高中数学第二册(下)同步练测(17)

合集下载

北师大版高中数学必修二同步练习题 弧度概念 弧度与角度的换算(含答案)

北师大版高中数学必修二同步练习题 弧度概念 弧度与角度的换算(含答案)

3.1 弧度概念 3.2 弧度与角度的换算必备知识基础练1.在半径为5 cm 的扇形中,圆心角为2,则扇形的面积为( ) A.25 cm 2B.10 cm 2C.15 cm 2D.5 cm 22.角α=-2,则α所在的象限是( ) A.第一象限 B.第二象限 C.第三象限D.第四象限3.已知扇形AOB 的周长为10,面积为6,则该扇形的圆心角为( ) A.3B.43或3C.34D.34或34.在半径为3 cm 的圆中,π7的圆心角所对的弧长为( ) A .3π7 cmB .π21 cmC .37 cmD .9π7 cm5.如果一个圆的半径变为原来的一半,弧长变为原来的32倍,则该弧所对的圆心角是原来的 倍.关键能力提升练6.若集合P={α|2k π≤α≤(2k+1)π,k ∈Z },Q={α|-4≤α≤4},则P ∩Q=( ) A.⌀B.{α|-4≤α≤-π,或0≤α≤π}C.{α|-4≤α≤4}D.{α|0≤α≤π}7.若角α的终边在直线y=-x 上,则角α的集合为( ) A.αα=2k π-π4,k ∈Z B.αα=2k π+3π4,k ∈Z C.αα=k π-3π4,k ∈ZD.αα=k π-π4,k ∈Z8.如图,一把折扇完全打开后,扇面的两条弧AB⏜,CD ⏜的弧长分别是10π和10π3,且AD=10,则图中阴影部分的面积是( )A.200π3B.100πC.400π3D.500π39.一个半径为2的扇形,如果它的周长等于所在圆的半圆的弧长,那么扇形的圆心角是 弧度,扇形的面积是 .学科素养创新练10.已知扇形的圆心角为α,半径为r.(1)若扇形的周长是定值C (C>0),求扇形的最大面积及此时α的值; (2)若扇形的面积是定值S (S>0),求扇形的最小周长及此时α的值. 答案1.A 扇形面积为S=12×2×52=25(cm 2).故选A. 2.C 角α=-2,-2∈(-π,-π2),所以α在第三象限,故选C . 3.B 设扇形AOB 的半径为r ,弧长为l ,由题意可得{2r +l =10,12lr =6,解得{l =6,r =2或{l =4,r =3,则该扇形的圆心角为43或3.故选B .4.A 由题意可得圆心角α=π7,半径r=3 cm,弧长l=αr=π7×3=3π7(cm).故选A .5.3 设圆的半径为r ,弧长为l ,则该弧所对的圆心角为lr .将半径变为原来的一半,弧长变为原来的32倍,则该弧所对的圆心角变为32l 12r =3·lr ,即该弧所对的圆心角变为原来的3倍.6.B 当k=-1,0时,集合P 和Q 的公共元素满足-4≤α≤-π,或0≤α≤π,当k 取其他值时,集合P 和Q 无公共元素,故P ∩Q={α|-4≤α≤-π,或0≤α≤π}.7.D 由图知,角α的取值集合为αα=2k π+3π4,k ∈Z ∪αα=2k π-π4,k ∈Z =αα=(2k+1)π-π4,k ∈Z ∪αα=2k π-π4,k ∈Z =αα=k π-π4,k ∈Z ,故选D.8.A 设OA=R ,OD=r ,圆心角是θ,则r θ=10π3,(r+10)θ=10π,R-r=10,解得R=15,r=5,θ=2π3,所以阴影部分的面积为12(10π×15-10π3×5)=200π3,故选A .9.π-2 2(π-2) 设扇形的弧长为l ,圆心角为α, 故由题得2α+2×2=2π,所以α=π-2, 扇形的面积S=12l ·r=12·(2π-4)·2=2(π-2). 10.解(1)由题意可得2r+αr=C ,则αr=C-2r ,得扇形面积S=12αr 2=12(C-2r )r=-r 2+12Cr=-(r -C 4)2+C 216, 故当r=C4时,S 取得最大值C 216, 此时α=C -2r r =2.(2)由题意可得S=12αr 2,则αr=2Sr , 得扇形周长C=2r+αr=2r+2Sr ≥4√S , 当且仅当2r=2Sr ,即r=√S 时取等号,。

高考数学测试卷必修2全册同步检测:3-1-1

高考数学测试卷必修2全册同步检测:3-1-1

3-1-1同步检测一、选择题1.斜率不存在嘚直线一定是( ) A .过原点嘚直线 B .垂直于x 轴嘚直线 C .垂直于y 轴嘚直线 D .垂直于过原点嘚直线2.如图所示,直线l 嘚倾斜角是( )A .0°B .90°C .∠CABD .∠OAB3.已知点A(2,1),B(3,-1),则过A ,B 两点嘚直线嘚斜率为( )A .-2B .-12C.12D .24.直线l 嘚倾斜角α=135°,则其斜率k 等于( )A.22B.32C.-1 D.15.过点(-3,0)和点(-4,3)嘚直线嘚倾斜角是( )A.30° B.150°C.60° D.120°6.过两点A(4,y),B(2,-3)嘚直线嘚倾斜角是45°,则y等于( ) A.-1 B.-5 C.1 D.57.①直线l嘚倾斜角是α,则l嘚斜率为tanα;②直线l嘚斜率为-1,则其倾斜角为45°;③与坐标轴平行嘚直线没有倾斜角;④任何一条直线都有倾斜角,但不是每一条直线都存在斜率.上述命题中,正确嘚个数为( )A.0个B.1个C.2个D.3个8.已知直线l1与l2垂直,l1嘚倾斜角α1=60°,则l2嘚斜率为( )A. 3B.3 3C.- 3D.-3 39.直线l嘚倾斜角是斜率为33嘚直线嘚倾斜角嘚2倍,则l嘚斜率为( )A.1 B. 3C.233D.- 310.如下图,已知直线l1,l2,l3嘚斜率分别为k1,k2,k3,则( )A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2二、填空题11.已知两点P(m,2),Q(1+m,2m -1)所在直线嘚倾斜角为45°,则m 嘚值等于________.12.三点A(0,2),B(2,5),C(3,b)能作为三角形嘚三个顶点,则实数b 满足嘚条件是________.13.设P 为x 轴上嘚一点,A(-3,8),B(2,14),若PA 嘚斜率是PB 嘚斜率嘚两倍,则点P 嘚坐标为________.14.若三点A(3,3),B(a,0),C(0,b)(ab≠0)共线,则1a +1b =________.三、解答题15.已知三点A(1,3),B(5,11),C(-3,-5),求证:这三点在同一条直线上.16.求经过下列两点嘚直线嘚斜率,并判断其倾斜角是锐角、直角还是钝角.(1)A(0,-1),B(2,0); (2)P(5,-4),Q(2,3); (3)M(3,-4),N(3,-2).17.设A(m ,-m +3),B(2,m -1),C(-1,4),直线AC 嘚斜率等于直线BC 嘚斜率嘚3倍,求实数m 嘚值.18.(1)当且仅当m 为何值时,经过两点A(-m,6),B(1,3m)嘚直线嘚斜率为12?(2)当且仅当m 为何值时,经过两点A(m,2),B(-m,2m -1)嘚直线嘚倾斜角是60°?[分析] 利用斜率公式列方程求解. 详解答案 1[答案] B 2[答案] C 3[答案] A[解析] k AB =-1-13-2=-2.4[答案] C[解析] k =tanα=tan135°=-1. 5[答案] D[解析] 斜率k =3-0-4+3=-3,则倾斜角为120°.6[答案] A[解析] 直线嘚倾斜角为45°,则其斜率为k =tan45°=1.由斜率公式,得-3-y 2-4=1,解得y =-1.7[答案] B[解析] 由倾斜角和斜率嘚定义知,当倾斜角α=90°时,则l嘚斜率不存在,故①是错误嘚;因为tan135°=tan(180°-45°)=-tan45°=-1,所以当k=-1时,α=135°,故②是错误嘚;与y轴平行嘚直线倾斜角为90°,故③也是错误嘚;因而只有④是正确嘚,即正确嘚个数为1个,故选B.8[答案] D[解析] ∵直线l2嘚倾斜角α2=90°+60°=150°,∴直线l2嘚斜率k2=tan150°=tan(180°-30°)=-tan30°=-3 3.9[答案] B[解析] ∵tanα=33,0°≤α<180°,∴α=30°,∴2α=60°,∴k=tan2α= 3.故选B.10[答案] D[解析] 可由直线嘚倾斜程度,结合倾斜角与斜率嘚关系求解.设直线l1,l2,l3嘚倾斜角分别是α1,α2,α3,由图可知α1>90°>α2>α3>0°,所以k1<0<k3<k2.11[答案] 2[解析] 由题意知k =tan45°=1.由斜率公式得2m -1-21+m -m =1,解得m=2.12[答案] b≠132[解析] 由题意得k AB ≠k AC , 则5-22-0≠b -23-0,整理得b≠132. 13[答案] (-5,0)[解析] 设P(x,0)为满足题意嘚点,则k PA =8-3-x ,k PB =142-x,于是8-3-x =2×142-x ,解得x =-5.14[答案] 13[解析] 由于点A ,B ,C 共线,则k AB =k AC , 所以0-3a -3=b -30-3.所以ab =3a +3b.即1a +1b =13. 15[证明] 由斜率公式,得k AB =11-35-1=2,k AC =-5-3-3-1=2,∴k AB =k AC ,且AB 与AC 都过点A , ∴直线AB ,AC 斜率相同,且过同一点A , ∴A ,B ,C 这三点在同一条直线上. 16[解析] (1)k AB =-1-00-2=12,∵k AB >0,∴直线AB 嘚倾斜角是锐角. (2)k PQ =-4-35-2=-73,∵k PQ <0,∴直线PQ 嘚倾斜角是钝角. (3)∵x M =x N =3,∴直线MN 嘚斜率不存在,其倾斜角为直角.17[解析] 依题意知直线AC 嘚斜率存在,则m≠-1,由k AC =3k BC得-m +3-4m --1=3×m -1-42--1,∴m =4.18[解析] (1)由题意得k AB =3m -61--m=12,解得m =-2.故当且仅当m =-2时,经过两点A(-m,6),B(1,3m)嘚直线嘚斜率为12.(2)由题意得k AB =tan60°=3=2m -1-2-m -m,解得m =-31-34. 故当且仅当m =-31-34时,经过两点A(m,2),B(-m,2m -1)嘚直线嘚倾斜角是60°.。

高二下数学同步训练:直线和平面平行、垂直与平面和平面平行(附答案...

高二下数学同步训练:直线和平面平行、垂直与平面和平面平行(附答案...

高二数学同步检测二直线和平面平行、垂直与平面和平面平行说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题栏,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.1.设有直线m、n和平面α、β,下列四个命题中正确的是A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若a∥b,b∥α,则a∥α D.若m与α无公共点,则m∥α2.给定空间中的直线l及平面α.条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.下面给出三个命题:①直线l与平面α内两直线都垂直,则l⊥α;②经过直线a有且仅有一个平面垂直于直线b;③直线l同时垂直于平面α、β,则α∥β.其中正确的命题个数为A.0 B.1 C.2 D.34.平面α∥β的一个充分条件是A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a、b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a、b,a⊂α,b⊂β,a∥β,b∥α5.两平面α∥β,a⊂α,下列命题中:①a与β内的所有直线平行;②a与β内的无数条直线平行;③a与β内的任何一条直线都不垂直;④a与β无公共点.其中真命题的个数是A.1 B.2 C.3 D.46.已知平面α外不共线的三点A、B、C到α的距离都相等,则正确的结论是A.平面ABC必平行于αB.平面ABC必与α相交C.平面ABC必不垂直于αD.存在△ABC的一条中位线平行于α或在α内7.如图,PA⊥平面ABC,△ABC中,BC⊥AC,则图中直角三角形的个数有A.4个B.3个C .2个D .1个 8.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面; ③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 其中真命题的个数是A .4B .3C .2D .19.一平面截空间四边形的四边得到四个交点,如果该空间四边形只有一条对角线与这个平面平行,那么这四个交点围成的四边形是A .梯形B .菱形C .平行四边形D .任意四边形10.已知m ,n ,l 为直线,α,β为平面,给出下列命题:①⎭⎪⎬⎪⎫m ⊥αm ⊥n ⇒n ∥α ②⎭⎪⎬⎪⎫m ⊥βn ⊥β⇒m ∥n ③⎭⎪⎬⎪⎫m ⊥αm ⊥β⇒α∥β ④⎭⎪⎬⎪⎫m ⊂αn ⊂βα∩β=l ⇒m ∥n 其中正确的命题序号是A .③④B .②③C .①②D .①②③④第Ⅱ卷(非选择题 共60分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 11.设直线m 在平面α内,则平面α平行于平面β是直线m 平行于平面β的__________条件.(填充分不必要、必要不充分、充要、既不充分也不必要)12.在△ABC 中,∠ACB =90°,AB =8,∠ABC =60°,PC ⊥平面ABC ,PC =4,M 是AB 上一个动点,则PM 的最小值为__________.13.四边形ABCD 是空间四边形,E 、F 、G 、H 分别是四边上的点,它们共面,并且AC ∥平面EFGH ,BD ∥平面EFGH ,AC =m ,BD =n ,则当四边形EFGH 是菱形时,AE ∶EB =__________.14.m 、n 是空间两条不同的直线,α、β是两个不同的平面,下面有四个命题: ①m ⊥α,n ∥β,α∥β⇒m ⊥n ②m ⊥n ,α∥β,m ⊥α⇒n ∥β ③m ⊥n ,α∥β,m ∥α⇒n ⊥β ④m ⊥α,m ∥n ,α∥β⇒n ⊥β其中真命题的序号是__________.三、解答题:本大题共5小题,共44分.解答需写出文字说明、证明过程或演算步骤. 15.(本小题8分)如图,PA ⊥矩形ABCD ,M 、N 分别是AB 、PC 的中点.(1)求证:MN ∥平面PAD ;(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:MN⊥平面PCD.16.(本小题8分)如图,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB =BC,E是PC的中点.(1)证明CD⊥AE;(2)证明PD⊥平面ABE.17.(本小题8分)如图,P 是△ABC 所在平面外的一点,PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,PH ⊥平面ABC ,H 是垂足.(1)求证:H 是△ABC 的垂心;(2)求证:△ABC 是锐角三角形.18.(本小题10分)如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,平面CDE 是等边三角形,棱EF 綊12BC.(1)证明FO ∥平面CDE ;19.(本小题10分)如图,空间四边形ABCD中,BD⊥AC,平行于对角线AC、BD的平面分别交AB,BC,CD,DA于点E,F,G,H,且AC=a,BD=b.求四边形EFGH面积的最大值.。

人教版高中数学必修第二册8.1——8.3同步测试滚动训练(含答案)

人教版高中数学必修第二册8.1——8.3同步测试滚动训练(含答案)

人教版高中数学必修第二册8.1——8.3同步测试滚动训练(时间:45分钟分值:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.下列说法中正确的是()A.三棱柱的侧面展开图一定是平行四边形B.水平放置的正方形的直观图有可能是梯形C.一个几何体的正视图和侧视图都是矩形,则该几何体是长方体D.用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台2.图G5-1中的几何体有()图G5-1A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球3.将选项中所示的三角形绕直线l旋转一周,可以得到图G5-2所示的几何体的是()图G5-2ABCD图G5-34.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()A.1∶3B.1∶9C.1∶33D.1∶(33-1)5.某柱体的正视图与侧视图是全等的正方形,俯视图是圆,记该柱体的表面积为S1,其内切球的表面积为S2,且S1=λS2,则λ=()A.1B.23C.43D.326.在如图G5-4所示的多面体ABCDB1C1D1中,四边形ABCD,四边形BCC1B1,四边形CDD1C1都是边长为6的正方形,则该多面体的体积为()图G5-4A.72B.144C.180D.2167.将一个体积为36π的金属球切割加工成一个底面积为8π的圆柱,则当圆柱的体积最大时,其侧面积为()A.82πB.83πC.62πD.93π8.若圆锥的体积与球的体积相等,且圆锥的底面半径与球的直径相等,则圆锥的侧面积与球的表面积之比为()A.5∶2B.5∶4C.1∶2D.3∶4二、填空题(本大题共4小题,每小题5分,共20分)9.将一个等腰直角三角形绕其斜边所在直线旋转一周所得几何体的体积为V1,绕其一直角边所在直线旋转一周所得几何体的体积为V2,则 1 2=.10.关于斜二测画法,有如下说法:①在画直观图时,由于选轴的不同,所得的直观图可能不同;②等腰三角形的直观图仍然是等腰三角形;③梯形的直观图仍然是梯形;④正三角形的直观图一定为等腰三角形.其中正确说法的序号是.11.在正四棱锥V-ABCD中,底面ABCD的面积为16,一条侧棱的长为211,则该棱锥的高为.12.设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且 1 2=94,则 1 2的值是.三、解答题(本大题共3小题,共40分)13.(10分)如图G5-5,该几何体上半部分是母线长为5,底面半径为3的圆锥,下半部分是下底面半径为2,母线长为2的圆台,计算该几何体的表面积和体积.图G5-514.(15分)已知一个圆锥的底面半径为2,母线长为4.(1)求圆锥的侧面展开图的扇形的圆心角;(2)若圆锥中内接一个高为3的圆柱,求圆柱的表面积.15.(15分)如图G5-6,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,且AB=BC=2,A1A=2.(1)求该直三棱柱的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求大棱柱表面积的最小值.图G5-6参考答案与解析1.D[解析]对于选项A,三棱柱的每个侧面都是平行四边形,但是全部展开以后,那些平行四边形未必可以构成一个“大”平行四边形,故A错误.对于选项B,水平放置的正方形的直观图是平行四边形,不可能是梯形,故B错误.对于选项C,一个几何体的正视图和侧视图都是矩形,则该几何体不一定是长方体,也可能是圆柱,故C错误.对于选项D,根据圆台的定义可知D正确.故选D.2.B[解析]由图可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故选B.3.B4.D[解析]由题意得,截得的小锥体与原来大锥体的体积之比为1∶33,故锥体被截面所分成的两部分的体积之比为1∶(33-1),故选D.5.D[解析]由已知可得,该柱体为底面直径与高相等的圆柱,设底面圆的半径为r,则高为2r,则S1=2πr2+2πr·(2r)=6πr2.易知该圆柱内切球的半径为r,则S2=4πr2,则λ= 1 2=6π 24π 2=32,故选D.6.C[解析]如图,把该多面体补成正方体ABCD-A1B1C1D1,则该多面体的体积V=正方体 쪨૕ - 1쪨1૕1 1- 三棱锥 - 1쪨1 1=63-13×12×63=180.故选C.7.A[解析]设球的半径为R,则由题意知43πR3=36π,解得R=3.当圆柱的体积最大时,圆柱轴截面对角线的长等于球的直径.设圆柱的底面半径为r,则πr2=8π,解得r=22,所以圆柱的高h=2 2- 2=29−8=2,所以圆柱的侧面积S=2πr·h=2π×22×2=82π,故选A.8.A[解析]设圆锥的底面半径为r,圆锥的高为h,则球的半径为 2,由题知13πr2h=43π· 23,解得h= 2,∴圆锥的母线长为 2+ 2=,∴圆锥的侧面积S1=12×2πr2,又球的表面积S2=4π 22=πr2,∴ 1 2=A.9[解析]设等腰直角三角形的斜边长为2,则直角边长为2,则V1=2π3,V21 2=10.①③[解析]由斜二测画法规则可知,正三角形、等腰三角形的直观图不一定是等腰三角形,故②④错误,易知①③正确.11.6[解析]如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥V-ABCD的高.∵底面ABCD的面积为16,∴AO=22,又VA=211,∴VO= 2- 2=44−8=6,∴正四棱锥V-ABCD的高为6.12.32[解析]由题意可得甲、乙两个圆柱的底面半径分别为r1r2的高分别为h1= 1 1,h2= 2 2,因为它们的侧面积相等,所以2πr1h1=2πr2h2· 1 1=· 2 2,整理得 1 2==32.13.解:圆锥的侧面积S1=π×3×5=15π,圆台的侧面积S2=π×(3+2)×2=10π,π×22=4π,圆台的下底面面积S底=所以该几何体的表面积S=S1+S2+S底=15π+10π+4π=29π.根据题意得,圆锥的高为4,圆台的高为3,则圆锥的体积V1=13×π×32×4=12π,圆台的体积V2=13×π×3×(32+2×3+22),所以该几何体的体积V=V1+V2=12π.14.解:(1)所求圆心角为2×π×24=4π4=π.(2)由题可知,圆锥的高为23,因为圆柱的高为3,所以圆柱的底面半径为1,则圆柱的表面积S=2×π×12+2×π×1×3=(2+23)π.15.解:(1)该直三棱柱底面的面积为12×2×2=1,侧面积为2×(2+2+2)=42+4,故其表面积S=6+42.(2)设两个这样的直三棱柱拼成一个大棱柱时重合的面的面积为S1,则大棱柱的表面积为2S-2S1,所以当重合的面的面积最大时,大棱柱的表面积最小.因为侧面AA1C1C的面积最大,所以大棱柱表面积的最小值为2S-2四边形 1૕1૕=4+82.。

高中数学第二册下同步练测高二数学单元测试题[整理六]高二数学单元测试题[整理六]

高中数学第二册下同步练测高二数学单元测试题[整理六]高二数学单元测试题[整理六]

创作;朱本晓 高中数学第二册〔下〕同步练测〔20〕〔复习练习〕班级 姓名 学号一、选择题1.异面直线a 、b 分别在平面α、β内,βα⋂=c ,那么直线与a 、b 的关系是 〔 〕A .同时与a 、b 都相交B .至多与a 、b 中的一条相交C .至少与a 、b 中的一条相交D .只与a 、b 中的一条相交 2.一凸多面体的棱数为30,面数为12,那么它的各面多边形的内角总和为 〔 〕A .54000B .64800C .72000D .792003.假设P 是等边三角形ABC 所在平面外一点,PA=PB=PC=,32△ABC 的边长为1,那么PC 和平面ABC 所成的角是 〔 〕 A .300 B .450 C .600 D .9004.AB 是⊙O 的直径,SA 垂直于⊙O 所在的平面M ,平面M 内有一动点,使得PB ⊥PS ,那么点P 的位置在 〔 〕 A .⊙O 内 B .⊙O 上 C .⊙O 外 D .不能确定5.假设三直线PA 、PB 、PC 两两垂直,且PA=PB=PC=3,那么点P 到平创作;朱本晓面ABC 的间隔 为 〔 〕A .2B .3C .5D .76.对于直线m 、n 和平面α、β,α⊥β的一个充分条件是 〔 〕A .m ⊥n ,m ∥α,n //β B .m ⊥n ,α⋂β=m ,n ⊂α C .m //n ,n ⊥β,m ⊂α D .m //n ,m ⊥α,n ⊥β 7.菱形ABCD 的边长为a ,锐角A 为600,将它沿对角线BD 折成600的二面角,那么AC 与BD 的间隔 为 〔 〕A .43a B .43a C .23a D .46a8.三棱锥的侧棱两两垂直,三个侧面三角形的面积分别为1S 、2S 、3S ,那么三棱锥的体积是 〔 〕A .321S S SB .3321S S S C .32321S S S D .322321S S S9.圆柱的底面半径是6,高是10,平行于轴的截面在底面上截得的弦长等于底面的半径,那么圆柱被截成的两局部中较大局部的体积是 〔 〕A .π300+390B .π300315C .31560-πD .π300 10.在半径为6cm 的球的内部有一点,该点到球心的间隔 为4cm ,过该点作球的截面,那么截面面积的最小值是 〔 〕创作;朱本晓 A . 11π2cm B .20π2cm C .32π 2cm D .27π 2cm 11.向高为H 的水瓶中注水,注满为止,假如注水量V 与水深h 的函数关系的图象如下图,那么水瓶的形状是 〔 〕A B C D12.长方体ABCD —A 1B 1C 1D 1的长、宽、高依次为5、4、3,那么从顶点A 没长方体外表到对角顶点C 1的最短间隔 是 〔 〕 A .74 B .55 C .54 D .103 二、填空题13.球O 的半径为R ,它的外表上有两点A 、B ,且∠AOB=6π,那么A 、B 两点间的球面间隔 是14.给出以下条件〔其中l 和a 为直线,α为平面①l ⊥α内一凸五边形的两条边;②l ⊥α内三条不都平行的直线;③l ⊥α内的无数条直线;④l ⊥α内正六边形的三条边;⑤a ⊥α,l ⊥α,其中是l ⊥α的充分条件的所有序号是 15.在直二面角βα--l 中,,,βα∈∈B A AB 与α所成角为x ,ABhvH创作;朱本晓 与β所成角为y ,AB 与l 所成的角为z ,那么=++z y x 222cos cos cos 16.一个斜三棱柱每相邻两个侧面所组成的三个二面角中,其中有两个分别是300和450,那么第三个二面角的大小是三、解答题17.△ABC 的∠C=900,PA 垂直于△ABC 所在的平面,M 、N 分别是边AC 、PB 的中点,求证:MN ⊥AC18.自二面角βα--a 内一点P 到两个半平面所在平面的间隔 分别为22和4,到棱a 的间隔 为24,求这个二面角的大小;创作;朱本晓19.圆锥的底面半径为1cm ,母线长为2cm ,求它的内切球的面积?20.如下图,△ABC 中,AB=BC ,AB ⊥BC ,PA 垂直于△ABC 所在的平面,PA=AB ,在△PBC 中,BD ⊥PC ,D 为垂足,求线段BD 在面PAC 内的射影的长与线段BD 长的比。

高中数学第二册(下)同步练测(38)

高中数学第二册(下)同步练测(38)

高中数学第二册(下)同步练测(38)(期末复习三第十章第一单元)班级___________学号_______________姓名_______________1、选择题AB1、乘积(a+b+c)(e+f+g+h)展开后共有()A 9项B 10项C 11项 D12项2、如图,一条线路在从A到B处接通时,可以有不同的线路条数为()A 7B 8C 9D 103、用0到9这10个数字,组成没有重复数字的三位数的个数为()A 600B 640C 648D 6504、下列各式中,不等于n!的是()A AB nAC A D5、一部纪录影片在4个单位轮映,每单位放映1场,轮映次序有( )A 4种B 8种C 16种D 24种6、5个朋友聚会,每两人握手一次,共握手的次数为()A 5B 10C 15D 207、6人同时被邀请参加一项活动,必须有人去,去几人自己决定,不同的去法共有()A 63B 62C 61D 608、(x-1)的展开式的第6项的系数是( )A CB -C C CD - C9、(其中n为偶数)等于()A 2B 2C 2D 210、(的展开式的中间一项是()A 第7项B 第6项C 含有x D含有11、(1+a)(n)的展开式中,系数最大的项是()A 第n项B 第n+1项C 第项D 第n项与第n+1项12、3个班分别从5 个景点中选择1处游览,不同的选法种数是()A 5B 3C AD C2、填空题13、已知C=21,那么n=____________________14、在(1-2x)的展开式中,各项系数的和是__________________________15、凸n边形共有______________________条对角线。

16、一种汽车牌照号码由2个英文字母,后按2个数字组成,且2 个英文字母不能相同,不同牌照号码的个数是___________个。

3、解答题17、已知,求m.18,求证:55+9能被8整除。

高中数学第二册(下)同步练测(22)

高中数学第二册(下)同步练测(22)

高中数学第二册(下)同步练测(22)(期中测试卷)班级_____________学号___________姓名____________一、选择题1.三条直线两两相交,可确定的平面个数是( )A 1B 1或3C 1或2D 3 2.给出下列例命题①在空间,过直线外一点,作这条直线的平行线只能有一条。

②既不平行,又不相交的两条不同直线是异面直线 ③两两互相平行的三条直线确定一个平面 ④不可能在同一平面的两条直线是异面直线 其中正确命题的个数是( )A 1B 2C 3D 4 3.命题:(1)夹在两平行平面间的两个几何体,被一个平行于这两个平面的平面所截,若截面积相等,则这两个几何体的体积出相等;(2)直棱柱和圆柱侧面展开图都是矩形;(3)斜棱柱的体积等于与它的一条侧棱垂直的截面面积乘以它的任一条侧棱;(4)平行六面体的对角线交于一点,且互相平分;其中正确的个数是( ) A 4个 B 3个 C 2个 D 1个 4.将一高和底面直径为2的金属圆柱熔成一金属球(不计损耗),则球表面积是( )A 2349π B 2323π C 349π D 4349π 5.如图所示,BCDE 一个正方形,AB ⊥平面BCDE,则图中互相垂直的平面有( ) A 4对 B 5对C 7对D 8对 6.在下列条件下,可判断平面M 与平面N 平行的是( )A M.N 都垂直于平面QB M 内不共线的三个点到N 的距离相等C l,m 是异面直线,且l ∥M,m ∥M,l ∥N,m ∥ND l,m 是M 内两条直线且l ∥N,m ∥N 7.连接正十二面体各面中点,得到一个( )A 正六面体B 正八面体C 正十二面体D 正二十面体 8.一棱锥被平行于底面的截成一小棱锥和一棱台,若小棱锥及小棱台的体积分别为y 和x ,则y 关于x 的函数图像的大致形状为如图所示的( )AE BC Dx9.把等腰直角△ABC 沿斜边上的高AD 折成直二面角B-AD-C ,则BD 与平面ABC 所成角的正切值为( ) A 2 B22C 1D 3310.正六棱柱ABCDEF-A 1B 1C 1D 1E 1F 1的侧面都是边长为a 的正方形,则对角面A 1ACC 1的面积是( ) A 23a B223a C 22a D 222a 11.侧棱长为2a 3的正三棱锥V-ABC 的侧棱间的夹角为400,过顶点A 作截面AEF ,截面AEF 的最小周长为( )A 22 aB 6aC 4aD 123a12.一个圆柱形油桶,水平横放时桶内油占底面圆周的三分之一,那么当油桶直立时,油的深度与桶的高度之比等于( ) A43:31 B π43:31 C 32:41 D π32:41二、填空题13、空间两个角的两边分别平行,则这两个角的大小关系是___________________ 14、长方体的对角线长为l ,其长、宽、高分别记为x 、y 、z ,则x+y+z 的最大值为_______15、设三棱锥P-ABC 的三条侧棱PA 、PB 、PC 两两垂直,已知它的体积是6cm 3,侧面PAB 、PBC 的面积分别是9cm 2、3cm 2,那么侧面PAC 的面积是_______________16.正三棱柱ABC-A 1B 1C 1的底边长,侧棱长都是2,M 为AB 的中点,N 为CC 1的中点,则在棱柱表面上,从M 到N 的最短路程等于___________________ 三、解答题17、斜三棱柱ABC- A 1B 1C 1中,底面是边长为a 的正三角形,侧棱长为b,AA 1与底面相邻两边AB,AC 都成450,求棱柱的侧面积A CB A 1C 1B 118.如图, 三棱锥P-ABC,PD 、CF 分别是棱锥的高, 求证: PD 、CF 相交的充要条件是PC ⊥AB 19、有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体的各条棱都相切,第三个球通过这个正方体的各个顶点,求这三个球的表面积之比。

(整理版)高中学习资料高中数学第二册(下)同步练测(9)

(整理版)高中学习资料高中数学第二册(下)同步练测(9)

高中数学第二册(下)同步练测(9)(§9.5 两个平面平行的判定与性质)班级 学号[基础练习]2.已知平面α//平面β,直线a//α,直线b//β,那么a 与b 的位置关系必定是 ( )A 平行或相交B 相交或异面C 平行或异面D 平行、异面或相交 3.已知a,b 是异面直线,a ⊥平面α,b ⊥平面β,则α、β的位置关系是 ( ) A 相交 B 平行 C 重合 D 不能确定A 垂直于同一条直线的两个平面平行B 垂直于同一个平面的两条直线互相平行C 过平面α的一条斜线的平面β与α一定不垂直D 平行于同一平面的两个平面平行。

A 夹在两平行平面间的平行线段相等 B 夹在两平行平面间的相等线段必平行C 两平面分别与第三平面相交,若两条交线平行,则这两平面平行 D 平行于同一直线的两平面平行。

6.在正方体ABCD —A 1B 1C 1D 1中,P 、Q 分别是棱AA 1、CC 1的中点,则过点B 、P 、Q的截面 ( ) A 邻边不等的平行四边形; B 菱形但不是正方形 C 邻边不等的矩形 D 正方形7.直线α平面⊂a ,直线β⊂b ,且βα//,则a 与b 的位置关系为 。

8.经过平面外一点可以作 个平面平行于这个平面;可以作 条直线平行于这个平面。

9.如图,平面βα平面//,自点O 引三条直线分别交α、β 于点A 、B 、C 和点A 1、B 1、C 1,则△ABC 与△A 1B 1C 1的关系是 。

10.如图,直线AC 、DF 被三个平行平面α、β、γ所截,已知AB=2,BC=3,EF=4,则DF= 。

11.已知平面α//平面β,直线a 、b 分别与α、β所成的角相等,则直线a,b 的位置关系是 。

12.已知a 、b 是异面直线,αββα//,//,,b a b a ⊂⊂,求证:βα//O A BC AB 1C 1[深化练习]13.与不共面四点等距离的平面有个。

14.三个不同的平面将空间分成n个部分,则n的可能值是。

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

高中数学第二册(下)同步练测(34)

高中数学第二册(下)同步练测(34)

高中数学第二册(下)同步练测(34)高中数学第二册(下)同步练测(34)(第十章 复习练习)班级____________学号_____________ 姓名_______________一、选择题1、 十个元素的所有子集中,恰含3个元素的概率为( )A 103B 10322C 103102CD 323 2、 某体操男队共6人参加男团决赛,每个项目规定只需5个人出场,那么鞍马项目上共有( )不同的出场顺序A 6B 6!C 30D 56A3、 5人排成一排,要求甲乙两人之间至少有1 人,则不同的排法有( )A 48B 72C 96D 1104、 函数a x y =中x 、a 属于集合{1,2,3,4,5,6}(x )a ≠,则所有函数值为元素的集合中共有元素( )A 30个B 26个C 25个D 15个5、 (53)121x-展开式中常数项为( ) A 28 B -28 C 7 D -76、 52)23(++x x 展开式中x 的系数为( )A 40B 80C 160D 2407、 若n n x x )1()1(+-展开式中含4x 这一项的系数为10,则自然数n 的值( ) A 3 B 4 C 5 D 68、 3455n n n C C C =+的解是( )A 6B 5C 5或1D 以上都不对9、 从52张扑克牌中任取5张,恰好四种花色齐全的概率为( )A 5521484113)(C C CB 5524113213)(C C CC 852********)(C C CD 5523113213)(C C C 10、袋内分别有红、白、黑球各3个、2个、1个,从中任取2个,则互斥而不对立的两个事件是( )A 至少一个白球;都是白球B 至少有一个白球;至少有一个红球C 恰有一个白球恰;有两个白球D 至少有一个白球;红黑球各一个11、重复掷一枚骰子:设事件A 为“首次出现6点的投掷次数不超过n ”,则P (A )>21的最小n 值为( ) A 5 B 4 C 3 D 212、已知数集A={}4321,,,a a a a ,B={},,,4321b b b b ,则从A 到B 的函数存在反函数的概率是()A 241B 2561C 323D 169 二、填空题13、平面内有9个数,有4 点在同一直线上,其余则无三点或三点以上的点共线,则可连成___________条线段,___________________条射线。

(2019新教材)人教A版高中数学必修第二册全册同步练习

(2019新教材)人教A版高中数学必修第二册全册同步练习

(2019新教材)人教A 版高中数学必修第二册全册同步练习6.1 平面向量的概念[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a |a|.A .3B .2C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的;对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的.2.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.3.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB →=OC →B.AB →∥DE → C .|AD →|=|BE →|D.AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →的方向不同,故AD →≠FC →,故选D. 4.设O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .模相等的向量 C .平行向量D .起点相同的向量解析:选B.因为三角形的外心是三角形外接圆的圆心,所以点O 到三个顶点A ,B ,C 的距离相等,所以AO →,BO →,CO →是模相等的向量.5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤解析:选B.①|a |>|b |不正确,a 是任一非零向量,模长是任意的,故不正确;②不一定有a ∥b ,故不正确;③向量的模长是非负数,而向量a 是非零向量,故|a |>0正确;④|b |=1,故④不正确;⑤a|a |是与a 同向的单位向量,不一定与b 同向,故不正确.6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22,所以|OA →|= 2. 答案:27.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD →长度的最小值为________.解析:根据题意,在正△ABC 中,有向线段AD 的长度最小时,AD 应与边BC 垂直,有向线段AD 长度的最小值为正△ABC 的高,为532.答案:5328.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图. (1)在每两点所确定的向量中,写出与向量FC →共线的向量;(2)求证:BE →=FD →.解:(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB →,ED →,DE →,AE →,EA →,AD →,DA →.(2)证明:在▱ABCD 中,AD 綊BC . 又E ,F 分别为AD ,BC 的中点, 所以ED 綊BF ,所以四边形BFDE 是平行四边形, 所以BE 綊FD , 所以BE →=FD →.10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD 满足下列情况.(1)四边形ABCD 是等腰梯形; (2)四边形ABCD 是平行四边形. 解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB →∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD →|=|BC →|,同时两向量不平行.(2)AD →=BC →(或AD →∥BC →).若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是 ( ) A .与AB →相等的向量只有一个(不含AB →) B .与AB →的模相等的向量有9个(不含AB →) C .BD →的模恰为DA →模的3倍 D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →解析:选D.由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →的模相等而方向相反,故PE →≠PF →;EP →与PF →的模相等且方向相同,所以EP →=PF →.13.如图,在△ABC 中,∠ACB 的平分线CD 交AB 于点D .若AC →的模为2,BC →的模为3,AD →的模为1,则DB →的模为________.解析:如图,延长CD ,过点A 作BC 的平行线交CD 的延长线于点E . 因为∠ACD =∠BCD =∠AED , 所以|AC →|=|AE →|. 因为△ADE ∽△BDC ,所以|AD →||DB →|=|AE →||BC →|=|AC →||BC →|,故|DB →|=32.答案:3214.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →, 如图所示.(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=5 5.[C 拓展探究]15.如图,A 1,A 2,…,A 8是⊙O 上的八个等分点,则在以A 1,A 2,…,A 8及圆心O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少个?模等于半径的2倍的向量有多少个?解:模等于半径的向量只有两类,一类是OA →i (i =1,2,…,8),共8个;另一类是A i O →(i =1,2,…,8),也有8个.两类共计有16个.以A 1,A 2,…,A 8中四点为顶点的⊙O 的内接正方形有两个,一个是正方形A 1A 3A 5A 7,另一个是正方形A 2A 4A 6A 8.在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的长度为半径的2倍,故模为半径的2倍的向量共有4×2×2=16(个).6.2 向量的运算[A 基础达标]1.在三角形ABC 中,BA →=a ,CA →=b ,则CB →=( ) A .a -b B .b -a C .a +bD .-a -b解析:选B.CB →=CA →+AB →=CA →+(-BA →)=b -a .2.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( ) A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE →D.EF →=-OF →-OE →解析:选B.EF →=EO →+OF →=OF →-OE →=EO →-FO →=-OE →-FO →.故选B. 3.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c解析:选A.DC →=DA →+AB →+BC →=a -b +c . 4.给出下列各式: ①AB →+CA →+BC →; ②AB →-CD →+BD →-AC →; ③AD →-OD →-AO →; ④NQ →-MP →+QP →+MN →.对这些式子进行化简,则其化简结果为0的式子的个数是( ) A .4 B .3 C .2D .1解析:选A.①AB →+CA →+BC →=AC →+CA →=0;②AB →-CD →+BD →-AC →=AB →+BD →-(AC →+CD →)=AD →-AD →=0; ③AD →-OD →-AO →=AD →+DO →+OA →=AO →+OA →=0; ④NQ →-MP →+QP →+MN →=NQ →+QP →+MN →-MP →=NP →+PN →=0. 5.对于菱形ABCD ,给出下列各式:①AB →=BC →;②|AB →|=|BC →|;③|AB →-CD →|=|AD →+BC →|;④|AD →+CD →|=|CD →-CB →|. 其中正确的个数为( ) A .1 B .2 C .3D .4 解析:选C.由菱形的图形,可知向量AB →与BC →的方向是不同的,但它们的模是相等的,所以②正确,①错误;因为|AB →-CD →|=|AB →+DC →|=2|AB →|,|AD →+BC →|=2|BC →|,且|AB →|=|BC →|,所以|AB →-CD →|=|AD →+BC →|,即③正确;因为|AD →+CD →|=|BC →+CD →|=|BD →|,|CD →-CB →|=|CD →+BC →|=|BD →|,所以④正确.综上所述,正确的个数为3,故选C.6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=______,|a -b |=________. 解析:若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线,所以|a -b |=2.答案:0 27.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)解析:如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .答案:b -a -a -b 8.给出下列命题:①若OD →+OE →=OM →,则OM →-OE →=OD →; ②若OD →+OE →=OM →,则OM →+DO →=OE →; ③若OD →+OE →=OM →,则OD →-EO →=OM →; ④若OD →+OE →=OM →,则DO →+EO →=MO →. 其中正确命题的序号为________. 解析:①因为OD →+OE →=OM →, 所以OD →=OM →-OE →,正确;②因为OM →-OD →=OE →,所以OM →+DO →=OE →,正确; ③因为OE →=-EO →,所以OD →-EO →=OM →,正确; ④因为-OM →=-OD →-OE →,所以MO →=DO →+EO →,正确. 答案:①②③④9.如图,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OF →=f ,试用a ,b ,c ,d ,f 表示以下向量:(1)AC →;(2)AD →;(3)AD →-AB →;(4)AB →+CF →; (5)BF →-BD →.解:(1)AC →=OC →-OA →=c -a . (2)AD →=AO →+OD →=OD →-OA →=d -a . (3)AD →-AB →=BD →=OD →-OB →=d -b .(4)AB →+CF →=OB →-OA →+OF →-OC →=b -a +f -c . (5)BF →-BD →=OF →-OB →-(OD →-OB →)=OF →-OD →=f -d . 10.如图所示,▱ABCD 中,AB →=a ,AD →=b .(1)用a ,b 表示AC →,DB →;(2)当a ,b 满足什么条件时,a +b 与a -b 所在直线互相垂直? 解:(1)AC →=AD →+AB →=b +a ,DB →=AB →-AD →=a -b . (2)由(1)知a +b =AC →,a -b =DB →. 因为a +b 与a -b 所在直线垂直,所以AC ⊥BD .又因为四边形ABCD 为平行四边形, 所以四边形ABCD 为菱形, 所以|a |=|b |.所以当|a |=|b |时,a +b 与a -b 所在直线互相垂直.[B 能力提升]11.给出下面四个结论:①若线段AC =AB +BC ,则向量AC →=AB →+BC →; ②若向量AC →=AB →+BC →,则线段AC =AB +BC ; ③若向量AB →与BC →共线,则线段AC =AB +BC ; ④若向量AB →与BC →反向共线,则|AB →-BC →|=AB +BC . 其中正确的结论有________.解析:①由AC =AB +BC 得点B 在线段AC 上,则AC →=AB →+BC →,正确. ②三角形内AC →=AB →+BC →,但AC ≠AB +BC ,错误.③AB →,BC →反向共线时,|AC →|=|AB →+BC →|≠|AB →|+|BC →|,也即AC ≠AB +BC ,错误. ④AB →,BC →反向共线时,|AB →-BC →|=|AB →+(-BC →)|=AB +BC ,正确. 答案:①④12.已知|OA →|=a ,|OB →|=b (a >b ),|AB →|的取值范围是[5,15],则a ,b 的值分别为______. 解析:因为a -b =||OA →|-|OB →||≤|OA →-OB →|=|AB →|≤|OA →|+|OB →|=a +b ,所以⎩⎪⎨⎪⎧a +b =15,a -b =5,解得⎩⎪⎨⎪⎧a =10,b =5.答案:10 513.在△ABC 中,|AB →|=|BC →|=|CA →|=1,则|AB →-BC →|=________. 解析:如图,在△ABD 中, AB =BD =1, ∠ABD =120°,AB →-BC →=AB →+CB → =AB →+BD →=AD →.易求得AD =3,即|AD →|= 3. 所以|AB →-BC →|= 3. 答案:314.如图所示,点O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a ,b ,c ,d 的方向(用箭头表示),使a +b =BA →,c -d =DC →,并画出b -c 和a +d .解:因为a +b =BA →,c -d =DC →,所以a =OA →,b =BO →,c =OC →,d =OD →.如图所示,作平行四边形OBEC ,平行四边形ODF A .根据平行四边形法则可得,b -c =EO →,a +d =OF →.[C 拓展探究]15.已知△ABC 是等腰直角三角形,∠ACB =90°,M 是斜边AB 的中点,CM →=a ,CA →=b .求证:(1)|a -b |=|a |; (2)|a +(a -b )|=|b |.证明:因为△ABC 是等腰直角三角形,∠ACB =90°, 所以CA =CB .又M 是斜边AB 的中点, 所以CM =AM =BM . (1)因为CM →-CA →=AM →, 又|AM →|=|CM →|,所以|a -b |=|a |. (2)因为M 是斜边AB 的中点, 所以AM →=MB →,所以a +(a -b )=CM →+(CM →-CA →)=CM →+AM →=CM →+MB →=CB →,因为|CA →|=|CB →|, 所以|a +(a -b )|=|b |.向量的数量积[A 基础达标]1.已知▱ABCD 中∠DAB =30°,则AD →与CD →的夹角为( ) A .30° B .60° C .120°D .150°解析:选D.如图,AD →与CD →的夹角为∠ABC =150°.2.已知单位向量a ,b ,则(2a +b )·(2a -b )的值为( ) A. 3 B.5 C .3D .5解析:选C.由题意得(2a +b )·(2a -b )=4a 2-b 2=4-1=3.3.(2019·北京市十一中学检测)已知平面向量a ,b 满足a ·(a +b )=3且|a |=2,|b |=1,则向量a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选C.因为a ·(a +b )=a 2+a ·b =4+2cos 〈a ,b 〉=3,所以cos 〈a ,b 〉=-12,又因为〈a ,b 〉∈[0,π],所以〈a ,b 〉=2π3.4.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则|a |=( ) A .2 B .4 C .6D .12解析:选C.因为(a +2b )·(a -3b )=a 2-a ·b -6b 2 =|a |2-|a |·|b |cos 60°-6|b |2 =|a |2-2|a |-96=-72. 所以|a |2-2|a |-24=0.解得|a |=6或|a |=-4(舍去).故选C.5.(2019·广东佛山质检)如图所示,△ABC 是顶角为120°的等腰三角形,且AB =1,则AB →·BC →等于( )A .-32B .32C .-32D .32解析:选C.因为△ABC 是顶角为120°的等腰三角形,且AB =1,所以BC =3,所以AB →·BC →=1×3×cos 150°=-32.6.若向量a 的方向是正南方向,向量b 的方向是北偏东60°方向,且|a |=|b |=1,则(-3a )·(a +b )=________.解析:设a 与b 的夹角为θ,则θ=120°,所以(-3a )·(a +b )=-3|a |2-3a ·b =-3-3×1×1×cos 120°=-3+3×12=-32.答案:-327.已知向量a 与b 的夹角是π3,且|a |=1,|b |=2,若(3a +λb )⊥a ,则实数λ=________.解析:根据题意得a ·b =|a |·|b |cos π3=1,因为(3a +λb )⊥a ,所以(3a +λb )·a =3a 2+λa ·b =3+λ=0,所以λ=- 3.答案:-38.已知在△ABC 中,AB =AC =4,AB →·AC →=8,则△ABC 的形状是________. 解析:因为AB →·AC →=|AB →||AC →|cos ∠BAC ,即8=4×4cos ∠BAC ,于是cos ∠BAC =12,所以∠BAC =60°.又AB =AC ,故△ABC 是等边三角形.答案:等边三角形9.已知非零向量a ,b ,满足|a |=1,(a -b )·(a +b )=12,且a ·b =12.(1)求向量a ,b 的夹角; (2)求|a -b |.解:(1)因为(a -b )·(a +b )=12,所以a 2-b 2=12,即|a |2-|b |2=12,又|a |=1,所以|b |=22.设向量a ,b 的夹角为θ, 因为a ·b =12,所以|a |·|b |cos θ=12,所以cos θ=22,因为0°≤θ≤180°,所以θ=45°,所以向量a ,b 的夹角为45°. (2)因为|a -b |2=(a -b )2=|a |2-2a ·b +|b |2=12,所以|a -b |=22. 10.已知|a |=2|b |=2,e 是与b 方向相同的单位向量,且向量a 在向量b 方向上的投影向量为-e .(1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 解:(1)由题意知|a |=2,|b |=1.又a 在b 方向上的投影向量为|a |cos θ e =-e , 所以cos θ=-12,所以θ=2π3.(2)易知a ·b =|a |·|b |cos θ=-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)因为λa +b 与a -3b 互相垂直, 所以(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, 所以λ=47.[B 能力提升]11.在△ABC 中,若AB →2=AB →·AC →+BA →·BC →+CA →·CB →,则△ABC 是( ) A .等边三角形 B .锐角三角形 C .钝角三角形D .直角三角形解析:选D.因为AB →2=AB →·AC →+BA →·BC →+CA →·CB →,所以AB →2-AB →·AC →=BA →·BC →+CA →·CB →, 所以AB →·(AB →-AC →)=BC →·(BA →-CA →), 所以AB →·CB →=BC →2,所以BC →·(BC →+AB →)=0, 所以BC →·AC →=0,所以AC ⊥BC ,所以△ABC 是直角三角形.12.若|a +b |=|a -b |=2|a |,则向量a -b 与b 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选D.由|a +b |=|a -b |可得a·b =0,由|a -b |=2|a |可得3a 2=b 2,所以|b |=3|a |,设向量a -b 与b 的夹角为θ,则cos θ=(a -b )·b |a -b ||b |=-|b |22|a |·3|a |=-3|a |223|a |2=-32,又θ∈[0,π],所以θ=5π6.13.在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC →=2BD →,则AD →·BC →=________.解析:由DC →=2BD →,所以BD →=13BC →,BC →=AC →-AB →,故AD →·BC →=(AB →+BD →)·BC →=⎣⎡⎦⎤AB →+13·(AC →-AB →)·(AC →-AB →) =⎝⎛⎭⎫23AB →+13AC →·(AC →-AB →) =13AB →·AC →+13AC →2-23AB →2 =13|AB →||AC →|cos 120°+13|AC →|2-23|AB →|2=13×2×1×⎝⎛⎭⎫-12+13×1-23×22=-83. 答案:-8314.设向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.解:由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角, 得(2t e 1+7e 2)·(e 1+t e 2)|2t e 1+7e 2|·|e 1+t e 2|<0,即(2t e 1+7e 2)·(e 1+t e 2)<0, 化简即得2t 2+15t +7<0,画出y =2t 2+15t +7的图象,如图. 若2t 2+15t +7<0, 则t ∈⎝⎛⎭⎫-7,-12.当夹角为π时,也有(2t e 1+7e 2)·(e 1+t e 2)<0, 但此时夹角不是钝角,设2t e 1+7e 2=λ(e 1+t e 2),λ<0,可得 ⎩⎪⎨⎪⎧2t =λ,7=λt ,λ<0⇒⎩⎪⎨⎪⎧λ=-14,t =-142. 所以所求实数t 的取值范围是⎝⎛⎭⎫-7,-142∪⎝⎛⎭⎫-142,-12. [C 拓展探究]15.在四边形ABCD 中,已知AB =9,BC =6,CP →=2PD →. (1)若四边形ABCD 是矩形,求AP →·BP →的值;(2)若四边形ABCD 是平行四边形,且AP →·BP →=6,求AB →与AD →夹角的余弦值. 解:(1)因为四边形ABCD 是矩形,所以AD →·DC →=0, 由CP →=2PD →,得DP →=13DC →,CP →=23CD →=-23DC →.所以AP →·BP →=()AD →+DP →·()BC →+CP→ =⎝⎛⎭⎫AD →+13DC →·⎝⎛⎭⎫AD →-23DC →=AD →2-13AD →·DC →-29DC →2=36-29×81=18.(2)由题意,AP →=AD →+DP →=AD →+13DC →=AD →+13AB →,BP →=BC →+CP →=BC →+23CD →=AD →-23AB →,所以AP →·BP →=⎝⎛⎭⎫AD →+13AB →·⎝⎛⎭⎫AD →-23AB → =AD →2-13AB →·AD →-29AB →2=36-13AB →·AD →-18=18-13AB →·AD →.又AP →·BP →=6, 所以18-13AB →·AD →=6,所以AB →·AD →=36. 设AB →与AD →的夹角为θ,又AB →·AD →=|AB →|·|AD →|cos θ=9×6×cos θ=54cos θ, 所以54cos θ=36,即cos θ=23.所以AB →与AD →夹角的余弦值为23.平面向量的分解及加、减、数乘运算的坐标表示[A 基础达标]1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( )A .(1,-2)B .(7,6)C .(5,0)D .(11,8)解析:选D.因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8).2.设向量a =(1,2),b =(-3,5),c =(4,x ),若a +b =λc (λ∈R ),则λ+x 的值为( ) A .-112B.112 C .-292D.292解析:选C.由已知,可得(1,2)+(-3,5)=λ(4,x ),所以⎩⎪⎨⎪⎧4λ=-2,x λ=7,解得⎩⎪⎨⎪⎧λ=-12,x =-14,所以λ+x =-292,故选C.3.已知MA →=(-2,4),MB →=(2,6),则12AB →等于( )A .(0,5)B .(0,1)C .(2,5)D .(2,1)解析:选D.12AB →=12(MB →-MA →)=12(2,6)-12(-2,4)=(2,1).4.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A.⎝⎛⎭⎫2,72B.⎝⎛⎭⎫2,-12 C .(3,2)D .(1,3)解析:选A.设点D (m ,n ),则由题意得(4,3)=2(m ,n -2)=(2m ,2n -4),故⎩⎪⎨⎪⎧2m =4,2n -4=3,解得⎩⎪⎨⎪⎧m =2,n =72,即点D 的坐标为⎝⎛⎭⎫2,72,故选A. 5.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,且∠AOC =45°,设OC →=λOA →+(1-λ)OB →(λ∈R ),则λ的值为( )A.15B.13C.25D.23解析: 选C.如图所示,因为∠AOC =45°, 所以设C (x ,-x ), 则OC →=(x ,-x ).又因为A (-3,0),B (0,2), 所以λOA →+(1-λ)OB → =(-3λ,2-2λ),所以⎩⎪⎨⎪⎧x =-3λ-x =2-2λ⇒λ=25.6.已知点A (-1,-5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为________. 解析:设O 为坐标原点,因为OA →=(-1,-5),AB →=3a =(6,9),故OB →=OA →+AB →=(5,4),故点B 的坐标为(5,4).答案:(5,4)7.已知向量a =(1,2),b =(-2,3),c =(4,1),若用a 和b 表示c ,则c =________. 解析:设c =x a +y b ,则(x ,2x )+(-2y ,3y )=(x -2y ,2x +3y )=(4,1).故⎩⎪⎨⎪⎧x -2y =4,2x +3y =1,解得⎩⎪⎨⎪⎧x =2,y =-1. 所以c =2a -b . 答案:2a -b8.已知A (-1,2),B (2,8).若AC →=13AB →,DA →=-23AB →,则CD →的坐标为________.解析:AC →=13AB →=13(3,6)=(1,2),DA →=-23AB →=-23(3,6)=(-2,-4),DC →=DA →+AC →=(-1,-2), 所以CD →=(1,2). 答案:(1,2)9.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. 10.已知向量AB →=(4,3),AD →=(-3,-1),点A (-1,-2). (1)求线段BD 的中点M 的坐标;(2)若点P (2,y )满足PB →=λBD →(λ∈R ),求λ与y 的值. 解:(1)设B (x 1,y 1),因为AB →=(4,3),A (-1,-2), 所以(x 1+1,y 1+2)=(4,3),所以⎩⎪⎨⎪⎧x 1+1=4,y 1+2=3,所以⎩⎪⎨⎪⎧x 1=3,y 1=1,所以B (3,1).同理可得D (-4,-3), 设BD 的中点M (x 2,y 2), 则x 2=3-42=-12,y 2=1-32=-1.所以M ⎝⎛⎭⎫-12,-1. (2)由PB →=(3,1)-(2,y )=(1,1-y ), BD →=(-4,-3)-(3,1)=(-7,-4), 又PB →=λBD →(λ∈R ),所以(1,1-y )=λ(-7,-4)=(-7λ,-4λ),所以⎩⎪⎨⎪⎧1=-7λ,1-y =-4λ,所以⎩⎨⎧λ=-17,y =37.[B 能力提升]11.对于向量m =(x 1,y 1),n =(x 2,y 2),定义m n =(x 1x 2,y 1y 2).已知a =(2,-4),且a +b =ab ,那么向量b 等于( )A.⎝⎛⎭⎫2,45 B.⎝⎛⎭⎫-2,-45 C.⎝⎛⎭⎫2,-45 D.⎝⎛⎭⎫-2,45 解析:选A.设b =(x ,y ),由新定义及a +b =ab ,可得(2+x ,y -4)=(2x ,-4y ),所以2+x =2x ,y -4=-4y ,解得x =2,y =45,所以向量b =⎝⎛⎭⎫2,45. 12.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →=λOA →+OB →(λ∈R ),则λ=______.解析:过C 作CE ⊥x 轴于点E ,由∠AOC =π4知,|OE |=|CE |=2,所以OC →=OE →+OB →=λOA→+OB →,即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23.答案:2313.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.解析:PQ →-P A →=AQ →=(1,5)-(4,3)=(-3,2),因为点Q 是AC 的中点,所以AQ →=QC →,所以PC →=PQ →+QC →=(1,5)+(-3,2)=(-2,7).因为BP →=2PC →,所以BC →=BP →+PC →=3PC →=3(-2,7)=(-6,21).答案:(-6,21)14.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →=a ,OB →=b ,OC →=c ,且|a |=2,|b |=1,|c |=3,试用a ,b 表示c .解:如图,以O 为原点,向量OA →所在的直线为x 轴建立平面直角坐标系.因为|a |=2,所以a =(2,0).设b =(x 1,y 1),所以x 1=|b |·cos 150°=1×⎝⎛⎭⎫-32=-32,y 1=|b |sin 150°=1×12=12,所以b =⎝⎛⎭⎫-32,12.同理可得c =⎝⎛⎭⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),所以⎝⎛⎭⎫-32,-332=λ1(2,0)+λ2⎝⎛⎭⎫-32,12=(2λ1-32λ2,12λ2), 所以⎩⎨⎧2λ1-32λ2=-32,12λ2=-332,解得⎩⎨⎧λ1=-3,λ2=-3 3.所以c =-3a -33b .[C 拓展探究]15.在平面直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2). (1)若P A →+PB →+PC →=0,求OP →的坐标;(2)若OP →=mAB →+nAC →(m ,n ∈R ),且点P 在函数y =x +1的图象上,试求m -n 的值. 解:(1)设点P 的坐标为(x ,y ),因为P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ).所以⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2.所以点P 的坐标为(2,2), 故OP →=(2,2).(2)设点P 的坐标为(x 0,y 0), 因为A (1,1),B (2,3),C (3,2). 所以AB →=(2,3)-(1,1)=(1,2),AC →=(3,2)-(1,1)=(2,1), 因为OP →=mAB →+nAC →,所以(x 0,y 0)=m (1,2)+n (2,1)=(m +2n ,2m +n ),所以⎩⎪⎨⎪⎧x 0=m +2n ,y 0=2m +n ,两式相减得m -n =y 0-x 0,又因为点P 在函数y =x +1的图象上, 所以y 0-x 0=1,所以m -n =1.两向量共线的充要条件及应用[A 基础达标]1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B.因为平面向量a =(1,2),b =(-2,m ),且a ∥b ,所以1×m -(-2)×2=0,解得m =-4,所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8).2.已知a =(sin α,1),b =(cos α,2),若b ∥a ,则tan α=( ) A.12 B .2 C .-12D .-2解析:选A.因为b ∥a ,所以2sin α=cos α,所以sin αcos α=12,所以tan α=12.3.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值是( )A .-72B .-12C .-43D .-83解析:选B.v =2(1,2)-(0,1)=(2,3),u =(1,2)+k (0,1)=(1,2+k ).因为u ∥v ,所以2(2+k )-1×3=0,解得k =-12.4.若AB →=i +2j ,DC →=(3-x )i +(4-y )j (其中i ,j 的方向分别与x ,y 轴正方向相同且为单位向量).AB →与DC →共线,则x ,y 的值可能分别为( )A .1,2B .2,2C .3,2D .2,4解析:选B.由题意知,AB →=(1,2),DC →=(3-x ,4-y ). 因为AB →∥DC →,所以4-y -2(3-x )=0,即2x -y -2=0.只有B 选项,x =2,y =2代入满足.故选B.5.已知A (1,-3),B ⎝⎛⎭⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1)D .(-9,-1)解析:选C.设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝⎛⎭⎫8,12-(1,-3)=⎝⎛⎭⎫7,72, AC →=(x ,y )-(1,-3)=(x -1,y +3), 所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C.6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 答案:17.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.解析:①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确.答案:①③④8.对于任意的两个向量m =(a ,b ),n =(c ,d ),规定运算“⊗”为m ⊗n =(ac -bd ,bc +ad ),运算“⊕”为m ⊕n =(a +c ,b +d ).设m =(p ,q ),若(1,2)⊗m =(5,0),则(1,2)⊕m 等于________.解析:由(1,2)⊗m =(5,0),可得⎩⎪⎨⎪⎧p -2q =5,2p +q =0,解得⎩⎪⎨⎪⎧p =1,q =-2,所以(1,2)⊕m =(1,2)⊕(1,-2)=(2,0).答案:(2,0)9.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2). 因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.所以当k =-12时,k a -b 与a +2b 共线.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.10.(1)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB →,求M ,N 及MN →的坐标;(2)已知P 1(2,-1),P 2(-1,3),P 在直线P 1P 2上,且|P 1P →|=23|PP 2→|.求点P 的坐标.解:(1)法一:由A (-2,4),B (3,-1),C (-3,-4),可得CA →=(-2,4)-(-3,-4)=(1,8),CB →=(3,-1)-(-3,-4)=(6,3),所以CM →=3CA →=3(1,8)=(3,24),CN →=2CB →=2(6,3)=(12,6).设M (x 1,y 1),N (x 2,y 2).则CM →=(x 1+3,y 1+4)=(3,24),CN →=(x 2+3,y 2+4)=(12,6), 所以x 1=0,y 1=20,x 2=9,y 2=2,即M (0,20),N (9,2),所以MN →=(9,2)-(0,20)=(9,-18). 法二:设点O 为坐标原点,则由CM →=3CA →,CN →=2CB →,可得OM →-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 从而OM →=3OA →-2OC →,ON →=2OB →-OC →, 所以OM →=3(-2,4)-2(-3,-4)=(0,20), ON →=2(3,-1)-(-3,-4)=(9,2),即点M (0,20),N (9,2),故MN →=(9,2)-(0,20)=(9,-18). (2)①当点P 在线段P 1P 2上时,如图a :则有P 1P →=23PP 2→,设点P 的坐标为(x ,y ),所以(x -2,y +1)=23(-1-x ,3-y ),所以⎩⎨⎧x -2=23(-1-x ),y +1=23(3-y ),解得⎩⎨⎧x =45,y =35.故点P 的坐标为⎝⎛⎭⎫45,35. ②当点P 在线段P 2P 1的延长线上时,如图b :则有P 1P →=-23PP 2→,设点P 的坐标为(x ,y ),所以(x -2,y +1)=-23(-1-x ,3-y ),所以⎩⎨⎧x -2=-23(-1-x ),y +1=-23(3-y ),解得⎩⎪⎨⎪⎧x =8,y =-9.故点P 的坐标为(8,-9).综上可得点P 的坐标为⎝⎛⎭⎫45,35或(8,-9).[B 能力提升]11.已知向量a =(1,0),b =(0,1),c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( ) A .k =1且c 与d 同向 B .k =1且c 与d 反向 C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析:选D.因为a =(1,0),b =(0,1),若k =1,则c =a +b =(1,1),d =a -b =(1,-1),显然,c 与d 不平行,排除A 、B.若k =-1,则c =-a +b =(-1,1),d =a -b =-(-1,1),即c ∥d 且c 与d 反向.12.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在坐标轴上,则点B 的坐标为________.解析:由b ∥a ,可设b =λa =(-2λ,3λ).设B (x ,y ),则AB →=(x -1,y -2)=b .由⎩⎪⎨⎪⎧-2λ=x -1,3λ=y -2⇒⎩⎪⎨⎪⎧x =1-2λ,y =3λ+2. 又B 点在坐标轴上, 则1-2λ=0或3λ+2=0, 所以B ⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0. 答案:⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0 13.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),则直线AC 与BD 交点P 的坐标为______.解析:设P (x ,y ),则DP →=(x -1,y ),DB →=(5,4),CA →=(-3,6),DC →=(4,0).由B ,P ,D 三点共线可得DP →=λDB →=(5λ,4λ). 又因为CP →=DP →-DC →=(5λ-4,4λ), 由CP →与CA →共线得,(5λ-4)×6+12λ=0. 解得λ=47,所以DP →=47DB →=⎝⎛⎭⎫207,167, 所以P 的坐标为⎝⎛⎭⎫277,167. 答案:⎝⎛⎭⎫277,16714.(2019·江苏扬州中学第一学期阶段性测试)设OA →=(2,-1),OB →=(3,0),OC →=(m ,3).(1)当m =8时,将OC →用OA →和OB →表示;(2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件.解:(1)当m =8时,OC →=(8,3),设OC →=xOA →+yOB →,则x (2,-1)+y (3,0)=(2x +3y ,-x )=(8,3),所以⎩⎪⎨⎪⎧2x +3y =8,-x =3,所以⎩⎪⎨⎪⎧x =-3,y =143,所以OC →=-3OA →+143OB →.(2)因为A ,B ,C 三点能构成三角形,所以AB →,AC →不共线,又AB →=(1,1),AC →=(m -2,4),所以1×4-1×(m -2)≠0,所以m ≠6.[C 拓展探究]15.已知平面上有A (-2,1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC ,点E 在CD 上,且CE →=14ED →,求E 点的坐标.解:因为AC →=12BC →,所以2AC →=BC →,所以2AC →+CA →=BC →+CA →, 所以AC →=BA →.设C 点坐标为(x ,y ),则(x +2,y -1)=(-3,-3),所以x =-5,y =-2, 所以C (-5,-2).因为CE →=14ED →,所以4CE →=ED →,所以4CE →+4ED →=5ED →,所以4CD →=5ED →. 设E 点坐标为(x ′,y ′),则4(9,-1)=5(4-x ′,-3-y ′).所以⎩⎪⎨⎪⎧20-5x ′=36,-15-5y ′=-4,解得⎩⎨⎧x ′=-165,y ′=-115.所以E 点的坐标为⎝⎛⎭⎫-165,-115.平面向量数量积的坐标表示[A 基础达标]1.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6D .12解析:选D.2a -b =(4,2)-(-1,k )=(5,2-k ),由a ·(2a -b )=0,得(2,1)·(5,2-k )=0,所以10+2-k =0,解得k =12.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .0 B .1 C .-2D .2解析:选D.2a -b =(3,n ),由2a -b 与b 垂直可得(3,n )·(-1,n )=-3+n 2=0,所以n 2=3,所以|a |=2.3.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .25 C .8D .82解析:选D.易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+(-8)2=8 2.4.(2019·河北衡水中学检测)设向量a =(3,1),b =(x ,-3),c =(1,-3),若b ∥c ,则a -b 与b 的夹角为( )A .30°B .60°C .120°D .150°解析:选D.因为b ∥c ,所以-3x =(-3)×1,所以x =3,所以b =(3,-3),a -b =(0,4).所以a -b 与b 的夹角的余弦值为b ·(a -b )|a -b ||b |=-124×23=-32,所以a -b 与b 的夹角为150°.5.已知O 为坐标原点,向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P 使得AP →·BP →有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C.设点P 的坐标为(x ,0),则AP →=(x -2,-2),BP →=(x -4,-1). AP →·BP →=(x -2)(x -4)+(-2)×(-1) =x 2-6x +10=(x -3)2+1,所以当x =3时,AP →·BP →有最小值1. 此时点P 的坐标为(3,0).6.设a =(m +1,-3),b =(1,m -1),若(a +b )⊥(a -b ),则m =________. 解析:a +b =(m +1,-3)+(1,m -1)=(m +2,m -4), a -b =(m +1,-3)-(1,m -1)=(m ,-2-m ), 因为(a +b )⊥(a -b ),所以(a +b )·(a -b )=0, 即(m +2,m -4)·(m ,-m -2)=0, 所以m 2+2m -m 2+2m +8=0,解得m =-2. 答案:-27.(2019·陕西咸阳检测)已知向量a =(-2,1),b =(λ,12),且|λa +b |=132,则λ=________.解析:由已知易得λa +b =⎝⎛⎭⎫-λ,λ+12,则(-λ)2+⎝⎛⎭⎫λ+122=134,解得λ=1或λ=-32. 答案:1或-328.已知向量a =(cos θ,sin θ),向量b =(3,0),则|2a -b |的最大值为______. 解析:2a -b =(2cos θ-3,2sin θ), |2a -b |=(2cos θ-3)2+(2sin θ)2=4cos 2θ-43cos θ+3+4sin 2 θ=7-43cos θ, 当且仅当cos θ=-1时,|2a -b |取最大值2+ 3. 答案:2+39.已知a =(1,2),b =(-3,2). (1)求a -b 及|a -b |;(2)若k a +b 与a -b 垂直,求实数k 的值. 解:(1)a -b =(4,0),|a -b |=42+02=4. (2)k a +b =(k -3,2k +2),a -b =(4,0), 因为k a +b 与a -b 垂直,所以(k a +b )·(a -b )=4(k -3)+(2k +2)·0=0, 解得k =3.10.(2019·重庆第一中学第一次月考)已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1).(1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ. 解:(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3, 故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,所以a ·b =1,故cosθ=a ·b |a |·|b |=22,所以θ=π4.[B 能力提升]11.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角大小为( )A .30°B .60°C .120°D .150°解析:选C.设a 与c 的夹角为θ,依题意,得 a +b =(-1,-2),|a |= 5. 设c =(x ,y ),因为(a +b )·c =52,所以x +2y =-52.又a ·c =x +2y ,所以cos θ=a ·c |a ||c |=x +2y 5×5=-525=-12,所以a 与c 的夹角为120°.12.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EM →·EC →的取值范围是( )A.⎣⎡⎦⎤12,2B.⎣⎡⎦⎤0,32 C.⎣⎡⎦⎤12,32D.[]0,1解析:选C.以A 为坐标原点建立如图所示的平面直角坐标系,设E (x ,0),0≤x ≤1.因为M ⎝⎛⎭⎫1,12,C (1,1),所以EM →=⎝⎛⎭⎫1-x ,12,EC →=(1-x ,1),所以EM →·EC →=⎝⎛⎭⎫1-x ,12·(1-x ,1)=(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM →·EC →的取值范围是⎣⎡⎦⎤12,32. 13.已知点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值为________.解析:法一:(定义法)如图,根据题意可得△ABC 为直角三角形,且B =π2,cos A =35,cos C =45,所以AB →·BC →+BC →·CA →+CA →·AB → =BC →·CA →+CA →·AB →=4×5cos(π-C )+5×3cos(π-A ) =-20cos C -15cos A =-20×45-15×35=-25.法二:(坐标法)如图,建立平面直角坐标系, 则A (3,0),B (0,0),C (0,4).所以AB →=(-3,0),BC →=(0,4),CA →=(3,-4). 所以AB →·BC →=-3×0+0×4=0, BC →·CA →=0×3+4×(-4)=-16, CA →·AB →=3×(-3)+(-4)×0=-9.所以AB →·BC →+BC →·CA →+CA →·AB →=0-16-9=-25. 法三:(转化法)因为|AB →|=3,|BC →|=4,|AC →|=5, 所以AB ⊥BC ,所以AB →·BC →=0,所以AB →·BC →+BC →·CA →+CA →·AB →=CA →·(AB →+BC →) =CA →·AC →=-|AC →|2=-25. 答案:-2514.已知向量a =(1,3),b =(-2,0). (1)求a -b 的坐标以及a -b 与a 之间的夹角; (2)当t ∈[-1,1]时,求|a -t b |的取值范围. 解:(1)因为向量a =(1,3),b =(-2,0), 所以a -b =(1,3)-(-2,0)=(3,3), 所以cos 〈a -b ,a 〉=(a -b )·a |a -b |·|a |=643=32.因为〈a -b ,a 〉∈[0,π],所以向量a -b 与a 的夹角为π6.(2)|a -t b |2=a 2-2t a ·b +t 2b 2=4t 2+4t +4=4⎝⎛⎭⎫t +122+3.易知当t ∈[-1,1]时,|a -t b |2∈[3,12],所以|a -t b |的取值范围是[3,2 3 ].[C 拓展探究]15.已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 两条对角线所夹的锐角的余弦值.解:(1)证明:因为A (2,1),B (3,2),D (-1,4),所以AB →=(1,1),AD →=(-3,3). AB →·AD →=1×(-3)+1×3=0, 所以AB →⊥AD →,所以AB ⊥AD .(2)因为AB →⊥AD →,四边形ABCD 为矩形, 所以AB →=DC →.设点C 的坐标为(x ,y ),则DC →=(x +1,y -4).又因为AB →=(1,1),所以⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.所以点C 的坐标为(0,5).所以AC →=(-2,4).又BD →=(-4,2),所以|AC →|=25,|BD →|=25, AC →·BD →=8+8=16. 设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →||BD →|=1625×25=45.故矩形ABCD 的两条对角线所夹的锐角的余弦值为45.正弦定理[A 基础达标]1.在△ABC 中,一定成立的式子是( )A .a sin A =b sinB B .a cos A =b cos BC .a sin B =b sin AD .a cos B =b cos A解析:选C.由正弦定理a sin A =b sin B =c sin C,得a sin B =b sin A . 2.在△ABC 中,若3a =2b sin A ,则B =( ) A.π3 B.π6 C.π3或2π3D.π6或5π6解析:选C.由正弦定理,得3sin A =2sin B sin A ,所以sin A (2sin B -3)=0.因为0<A <π,0<B <π,所以sin A ≠0,sin B =32,所以B =π3或2π3. 3.(2019·济南检测)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若A =60°,c =6,a =6,则此三角形有( )A .两解B .一解C .无解D .无穷多解解析:选B.由等边对等角可得C =A =60°,由三角形的内角和可得B =60°,所以此三角形为正三角形,有唯一解.4.在△ABC 中,若c =3,C =60°,则a +b +csin A +sin B +sin C =( )A .6B .23C .2D .3解析:选C.利用正弦定理的推论,得a +b +c sin A +sin B +sin C =c sin C =3sin 60°=2.5.在△ABC 中,已知a 2tan B =b 2tan A ,则△ABC 的形状是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形或直角三角形解析:选D.将a =2R sin A ,b =2R sin B (R 为△ABC 外接圆的半径)代入已知条件,得sin 2A tan B =sin 2B tan A ,则sin 2A sin B cos B =sin A sin 2Bcos A.因为sin A sin B ≠0,所以sin A cos B =sin Bcos A,所以sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,所以A =B 或A +B =π2,故△ABC 为等腰三角形或直角三角形.。

最新人教A版高中数学必修二全册同步课时跟踪练习

最新人教A版高中数学必修二全册同步课时跟踪练习

最新人教A版高中数学必修二全册同步课时跟踪练习棱柱、棱锥、棱台的结构特征圆柱、圆锥、圆台、球及简单组合体的结构特征中心投影与平行投影及空间几何体的三视图空间几何体的直观图柱体、锥体、台体的表面积与体积球的体积和表面积平面空间中直线与直线之间的位置关系空间中直线与平面之间的位置关系平面与平面之间的位置关系直线与平面、平面与平面平行的判定直线与平面、平面与平面平行的性质直线与平面垂直的判定平面与平面垂直的判定直线与平面垂直的性质平面与平面垂直的性质倾斜角与斜率两条直线平行与垂直的判定直线的点斜式方程直线的两点式方程直线的一般式方程两条直线的交点坐标、两点间的距离点到直线的距离、两条平行线间的距离圆的标准方程圆的一般方程直线与圆的位置关系圆与圆的位置关系直线与圆的方程的应用空间直角坐标系棱柱、棱锥、棱台的结构特征一、题组对点训练对点练一棱柱的结构特征1.下面没有体对角线的一种几何体是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱解析:选A三棱柱只有面对角线,没有体对角线.2.关于如图所示的4个几何体,说法正确的是()A.只有②是棱柱B.只有②④是棱柱C.只有①②是棱柱 D.只有①②④是棱柱解析:选D解决这类问题,要紧扣棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.图①②④满足棱柱的定义,正确;图③不满足侧面都是平行四边形,不正确.3.如图,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是________.解析:由于倾斜角度较小,所以倾斜后水槽中水形成的几何体的形状应为四棱柱.答案:四棱柱对点练二棱锥、棱台的结构特征4.三棱锥的四个面中可以作为底面的有()A.1个B.2个C.3个 D.4个解析:选D三棱锥的每一个面均可作为底面,应选D.5.下面说法中,正确的是()A.上下两个底面平行且是相似四边形的几何体是四棱台B.棱台的所有侧面都是梯形C.棱台的侧棱长必相等D.棱台的上下底面可能不是相似图形解析:选B由棱台的结构特点可知,A、C、D不正确.6.下列四个几何体为棱台的是()解析:选C棱台的底面为多边形,各个侧面为梯形,侧棱延长后又交于一点,只有C 项满足这些要求.对点练三多面体的表面展开图7.下列图形中,不是三棱柱展开图的是()解析:选C本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.8.如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是()A.①③B.②④C.③④ D.①②解析:选C可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.9.如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D,M,R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是________(把你认为正确命题的序号都填上).解析:将正方体的六个面分别用“前”“后”“左”“右”“上”“下”标记,若记面NPGF为“下”,面PSRN为“后”,则面PQHG,MNFE,EFCB,DEBA分别为“右”“左”“前”“上”.按各面的标记折成正方体,则点D,M,R重合;点G,C重合;点B,H重合;点A,S,Q重合.故②④正确,①③错误.答案:②④二、综合过关训练1.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.2.以下有三个结论:①有两个面互相平行,其余各面都是四边形的多面体一定是棱柱;②有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;③侧面都是矩形的棱柱是长方体.正确的个数是()A.0 B.1C.2 D.3解析:选A由棱柱、棱锥定义知①②错;侧面都是矩形的棱柱可能是斜棱柱,故③错.3.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为()解析:选A两个☆不能并列相邻,B、D错误;两个※不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.4.下列说法正确的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D选项A错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.5.若一个棱台共有21条棱,则这个棱台是________棱台.解析:由棱台的概念可知,棱台的上下底面为相似多边形,边数相同;侧面为梯形,侧面个数与底面多边形边数相同,可知该棱台为七棱台.答案:七6.如图所示平面图形沿虚线折起后,(1)为________,(2)为________,(3)为________.解析:结合棱柱、棱锥的概念可知,(1)是四棱柱,(2)是三棱锥,(3)是四棱锥.答案:四棱柱三棱锥四棱锥7.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解:(1)是上海世博会中国馆,其主体结构是四棱台.(2)是法国卢浮宫,其主体结构是四棱锥.(3)是国家游泳中心“水立方”,其主体结构是四棱柱.(4)是美国五角大楼,其主体结构是五棱柱.8.如图在以O为顶点的三棱锥中,过O的三条棱两两夹角都是30°,在一条棱上取A、B两点,OA=4 cm,OB=3 cm,以A、B为端点用一条绳子紧绕三棱锥的侧面一周(绳和侧面无摩擦),求此绳在A、B两点间的最短绳长.解:作出三棱锥的侧面展开图,如图A、B两点间最短绳长就是线段AB的长度.在△AOB中,∠AOB=30°×3=90°,OA=4 cm,OB=3 cm,所以AB=OA2+OB2=5 cm.所以此绳在A、B两点间的最短绳长为5 cm.圆柱、圆锥、圆台、球及简单组合体的结构特征一、题组对点训练对点练一旋转体的结构特征1.下列几何体中是旋转体的是()①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④ D.①和④解析:选D根据旋转体的概念可知,①和④是旋转体.2.下面几何体的轴截面(过旋转轴的截面)是圆面的是()A.圆柱B.圆锥C.球 D.圆台解析:选C圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,只有球的轴截面是圆面.3.有下列说法:①球的半径是球面上任意一点与球心的连线;②球的直径是球面上任意两点间的连线;③用一个平面截一个球,得到的是一个圆.其中正确说法的序号是________.解析:利用球的结构特征判断:①正确;②不正确,因为直径必过球心;③不正确,因为得到的是一个圆面.答案:①对点练二简单组合体4.下列几何体是简单组合体的是()解析:选D A选项中的几何体是圆锥,B选项中的几何体是圆柱,C选项中的几何体是球,D选项中的几何体是一个圆台中挖去一个圆锥,是简单组合体.5.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:选D如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.6.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解:分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.对点练三有关几何体的计算7.用长为4,宽为2的矩形作侧面围成一个圆柱,此圆柱轴截面面积为()A.8 B.8π C.4π D.2π解析:选B由题意可知,假设围成的圆柱底面周长为4,高为2,设圆柱底面圆的半径为r,则2πr=4,所以r=2π,所以截面是长为2,宽为4π的矩形,所以截面面积为2×4π=8π.同理,当围成的圆柱底面周长为2,高为4时,截面面积为8π.8.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为________cm.解析:h=20 cos 30°=103(cm).答案:10 3二、综合过关训练1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:选B圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.2.下列说法中正确的个数是()①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A.0 B.1 C.2 D.3解析:选C①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.3.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是()解析:选D结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.4.两平行平面截半径为5的球,若截面面积分别为9 π和16 π,则这两个平面间的距离是()A.1B.7C.3或4 D.1或7解析:选D如图(1)所示,若两个平行平面在球心同侧,则CD=52-32-52-42=1.如图(2)所示,若两个平行截面在球心两侧,则CD=52-32+52-42=7.5.给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线,可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体,其中说法正确的是________.解析:①正确,圆柱的底面是圆面;②正确,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长一定相交于一点;④不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.答案:①②6.已知圆锥的底面半径为1 cm,高为 2 cm,其内部有一个内接正方体,则这个内接正方体的棱长为________.解析:设正方体的棱长为a,则a2=1-22a1,即a=2 2.答案:22cm7.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.解:如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的简单组合体.8.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.解:圆台的轴截面如图所示,设圆台上、下底面半径分别为x cm,3x cm,延长AA1交OO1的延长线于S,在Rt△SOA中,∠ASO=45°,则∠SAO=45°,所以SO=AO=3x,SO1=A1O1=x,所以OO1=2x.又S轴截面=12(6x+2x)·2x=392,所以x=7.所以圆台的高OO1=14 (cm),母线长l=2OO1=142(cm),两底面半径分别为7 cm,21 cm.中心投影与平行投影及空间几何体的三视图一、题组对点训练对点练一平行投影和中心投影1.直线的平行投影可能是()A.点B.线段C.射线 D.曲线解析:选A直线的平行投影可能是直线也可能是点,故选A.2.下列的四个图形中采用中心投影画法的是()解析:选A根据平行投影和中心投影的画法规则,B、C、D选项中的图形均为平行投影下的图形,而A选项中的图形采用的是中心投影画法.3.如图,E,F分别是正方体ABCD-AB1C1D1的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是________(把所有可能图形的序号都填上).解析:图②是在平面DCC1D1或平面ABCD上的正投影;图③是在平面BCC1B1上的正投影.图①④均不符合.答案:②③对点练二简单几何体的三视图4.已知一个几何体的三视图如图所示,则此几何体的组成为()A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱 D.上面为棱台,下面为圆柱解析:选C结合三视图,易知该几何体上面为圆台,下面为圆柱.5.如图所示的几何体中,正视图与侧视图都是长方形的是________.解析:(2)的侧视图是三角形,(5)的正视图和侧视图都是等腰梯形,其余的都符合条件.答案:(1)(3)(4)6.如图所示的螺栓是由棱柱和圆柱构成的组合体,试画出它的三视图.解:三视图如图所示.对点练三由三视图还原空间几何体7.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为() A.217 B.2 5C.3 D.2解析:选B先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图①所示.圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,则图中MN即为M到N的最短路径.∵ON=14×16=4,OM=2,∴MN=OM2+ON2=22+42=2 5.8.如图是一个几何体的三视图,则可以判断此几何体是________.解析:由三视图可知,此几何体为一个正四棱锥.答案:正四棱锥9.如图,图(1)、(2)、(3)是图(4)表示的几何体的三视图,其中图(1)是________,图(2)是________,图(3)是________(写出视图名称).解析:由几何体的位置知,(1)为正视图,(2)为侧视图,(3)为俯视图.答案:正视图侧视图俯视图二、综合过关训练1.下列命题中正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段的中点的平行投影仍是这条线段投影的中点解析:选D矩形的平行投影可能是线段,平行四边形或矩形,梯形的平行投影可能是线段或梯形,两条相交直线的投影是两条相交直线或是一条直线.因此A、B、C均错,故D 正确.2.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()解析:选B依题意,侧视图中棱的方向从左上角到右下角,故选B.3.某个游戏环节,玩家需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()解析:选A由题意知,图中正方形、圆形、三角形对应某几何体的三视图,结合选项中给出的图形分析可知,A中几何体满足要求.故选A.4.在一个几何体的三视图中,正视图和侧视图是两个完全相同的图形,如图所示,则相应的俯视图可以为()A.①②B.②③C.③④ D.②④解析:选D若俯视图为图①,则该几何体的正视图的上方三角形应该没有高线,故俯视图不可能为图①,排除选项A;若俯视图为图③,则该几何体的侧视图的上方应该没有左边小三角形,故俯视图不可能为图③,排除选项B、C;若俯视图为图②,则该几何体是由上面是正四棱锥,下面是正方体组合而成的简单组合体;若俯视图为图④,则该几何体是由上面是正四棱锥,下面是圆柱组合而成的简单组合体.故选D.5.由小正方体木块搭成的几何体的三视图如图所示,则该几何体由________块小正方体木块搭成.解析:小木块的排列方式如图所示.由图知,几何体由7块小正方体木块搭成.答案:76.若一个正三棱柱(底面为正三角形,侧面为矩形的棱柱)的三视图如图所示,则这个正三棱柱的侧棱长和底面边长分别为________、________.解析:侧视图中尺寸2为正三棱柱的侧棱长,尺寸23为俯视图正三角形的高,所以正三棱柱的底面边长为4.答案:2 47.某组合体的三视图如图所示,试画图说明此组合体的结构特征.解:该三视图表示的几何体是由一个四棱柱和一个四棱台拼接而成的组合体(如图所示).8.如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,点P是平面A1B1C1D1内的一个动点,求三棱锥P -ABC 的正视图与俯视图的面积的比值的最大值.解:点P 是平面A 1B 1C 1D 1内的一个动点,则三棱锥P -ABC 的正视图始终是一个底为1,高为2的三角形, 其面积S 1=12×1×2=1.当点P 在底面ABCD 内的投影点在△ABC 的内部或边界上时,其俯视图的面积最小, 最小面积S 2=12×1×1=12,所以三棱锥P -ABC 的正视图与俯视图的面积的比值的最大值为S 1S 2=2.空间几何体的直观图一、题组对点训练 对点练一 斜二测画法1.用斜二测画法画水平放置的△ABC 时,若∠A 的两边分别平行于x 轴、y 轴,且∠A =90°,则在直观图中∠A ′=( )A .45°B .135°C .45°或135°D.90°解析:选C 在画直观图时,∠A ′的两边依然分别平行于x ′轴、y ′轴,而∠x ′O ′y ′=45°或135°.2.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法错误的是( ) A .原来相交的仍相交 B .原来垂直的仍垂直 C .原来平行的仍平行 D .原来共点的仍共点解析:选B 根据斜二测画法,原来垂直的未必垂直. 3.关于斜二测画法所得直观图的说法正确的是( ) A .直角三角形的直观图仍是直角三角形 B .梯形的直观图是平行四边形 C .正方形的直观图是菱形D .平行四边形的直观图仍是平行四边形解析:选D 由斜二测画法规则可知,平行于y 轴的线段长度减半,直角坐标系变成斜坐标系,而平行性没有改变,故只有选项D 正确.4.如图,已知等腰三角形ABC ,则如图所示的四个图中,可能是△ABC 的直观图的是 ( )A.①②B.②③C.②④ D.③④解析:选D原等腰三角形画成直观图后,原来的腰长不相等,③④两图分别是∠x′O′y′成135°和45°的坐标系中的直观图.5.画出水平放置的四边形OBCD(如图所示)的直观图.解:(1)过点C作CE⊥x轴,垂足为E,如图(1)所示,画出对应的x′轴、y′轴,使∠x′O′y′=45°.(2)如图(2)所示,在x′轴上取点B′,E′,使得O′B′=OB,O′E′=OE;在y′轴上取一点D,使得O′D′=12OD;过E′作E′C′∥y′轴,使E′C′=12EC.(3)连接B′C′,C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图(3)所示,四边形O′B′C′D′就是所求的直观图.对点练二由直观图还原平面图形6.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()解析:选A由直观图的画法可知,落在y轴上的对角线的长为22,结合各选项可知选A.7.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ACC.BC D.AD解析:选B由直观图可知△ABC是以∠B为直角的直角三角形,所以斜边AC最长.8.如图所示,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是()A.2 2 B.1C. 2D.4 2解析:选C在△AOB中,OB=O′B′=1,OA=2O′A′=22,且∠AOB=90°,S△AOB=12OA·OB=12×1×22= 2.二、综合过关训练1.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,如果按1∶500的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为() A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.4 cm,0.5 cm,1 cm,0.8 cm解析:选C直观图中长、宽、高应分别按原尺寸的1500,11 000,1500计算,最后单位转化为cm.2.如图所示的正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 cm B.8 cmC.(2+32) cm D.(2+23) cm解析:选B直观图中,O′B′=2,原图形中OC=AB=(22)2+12=3,OA=BC =1,∴原图形的周长是2×(3+1)=8.3.如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4,A′B′∥y′轴,且△ABO的面积为16,过A′作A′C′⊥x′轴,则A′C′的长为()A.2 2 B. 2C.16 2 D.1解析:选A 因为A ′B ′∥y ′轴,所以在△ABO 中,AB ⊥OB .又△ABO 的面积为16,所以12AB ·OB =16.所以AB =8,所以A ′B ′=4.如图,作A ′C ′⊥O ′B ′于点C ′,所以B ′C ′=A ′C ′,所以A ′C ′的长为4sin 45°=2 2.4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为3 cm ,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm解析:选D 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5 cm ,在直观图中与z 轴平行的线段长度不变,仍为5 cm.5.有一个长为5,宽为4 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20,所以由公式S ′=24S ,得其直观图的面积为S ′=24S =5 2. 答案:5 26.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,则原平面图形的面积为________.解析:过A 作AE ⊥BC ,垂足为E .∵DC ⊥BC 且AD ∥BC ,∴ADCE 是矩形,∴EC =AD =1.由∠ABC =45°,AB =AD =1知BE =22,∴原平面图形是梯形且上、下两底边长分别为1和1+22,高为2, ∴原平面图形的面积为12×⎝⎛⎭⎫1+1+22×2=2+22.答案:2+227.如图,四边形A ′B ′C ′D ′是边长为1的正方形,且它是某个四边形按斜二测画法画出的直观图,请画出该四边形的原图形,并求出原图形的面积.解:画出平面直角坐标系xOy ,使点A 与O 重合, 在x 轴上取点C ,使AC =2, 再在y 轴上取点D ,使AD =2, 取AC 的中点E ,连接DE 并延长至点B , 使DE =EB ,连接DC ,CB ,BA ,则四边形ABCD 为正方形A ′B ′C ′D ′的原图形(也可以过点C 作BC ∥y 轴,且使CB =AD =2,然后连接AB ,DC ),如图所示.易知四边形ABCD 为平行四边形,∵AD =2,AC =2,∴S ▱ABCD =2×2=2 2. 8.如图为一几何体的展开图:沿图中虚线将它们折叠起来,请画出其直观图.解:由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.柱体、锥体、台体的表面积与体积一、题组对点训练对点练一 柱体、锥体、台体的侧面积与表面积 1.棱长为3的正方体的表面积为( ) A .27 B .64 C .54D.36解析:选C 根据表面积的定义,组成正方体的面共6个,且每个都是边长为3的正方形.从而,其表面积为6×32=54.2.若圆锥的高等于底面直径,则它的底面积与侧面积之比为( ) A .1∶2 B .1∶ 3 C .1∶ 5D.3∶2解析:选C 设圆锥底面半径为r ,则高h =2r ,∴其母线长l =5r .∴S 侧=πrl =5πr 2,S 底=πr 2.则S 底∶S 侧=1∶ 5.3.已知正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD.27π4解析:选A 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =94,所以该球的表面积为4πr 2=4π×⎝⎛⎭⎫94 2=81π4.4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D.3解析:选A 设圆台较小底面半径为r ,则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.5.一个高为2的圆柱,底面周长为2π,该圆柱的表面积为________.解析:由底面周长为2π可得底面半径为1.S 底=2πr 2=2π,S 侧=2πr ·h =4π,所以S 表=S底+S 侧=6π. 答案:6π对点练二 柱体、锥体、台体的体积6.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D.8解析:选C 由几何体的三视图可知,该几何体是一个底面为直角梯形,高为2的直四棱柱,直角梯形的两底边长分别为1,2,高为2,∴该几何体的体积为V =12×(2+1)×2×2=6.7.若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是________.解析:易知圆锥的母线长为2,设圆锥的底面半径为r ,则2πr =12×2π×2,∴r =1,则高h =l 2-r 2= 3.∴V 圆锥=13πr 2· h =13π×3=3π3.答案:3π38.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,正视图和侧视图中的两条虚线都互相垂直且相等,则该几何体的体积是________.解析:几何体的直观图为正方体去掉以正方体中心为顶点,上底面为底面的四棱锥,其体积为2×2×2-13×1×22=203.答案:203对点练三 求几何体体积的方法9.如图,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A -A 1EF 的体积是________.解析:因为在正三棱柱ABC -A 1B 1C 1中,AA 1∥BB 1,AA 1⊂平面AA 1C 1C ,BB 1⊄平面AA 1C 1C ,所以BB 1∥平面AA 1C 1C ,从而点E 到平面AA 1C 1C 的距离就是点B 到平面AA 1C 1C 的距离,作BH ⊥AC ,垂足为点H ,由于△ABC 是正三角形且边长为4,所以BH =23,从而三棱锥A -A 1EF 的体积VA -A 1EF =VE -A 1AF =13S △A 1AF ·BH =13×12×6×4×23=8 3.答案:8 3 二、综合过关训练1.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13 B.12 C.23D.34解析:选C ∵V C -A ′B ′C ′=13V 棱柱=13,∴V C -AA ′B ′B =1-13=23. 2.已知一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是( )A.1+2π2πB.1+4π4πC.1+2ππD.1+4π2π解析:选A 设圆柱的底面半径为r ,高为h ,。

高中数学第二册(下)同步练测(32)

高中数学第二册(下)同步练测(32)

高中数学第二册(下)同步练测(32)(§10.7 相互独立事件同时发生的概率)班级 学号 姓名[基础练习]1、甲乙两人各射击一次,他们击中目标的概率都是0.6,他们都击中目标的概率是( )A 、0.6B 、0.35C 、0.16D 、0.842、国庆期间,甲去某地的概率为31,乙和丙二人去此地的概率为41、51,假定他们三人的行动相互不受影响,这段时间至少有1人去此地旅游的概率为 ( )A 、6059 B 、53 C 、121 D 、601 3、一道竞赛题,A 、B 、C 三人单独解出的概率依次为21、31、41,则三人独立解答仅有1 人解出的概率为 ( )A 、241B 、2411C 、247 D 、1 4、一枚硬币连投8次恰好5次出现正面的概率为( ) A 、C 58 ×0.58 B 、0.55 C 、0.58 D 、C 58 ×0.555、某气象站预报天气的准确率是0.8,在两次预报中恰有一次准确的概率是( )A 、0.96B 、0.64C 、0.32D 、0.166、有一批种子,每颗发芽的概率为0.9,播下15粒种子,恰有14粒发芽的概率是( )A 、1-0.914B 、0.914C 、C 14150.9(1-0.9)14D 、C 14150.914(1-0.9)7、一学生通过外语听力测试的概率为32,他连续测试2次,一定通过的概率为( ) A 、98 B 、94 C 、92 D 、31 8、生产某种产品出现次品的概率为2%,生产这种产品4件,至多有一件次品的概率为( ) A 、1-(98%)4 B 、(98%)4+(98%)3 ×2% C 、(98%)4 D 、(98%)4+ C 14(98%)3 ×2%9、两台独立在两地工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,一飞行物能被发现的概率为 。

10、某企业正常用水的概率为43,在5天内至少有4天用水正常的概率为 。

高中数学必修2同步训练试卷17 直线、平面平行的判定及其性质

高中数学必修2同步训练试卷17    直线、平面平行的判定及其性质

17期直线、平面平行的判定及其性质题版A卷(时间:45分钟满分:100分)一、选择题: (每小题5分,共30分)1. 若直线m不平行于平面α,且m α,则下列结论成立的是()A.α内的所有直线与m异面B.α内不存在与m平行的直线C.α内存在唯一的直线与m平行D.α内的直线与m都相交2. 下列命题中,真命题的个数是()①过平面外一点有一个平面和已知平面平行②过平面外一点只有一个平面和已知平面平行③过平面外一点有且只有一个平面和已知平面平行A.0B.1C.2D.33.α、β是两个不重合的平面,在下列条件中,可判定α∥β的是()A.α、β都平行于直线l、mB.α内有三个不共线的点到β的距离相等C.l、m是α内的两条直线且l∥β、m∥βD.l、m是两条异面直线且l∥α、m∥α、l∥β、m∥β4.下列命题中,假命题的个数为()①与三角形两边平行的平面平行于这个三角形的第三边②与三角形两边垂直的直线垂直于第三边③与三角形三顶点等距离的平面平行于这个三角形所在平面A.0B.1C.2D.35. a、b是两条异面直线,下列结论正确的是()A.过不在a、b上的任一点P,可作一个平面与a、b平行B.过不在a、b上的任一点P,可作一条直线与a、b相交C.过不在a、b上的任一点P,可作一条直线与a、b都平行D.过a可以并且只可以作一平面与b平行6. 下面四个命题,其中真命题的个数是()①垂直于同一直线的两条直线平行②垂直于同一直线的两个平面平行③平行于同一平面的两个平面平行④平行于同一直线的两条直线平行A.2个B.3个C.4个D.1个二、填空题: (每小题4分,共8分)7. 若直线a与直线b异面,且a平行于平面α,则b与α的位置关系是__________.8. 设α∥β,A、C∈α,B、D∈β,直线AB与CD交于点S,且AS=8,BS=9,CD=34,当S在α、β之间时,则CS=__________.三、解答题: (每小题12分,共48分)9. (12分) 已知如图所示, ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.10. (12分) 已知两条异面直线a 、b 分别与三个平行平面α、β、γ相交于点A 、B 、C 和点P 、Q 、R ,又AR 、CP 与平面β相交于点M 、N (如图),求证:MBNQ 为平行四边形.11. (12分) 在正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1、BC 1上分别有点E 、F ,且B 1E =C 1F ,求证:EF ∥平面ABCD.112. (12分) 如图,正方形ABCD 和正方形ADEF 的边长为a ,M 、N 分别是对角线BD 和AE 上的点,且BM =AN =22a . (1)求证:MN ∥平面CDE ; (2)求MN 的长.B 卷一、选择题: (每小题5分,共30分)1. 已知直线a ⊂平面α,直线b 与a 没有公共点,则( ) A.b ⊂α B.b ⊄α C.b ∥α D.以上都有可能2. 下列四个命题中,假命题是( )A.如果平面α内有两相交直线与平面β内的两条相交直线对应平行,则α∥βB.平行于同一平面的两个平面平行C.如果平面α内有无数条直线都与平面β平行,则α∥βD.如果平面α内任意一条直线都与平面β平行,则α∥β3. 若两个平面内分别有一条直线,这两条直线互相平行,则这两个平面的公共点个 数( ) A.有限个 B.无限个 C.没有 D.没有或无限个4. 如果两直线a ∥b ,且a ∥平面α,则b 和α的位置关系是( ) A.相交 B.b ∥α C.b ⊂α D.b ∥α或b ⊂α5. 下列四个命题中,不正确的命题是( )A.如果一条直线与两条平行直线中的一条垂直,那么也和另一条垂直B.已知直线a 、b 、c ,a ∥b ,c 与a 、b 都不相交,若c 与a 所成的角为θ,则c 与b 所成的角也等于θC.如果空间四个点不共面,则四个点中可能有三个点共线D.若直线a ∥平面α,点P ∈α,则过点P 作A 的平行线一定在α内 6. 下列命题中,真命题的个数是( )①和一条直线成等角的两平面平行 ②和两条异面直线都平行的两平面平行 ③和两相交直线都平行的两平面平行 A.0 B.1 C.2 D.3 二、填空题: (每小题4分,共8分) 7. 在正方体ABCD —A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与过点A 、E 、C 的平面的位置关系是 . 8. A 是△BCD 所在平面外一点,M 、N 分别是△ABC 和△ACD 的重心,若MN =34,则BD=__________.三、解答题: (每小题13分,共26分)9. (13分) 如图所示,AC ∥平面MNPQ ,BD ∥面MNPQ ., (1)求证:MNPQ 是平行四边形;(2)如果AC =BD =a ,求证:四边形MNPQ 的周长为定值.10. (13分)在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,设M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、C 1D 1、B 1C 1的中点. (1)求证:E 、F 、B 、D 四点共面; (2)求证:平面AMN ∥平面EFDB .备选题1. 设α、β是两个不重合的平面,l 和m 是不重合的两条直线,那么使α∥β的一个充分条件是( ) A.l ⊂α, m ⊂α,且l ∥β,m ∥β B.l ⊂α, m ⊂β,且l ∥m C.l ⊥α, m ⊥β,且l ∥m D.l ∥α, m ∥β,且l ∥m2. 过平面α外一条直线a 与α平行的平面的个数为( ) A.只有一个 B.至多一个 C.至少一个 D.没有3. A 是△BCD 所在平面外一点,M 、N 分别是△ABC 和△ACD 的重心,若MN =34,则BD=__________.4. 已知平面α∩平面β=c ,直线a ⊂α,a ∥β,b ⊂β,b ∩c =H . 求证:直线a 和b 不平行.H βαa c b5. 如图,正方体ABCD -A 1B 1C 1D 1中,棱长为1,M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、B 1C 1、C 1D 1的中点.1(1)求证:平面AMN ∥平面EFDB ; (2)求平面AMN 与平面EFDB 的距离.答案A卷一、选择题:1.B解析:∵m不平行于平面α,且m⊄α,∴m和平面α相交,即m和平面α有且只有一个公共点.∴m⊄α,由异面直线判定定理,知平面内的直线和m成异面直线或相交直线.故选B.2.D解析:三个命题均正确.3.D解析:在直线b上任取一点A,过A点和a作平面γ,设γ与β交于过A的直线A′.∵a∥β,∴a′∥A,a⊂α.∴a′∥α.又b∥α,a′和b是β内的相交直线,∴α∥β.4. B解析:③是假命题,如果三个顶点不在平面的同侧,则该平面与三角形所在的平面相交.5. D解析:如图所示,在直线a上任取一点P,过P作b′∥b,则a∩b′=P.那么a与b′确定一个平面α.∵b∥b′,b′⊂α,b⊄α,∴b∥α.∴过a可以作一个平面α与b平行.假设还可作一平面β与b平行,则α∩β=a,b∥α,b∥β,∴a∥b.这与a、b异面相矛盾,即假设不成立.∴只有一个平面α.综上所述,过a有且只有一个平面与b平行.故选D.6. B解析:②、③、④正确.二、填空题:7.答案:b∥α或b⊂α或b与α相交8. 16解析:∵α∥β,且AB∩CD=S,∴AC∥BD.∴AS∶SB=CS∶SD,且AS=8,BS=9,CD=CS+SD=34. ∴CS=16.三、解答题:9.解析:连结AC,设AC交BD于O,连结MO.∵四边形ABCD是平行四边形∴O是AC的中点又M是PC的中点∴MO∥P A又MO⊂面BDM、P A⊄面BDM.∴P A∥面BDM.又经过P A与点G的平面交面BDM于GH.∴AP∥GH.10.证明:连结AP.∵α∥β,平面ACP∩平面α=AP,平面ACP∩平面β=BM,∴BM∥AP.同理QN∥AP,∴BM∥QN.同理可证BN∥MQ.∴MBNQ为平行四边形.11. 证明:过E、F分别作EM⊥AB,FN⊥BC,垂足分别为M、N,则EM∥B1B,FN∥B1B,∴EM∥FN.1又∵AB 1=BC 1, B 1E =C 1F , ∴AE =BF .又∠BAB 1=∠CBC 1=45°, ∠AME =∠BNF =90°,∴△AME ≌△BNF .∴EM =FN . ∴四边形EMNF 为平行四边形. ∴EF ∥MN .又MN ⊂平面ABCD , ∴EF ∥平面ABC D.12. 解析:如图,面AND 分别交α、β于MC 、ND . 因为α∥β,故MC ∥ND .同理MF ∥NE .得∠FMC =∠END ,∴ND ∶MC =(m +p )∶m ,EN ∶FM =n ∶(n +p ).S △END ∶S △FMC =,sin 21sin 21FMC MC FM END ND EN ⋅⋅⋅⋅⋅⋅ 得S △END =MC NDFM EN ⨯×S △FMC =p n n +·m p m +·(m +p )(n +p )=mn (m +p )2. ∴△END 的面积为mn(m +p )2个平方单位.B 卷一、选择题:1.D 解析: 直线b 与a 没有公共点,但可以与平面α相交,故应选D.2. C 解析:C 为假命题,因为这无数条直线可以相互平行.3. D 解析:两个平面内各有一条直线,若相互平行,则两个平面可以相交或平行.4.D 解析: a ∥b ,且a ∥平面α,则.b ∥α或b ⊂α,应选D.5.C 解析:有三点共线, 则四点必共面, 不正确的仅有C.6. C 解析:①假,②、③真. 二、填空题:7. BD 1∥平面AEC 解析:连结AC 、BD 相交于一点O ,连结OE 、AE 、EC , ∵四边形ABCD 为正方形, ∴DO =BO .而DE =D 1E , ∴EO 为△DD 1B 的中位线, ∴EO ∥D 1B ,∴BD 1∥平面AEC .8. 4解析:连结AM 、AN 并延长交BC 、CD 于E 、F ,则E 、F 为BC 、CD 的中点,又AE AM =AF AN =32, ∴EF MN =32,而EF =21BD , ∴BD MN =31.∴BD =3MN =4.三、解答题:9. 解析:(1)欲证MNPQ 是平行四边形,只要证明MNPQ 有一组对边平行且相等,或两组对边分别平行就可以了,结合已知易证两组对边分别平行,因为AC 平行于面MNPQ ,过AC 的平面ACB 交面MNPQ 于MN ,所以AC 平行于MN ,同理AC 平行于PQ ,由平行公理得MN 平行于PQ ,同理可证MQ 平行于NP ,所以四边形MNPQ 是平行四边形.(2)因为MN 平行于AC ,所以BA BM AC MN =,又AC =a ,所以MN =BA BM=a ,因为MQ 平行于BD .所以BD MQ =ABAM.又BD =a ,所以MQ =AB AM a ,所以四边形MNPQ 的周长=2(MN +MQ )=2a (AB AM BA BM +)=2a (定值)10. 证明:(1)分别连结B 1D 1,ED ,FB 由正方体性质知,B 1D 1∥BD ∵E 、F 分别是D 1C 1和B 1C 1的中点 ∴EF21B 1D 1 ∴EF 21BD∴E 、F 、B 、D 共面(2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、QO .∵M 、N 为A 1B 1、A 1D 1的中点 ∴MN ∥EF ,EF ⊂面EFDB ∴MN ∥面EFDB ∵PQAO∴四边形PAOQ 为平行四边形, ∴PA ∥QO而QO ⊂平面EFBD ∴PA ∥平面EFBD且PA ∩MN =P ,PA 、MN ⊂面AMN ∴平面AMN ∥平面EFB D.备选题答案1. C 解析:l ⊥α,l ∥m ,∴m ⊥α. 又m ⊥β,∴α∥β.2. B 解析:若直线a 与α相交于一点,则过直线a 的平面与α一定有一条通过这一点的公共直线,若直线a ∥α,则有且只有一个平面.若有两个平面,不妨设为β、γ,则β∥α,γ∥α,∴β∥γ,与β与γ相交于a 相矛盾.3.4解析:连结AM 、AN 并延长交BC 、CD 于E 、F ,则E 、F 为BC 、CD 的中点,又AE AM =AF AN =32, ∴EF MN =32,而EF =21BD , ∴BD MN =31.∴BD =3MN =4.4. 证明:∵a ⊂α,a ∥β,α∩β=c ,∴a ∥c . 假设a ∥b ,∵a ∥c ,∴b ∥c . 这与b ∩c =H 矛盾. ∴a 和b 不平行.5. (1)证明:连结MF .∵M 、F 是A 1B 1、C 1D 1的中点,四边形A 1B 1C 1D 1为正方形.∴MF A 1D 1.又A 1D AD ,∴MF AD .∴四边形AMFD 是平行四边形.∴AM ∥DF .∵DF ⊂平面EFDB ,AM ⊄平面EFDB ,∴AM ∥平面EFDB .同理AN ∥平面EFDB . 又AM 、AN ⊂平面AMN ,AM ∩AN =A ,∴平面AMN ∥平面EFDB .(2)解:如图9-5-15(1)所示,设棱BB 1与CC 1的中点为Q 和P ,连结A 1Q 、A 1P . ∴PQ ∥BC ,BC ⊥平面ABB 1A 1.∴PQ ⊥平面ABB 1A 1.∵M 为A 1B 1的中点,∴AM ⊥A 1Q .∴A 1P ⊥AM .同理A 1P ⊥AN .又AM ,AN ⊂平面AMN ,AM ∩AN =A ,∴A 1P ⊥平面AMN .由(1)知,平面AMN ∥平面EFDB ,∴A 1P ⊥平面EFDB .记A 1P 和这两个平行平面分别交于点O 1和O 2(如图9-5-15(2)),则O 1O 2的长为两个平行平面之间的距离,在平行四边形AA 2A 3A 4中,由AA 1=1,A 2A 3=22,得AA 2=432,∴O 1O 2=32.11223411AA A A C CP(1)(2)O O。

(整理版)高中学习资料高中数学第二册(下)同步练测(4)

(整理版)高中学习资料高中数学第二册(下)同步练测(4)

高中数学第二册(下)同步练测(4)( §9.3 线面平行的判定与性质)班级 学号[基础练习]A 一直线与平面平行,则它与平面内任一直线平行B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行D 一直线与平面平行,则平面内任意直线都与已知直线异面2.若直线l 与平面α的一条平行线平行,则l 和α的位置关系是 ( ) A α⊂l B α//l C αα//l l 或⊂ D 相交和αl3.若直线a 在平面α内,直线a,b 是异面直线,则直线b 和α平面的位置关系是 ( ) A .相交 B 。

平行 C 。

相交或平行 D 。

相交且垂直(1) 经过两条平行直线中一条直线的平面必平行于另一条直线; (2) 若一条直线平行于两相交平面,则这条直线和交线平行;(3) 空间四边形中三条边的中点所确定平面和这个空间四边形的两条对角线都平行。

A 0B 1C 2D 35.E 、F 、G 分别是四面体ABCD 的棱BC 、CD 、DA 的中点,则此四面体中与过E 、F 、G的截面平行的棱的条数是 A .0 B 1 C 2 D36.直线与平面平行的充要条件是 A .直线与平面内的一条直线平行 B 。

直线与平面内的两条直线不相交 C .直线与平面内的任一直线都不相交 D 。

直线与平行内的无数条直线平行7.若直线上有两点P 、Q 到平面α的距离相等,则直线l 与平面α的位置关系是 ( ) A 平行 B 相交 C 平行或相交 D 或平行、或相交、或在内 8.a,b 为两异面直线,下列结论正确的是 ( ) A 过不在a,b 上的任何一点,可作一个平面与a,b 都平行 B 过不在a,b 上的任一点,可作一直线与a,b 都相交 C 过不在a,b 上任一点,可作一直线与a,b 都平行 D 过a 可以并且只可以作一个平面与b 平行(1)过平面外一点可作无数条直线与这个平面平行 ( ) (2)若直线α⊄l ,则l 不可能与α内无数条直线相交 ( ) (3)若直线l 与平面α不平行,则l 与α内任一直线都不平行 ( ) (4)经过两条平行线中一条直线的平面平行于另一条直线 ( )(5)若平面α内有一条直线和直线l 异面,则α⊄l ( ) 10.过直线外一点和这条直线平行的平面有 个。

高中数学第二册(下)同步练测(18)

高中数学第二册(下)同步练测(18)

高中数学第二册(下)同步练测(18)(球)班级 姓名 学号[基础练习]1.两球面积之差为π48,大圆周长和为π12,则两球的半径为 ( )A .2,4B .ππ4,2C .6,4D .ππ4,62.若球的表面积扩大为原来的2倍,则体积是原来的 ( )A .22倍B .2倍C .9倍D .12倍3.一球的体积和表面积在数值上相等,则该球的半径数值为 ( )A .1B .2C .3D .44.将一个半径为R 的木球削成一个尽可能大的正方体,则此正方体的体积是 ( )A .3323RB .83RC .9383RD .3383R 5.球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆周长为π4,则这个球的半径为 ( )A .34B .22C .2D .3 6.把三个半径为R 的铁球熔铸成一个底面半径为R 的圆柱,不计损耗,则圆柱的高为 ( )A .RB .2RC .3RD .4R7.在北纬600圈上有甲、乙两地,它们在纬线圈上的弧长为R 2π(R 为地球的半径)则甲、乙两地的球面距离为 ( )A .3πRB .6πR C .2R D .π33R 8.正方体的全面积为2a ,它的面点都在球面,这个球的表面积是 ( )A .3π2aB .4π2aC .2π2a D .π32a 9.球面上三点A 、B 、C ,AB=10,∠C=300,球的半径为20,则球心到平面的距离为( )A .5B .10C .35D .31010.体积相等的球、正四面体和正方体,则它们的表面积间的大小关系为 ( )A .球S < 正四面体S < 正方体SB .球S < 正方体S < 正四面体SC .正四面体S < 球S < 正方体SD .正方体S < 球S <正四面体S11.球的体积缩小到原来一半,则球的大圆面积缩小到原来的12.地球上的A 点在东经400,北纬300,B 点在东经1000,北纬750,则A 、B 两点的球面距离为13.在阳光下,一个大球放在水平地面上,球的影子伸到距球与地面接触点10米远,一根直立在地面上和为1m 的竹竿的影子长为2m ,则球的半径为14.已知球的两个平行截面的周长分别为π52和π24,它们位于球心同一侧,且相距为1,那么这个球的半径为15.P 、A 、B 、C 是球O 的面上的四个点,PA 、PB 、PC 两两垂直,且PA=PB=PC=1,求球O 的体积和表面积?16.有四个半径为R 的球,每个球都和其它三球相切,求和这四个球都相切的球的半径?[深化练习]17.圆柱形容器底半径为5cm ,两直径为5cm 的玻璃球都浸没在容器的水中,若取出这两个小球,则容器内的水面将下降 cm18.半径为R 的半球内有一内接圆柱,求此圆柱的全面积的最大值?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第二册(下)同步练测(17)
(研究性课题)
班级 姓名 学号
[基础练习]
1.一个n 面体共有8条棱、5个顶点,则n 等于 ( )
A .4
B .5
C .6
D .7
2.一个正n 面体共有8个顶点,每个顶点处共有3条棱,则n 等于 ( )
A .4
B .5
C .6
D .7
3.已知一个简单多面体的各个顶点共有三条棱,则2F-V 为 ( )
A .2
B .4
C .8
D .12
4.下列几何体是正多面体的是 ( )
A .长方体
B .正六棱柱
C .正四棱柱
D .棱长相等的正四面体
5.正十二面体和正二十面体的棱数分别是 ( )
A .29、30
B .30、30
C .30、31
D .32、35
6.连结正十二面体各面中心得到一个 ( )
A .正六面体
B .正八面体
C .正十二面体
D .正二十面体
7.每个顶点的棱数都是3的正多面体共有 ( )
A .2种
B .3种
C .4种
D .5种
8.连结正方体相邻面的中心,得到一个正八面体,则这个正八面体与正方体的体积之比是 ( )
A .123
B .66
C .61
D .82
9.正n 棱锥的全面积是底面积的2倍,则侧面与底面所成的角是 ( )
A .6π
B .4π
C .3π
D .12
5π 10.如图,在四面体ABCD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥BA ,则EF 与CD 所成的角是 ( )
A .900
B .450
C .600
D .300
11.棱长为a 的正八面体的对角线长为
12.已知甲烷分子结构是:中心为一个碳原子,外围有4个氢原子(这四个氢原子组成一正四面体的四个顶点)设中心碳原子到外围4个氢原子连成的四条线段两两组成的角A B C D E F
为θ,则θ
cos=
13.下列命题:①多面体的面数最少为4;②正多面体只有5种;③凸多面体都是简单多面体,其中正确命题的序号是
14.若四面体各棱长是1或2,且该四面体不是正四面体,则其体积的值是
(只需填写一个可能值)
15.正n(n=4,8,20 )面体的棱长是a,求它的表面积共同公式?
16.已知铜的单晶体的外形是简单几何体,单晶铜有三角形和八边形两种晶面,若铜的单晶有24个顶点,每个顶点处均有三条棱,求单晶铜的两种晶面的数目?
[深化练习]
17.正八面体每相邻两个面所成二面角大小为
18.一个正多面体各个面的内角总和为36000,求它的面数、顶点数和棱数。

相关文档
最新文档