如图,DE为所作;(2)证明:∵点D在AC的垂直平分线上,∴DA=DC,∴∠CAD=∠C=30°,∵∠DEA=∠BAC=90°,∴△ABC∽△EDA.四、解答题(二)(本大题共3题,每小题7分,共21分)20.(7分)企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为50人,请补全条形统计图;(2)统计的捐款金额的中位数是150元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?【解答】解:(1)50,补全条形统计图,故答案为:50;(2)150,故答案为:150;(3)×360°=72°.(4)(50×4+100×10+150×12+200×18+300×6)×500=84000(元).21.(7分)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.22.(7分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,(1)求点C到直线AB的距离;(2)求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)【解答】解:(1)如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴点C到直线AB距离CD=AC=40.(2)在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到达事故船C处所需的时间大约为:50÷40=(小时).五、解答题(三)(本大题共3题,每小题9分,共27分)23.(9分)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A 的坐标为(2,3),BE⊥x轴,垂足为E.(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.【解答】解:(1)将点A(2,3)代入解析式y=,得:k=6;(2)将D(3,m)代入反比例解析式y=,得:m==2,∴点D坐标为(3,2),设直线AD解析式为y=kx+b,将A(2,3)与D(3,2)代入得:,解得:则直线AD解析式为y=﹣x+5;(3)过点C作CD⊥x轴,垂足为D,∴CD∥BE,∴△OCD∽△OBE,∵C为OB的中点,即,∴CD==,∵C在双曲线y=上,∴C(4,),∴OD=4,OE=8,∴AB=8﹣2=6,==9.得:S△AOB24.(9分)如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF 的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求的长度;(3)若DE=4,AE=8,求线段EG的长.【解答】(1)证明:连接OD,如图1,∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB,而∠P+∠DAF+∠DAB=90°,∴∠P=30°,∴∠POD=60°,∴的长度==π;(3)解:连接DG,如图2,∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,设OD=OA=x,则OE=8﹣x,在Rt△ODE中,∵OE2+DE2=OD2,∴(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直径,∴∠CDG=90°,在Rt△DCG中,DG==6,在Rt△DEG中,EG==2.25.(9分)如图,在正方形ABCD中,AB=4,点E在对角线AC上,连接BE、DE,(1)如图1,作EM⊥AB交AB于点M,当AE=时,求BE的长;(2)如图2,作EG⊥BE交CD于点G,求证:BE=EG;(3)如图3,作EF⊥BC交BC于点F,设BF=x,△BEF的面积为y.当x取何值时,y取得最大值,最大值是多少?当△BEF的面积取得最大值时,在直线EF取点P,连接BP、PC,使得∠BPC=45°,求EP的长度.【解答】解:(1)∵四边形ABCD是正方形,∴∠BAC=45°,∵EM⊥AB,∴△AME是等腰直角三角形,∵AE=,∴AM=EM=1,(1分)∵AB=4,∴BM=3,∴BE=;(2分)(2)如图2,∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°,BC=CD,∵CE=CE,∴△BCE≌△DCE,∴BE=DE,∠CBE=∠CDE,(3分)∵EG⊥BE,∠BCD=90°,∴∠CBE+∠CGE=∠CGE+∠EGD=180°,∴∠CBE=∠EGD,(4分)∴∠EDG=∠EGD,∴EG=ED,∴EG=BE,(5分)(3)如图3,∵BF=x,BC=4,∴EF=CF=4﹣x,∴y=BF•EF=x(4﹣x)=﹣x2+2x=﹣(x﹣2)2+2,∵﹣<0,7分)∴当x=2时,y最大值=2;(如图4,当x=2时,即F是BC的中点,E是AC的中点,∴BE⊥AC,即∠BEC=90°,∴以E为圆心,以BE为半径的圆与直线EF交于P,此时∠BPC=∠BEC=45°,∴EP=BE=2,(8分)同理在BC的下方还有一个点P',满足∠BP'C=45°,∴EP'=P'F+EF=2+2+2=2+4.综上所述,EP的长度是2或2+4.(9分)。

广东省东莞市2018届初中数学毕业水平考试试题(扫描版).doc

广东省东莞市2018届初中数学毕业水平考试试题(扫描版).doc

广东省东莞市2018 届初中数学毕业水平考试试题2018 年东莞市初中毕业生水平考试数学参考答案及评分标准数学一、选择题(本大题 10 小题,每小题 3 分,共 30 分)题号 1 2 3 4 5 6 7 8 9 10 答案BCDCABCCBD二、填空题(本大题6 小题,每小题 4 分,共 24 分)11. 2(m 2)(m2) 12.( x 1 2 213.75 ° 14. 8 2 15.50% 16.6)三、解答题(一) (本大题 3 小题,每小题 6 分,共 18 分)17. 解:原式1 2 242 1 (4)分 2 (6)分 18. 解:原式x 1 2 x 2 1 (2)分xxx 1 2 x (4)分xx 1 x1x 1x 1.................. 6 分 19. ( 1)如图所示.................3分( 2)如图,∵ AB=AC ,AD 平分∠ BAC∴D 为 BC 的中点 (5)分∵E 为 AB 的中点∴ AC=2DE=4.................6 分四、解答题(二) (本大题 3 小题,每小题 7 分,共 21 分) 20. ( 1)依题,在 Rt △ ABC 中,∠ C=48.2°∴sin48.2°=AB0.7 ,tan48.2 °=AB1.0584 BC 84 AC120 , AC (3)分∴BC=80.0.71.05即 A 、 B 两地分别与货轮 C 的距离为80 海里、 120 海里 .( 2)设甲快艇的速度为x 海里 / 时,则乙快艇的速度为(x+20) 海里 / 时,∴ 80 120 .................5 分x x 20解得 x 40经检验, x 40 是原方程的解,符合题意................. 6 分答:甲、乙两快艇的速度分别为40 海里 / 时、 60 海里 / 时 .................. 7 分21. ( 1) 50, 43.2 °.................2 分.................3分(2)画树状图可得:.................5分∵共有 9 种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有 3 种,∴同时选择去同一个景点的概率P= 3=1. ................. 7 分9 322. ( 1)证明:由折叠可知,AB=BE,AF=EF,∠ 1=∠2在ABCD中, AD//BC,即 AF//BE................. 1 分∴∠ 1=∠ 3,∴∠ 2=∠ 3∴ AB=AF .................2 分∴AB=BE=AF=EF∴四边形ABCF是菱形;.................3分(2)在ABCD中, CD=AB∵CD=2CE, AF=AB∴AF=2CE∵AF//CE ,∴△PCE∽△ PAF∴S PCE (CE)2 1SPAF AF 4 .................4 分.................5 分.................6 分∴ S PAF 4 2 8 ..................7分四、解答题(二)(本大题 3 小题,每小题9 分,共 27 分)23. 解: (1)C ( 0, -3 ), B( 3, 0) ................ 3 分(2) 把 A( -1,0 ), C( 0, -3 ), B( 3, 0)代入y ax2 bx c得a b c 0 a 19a 3b c 0 解得: b 2 ................ 5 分c 3 c 3∴ y x2 2x 3................ 6 分( 3)由抛物线的对称性可以得出点A、 B 关于抛物线的对称轴对称,∴连接 BC交对称轴于点P,则点 P 是所求的点,∵y=x2﹣ 2x﹣ 3,∴ y=( x﹣ 1)2﹣ 4,∴对称轴为: x=1 ...............7分∴P 点的横坐标为 1,设直线 BC的解析式为: y=kx+b ,则,解得;,∴直线 BC的解析式为: y=x ﹣ 3,...............8分∴x=1,时, y= ﹣ 2,∴ P( 1,﹣ 2). ..............9分24.解:证明:( 1)连接DO.∵△ ABC是等边三角形,∴∠ A=∠C=60°.∵OA=OD,∴△ OAD是等边三角形;∴∠ ADO=60°, ...............1分∵DF⊥ BC,∴∠ CDF=90°﹣∠ C=30°,...............2分∴∠ FDO=180°﹣∠ ADO﹣∠ CDF=90°,∴ DF为⊙ O的切线; ...............3分91∴ AD=AO= BC =4.2∴ CD=AC ﹣ AD=4. ...............4 分Rt △CDF 中,∠ CDF=30°, ∴ CF= CD=2 , DF= 23 ; (5)分连接 OE ,由 OB=OE ,∠ B=60°可知△ OBE 是等边三角形,∴ OB=BE=4,∴ EF=BC-CF-BE =8-2-4=2 ; (6)分(3)∵ S12423637分= ( EF+OD )· DF=直角梯形 FDOE2∵△ OAD 、△ OBE 为等边三角形,即∠ AOD=∠ BOE=60°∴∠ DOE=180° -6 0° -60 °=60°∴ S 扇形 OED =6042 8 (8)分3603∴ S=S﹣ S= 68 9 分阴影 3...............直角梯形 FDOE扇形 OED325. 解:( 1)∵ PQ//BC∴△ APQ ∽△ ABC∴PQAPBC AB∵ B C=4, AB = 8 ,AP = 3 ∴PQ = 3 , 即 MN=3 (1)分22∵D 为 AB 的中点∴ AD1AB 4, PDAD AP12 分2∵PQMN 为正方形, DN=PN - PD=PQ - PD=31 13 1 3 cm 222 ∴ y MN DN3分2 2 4( 2)∵ AP= x ,BC 1tan A2AB1 x ∴ QPPNAP tan A2∴ AN = x 1 x3 x 4分22① 当 0x8 0 (如图( 1)所示) 5分时, y310② 当8x 4 时, y (3x 4) x 3 x2 2x (如图(2)所示) 6分3 2 2 4③当 4 x 16 3x x) x (如图(3)所示)7 分时, y 2 (3 2CCCEF Q EFEFQ M M Q MAP N D B AP D N B A P N D B(1) (2) (3)( 3)将y 23x 2 2x8x 44 2 10 代入 y , 其中, 得x3,4 3即P点距 A点4 2 10CM 9 分311。

广东省东莞市2018-2019学年九年级中考数学模拟卷(含参考答案)

广东省东莞市2018-2019学年九年级中考数学模拟卷(含参考答案)

广东省东莞市2018-2019学年九年级中考数学模拟卷一、选择题(共10题;共20分)1.下列四个图形中既是轴对称图形,又是中心称图形的是( )A. B. C. D.2.已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是A. m>0B. n<0C. mn<0D. m-n>03.在四张完全相同的卡片上,分别画有等边三角形、菱形、正五边形、圆.现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A. B. C. D. 14.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A. 2.7×105B. 2.7×106C. 2.7×107D. 2.7×1085.若方程x2-5x=0的一个根是a,则a2-5a+2的值为()A. -2B. 0C. 2D. 46.下列四个几何体中,主视图、左视图、俯视图完全相同的是()A. 圆锥B. 球C. 圆柱D. 三棱柱7.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是()A. 25,23B. 23,23C. 23,25D. 25,258.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,过E作EG⊥EF于点E,交CD于点G.若∠CFE=120°,则∠BEG的大小为()A. 20°B. 30°C. 60°D. 120°第8题图第9题图9.如图,已知E′(2,﹣1),F′(,),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A. (﹣4,2)B. (4,﹣2)C. (﹣1,﹣1)D. (﹣1,4)10.如图,是一种古代计时器﹣﹣“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)A. B. C. D.二、填空题(共6题;共6分)11.分解因式:3a2-3________.12.把抛物线向左平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为________ .13.若三项式4a2-2a+1加上一个单项式后能用完全平方公式分解因式,请写出一个这样的单项式________.14.如图,Rt⊿ABC中,∠C = 90º,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,第14题图第15题图第16题图已知AC=6,OC= ,则直角边BC的长为________15.如图,BD为长方形ABCD的对角线,BD=10,∠ABD=30°,求长方形ABCD的面积________.16.如图,过点C(2,1)分别作x轴、y轴的平行线,交直线y=﹣x+4于B、A两点,若二次函数y=ax2+bx+c 的图象经过坐标原点O,且顶点在矩形ADBC内(包括边上),则a的取值范围是________.三、解答题(一)(共3题;共15分)17.计算:2cos45°﹣tan60°+sin30°﹣|﹣|.18.先化简,再求值:;其中,.19.作图题:已知:△ABC如图,求作一点P,使点P到AB,AC两边的距离相等,并且点P到A、B两点的距离也相等(保留作图痕迹)20.如图,某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6 m,小明身高(AB)1.5 m,小军身高(CD)1.75 m,求旗杆的高EF.(结果精确到0.1 m,参考数据: ≈1.41,≈1.73)21.田忌赛马的故事为我们熟知.小亮与小齐学习概率初步知识后设计了如下游戏:小亮手中有方块10、8、6三张扑克牌,小齐手中有方块9、7、5三张扑克牌.每人从各自手中取出一张牌进行比较,数字大的为本“局”获胜,每次取得牌不能放回.(1)若每人随机取手中的一张牌进行比赛,求小齐本“局”获胜的概率;(2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者.当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,求小齐本次比赛获胜的概率.22.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.23.经过实验获得两个变量x(x > 0), y( y > 0) 的一组对应值如下表。

2018年广东省中考数学模拟试卷及答案(一)

2018年广东省中考数学模拟试卷及答案(一)

2018年广东省中考数学模拟试卷及答案(一)2018年广东省中考数学模拟试卷(一)一、单项选择题(本题共10个小题,每小题3分,共30分)1.(3分)-3的相反数是()。

A。

3 B。

0 C。

-3 D。

无法确定2.(3分)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()。

A。

美 B。

丽 C。

广 D。

州3.(3分)2016年3月,XXX中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目。

该项目标的金额为13.09亿美元。

13.09亿用科学记数法表示为()。

A。

13.09×10^8 B。

1.309×10^10 C。

1.309×10^9 D。

1309×10^64.(3分)如图所示,几何体的主视图是()。

A。

B。

C。

D。

5.(3分)反比例函数y=k/x,则k的取值范围是()。

A。

k。

1 B。

k。

0 C。

k < 1 D。

k < 06.(3分)XXX根据演讲比赛中九位评委所给的分数作了如下表格:平均数 8.5中位数 8.3众数 8.1方差 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()。

A。

平均数 B。

众数 C。

方差 D。

中位数7.(3分)如图,⊙O是△ABC的外接圆,∠XXX°,则∠A的度数是()。

A。

42° B。

48° C。

52° D。

58°8.(3分)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,)。

A。

4 B。

7 C。

3 D。

129.(3分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()。

A。

48 + 5x = 720 B。

48x + 5 = 720 C。

720 + 5x = 48 D。

720x + 5 = 4810.(3分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S2016的值为()。

东莞市中考数学一模考试试卷

东莞市中考数学一模考试试卷

东莞市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2018·秀洲模拟) 在1,0,π,﹣3这四个数中,最大的数是()A . 1B . 0C . πD . ﹣32. (2分) (2018七下·邵阳期中) 若x-2和x+3是多项式x2+mx+n仅有的两个因式,则mn的值为()A . 1B .C .D . 63. (2分)(2018·岳阳模拟) 一个关于x的一元一次不等式组的解集在数轴上的表示如下图,则该不等式组的解集是()A . x>1B . x≥1C . x>3D . x≥34. (2分)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A . 4个B . 5个C . 6个D . 7个5. (2分)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为().A . 7sin35°B .C . 7cos35°D . 7tan35°6. (2分)(2017·房山模拟) 二次函数的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,则下列结论中正确的个数有()①4+b=0;② ;③若点A(-3, ),点B(-, ),点C(5, )在该函数图象上,则<<;④若方程的两根为和,且<,则<-1<5< .A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)7. (1分) (2017七下·郾城期末) ﹣ =________.8. (1分) (2019九下·昆明期中) 春节期间,某景区共接待游客约1260000人次,将“1260000”用科学记数法表示为________.9. (1分)(2019·平阳模拟) 已知一组数据6,x,3,3,5,2的众数是3和5,则这组数据的平均数是________.10. (1分)若a,b是方程x2﹣2x﹣3=0的两个实数根,则a2+b2=________ .11. (1分)(2018·溧水模拟) 如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BAC=α,则∠BED=________.(用含α的代数式表示)12. (1分)已知⊙O的半径为R,点O到直线m的距离为d,R、d是方程x2-4x+a=0的两根,当直线m与⊙O相切时,a=________.三、解答题 (共11题;共115分)13. (10分)(2019·盘龙模拟) 设M=(1)化简M;(2)当a=1时,记此时M的值为f(1)=;当a=2时,记此时M的值为f(2)=;当a=3时,记此时M的值为f(3)=……当a=n时,记此时M的值为f(n)=________;则f(1)+f(2)+…+f(n)=________;(3)解关于x的不等式组:≤f(1)+f(2)+f(3)并将解集在数轴上表示出来.14. (10分) (2019八下·雅安期中) ,若方程无解,求m的值15. (2分)(2018·白云模拟) 如图,一条公路的转弯处是一段圆弧(1)用直尺和圆规作出所在圆的圆心O;要求保留作图痕迹,不写作法(2)若的中点C到弦AB的距离为,求所在圆的半径.16. (10分)(2017·如皋模拟) 若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.17. (10分)(2018·河南模拟) 国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区。

2018年广东省中考数学模拟试卷(一)

2018年广东省中考数学模拟试卷(一)

2018年广东省中考数学模拟试卷(一)2018年广东省中考数学模拟试卷(一)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的)1.﹣4的倒数是()A.4 B.﹣4 C.D.2.一种细菌的半径是0.000045米,该数字用科学记数法表示正确的是()A.4.5×105B.45×106C.4.5×10﹣5D.4.5×10﹣43.(2018•遵义)函数y=﹣中的自变量x的取值范围是()A.x≥0 B.x<0且x≠1 C.x<0 D.x≥0且x≠14.(2018•东营)方程组的解是()A.B.C.D.5.(2018•宁波)下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A.B.C.D.二、填空题(本大题共5小题,每小题4分,共20分)6.(2018•大庆)分解因式:ab2﹣2ab+a=_________.7.(2018•安顺)如果点P(4,﹣5)和点Q(a,b)关于y轴对称,则a的值为_________.8.(2018•宜宾)一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是_________.9.若双曲线的图象经过第二、四象限,则k的取值范围是_________.10.(2018•济宁)如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有_________个.三、解答题(本大题共5小题,每小题6分,共30分)11.计算:(﹣2018)0+()﹣1+|﹣2|﹣2cos60°.12.(2018•遵义)先化简,再求值:,其中x=2,y=﹣1.13.(2018•抚顺)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.14.(2018•宁波)如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.15.(2018•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长.(结果保留根号)四、解答题(本大题共4小题,每小题7分,共28分)16.(2018•南京)从3名男生和2名女生中随机抽取2018年南京青奧会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.17.(2018•荆州)如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.18.(2018•绵阳)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?19.(2018•扬州)已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)五、解答题(本大题共3小题,每小题9分,共27分)20.对于任何实数,我们规定符号的意义是=ad﹣bc.(1)按照这个规定请你计算的值;(2)按照这个规定请你计算:当x2﹣3x+1=0时,的值.21.(2018•岳阳)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG=_________.请予证明.22.(2018•黄石)已知二次函数y=x2﹣2mx+4m﹣8(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.2018年广东省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的)1.﹣4的倒数是()A.4 B.﹣4 C.D.考点:倒数。

2018年广东省东莞市中考数学试卷(试卷+答案+解析)

2018年广东省东莞市中考数学试卷(试卷+答案+解析)

2018年广东省东莞市中考数学试卷题目题卡上对应题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答一、选择黑.所选的选项涂1.(3 分)四个实数0、、﹣3.14、2 中,最小的数是( )A.0 B.C.﹣3.14 D.22.(3 分)据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000 人次,将数14420000 用科学记()数法表示为7 B.0.1442 ×107 C.1.442 ×108 D.0.1442 ×108A.1.442 ×103.(3 分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.4.(3 分)数据1、5、7、4、8 的中位数是( )A.4 B.5 C.6D.75.(3 分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形6.(3 分)不等式3x﹣1≥x+3 的解集是( )A.x≤4B.x≥4C.x≤2D.x≥27.(3 分)在△ABC 中,点D、E 分别为边AB、AC 的中点,则△ADE 与△ABC 的面积之比为( )A.B.C.D.8.(3 分)如图,AB∥CD ,则∠DEC =100°,∠C=40°,则∠B 的大小是( )A.30°B.40°C.50°D.60°29.(3 分)关于x 的一元二次方程x﹣3x+m=0 有两个不相等的实数根,则实数m 的取值范围是( )A.m<B.m≤C.m>D.m≥10.(3 分)如图,点P 是菱形ABCD 边上的一动点,它从点 A 出发沿在A→B→C→D 路径匀速运动到点D,设△PAD 的面积为y,P 点的运动时间为x,则y关于x 的函数图象大致为( )A.B.C.D.第1 页(共17 页)二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知所对的圆心角是100,°则所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接B D,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,⋯,则点B6的坐标为.三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:?,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接B F,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?第2页(共17页)22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接A C、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接B D交⊙O于点F,连接E F,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠O AB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连接B C.(1)填空:∠OBC=°;(2)如图1,连接A C,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当第3页(共17页)两点相遇时运动停止,已知点M的运动速度为 1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?第4页(共17页)2018年广东省东莞市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3 分)四个实数0、、﹣3.14、2 中,最小的数是( )A.0 B.C.﹣3.14 D.2【考点】2A:实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣ 3.14.故选:C.2.(3 分)据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000 人次,将数14420000 用科学记数法表示为( )7 A.1.442 ×107B.0.1442 ×108C.1.442 ×108D.0.1442 ×10【考点】1I:科学记数法—表示较大的数.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.7【解答】解:14420000=1.442 10 ×,故选:A.3.(3 分)如图,由 5 个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是 B 中的图形,故选:B.4.(3 分)数据1、5、7、4、8 的中位数是( )A.4 B.5 C.6D.7【考点】W4:中位数.【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为 5故选:B.5.(3 分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形【考点】P3:轴对称图形;R5:中心对称图形.第5 页(共17 页)【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.6.(3 分)不等式3x﹣1≥x+3 的解集是( )A.x≤4B.x≥4C.x≤2D.x≥2【考点】C6:解一元一次不等式.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+,1合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.7.(3 分)在△ABC 中,点D、E 分别为边A B、AC 的中点,则△ADE 与△ABC 的面积之比为()A.B.C.D.【考点】KX :三角形中位线定理;S9:相似三角形的判定与性质.【分析】由点D、E 分别为边A B、AC 的中点,可得出DE为△ABC 的中位线,进而可得出DE∥BC 及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE 与△ABC 的面积之比.【解答】解:∵点D、E 分别为边A B、AC 的中点,∴DE为△ABC 的中位线,∴DE∥BC,∴△ADE ∽△ABC,∴△△2=( ) = .故选:C.8.(3 分)如图,AB∥CD ,则∠DEC =100°,∠C=40°,则∠B 的大小是( )A.30°B.40°C.50°D.60°【考点】JA:平行线的性质.【分析】依据三角形内角和定理,可得∠D =40 °,再根据平行线的性质,即可得到∠B=∠D=40 °.【解答】解:∵∠DEC =100 °,∠C=40 °,∴∠D =40°,又∵AB∥CD ,∴∠B=∠D=40°,故选:B.第6 页(共17 页)2﹣实数m的取值范围是()3x+m=0有两个不相等的实数根,则9.(3分)关于x的一元二次方程xA.m<B.m≤C.m>D.m≥【考点】AA:根的判别式..【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可23x+m=0有两个不相等的实数根,【解答】解:∵关于x的一元二次方程x﹣∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP?h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,C不正确;故选项②当P在边BC上时,如图2,y=AD?h,AD和h都不变,∴在这个过程中,y不变,A不正确;故选项③当P在边CD上时,如图3,y=PD?h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,D不正确;故选项故选:B.第7页(共17页)二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知所对的圆心角是100,°则所对的圆周角是50°.【考点】M5:圆周角定理.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.2212.(3分)分解因式:x﹣2x+1=(x﹣1).【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式即可.22【解答】解:x﹣2x+1=(x﹣1).13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【考点】21:平方根.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.14.(3分)已知+|b﹣1|=0,则a+1=2.【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)第8页(共17页)【考点】LB:矩形的性质;MC:切线的性质;MO:扇形面积的计算.O E,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S 【分析】连接E C、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部正方形OECD﹣S扇形EOD计算由弧DE、线段分的面积.【解答】解:连接O E,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,2﹣=4﹣π,∴由弧DE、线段E C、CD所围成的面积=S正方形OECD﹣S扇形EOD=2∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,⋯,则点B6的坐标为(2,0).;KK:等边三角形的性质.【考点】G6:反比例函数图象上点的坐标特征【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征求出B2、B3、B4的坐标,得出规律,进而求出点B6分别的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)?a=,解得a=﹣1,或a=﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,第9页(共17页)∴(2+b)?b=,解得b=﹣+,或b=﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);⋯,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣1【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.答案.【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出1+2【解答】解:原式=2﹣=3.18.(6分)先化简,再求值:?,其中a=.【考点】6D:分式的化简求值.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=?=2a,当a=时,原式=2×=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;第10页(共17页)(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【考点】B7:分式方程的应用.【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?第11页(共17页)【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,:补全条形图如下(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.题).【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问△ADE≌△【分析】(1)根据矩形的性质可得出A D=BC、AB=CD,结合折叠的性质可得出A D=CE、AE=CD,进而即可证出CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出E F=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.第12页(共17页)在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,2所以二次函数的解析式为:y=x﹣3;(3)存在,分以下两种情况:17页)第13页(共①若M在B上方,设M C交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC?tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,,所以M1(3,6);②若M在B下方,设M C交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC?tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接A C、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接B D交⊙O于点F,连接E F,若BC=1,求EF的长.【考点】MR:圆的综合题.【分析】(1)连接O C,证△OAD≌△OCD得∠A DO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设B C=a、则A C=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;2①,再证△AED∽△OAD得OD?DE=AD2②,由①②得DF?BD=OD?DE,即=,结(3)先证△AFD∽△BAD得DF?BD=AD合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接O C,第14页(共17页)在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设B C=a、则A C=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OE+DE)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接A F,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,2①,∴=,即DF?BD=AD又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,2②,∴=,即OD?DE=AD由①②可得DF?BD=OD?DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,第15页(共17页)解得:EF= .25.(9 分)已知Rt△OAB,∠O AB=90°,∠ABO=30°,斜边OB =4,将Rt△OAB 绕点O 顺时针旋转60°,如图1,连接B C.(1)填空:∠OBC= 60 °;(2)如图1,连接A C,作OP⊥AC,垂足为P,求OP 的长度;(3)如图2,点M,N 同时从点O 出发,在△OCB 边上运动,M 沿O→C→B 路径匀速运动,N 沿O→B→C 路径匀速运动,当/秒,设运动时间为x 秒,△OMN 的面/秒,点N 的运动速度为 1 单位两点相遇时运动停止,已知点M 的运动速度为 1.5 单位?积为y,求当x 为何值时y 取得最大值?最大值为多少.【考点】RB:几何变换综合题△OBC 是等边三角形即可;【分析】(1)只要证明(2)求出△AOC 的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE⊥OC 且交OC 于点E.②当<x≤4时,M 在BC 上运动,N 在OB 上运动.③当4<x≤4.8时,M、N 都在BC 上运动,作OG⊥BC 于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60 °,∴△OBC 是等边三角形,∴∠OBC =60°.故答案为60.(2)如图1中,∵OB =4,∠ABO =30°,∴OA= OB=2,AB= OA=2 ,∴S△AOC= ?OA?AB =×2×2 =2 ,∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC=∠ABO +∠OBC =90°,∴AC= =2 ,△∴OP== = .(3)①当0<x≤时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE⊥OC 且交OC 于点E.则NE =ON ?sin60 °=x,第16 页(共17 页)∴S△OMN=?OM?NE=×1.5x×x,2.∴y=x∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.1.5x),1.5x,MH=BM?sin60°=(8﹣作MH⊥OB于H.则B M=8﹣2+2x.∴y=×ON×MH=﹣x当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=?MN?OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.第17页(共17页)。

2018年广东省中考数学模拟试卷

2018年广东省中考数学模拟试卷
2018 年广东省中考数学模拟试卷
(满分 120 分,考试时间为 100 分钟)
一、选择题(共 10 小题,每小题 3 分,满分 30 分)
1.﹣ 2016 的相反数是(

1
A.
2016
1
B .2016 C.﹣ 2016 D.﹣
2016
2.如图,由 4 个相同的小立方块组成一个立体图形,它的主视图是(
名;
(2)在被调查的工人中, 日加工 12 个零件的人数为
名,日加工

零件的人数最多,日加工 15 个零件的人数占被调查人数的
%;
(3)依据本次调查结果,估计该车间日人均加工零件数和日加工零件的总数.
21.某商场在 “五 ?一 ”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利
润恰是销售收入的
四、解答题(二) (本大题 3 小题,每小题 8 分,共 24 分)
20.某车间有 120 名工人,为了了解这些工人日加工零件数的情况,随机抽出其中的
30 名
工人进行调查.整理调查结果,绘制出不完整的条形统计图(如图)
.根据图中的信息,解
答下列问题:
(1)在被调查的工人中,日加工 9 个零件的人数为
24.如图,已知 AB 是⊙ O 的直径, BC 是 ⊙ O 的弦,弦 ED⊥ AB 于点 F,交 BC 于点 G, 过点 C 的直线与 ED 的延长线交于点 P,PC=PG.
(1)求证: PC 是⊙ O 的切线; (2)当点 C 在劣弧 AD 上运动时,其他条件不变,若 中点;
BG2=BF?BO .求证:点 G 是 BC 的

A . cm B .2cm C. 2 cm D. 4cm
7.下列等式中正确的是(

2018年广东省东莞市XX学校中考数学一模试卷含答案解析

2018年广东省东莞市XX学校中考数学一模试卷含答案解析

年广东省东莞市学校中考数学一模试卷一.选择题(本大题小题,每小题分,共分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上).(分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约.亿吨的有机物,可用科学记数法表示为().×.×.×.×.(分)下列图形既是轴对称图形,又是中心对称图形的是().....(分)某大米包装袋上标注着“净含量±”,小华从商店买了袋大米,这两袋大米相差的克数不可能是().....(分)下列因式分解正确的是().﹣()(﹣).().﹣﹣(﹣)﹣.().(分)一个菱形的两条对角线的长分别为和,那么这个菱形的面积是().....(分)一个不透明的袋子中装有个红球、个白球,每个球除颜色外都相同.从中任意摸出个球,下列事件为必然事件的是().至少有个球是红球.至少有个球是白球.至少有个球是红球.至少有个球是白球.(分)如图,一只蚂蚁从长宽都是,高是的长方体纸箱的点沿纸箱爬到点,那么它所行的最短路线的长是().()...无法确定.(分)使式子有意义的的值是().>.≠.≥或≠.>或≠.(分)如图,在△中,点,分别是边,上的点,且∥,若,,则的长度是().....(分)已知抛物线的部分图象如图所示,若<,则的取值范围是().﹣<<.﹣<<.<﹣或>.<﹣或>二.填空题(本大题小题,每小题分,共分.).(分)写出一个二次项系数为,且一个根是的一元二次方程..(分)点在射线上,若,,则为..(分)如图,已知△≌△,若,,则的值为..(分)如图,⊙的直径经过弦的中点,∠°,则∠等于..(分)不等式组的解为..(分)如图所示,△中,∠°,将△绕点按顺时针方向旋转°,对应得到△′′,则∠′的度数为.三.解答题(一)(本大题小题,每小题分,共分).(分)计算:(﹣)÷.(分)已知,≠,求的值..(分)如图,已知在四边形中,∠°,,,,,求四边形的面积.四.解答题(二)(本大题小题,每小题分,共分).(分)怡然美食店的、两种菜品,每份成本均为元,售价分别为元、元,这两种菜品每天的营业额共为元,总利润为元.()该店每天卖出这两种菜品共多少份?()该店为了增加利润,准备降低种菜品的售价,同时提高种菜品的售价,售卖时发现,种菜品售价每降元可多卖份;种菜品售价每提高元就少卖份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?.(分)第中学的九年级学生在社会实践中,调查了位杭州市民某天早上出行上班所用的交通工具,结果用以下扇形统计图表示.()请你将这个统计图改成用折线统计图表示的形式;()请根据此项调查,对城市交通给政府提出一条建议..(分)在平面直角坐标系中按下列要求作图.()作出三象限中的小鱼关于轴的对称图形;()将()中得到的图形再向右平移个单位长度..(分)如图,在△中,,∠°,以为直径的⊙分别交,于点,,过点作⊙的切线,交的延长线于点.()求证:;()求∠的度数;()若,求弧的长..(分)如图,已知:在△中,∠°,,是上不与、重合的一动点,⊥于,⊥于.()求证:;()设的长为,的长为,求与之间的函数关系式及自变量的取值范围,并在平面直角坐标系作出函数图象.()能否平行于?如果能,试求出的值;若不能,请简述理由..(分)已知如图,抛物线﹣﹣与轴交于和两点(点在点的左侧),与轴相交于点,点的坐标是(,﹣),连接、()求出直线的解析式;()如图,若在直线上方的抛物线上有一点,当△的面积最大时,有一线段(点在点的左侧)在直线上移动,首尾顺次连接点、、、构成四边形,请求出四边形的周长最小时点的横坐标;()如图,将△绕点逆时针旋转α°(<α°<°),记旋转中的△为△′′,若直线′′与直线交于点,直线′′与直线交于点,当△是等腰三角形时,求的值.年广东省东莞市学校中考数学一模试卷参考答案与试题解析一.选择题(本大题小题,每小题分,共分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上).(分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约亿吨的有机物,可用科学记数法表示为().×.×.×.×【解答】解:×,故选:..(分)下列图形既是轴对称图形,又是中心对称图形的是()....【解答】解:、不是轴对称图形,是中心对称图形,故此选项不合题意;、不是轴对称图形,是中心对称图形,故此选项不合题意;、是轴对称图形,不是中心对称图形,故此选项不合题意;、是轴对称图形,是中心对称图形,故此选项符合题意;故选:..(分)某大米包装袋上标注着“净含量±”,小华从商店买了袋大米,这两袋大米相差的克数不可能是()....【解答】解:根据题意得:(),﹣(),因为两袋两大米最多差﹣()(),所以这两袋大米相差的克数不可能是;故选:..(分)下列因式分解正确的是().﹣()(﹣).().﹣﹣(﹣)﹣.()【解答】解:、﹣()(﹣),故此选项错误;、(),故此选项错误;、等式的右边不是乘积形式,不是因式分解,故此选项错误;、(),故此选项正确;故选:..(分)一个菱形的两条对角线的长分别为和,那么这个菱形的面积是()....【解答】解:∵菱形的两条对角线的长分别为和,∴这个菱形的面积是,故选:..(分)一个不透明的袋子中装有个红球、个白球,每个球除颜色外都相同.从中任意摸出个球,下列事件为必然事件的是().至少有个球是红球.至少有个球是白球.至少有个球是红球.至少有个球是白球【解答】解:、至少有个球是红球是随机事件,选项错误;、至少有个球是白球是必然事件,选项正确;、至少有个球是红球是随机事件,选项错误;、至少有个球是白球是随机事件,选项错误.故选:..(分)如图,一只蚂蚁从长宽都是,高是的长方体纸箱的点沿纸箱爬到点,那么它所行的最短路线的长是().()...无法确定【解答】解:将点和点所在的两个面展开,则矩形的长和宽分别为和,故矩形对角线长,即蚂蚁所行的最短路线长是.故选:..(分)使式子有意义的的值是().>.≠.≥或≠.>或≠【解答】解:当满足,即≥且≠时,式子有意义.故选:..(分)如图,在△中,点,分别是边,上的点,且∥,若,,则的长度是()....【解答】解:∵,∴,∵∥,∴△∽△,∴,∵,∴,故选:..(分)已知抛物线的部分图象如图所示,若<,则的取值范围是().﹣<<.﹣<<.<﹣或>.<﹣或>【解答】解:由图象知,抛物线与轴交于(﹣,),对称轴为,∴抛物线与轴的另一交点坐标为(,),∵<时,函数的图象位于轴的下方,且当﹣<<时函数图象位于轴的下方,∴当﹣<<时,<.故选:.二.填空题(本大题小题,每小题分,共分.).(分)写出一个二次项系数为,且一个根是的一元二次方程﹣.【解答】解:根据题意,设该一元二次方程为:()();∵该方程的一个根是,∴该一元二次方程可以是:(﹣).即﹣故答案是:﹣..(分)点在射线上,若,,则为或.【解答】解:当在线段上时,﹣﹣,当在线段的延长线时,,即或,故答案为:或..(分)如图,已知△≌△,若,,则的值为.【解答】解:∵△≌△,∴,∵,,∴﹣﹣﹣.故答案为:..(分)如图,⊙的直径经过弦的中点,∠°,则∠等于°.【解答】解:∵⊙的直径过弦的中点,∠°,∴弧弧,且弧的度数是°,∴∠°,答案为°..(分)不等式组的解为≤<.【解答】解:解不等式﹣≥,得:≥,解不等式<,得:<,∴不等式组的解集为≤<,故答案为:≤<..(分)如图所示,△中,∠°,将△绕点按顺时针方向旋转°,对应得到△′′,则∠′的度数为°.【解答】解:∵∠°,将△绕点按顺时针方向旋转°,对应得到△′′,∴∠''°,∠'°,∴∠′的度数°﹣°°.故答案为:°.三.解答题(一)(本大题小题,每小题分,共分).(分)计算:(﹣)÷【解答】解:原式(﹣)÷÷.(分)已知,≠,求的值.【解答】解:由原方程组得,①×﹣②,得:,,将代入①,得:,解得,将、代入得:原式..(分)如图,已知在四边形中,∠°,,,,,求四边形的面积.【解答】解:连接.∵∠°,,,∴根据勾股定理可得,又∵,,∴,∴△是直角三角形,∴∠°,∴四边形△△••××××().四.解答题(二)(本大题小题,每小题分,共分).(分)怡然美食店的、两种菜品,每份成本均为元,售价分别为元、元,这两种菜品每天的营业额共为元,总利润为元.()该店每天卖出这两种菜品共多少份?()该店为了增加利润,准备降低种菜品的售价,同时提高种菜品的售价,售卖时发现,种菜品售价每降元可多卖份;种菜品售价每提高元就少卖份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【解答】解:()设该店每天卖出、两种菜品分别为、份,根据题意得,,解得:,答:该店每天卖出这两种菜品共份;()设种菜品售价降元,即每天卖()份;总利润为元因为两种菜品每天销售总份数不变,所以种菜品卖(﹣)份每份售价提高元.(﹣﹣)()(﹣)(﹣)(﹣)()()(﹣)(﹣﹣)(﹣)﹣﹣(﹣)当,最大,答:这两种菜品每天的总利润最多是元..(分)第中学的九年级学生在社会实践中,调查了位杭州市民某天早上出行上班所用的交通工具,结果用以下扇形统计图表示.()请你将这个统计图改成用折线统计图表示的形式;()请根据此项调查,对城市交通给政府提出一条建议.【解答】解:()如下图:步行:×人,自行车:×人,电动车:×人,公交车:×人,私家车:×人,()诸如公交优先,或宣传步行有利健康等..(分)在平面直角坐标系中按下列要求作图.()作出三象限中的小鱼关于轴的对称图形;()将()中得到的图形再向右平移个单位长度.【解答】解:如图所示:.(分)如图,在△中,,∠°,以为直径的⊙分别交,于点,,过点作⊙的切线,交的延长线于点.()求证:;()求∠的度数;()若,求弧的长.【解答】证明:()连接∵是⊙直径∴∠°(即⊥)∵∴()∵∠°,∴∠°∵是⊙切线∴∠°∴∠∠﹣∠°()连接∵∠°∴∠°∵∴∴的长..(分)如图,已知:在△中,∠°,,是上不与、重合的一动点,⊥于,⊥于.()求证:;()设的长为,的长为,求与之间的函数关系式及自变量的取值范围,并在平面直角坐标系作出函数图象.()能否平行于?如果能,试求出的值;若不能,请简述理由.【解答】()证明:∵∠°,,∴△为等腰直角三角形,∴∠∠°,∵⊥,∴△为等腰直角三角形,∴;()解:∵△为等腰直角三角形,∴,∵△为等腰直角三角形,∴,同理可证得为△等腰直角三角形,∴,∵,∴,∴﹣(<<),如图,()解:能.理由如下:∵﹣,﹣,∴﹣(﹣),当时,∥,即﹣(﹣)﹣,解得,∵<<,∴能平行于..(分)已知如图,抛物线﹣﹣与轴交于和两点(点在点的左侧),与轴相交于点,点的坐标是(,﹣),连接、()求出直线的解析式;()如图,若在直线上方的抛物线上有一点,当△的面积最大时,有一线段(点在点的左侧)在直线上移动,首尾顺次连接点、、、构成四边形,请求出四边形的周长最小时点的横坐标;()如图,将△绕点逆时针旋转α°(<α°<°),记旋转中的△为△′′,若直线′′与直线交于点,直线′′与直线交于点,当△是等腰三角形时,求的值.【解答】解:()∵抛物线﹣﹣与轴交于和两点,∴﹣﹣,∴或﹣,∴(﹣,),(,),∵(,﹣),∴直线解析式为﹣﹣;()如图,过点作⊥轴,交于,设(,﹣﹣),(,﹣﹣),∴﹣﹣﹣(﹣﹣)﹣﹣,∴×﹣(﹣﹣)﹣﹣﹣(),△△△最大,当﹣时,△∴(﹣,)如图,作点关于直线的对称点,把沿平行直线方向平移到,且,连接,交直线于点,把点沿直线向左平移得点,此时四边形的周长最小.∵,,∴∠,∵,∴,∴,在△中,,,∴﹣,∴(﹣,﹣),过作⊥,∴∠∠,∵,∴,,∴(,﹣)∵(﹣,)∴的解析式为﹣﹣①, ∵(,),(,﹣),∴直线解析式为﹣②,联立①②得,﹣,∴点的横坐标为:﹣. ()∵(,),(,),(,﹣)∴,,,边上的高为,根据等面积法得, ××,∴,∵(﹣,),(,),∴,,∴∠, ①当时,简图如图,过点作⊥,过点作⊥,∵∠∴设,则,,,∴﹣﹣∵△∽△,∴,∴,∴,∴;②当时,简图如图,过点作⊥,∵∠∴设,则,∴,∴﹣,∴,∴﹣﹣∵△∽△,同①的方法得出,﹣,③当时,简图如图过点作⊥,过点作⊥,设,则,,∴,∴∴﹣﹣,利用等面积法得,××,∴,∵△∽△同①的方法得出④当时,简图如图,过点作⊥,过作⊥,设,则,,∴,,∵△∽△,同①方法得出.综上所述,的值为:;﹣,,.。

广东省东莞市中考数学一模试卷

广东省东莞市中考数学一模试卷

广东省东莞市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·安徽模拟) ﹣2017的倒数是()A .B . ﹣C . 2017D . ﹣20172. (2分)经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是【】美元.A . 1.5×104B . 1.5×105C . 1.5×1012D . 1.5×10133. (2分)如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD=()A . 70°B . 60°C . 50°D . 40°4. (2分)“大衣哥”朱之文是从“我是大明星”这个舞台走出来的民间艺人.受此影响,卖豆腐的老张也来参加节目的海选,当天共有15位选手参加决逐争取8个晋级名额.已知他们的分数互不相同,老张要判断自己是否能够晋级,只要知道下列15名选手成绩统计量中的()A . 众数B . 方差C . 中位数D . 平均数5. (2分)(2011·扬州) 如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则该几何体的主视图是()A .B .C .D .6. (2分)关于x的方程ax2+bx+c=0(a≠0)有两个相等的实数根,则的值为()A .B .C .D .7. (2分)(2018·新乡模拟) 有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是()A .B .C .D .8. (2分) (2019八下·芜湖期中) 如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3 ,且AC=12,则DE的长度是()A . 3B . 6C .D .9. (2分)(2017·祁阳模拟) 如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF 为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A . 18 ﹣9πB . 18﹣3πC . 9 ﹣D . 18 ﹣3π10. (2分)如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:① a<0,b>0,c<0;② 当x=2时,y的值等于1;③ 当x>3时,y的值小于0.正确的是()A . ①②B . ①③C . ②③D . ①②③二、填空题 (共5题;共5分)11. (1分)(2017·广东模拟) 要使式子有意义,则字母的取值范围是________12. (1分) (2018九上·扬州期中) 若直角三角形的两条直角边为5和12,则这个直角三角形的内切圆半径为________.13. (1分)(2019·鞍山) 如图,正方形A0B0C0A1的边长为1,正方形A1B1C1A2的边长为2,正方形A2B2C2A3的边长为4,正方形A3B3C3A4的边长为8……依此规律继续作正方形AnBn∁nAn+1 ,且点A0 , A1 , A2 , A3 ,…,An+1在同一条直线上,连接A0C1交A1B1于点D1 ,连接A1C2交A2B2于点D2 ,连接A2C3交A3B3于点D3……记四边形A0B0C0D1的面积为S1 ,四边形A1B1C1D2的面积为S2 ,四边形A2B2C2D3的面积为S3……四边形An ﹣1Bn﹣1Cn﹣1Dn的面积为Sn ,则S2019=________.14. (1分) (2018九上·瑞安期末) 已知扇形的圆心角为120°,它的弧长为,则它的半径为________.15. (1分)(2018·柘城模拟) 如图,矩形ABCD中,,点E是BC边上一点,连接AE,把沿AE折叠,使点B落在点处当为直角三角形时,BE的长为________.三、解答题 (共8题;共92分)16. (5分)(2017·常德) 求不等式组的整数解.17. (12分)(2013·来宾) 某校九年级为建立学习兴趣小组,对语文、数学、英语、物理、化学、思想品德、历史、综合共八个科目的喜欢情况进行问卷调查(每人只选一项),下表是随机抽取部分学生的问卷进行统计的结果:科目语文数学英语物理化学思想品德历史综合人数6101112109814根据表中信息,解答下列问题:(1)本次随机抽查的学生共有________人;(2)本次随机抽查的学生中,喜欢________科目的人数最多;(3)根据上表中的数据补全条形统计图;(4)如果该校九年级有600名学生,那么估计该校九年级喜欢综合科目的学生有多少人.18. (10分)(2017·义乌模拟) 如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为6 米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°(结果精确到0.1).(1)求树AB与测角仪EF的水平距离DF的长;(2)求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.73)19. (10分)(2017·微山模拟) 某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?20. (15分) (2017八下·安岳期中) 如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.21. (10分)(2017·武汉模拟) 如图,▱ABCD的边AD与经过A、B、C三点的⊙O相切(1)求证:弧AB=弧AC(2)如图2,延长DC交⊙O于点E,连接BE,sin∠E= ,求tan∠D22. (15分)如图1所示,已知点P为线段AB上一点,△BCP、△PAD是等边三角形.(1)说明:AC=BD;(2)求∠DOA的度数.(3)若把原题中“△BCP和△PAD是两个等边三角形”换成两个正方形(如图2所示),AC与BD的数量和位置关系如何?请说明理由.23. (15分) (2016九上·沙坪坝期中) 如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH 周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是▱APQM 面积的时,求▱APQM面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共92分)16-1、17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。

2018年广东省中考数学训练试卷(一)含答案解析

2018年广东省中考数学训练试卷(一)含答案解析

年广东省中考数学训练试卷(一)一、选择题:(本题共个小题,每小题分,共分.在每小题列出的四个选项中,只有一个是正确的.).(分)(﹣)的算术平方根是()..±.﹣..(分)明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为,这个数用科学记数法表示为().×.×.×.×.(分)一个几何体的主视图、左视图、俯视图完全相同,它一定是().圆柱.圆锥.球体.长方体.(分)在一个不透明的盒子中装有个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为().....(分)如图,直线∥,∠°,∠°,则∠等于().°.°.°.°.(分)下列计算,正确的是().÷.().×.(﹣)×﹣.(分)关于反比例函数的图象,下列说法正确的是().必经过点(,).两个分支分布在第二、四象限.两个分支关于轴成轴对称.两个分支关于原点成中心对称.(分)如图,直径为的⊙经过点(,)和点(,),是轴右侧⊙优弧上一点,则∠等于().°.°.°.°.(分)已知一次函数的图象经过一、二、三象限,则的值可以是().﹣.﹣...(分)如图.矩形纸片中,已知,折叠纸片使边与对角线重合,点落在点处,折痕为,且.则的长为()....二、填空题:(本题共个小题,每小题分,共分).(分)不等式﹣<﹣的解集是..(分)如图,在△中,,,的垂直平分线分别交、于、,则△的周长为..(分)若,为实数,且,则()的值是..(分)如图,菱形的边长是,是的中点,且丄,则菱形的面积为..(分)在全民健身环城越野赛中,甲、乙两选手的行程(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后小时内,甲在乙的前面;②第小时两人都跑了千米;③甲比乙先到达终点;④两人都跑了千米.其中正确的说法的序号是..(分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为,则第个矩形的面积为.三、解答题(一)(本大题小题,每小题分,共分).(分)计算:﹣°﹣..(分)先化简,再求值:,其中..(分)如图,方格纸中的每个小方格都是边长为个单位的正方形,在建立平面直角坐标系后,△的顶点坐标为点(﹣,),点(﹣,),点(﹣,).()将△沿轴正方向平移个单位得到△,试在图上画出图形△,并写出点的坐标;()将原来的△绕点顺时针旋转°得到△,试在图上画出图形△.并写出顶点从开始到经过的路径长年广东省中考数学训练试卷(一)参考答案与试题解析一、选择题:(本题共个小题,每小题分,共分.在每小题列出的四个选项中,只有一个是正确的.).(分)(﹣)的算术平方根是()..±.﹣.【解答】解:∵(﹣),的算术平方根为,∴(﹣)的算术平方根是.故选:..(分)明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为,这个数用科学记数法表示为().×.×.×.×【解答】解:∵共有位数,∴﹣,∴用科学记数法表示为:×.故选:..(分)一个几何体的主视图、左视图、俯视图完全相同,它一定是().圆柱.圆锥.球体.长方体【解答】解:、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;、球体的主视图、左视图、俯视图都是圆形;故本选项正确;、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;故选:..(分)在一个不透明的盒子中装有个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()....【解答】解:设黄球的个数为个,根据题意得:,解得:.∴黄球的个数为.故选:..(分)如图,直线∥,∠°,∠°,则∠等于().°.°.°.°【解答】解:∵直线∥,∠°,∠°,∴∠∠°,∠∠°,∴∠°.故选:..(分)下列计算,正确的是().÷.().×.(﹣)×﹣【解答】解:、÷,故选项错误;、正确;、×,故选项错误;、(﹣)×,故选项错误.故选:..(分)关于反比例函数的图象,下列说法正确的是().必经过点(,).两个分支分布在第二、四象限.两个分支关于轴成轴对称.两个分支关于原点成中心对称【解答】解:、把(,)代入得:左边≠右边,故选项错误;、>,图象在第一、三象限,故选项错误;、沿轴对折不重合,故选项错误;、两曲线关于原点对称,故选项正确;故选:..(分)如图,直径为的⊙经过点(,)和点(,),是轴右侧⊙优弧上一点,则∠等于().°.°.°.°【解答】解:连接,,∵(,),∴,∵直径为,∴,∴△为等边三角形,∴∠°,∵∠与∠都对,∴∠∠°.故选:..(分)已知一次函数的图象经过一、二、三象限,则的值可以是().﹣.﹣..【解答】解:∵一次函数的图象经过一、二、三象限,∴>,>.故选:..(分)如图.矩形纸片中,已知,折叠纸片使边与对角线重合,点落在点处,折痕为,且.则的长为()....【解答】解:∵四边形是矩形,,∴,∵△是△翻折而成,∴,,△是直角三角形,∴﹣,在△中,,设,在△中,,即(),解得,故选:.二、填空题:(本题共个小题,每小题分,共分).(分)不等式﹣<﹣的解集是<﹣.【解答】解:移项得:<﹣,合并同类项得:<﹣,把的系数化为得:<﹣.故答案为:<﹣..(分)如图,在△中,,,的垂直平分线分别交、于、,则△的周长为.【解答】解:∵为的垂直平分线,∴,∴△的周长,而,,∴△的周长为.故答案为:..(分)若,为实数,且,则()的值是﹣.【解答】解:由题意得,,﹣,解得﹣,,所以,()(﹣×)﹣.故答案为:﹣..(分)如图,菱形的边长是,是的中点,且丄,则菱形的面积为.【解答】解:∵是的中点,∴,∵丄,∴.∴菱形的面积为:×.故答案为:..(分)在全民健身环城越野赛中,甲、乙两选手的行程(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后小时内,甲在乙的前面;②第小时两人都跑了千米;③甲比乙先到达终点;④两人都跑了千米.其中正确的说法的序号是①②④.【解答】解:①由图可知,≤≤时,甲的函数图象在乙的上边,所以,起跑后小时内,甲在乙的前面,故本小题正确;②时,甲、乙都是千米,第小时两人都跑了千米,故本小题正确;③由图可知,时,乙到达终点,甲没有到达终点,所以,乙比甲先到达终点,故本小题错误;④两人都跑了千米正确;综上所述,正确的说法是①②④.故答案为:①②④..(分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为,则第个矩形的面积为()﹣.【解答】解:已知第一个矩形的面积为;第二个矩形的面积为原来的()﹣;第三个矩形的面积是()﹣;…故第个矩形的面积为:()﹣.三、解答题(一)(本大题小题,每小题分,共分).(分)计算:﹣°﹣.【解答】解:﹣°﹣﹣×..(分)先化简,再求值:,其中.【解答】解:,•,,当时,原式..(分)如图,方格纸中的每个小方格都是边长为个单位的正方形,在建立平面直角坐标系后,△的顶点坐标为点(﹣,),点(﹣,),点(﹣,).()将△沿轴正方向平移个单位得到△,试在图上画出图形△,并写出点的坐标;()将原来的△绕点顺时针旋转°得到△,试在图上画出图形△.并写出顶点从开始到经过的路径长【解答】解:()如图所示:△,即为所求,点的坐标为:(﹣,);()如图所示:△,即为所求,顶点从开始到经过的路径长为:.。

2018年广东省东莞市寮步宏伟中学数学中考一模试卷【答案】(解析版)

2018年广东省东莞市寮步宏伟中学数学中考一模试卷【答案】(解析版)

(3)连接 EF,求证:EF 是⊙O 的切线.
25. (9 分)如图,在平面直角坐标系中,O 为原点,四边形 ABCO 是矩形,点 A, C 的坐标分别是 A(0,2)和 C(2 ,0) ,点 D 是对角线 AC 上一动点(不与 A,
C 重合) , 连结 BD, 作 DE⊥DB, 交 x 轴于点 E, 以线段 DE, DB 为邻边作矩形 BDEF. (1)填空:点 B 的坐标为 ;
2018 年广东省东莞市寮步宏伟中学中考数学一模试卷
一、选择题: (每题 3 分,共 30 分) 1. (3 分)﹣2 的绝对值是( A.﹣2 B.2 C.±2 D. ) D. ) )
2. (3 分)下列计算正确的是(
A.a3+a2=a5 B.a3•a2=a6 C. (a2)3=a6
3. (3 分)0.000345 用科学记数法表示为( A.0.345×10﹣3 B.3.45×104
C.3.45×10﹣4 D.34.5×10﹣5 )
4. (3 分)在 0,2, (﹣3)0,﹣5 这四个数中,最大的数是( A.0 B.2 C. (﹣3)0 D.﹣5 )
5. (3 分)如图所示,a 与 b 的大小关系是(
A.a<b
B.a>b
C.a=b D.b=2a )
6. (3 分)下列图形中,是中心对称图形的是(
21. (7 分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援” 赈灾捐款活动.第一天收到捐款 10 000 元,第三天收到捐款 12 100 元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率; (2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款? 22. (7 分)如图,某数学兴趣小组想测量一棵树 CD 的高度,他们先在点 A 处测 得树顶 C 的仰角为 30°,然后沿 AD 方向前行 10m,到达 B 点,在 B 处测得树顶 C 的仰角高度为 60° (A、B、D 三点在同一直线上) .请你根据他们测量数据计算 这棵树 CD 的高度(结果精确到 0.1m) . (参考数据: ≈1.414, ≈1.732)

2018年广东省中考数学模拟试题及答案

2018年广东省中考数学模拟试题及答案

2018年广东省中考数学模拟试题及答案(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年广东省中考数学模拟试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年广东省中考数学模拟试题及答案(word版可编辑修改)的全部内容。

)
4 D. a =4 ):40,43三名学生竞选学校学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用2
1
第11题
(2)已知点
运动到什么位的最大面积。

此时x P=-2;∴y P=3;∴P(-2,3) -—----——9分。

广东省东莞市寮步镇中考数学一模试卷含答案解析

广东省东莞市寮步镇中考数学一模试卷含答案解析

广东省东莞市寮步镇中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2的绝对值是()A.2 B.﹣2 C.0 D.2.下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a6 D.3.人体中红细胞的直径约为0.0000077m,将0.0000077用科学记数法表示为()A.7.7×10﹣5B.7.7×10﹣6C.77×10﹣7D.0.77×10﹣54.不等式的解集x≤2在数轴上表示为()A.B.C.D.5.化简的结果是()A.a+b B.a﹣b C.a2﹣b2D.16.如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°7.一元二次方程x2+2x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根8.将抛物线y=x2向左平移2个单位,所得抛物线的解析式为()A.y=x2﹣2 B.y=x2+2 C.y=(x+2)2D.y=(x﹣2)29.圆心角为240°的扇形的半径为3cm,则这个扇形的面积是()cm2.A.πB.3πC.9πD.6π10.在同一坐标系中,正比例函数y=﹣x与反比例函数y=的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.2﹣=.12.函数:中,自变量x的取值范围是.13.因式分解:x3﹣2x2+x=.14.一元二次方程x2=2x的根是.15.如图所示,点A、B、C都在⊙O上,若∠C=35°,则∠AOB的度数是度.16.二次函数y=x2﹣4x+1的顶点坐标为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:﹣12+(﹣)﹣3+÷(2﹣π)0.18.解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.19.已知方程x2+4x+m﹣1=0有两个相等的实数根,求m的值.四、解答题(本大题共3小题,每小题7分,共21分)20.先化简,再求值:÷(1+),其中x=﹣1.21.某地区投入教育经费200万元,投入教育经费242万元.(1)求至该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计该地区将投入教育经费多少万元.22.如图,甲楼AB的高度为50米,自甲楼楼顶A处,测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为30°,求乙楼CD的高度(结果精确到1米,取1.73).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线;(2)若点E是BC上一点,已知BE=6,tan∠ABC=,tan∠AEC=,求圆的直径.24.如图,已知抛物线与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C(0,3),抛物线的顶点为P,连结AC.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D的坐标.25.如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2).(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.广东省东莞市寮步镇中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2的绝对值是()A.2 B.﹣2 C.0 D.【考点】绝对值.【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣2的绝对值是2,故选:A.2.下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a6 D.【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、a2•a3=a5,选项错误;C、正确;D、()2=,选项错误.故选C.3.人体中红细胞的直径约为0.0000077m,将0.0000077用科学记数法表示为()A.7.7×10﹣5B.7.7×10﹣6C.77×10﹣7D.0.77×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077用科学记数法表示为7.7×10﹣6故选B.4.不等式的解集x≤2在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式解集的方法表示出不等式的解集x≤2,再得出符合条件的选项即可.【解答】解:不等式的解集x≤2在数轴上表示为:故选B.5.化简的结果是()A.a+b B.a﹣b C.a2﹣b2D.1【考点】分式的加减法.【分析】根据同分母的分式相加的法则:分母不变,分子相加减.【解答】解:原式=,=,=a+b.故选:A.6.如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°【考点】切线的性质.【分析】连接OC,先求出∠POC,再利用切线性质得到∠PCO=90°,由此可以求出∠P.【解答】解:如图,连接OC.∵OA=OC,∴∠OAC=∠OCA=35°,∴∠POC=∠OAC+∠OCA=70°,∵PC是⊙O切线,∴PC⊥OC,∴∠PCO=90°,∴∠P=90°﹣∠POC=20°,故选B.7.一元二次方程x2+2x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根【考点】根的判别式.【分析】求出b2﹣4ac的值,根据b2﹣4ac的正负即可得出答案.【解答】解:x2+2x+2=0,这里a=1,b=2,c=2,∵b2﹣4ac=22﹣4×1×2=﹣4<0,∴方程无实数根,故选D.8.将抛物线y=x2向左平移2个单位,所得抛物线的解析式为()A.y=x2﹣2 B.y=x2+2 C.y=(x+2)2D.y=(x﹣2)2【考点】二次函数图象与几何变换.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将抛物线y=x2向左平移2个单位,所得抛物线的解析式为:y=(x+2)2.故选C.9.圆心角为240°的扇形的半径为3cm,则这个扇形的面积是()cm2.A.πB.3πC.9πD.6π【考点】扇形面积的计算.【分析】根据扇形的面积公式计算即可.【解答】解:S==6πcm2,故选D.10.在同一坐标系中,正比例函数y=﹣x与反比例函数y=的图象大致是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据正比例函数、反比例函数图象与系数的关系进行判断.【解答】解:∵正比例函数y=﹣x中的系数﹣1<0,∴正比例函数y=﹣x的图象经过第二、四象限.∵反比例函数y=中的系数2>0,∴反比例函数y=的图象经过第一、三象限.综上所述,选项B符合题意.故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.2﹣=3.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=4﹣=3.故答案为:3.12.函数:中,自变量x的取值范围是x≠﹣1.【考点】函数自变量的取值范围.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案.【解答】解:根据题意可得x+1≠0;解可得x≠﹣1;故答案为x≠﹣1.13.因式分解:x3﹣2x2+x=x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提公因式x,再利用完全平方公式,即可解答.【解答】解;x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2,故答案为:x(x﹣1)2.14.一元二次方程x2=2x的根是x1=0,x2=2.【考点】解一元二次方程-因式分解法.【分析】先移项,再提公因式,使每一个因式为0,从而得出答案.【解答】解:移项,得x2﹣2x=0,提公因式得,x(x﹣2)=0,x=0或x﹣2=0,∴x1=0,x2=2.故答案为:x1=0,x2=2.15.如图所示,点A、B、C都在⊙O上,若∠C=35°,则∠AOB的度数是70度.【考点】圆周角定理.【分析】欲求∠AOB,已知了同弧所对的圆周角的度数,可根据圆周角和圆心角的关系来求解.【解答】解:∵∠ACB、∠AOB是同弧所对的圆周角和圆心角,∴∠AOB=2∠ACB=70°.16.二次函数y=x2﹣4x+1的顶点坐标为(2,﹣3).【考点】二次函数的性质.【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣4x+1=(x﹣2)2﹣3,∴其顶点坐标为(2,﹣3),故答案为:(2,﹣3).三、解答题(本大题共3小题,每小题6分,共18分)17.计算:﹣12+(﹣)﹣3+÷(2﹣π)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式第二项利用负指数幂法则计算,最后一项利用零指数幂法则计算,即可得到结果.【解答】解:原式=﹣1﹣27+4=﹣24.18.解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的整数即可.【解答】解:由①得:x<1;由②得:x≥﹣;∴不等式组的解集为﹣≤x<1.则不等式组的整数解为﹣1,0.19.已知方程x2+4x+m﹣1=0有两个相等的实数根,求m的值.【考点】根的判别式.【分析】由于方程有两个相等的实数根,故根的判别式为0,解关于m的方程即可解答.【解答】解:∵方程x2+4x+m﹣1=0有两个相等的实数根,∴△=42﹣4×1×(m﹣1)=0,解得m=5.四、解答题(本大题共3小题,每小题7分,共21分)20.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】先将分式化简,然后将x的值代入即可.【解答】解:原式===当时,原式=.21.某地区投入教育经费200万元,投入教育经费242万元.(1)求至该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计该地区将投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)一般用增长后的量=增长前的量×(1+增长率),要投入教育经费是2000(1+x)万元,在的基础上再增长x,就是的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求该地区将投入教育经费.【解答】解:(1)设该地区投入教育经费的年平均增长率为x,根据题意得:200(1+x)2=242,解得:x=0.1=10%,或x=﹣2.1(不合题意舍去).答:该地区投入教育经费的年平均增长率为10%.(2)根据题意得:242×(1+10%)=266.2(万元),答:该地区将投入教育经费266.2万元.22.如图,甲楼AB的高度为50米,自甲楼楼顶A处,测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为30°,求乙楼CD的高度(结果精确到1米,取1.73).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.【解答】解:过点A 作AE⊥CD,在Rt△AED中,∵AB=DE=50,tan∠EAD=,∴.在Rt△AEC中,∵∠CAE=45°,∴,∴(米).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线;(2)若点E是BC上一点,已知BE=6,tan∠ABC=,tan∠AEC=,求圆的直径.【考点】切线的判定;圆周角定理;锐角三角函数的定义;解直角三角形.【分析】(1)根据圆周角定理BC得到∠BDC=90°,推出∠ACD+∠DCB=90°,即BC⊥CA,即可判断CA是圆的切线;(2)根据锐角三角函数的定义得到tan∠AEC=,tan∠ABC=,推出AC=EC,BC=AC,代入BC﹣EC=BE即可求出AC,进一步求出BC即可.【解答】(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ABC+∠DCB=90°,∵∠ACD=∠ABC,∴∠ACD+∠DCB=90°,∴BC⊥CA,∴CA是圆的切线.(2)解:在Rt△AEC中,tan∠AEC=,∴=,EC=AC,在Rt△ABC中,tan∠ABC=,∴=,BC=AC,∵BC﹣EC=BE,BE=6,∴,解得:AC=,∴BC=×=10,答:圆的直径是10.24.如图,已知抛物线与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C(0,3),抛物线的顶点为P,连结AC.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)运用待定系数法即可得到解析式;(2)利用△QOC∽△COA,得出QO的长度,得出Q点的坐标,再求出直线QC的解析式,将两函数联立求出交点坐标即可.【解答】(1)设此抛物线的解析式为:y=a(x﹣x1)(x﹣x2)∵抛物线与x轴交于A(1,0)、B(﹣3,0)两点,∴y=a(x﹣1)(x+3)∵抛物线与y轴交于点C(0,3)∴a(0﹣1)(0+3)=3,∴a=﹣1∴y=﹣(x﹣1)(x+3)即y=﹣x2﹣2x+3;(2)∵点A(1,0),点C(0,3)∴OA=1,OC=3,∵DC⊥AC,OC⊥x轴∴△QOC∽△COA∴,即∴OQ=9,∵点Q在x轴的负半轴上,∴Q(﹣9,0)设直线DC的解析式为:y=kx+b,则解之得:∴直线DC的解析式为:∵点D是抛物线与直线DC的交点,∴解之得:,(不合题意,舍去)∴点D.25.如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2).(1)问:始终与△AGC相似的三角形有△HAB及△HGA;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.【考点】相似三角形的判定与性质;等腰三角形的性质;等腰直角三角形;旋转的性质.【分析】(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可.(3)此题要采用分类讨论的思想,当CG<BC时,当CG=BC时,当CG>BC时分别得出即可.【解答】解:(1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合,∵∠H+∠HAC=45°,∠HAC+∠CAG=45°,∴∠H=∠CAG,∵∠ACG=∠B=45°,∴△AGC∽△HAB,∴同理可得出:始终与△AGC相似的三角形有△HAB和△HGA;故答案为:△HAB和△HGA.(2)∵△AGC∽△HAB,∴AC:HB=GC:AB,即9:y=x:9,∴y=,∵AB=AC=9,∠BAC=90°,∴BC===9.答:y关于x的函数关系式为y=(0<x<9).(3)①当CG<BC时,∠GAC=∠H<∠HAG,∴AG<GH,∵GH<AH,∴AG<CH<GH,又∵AH>AG,AH>GH,此时,△AGH不可能是等腰三角形,②当CG=BC时,G为BC的中点,H与C重合,△AGH是等腰三角形,此时,GC=,即x=,③当CG>BC时,由(1)△AGC∽△HGA,所以,若△AGH必是等腰三角形,只可能存在GH=AH,若GH=AH,则AC=CG,此时x=9,如图(3),当CG=BC时,注意:DF才旋转到与BC垂直的位置,此时B,E,G重合,∠AGH=∠GAH=45°,所以△AGH为等腰三角形,所以CG=9.综上所述,当x=9或x=或9时,△AGH是等腰三角形.11月1日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年广东省东莞市寮步宏伟中学中考数学一模试卷
一、选择题:(每题3分,共30分)
1.(3分)﹣2的绝对值是()
A.﹣2B.2C.±2D.
2.(3分)下列计算正确的是()
A.a3+a2=a5B.a3•a2=a6
C.(a2)3=a6D.
3.(3分)0.000345用科学记数法表示为()
A.0.345×10﹣3B.3.45×104C.3.45×10﹣4D.34.5×10﹣5 4.(3分)在0,2,(﹣3)0,﹣5这四个数中,最大的数是()A.0B.2C.(﹣3)0D.﹣5
5.(3分)如图所示,a与b的大小关系是()
A.a<b B.a>b C.a=b D.b=2a
6.(3分)下列图形中,是中心对称图形的是()
A.B.
C.D.
7.(3分)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()
A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3
C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+3
8.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()
A.B.C.D.
9.(3分)如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC
与AB的延长线交于点P,则∠P等于()
A.15°B.20°C.25°D.30°
10.(3分)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.
C.D.
二、填空题:(每题4分,共24分)
11.(4分)函数y=中,自变量x的取值范围是.
12.(4分)因式分解:x3﹣2x2+x=.
13.(4分)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sin A=.14.(4分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则m 的取值范围为.
15.(4分)二次函数y=x2+2x﹣3的最小值是.
16.(4分)如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC 相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是(保留π).
三、解答题:(每题6分,共18分)
17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1
18.(6分)先化简,再求值:÷(1+),其中x=﹣1.
19.(6分)如图,已知△ABC中,D为AB的中点.
(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);
(2)在(1)条件下,若DE=4,求BC的长.
四、解答题:(每题7分,共21分)
20.(7分)老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.
(1)补全小明同学所画的树状图;
(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.
21.(7分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.(7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们
测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
五、解答题:(每题9分,共27分)
23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.
(1)求抛物线y=﹣x2+ax+b的解析式;
(2)当点P是线段BC的中点时,求点P的坐标;
(3)在(2)的条件下,求sin∠OCB的值.
24.(9分)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.
(1)求证:△ACF∽△DAE;
(2)若S
=,求DE的长;
△AOC
(3)连接EF,求证:EF是⊙O的切线.
25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:=;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结
论),并求出y的最小值.
2018年广东省东莞市寮步宏伟中学中考数学一模试卷
参考答案
一、选择题:(每题3分,共30分)
1.B;2.C;3.C;4.B;5.A;6.A;7.D;8.B;9.B;10.A;
二、填空题:(每题4分,共24分)
11.x≤2;12.x(x﹣1)2;13.;14.m;15.﹣4;16.;
三、解答题:(每题6分,共18分)
17.;18.;19.;
四、解答题:(每题7分,共21分)
20.;21.;22.;
五、解答题:(每题9分,共27分)
23.;24.;25.(2,2);。

相关文档
最新文档